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Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological
signals and images. However, themodel complexity for molecular magnetic resonance imaging (MRI)
often translates into excessive computation time, which makes clinical use impractical. Here, we
present a generic computational approach for solving theparameter extraction inverse problemposed
by ordinary differential equation (ODE) modeling coupled with experimental measurement of the
system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise
analytical one, thereby making it compatible with automatic differentiation-based optimization. This
enables efficient gradient-based model fitting, and provides a new approach to parameter
quantification based on self-supervised learning from a single data observation. The neural-network-
based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical
exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-
vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was
completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new
subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit
results.

Magnetic resonance imaging (MRI) plays a central role in clinical diagnosis
and neuroscience. This modality is highly versatile and can be selectively
programmed to generate a large number of image contrasts1, each sensitive
to certain biophysical parameters of the tissue. In recent years, there has
been extensive research into developing quantitativeMRI (qMRI) methods
that can provide reproducible measurements of magnetic tissue properties
(such as: T1, T2, and T

�
2), while being agnostic to the scan site and the exact

acquisition protocol used2. Classical qMRI quantifies each biophysical
property separately3, using repeated acquisition and gradual variation of a
single acquisition parameter under steady state conditions. This is followed
by fitting the model to an analytical solution of magnetization vector
dynamics4.

The exceedingly long acquisition times associated with the classical
quantification pipeline have motivated the development of magnetic reso-
nance fingerprinting (MRF)5, an alternative paradigm for the joint extrac-
tion of multiple tissue parameter maps from a single pseudorandom pulse
sequence. SinceMRF data are acquired under non-steady state conditions6,
the corresponding magnetization vector can only be resolved numerically.

This comes at the expense of the complexity of the inverse problem, namely
finding tissue parameters that best reconstruct the signal according to the
forwardmodel of spin dynamics. Sincemodelfitting under these conditions
takes an impractically long time7, MRF is commonly solved by dictionary
matching, where a large number of simulated signal trajectories are com-
pared to experimentally measured data8. Unfortunately, the size of the
dictionary scales exponentiallywith the number of parameters (the “curse of
dimensionality”9), which rapidly escalates the compute and memory
demands of both generation and subsequent use of the dictionary for pat-
tern matching-based inference.

Recently, various deep learning (DL)-based methods have been
developed for replacing the lengthy dictionary matching with neural-
network (NN)-based inference10–13. While this approach greatly reduces
the parameter quantification time, networks still need to be trained using
a comprehensive dictionary of synthetic signals. Since dictionary gen-
eration may take days12, it constitutes an obvious bottleneck for routine
use of MRF, and reduces the possibilities for addressing a wide variety of
clinical scenarios. Even with a faster generation, the transfer of synthetic
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data-trained NN to experimental data raises concerns about biased
estimates.

The complexity and time constraints associated with theMRF pipeline
are drastically exacerbated formolecular imaging applications that involve a
plurality of proton pools, such as chemical exchange saturation transfer
(CEST)MRI14.While CEST has demonstrated great potential for dozens of
biomedical applications15–21, someon thevergeof entering clinical practice22,
the inherently large number of tissue properties greatly complicate
analysis23. This has prompted considerable efforts to transition fromCEST-
weighted imaging to fully quantitative mapping of proton exchange
parameters24–28. Early CEST quantification used the fitting of the classical
numerical model (based on the underlying Bloch-McConnell equations)
after irradiation at various saturation pulse powers (B1)

27. However,
applying this approach in a pixelwise manner in-vivo is unrealistic because
both the acquisition and reconstruction steps may require several hours.
Later, faster approaches, such as quantification of the exchange by varying
saturation power/time and Omega-plots25,29–31 still rely on steady-state (or
close to steady state) conditions, and approximate analytical expressions of
the signal as a function of the tissue parameters32,33. Unfortunately, a closed-
form analytical solution does not exist for most practical clinical CEST
protocols, which utilize a train of off-resonant radiofrequency (RF) pulses
saturating multiple interacting proton pools. Similarly to the quantification
of water T1 and T2, incorporating the concepts of MRF into CEST studies
provided new quantification capabilities28,34–37 and subsequent biological
insights, for example, in the detection of apoptosis after oncolytic
virotherapy12. However, in order to further push the boundaries of CEST
MRF research and expedite its progress, the long dictionary generation
associated with each new application needs to be replaced by a rapid and
flexible approach that adequately models multiple proton pools under
saturation pulse trains.

Here, we describe a physics-based DL framework for rapid model
fitting of the human brain tissue proton spin properties. While this
approach is applicable for quantifying a variety of MRI parameters, we
focus on a challenging CEST imaging scenario, involving multiple
proton pools, a saturation pulse train, and non-steady-state MRF
acquisition. The computational pipeline (Fig. 1) combines a spin physics
simulator and a NN-based quantitative parameter reconstructor in a
fully auto-differentiable manner38. Our system effectively solves and

inverts the Bloch-McConnell ordinary differential equations (ODEs),
which govern the multi-pool exchange, saturation, and relaxation
dynamics of molecular MRI. Hence, we refer to this approach as “neural
Bloch McConnell fitting” (NBMF). Importantly, the network can be be
trained in a self-supervised manner, directly on the single-subject data of
interest (inspired by related work on test-time-39, internal-40, and zero-
shot-40–42 learning). This circumvents the need for prior curation of a
large training dataset, which is often inaccessible, especially for mole-
cular MRI.

Results and discussion
In-vitro CEST quantification
Aphantom composed of six vials with different combinations of L-arginine
concentration and pH was assembled and scanned in a 3T clinical scanner
(Prisma, Siemens Healthineers, Germany) using a previously published
non-steady-state rapid CEST protocol12,43. Good agreement was obtained
between the NBMF-estimated and known L-arginine concentrations
(Fig. 2a, c, e): Pearson’s r = 0.986, p = 3.0 × 10−4, root mean square error
(RMSE) = 8.4 mM,mean absolute percentage error (MAPE) = 10.8%). The
NBMF-reconstructed proton exchange rates were in good agreement with
the corresponding values estimated by traditional MRF dictionary-
matching (Fig. 2b, d, f): Pearson’s r = 0.999, p = 1.6 × 10−6,
RMSE = 41.0 s−1, MAPE = 13.2%. The pH dependence of the NBMF
reconstructed exchange rate (Fig. 2b) was a good fit for a base-catalyzed
proton exchange model (R2 = 0.94, p = 1.4 × 10−3), as predicted by theory44.
An additional in-depth comparison between traditional dictionary match-
ing and NBMF is available in Supplementary Table 1, and Supplementary
Figs. 1, 2.

Quantifying the semisolid-MT and CEST proton exchange para-
meters in the human brain
The NBMF pipeline used in-vitro was modified for semisolid-MT and
amide proton exchange parameter mapping in the human brain. Two 3D
and rapid acquisition pulse sequences were applied, as described
previously12,43. The first sequence varied the saturation pulse frequency
offset between 6 and 14 ppm (designed to encode semisolid-MT informa-
tion), whereas the second sequence fixed it at 3.5 ppm (for amide proton
parameter encoding). In both cases, a total of 31 raw information encoding

Fig. 1 | Schematic representation of the core neural
Bloch McConnell fitting (NBMF) pipeline. A
quantitative parameter reconstructor parameterized
as a multi-layer perceptron (MLP) and a differ-
entiable Bloch-McConnell simulator are serially
connected into a single computational graph. Single-
subject Magnetic Resonance Fingerprinting (MRF)
data serves both as the input and as the regression
target for the reconstructor-simulator circuit. The
network convergence (a) provides the fitted
exchange parameter maps for the examined subject
as well as a trained NN reconstructor; the latter can
be used to extract parameter maps for new subjects
within seconds (b). The simulator can be realized
using the exact numerical Bloch McConnell ODE
solver or using analytical approximations when
available (e.g., for 2-pool semisolid Magnetization
Transfer (MT) quantification33).While not shown in
the diagram, auxiliary per-voxel data such as T1, T2,
B0, and B1 maps can be added as input to the neural
reconstructor and the simulator. Furthermore, the
pipeline main block can be serially repeated so that
estimated semisolid MT volume fraction (fss) and
proton exchange rate (kssw) maps inferred at the first
stage are joined to the raw data used in a second
reconstructor aimed to quantify the amide proton
exchange parameters (fs, ksw).
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images were generated, with the saturation pulse power randomly varied
between 0 and 4 μT12,44.Water relaxation (T1 andT2) andfieldmaps (B1 and
B0) were acquired separately and used as an extra input to the neural
reconstructor described in Fig. 1 in order to avoid water-pool- and
inhomogeneity-associated biases, respectively12. A two-step NBMF (see

“Methods” section) was used to fit the semisolid-MT and amide proton
exchange parameters to the raw data.

Quantitative semisolid-MT and amide proton exchange parameter
maps derived from a representative healthy volunteer are presented in Fig. 3
and Fig. 4, respectively. The resulting proton volume fractions and

Fig. 2 | In-vitro study. L-arginine samples were imaged using a pulsed Chemical
Exchange Saturation Transfer Magnetic Resonance Fingerprinting (CEST-MRF)
protocol in a 3T clinical scanner. The neural Bloch McConnell fitting
(NBMF)–based L-arginine concentrations (a) and proton exchange rates (b) were in
good agreement with those obtained by dictionary-based pattern matching (c and

d, respectively). The ground truth L-arginine concentrations and pH values are
mentioned in the white text next to each vial. The pixelwise distributions are further
compared in (e, f). Each point in the swarm plot reflects a single 1.8 mm × 1.8
mm × 5.4 mm voxel.

Fig. 3 | In-vivo study: semisolid magnetization transfer (MT) imaging. Results of
neural Bloch-McConnell fitting (NBMF)-based quantification of the MT-related
tissue parameters in the human brain scanned with a pulsed MT Magnetic Reso-
nance Fingerprinting (MT-MRF) protocol are presented. Representative recon-
structed parameter maps of the semisolid-MT proton volume fraction (a) and
proton exchange rate (b), alongside a fidelity estimation (c) of the data-model
agreement, computed as R2= 1-NMSE (normalized mean square error).

d, e Statistical analysis of the resulting proton exchange parameter values across the
brain white matter and gray matter (WM/GM) regions of interest (box-plots,
n=47,442/64,611 voxels, respectively), compared to literature (colored
markers)12,43,45,90,91. In the boxplots, the central horizontal lines represent median
values, box size represents the two central (2nd, 3rd) quartiles, the whiskers repre-
sent the 90 central percentiles, and outliers are omitted.
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exchange rates were in agreement with the literature (although the large
variability in previous reports is noted; see Fig. 3d, e and Fig. 4d, e). The
mean values obtained for white/gray matter (WM/GM) were:
fss = 13.09 ± 3.44(%), kssw = 34.7 ± 7.8(s

−1), fs = 0.33 ± 0.08(%), ksw = 305.1 ±-
± 34.0(s−1) for white matter and fss = 6.28 ± 1.88(%), kssw = 44.2 ± 7.5
(s−1), fs = 0.21 ± 0.06(%), ksw = 235.9 ± 46.0(s

−1) for gray matter.
The joint fit and training of the NBMF produced a neural recon-

structor, optimized on a single subject. We then re-applied the trained
reconstructors to additional subjects in a fast inference mode. A repre-
sentative example comparing the parameter maps obtained from single-
subject NBMF with those obtained by a rapid reconstructor reuse is shown
in Fig. 5. The resulting agreementmetrics (Fig. 5e)were as follows; NRMSE:
7 ± 1%, 12 ± 3%, 7 ± 1%, and 18 ± 1%; Intraclass correlation coefficient
ICC(2,1): 0.87 ± 0.03, 0.82 ± 0.04, 0.86 ± 0.03, 0.86 ± 0.03; SSIM: 0.93 ± 0.02,
0.87 ± 0.07, 0.94 ± 0.01, 0.90 ± 0.03, for the fss, kssw, fs, and ksw, respectively.
Additional analysis is provided in Supplementary Fig. 4.

Computational complexity, timing, and comparison with alter-
native approaches
The combined NBMF training and fitting procedure for all four semisolid-
MT and amide proton volume fraction and exchange rate parameter maps
from the whole brain of a single subject (169K–194K voxels) took
18.3 ± 8.3min on a standard GPU-equipped (GeForce RTX 3060) desktop
workstation, ofwhich, the two-pool quantification of the semisolidMTpool
parameters took 3.0 ± 0.4min. Re-applying the trained reconstructors for
whole-brain parameter mapping on a new subject took 1.0 ± 0.2 s. Overall,
the complete quantification pipeline takes less than 30min for NBMF,
compared to at least several hours using previously reported implementa-
tions of traditional Bloch-Fitting45, or dictionary-based preparation and
supervised neural network training.12,37 (Table 1).

Next, we performed unified benchmarking of dictionary generation,
matching, and supervised learning, using the accelerated approach devel-
oped as part of this work (GPU-based JAX formulation of the Bloch
McConnell numerical solution); see additional implementation details in
Supplementary Note 2. Notably, this yielded comparable timing to self-
supervision (Table 2), given that a non-cartesian sampling grid is used for
dictionary generation. The benefit of nonetheless using the self-supervised

approach compared to supervised training is highlighted in Supplementary
Notes 1–3 in the context of consistency with the raw acquired data and per-
subject discrepancy minimization. In general, by unlocking rapid direct
fitting (via automatic differentiation) and coupling it with self-supervised
learning, NBMF constitutes an alternative way to address the ill-posed in-
vivo quantification challenge. It contributes to an improved consistency of
the quantitative parameter estimates with the raw data given the model,
compared to dictionary-based supervised learning (Supplementary Fig. 3).
By combining the explicit objective of minimal data-model discrepancy
with implicit neural regularization, NBMF created smoother maps with
visible contrast, while keeping the data-model agreement close to that
achieved by dictionary matching (Supplementary Fig. 5).

Automatic differentiation of the Bloch-McConnell (BM) equation
solutions
Quantification of semisolid MT/CEST proton exchange parameters under
non-steady-state conditions is a notable example of a biophysical estimation
where the forward model is perceived as too complex for direct inverse
solution via fitting (requiring several days for a single whole brain
reconstruction45). While the solution can be approximated via MRF, the
large simulated signal dictionaries12 associatedwithmulti-pool imaging also
demand significant computational resources46,47, limiting the development
of new pulse sequences. A recently reported dictionary-free alternative48

proposed unsupervised learning for semisolid-MT parameter quantifica-
tion. However, this method assumes continuous pulse irradiation, which is
not available in many clinical scanners, and also relies on analytical solu-
tions, which are not compatible with multi-pool pulsed CEST imaging.

The dictionary-free method presented in this work overcomes all such
limitations. Our approach is based on a fundamental insight: by proper
formulation, ODE models considered only numerically solvable can
become step-wise analytical, and thereby compatible with automatic
differentiation-based optimization. Specifically, the suggested formulation
enables GPU-based matrix inversion and exponentiation, which translates
into efficient gradient descent via back-propagation. Combining this con-
cept with a recently reported high-performing automatic differentiator38

provides anewoption for solving complexbiophysical estimation tasks such
as pulsed CEST quantification, demonstrated here. Compared to standard

Fig. 4 | In-vivo study: amide proton transfer (APT) imaging. Results of neural
Bloch-McConnell fitting (NBMF)-based quantification of the APT-related tissue
parameters in a human brain scanned with a pulsed Chemical Exchange Saturation
Transfer Magnetic Resonance Fingerprinting (CEST-MRF) protocol. Representa-
tive reconstructed parameter maps of the amide proton volume fraction (a) and
proton exchange rate (b), alongside a fidelity estimation (c) of the data-model
agreement, computed as R2= 1-NMSE (normalized mean square error).

d, e Statistical analysis of the resulting proton exchange parameter values across the
brain white matter and gray matter (WM/GM) regions of interest (box-plots,
n = 47442/64611 voxels, respectively), compared to literature (colored
markers)12,45,91,92. In the boxplots, the central horizontal lines represent median
values, box size represents the two central (2nd, 3rd) quartiles, the whiskers repre-
sent the 90 central percentiles, and outliers are omitted.
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model fitting, this approach avoids (i) computationally expensive and
inaccurate purely-numerical derivatives computed viamultiple evaluations,
and (ii) explicit analytical approximations, which can only be applied to a
limited subset of cases and lack generalization (e.g., unsuitable for a multi-
proton-pool pulsed-RF saturation). Unlike MRF dictionary-trained
networks10,28, the suggested approach can provide parameter estimates
that allow the model to best describe the raw data (Supplementary Fig. 3).

SupervisedNN training using a synthetic signal dictionary requires the
estimation of the application-specific parameter distribution, which is often
unknown in advance. The self-supervised (NBMF) approach circumvents
this challenge by training on the in-vivo data itself, offering improved
parameter distribution matching. When it comes to re-using the trained
network on new unseen subjects, one drawback of this approach lies in its
reliance on previously represented proton exchange parameters.
Dictionary-based approaches, on the other hand, have the flexibility for
representing the expected abnormality values (if they are known) or simply
using a very broad parameter distribution that covers both the healthy and
diseased states. A future patient cohort investigation is needed to examine
the clinical utility of transferring the self-supervised quantification
approach, when trained on healthy volunteers, for quantification in unseen
pathology (e.g., small lesions).

As shown in Table 1, the most time-consuming steps for supervised
dictionary-based learning are the dictionary generation step followed by
neural network training. However, if the imaging scenario is a priori known
(e.g., brain cancer treatment monitoring) and the acquisition protocol
parameters are fixed and optimized, these steps can be done once without
affecting the rapid inference time for each new subject. Self-supervised data-
based learning (NBMF), on the other hand, offers the flexibility of

accommodating various imaging scenarios and is more easily adapted for
new acquisition protocols and research directions. That being said, the
biophysical modeling developed as part of this work (GPU-based JAX
implementation of the Bloch McConnell numerical solution) can also
accelerate both dictionary generation and supervised learning (Table 2),
allowing the user to utilize and compare all different approaches.

The gradient of the forward model can be directly used for simple
fitting of the unknown ODE coefficients corresponding to the physical
parameters of interest (see voxelwise BMF in the “Methods” section, Sup-
plementary Note 3, and Supplementary Fig. 6). However, when the core
forward model automatic differentiator is also integrated into a self-
supervised learning pipeline (NBMF, Fig. 1), a joint neural representation of
the signal-to-parameter transformation can be trained and stored with little
extra computational cost. This enables: (i) Faster convergence, which scales
well with the number of voxels up to the full brain size, leveraging redun-
dancy towards a spatially smoother solution (Supplementary Fig. 6). (ii)
Later reuse for real-time inference on new subjects within a similar imaging
scenario.

The human brain imaging results (Figs. 3–5, Supplementary Figs. 3–6,
8) reveal the potential for using an autodiff-compatible Bloch-McConnell
solver for parameter quantification while training a simple multilayer per-
ceptron (MLP) voxelwise. Combined with a 3D whole brain acquisition
routine (which rapidly generates hundreds of thousands of voxels), the
suggested system provides a rapid and efficient single-subject learning
method. Notably, while this work presented a proof of concept for rapid
inference by a network trained on a single subject, robustness and con-
sistency of the transfer leaves a clear room for improvement (Fig. 5 and
Supplementary Fig. 4). Future work could study different NN architectures

Fig. 5 | In-vivo study: rapid quantification by applying neural Bloch-McConnell
fitting (NBMF) in “transfer mode”. A comparison between the results of single-
subject NBMF (a, b) and real-time quantification of the same subject by inferring the
neural reconstructor trained while fitting another subject (c, d). A perceptually and
quantitatively similar outputs were obtained for both semisolid (a, c) and amide
(b, d) exchange parameters mapping. e Similarity analysis using normalized root-

mean-square (NRMSE), intraclass correlation coefficient (ICC(2,1), absolute
agreement-assessing variant), and structural similarity indexmeasure (SSIM) across
all (n = 50) processed brain slices. In box plots, the central horizontal lines represent
median values, box size represents the two central (2nd, 3rd) quartiles, whiskers
represent 1.5× the interquartile range above andbelow the upper and lower quartiles,
and circles represent outliers.
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with spatial awareness (via convolutional or attention layers), as well as
larger datasets composed of multiple subjects and a combination of both
dictionary-based synthetic data and real-world scans. Subsequent efforts
could also improve the modeling accuracy by taking under consideration
the contributions of additional proton pools (such as amine and guanidi-
nium) to the 3.5 ppm signal.

The proposed approach could be further exploited for other tasks
across the CEST-MRF pipeline, such as accelerated dictionary
synthesis49,50(as demonstrated in Supplementary Note 2 and Table 2) and
pulsed-wave irradiation compatible CEST protocol discovery and
optimization46,47,51–53. Furthermore, NBMF is directly applicable to
anatomical-MRF (proton density, T1, T2) dictionary-free parameter quan-
tification and conversely, to classical non-MRF molecular MRI, such as
pulsed multi-B1 Z-spectra fitting

25,54 (see Supplementary Notes 4, 5). While
auto-differentiationof theBloch equationshaspreviously been leveraged for
severalMRI-related applications47,52,55–57, to the best of our knowledge this is
the first report of utilizing this concept for a generalized Bloch-McConnell-
fitting task. Beyond molecular MRI and MRF, this approach can also be
applied to any other diagnostic and biophysical domains that involve
dictionary-matching58.

Learning to estimate ordinary differential equation (ODE) coeffi-
cients from observed data
The general strategy underlying NBMF can be applied to any inverse pro-
blem that involves fitting ODEs to observations of a dynamical system. In
the biomedical realm alone, this includes cardiovascular59,60,
pharmacokinetic61,62, and epidemiological63,64 modeling, amongmany other
tasks. In parallel to the exponential growth and improvement in AI per-
formance, the last decade has witnessed a surge of interest in harnessingDL
for physics-based problem solving. These efforts have most often been
directed into two routes: (i) seeking a solution to a partial differential
equation (PDE) as an output of a physics-informed neural network (PINN)
that operates on spatial and temporal coordinates65–69; widely applied for
spatially-resolved dynamics in solid70- andfluid71mechanics, heat transfer72,
power systems73, weather/climate74, anddiffusionMRI75. (ii)Modeling parts
of the equationwith aNN, yielding a neuralODE/PDE76, often employed as
a semi-parametric approach for model discovery77–79. Interestingly, the
relatively simple direct inverse solution approach described here (Fig. 1),
whereby a NN is trained to infer the coefficients of an ODE model from a
few samples of the dynamics, has not received similar attention. This could
open opportunities for the currentwork to informnewapproaches toODE-
driven inverse problems across a multitude of tasks.

Conclusions
The NBMF framework enables rapid, dictionary-free, pulsed-saturation
and multiple proton-pool-compatible semisolid MT/CEST-MRF quantifi-
cation. By combining a GPU-accelerated auto-differentiable numerical
ODE solver and self-supervised DL, the NBMF pipeline is able to match
alternative AI-reconstruction based inference, while removing the need for
dictionary synthesis. NBMF is three orders of magnitude faster than tra-
ditional Bloch fitting, and provides a one-stop-shop for reconstructing
quantitative molecular MRI data. The underlying approach has potential
applications across a wide variety of ODE-driven inverse problem tasks.

Methods
CEST phantoms
A set of six 10ml L-arginine (L-arg, chemical shift = 3 ppm, Sigma-Aldrich)
phantoms was prepared at a concentration of 25, 50, 75, or 100mM. The
phantomswere titrated todifferent pH levels between4.0 and5.0 andplaced
in a 120mmdiameter cylindrical holder (MultiSample 120E,Gold Standard
Phantoms, UK), filled with saline.

Human subjects
Four healthy volunteers (three females/one male, with average age
23.75 ± 0.83) were scanned at Tel Aviv University (TAU), using a 3T MRIT
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equipped with a 64-channel coil (Prisma, Siemens Healthineers). The
research protocol was approved by the TAU Institutional Ethics Board
(study no. 2640007572-2) and the Chaim Sheba Medical Center Ethics
Committee (0621-23-SMC). All subjects gave written, informed consent
before the study.

MRI acquisition
All acquisition schedules were implemented using the Pulseq prototyping
framework80 and the open-source Pulseq-CEST sequence standard81. The
MRF acquisition protocols were implemented as described previously12,43,
with an unsaturated M0 image added at the beginning of each sequence. A
spin lock saturation train (13 × 100ms, 50% duty-cycle) was used for each
one of the 30 additional iterations of the sequence, which varied the
saturation pulse power between 0 and 4 μT (average pulse amplitude). The
saturationpulse frequencyoffset wasfixed at 3 ppm for L-arginine phantom
imaging44, 3.5 ppm for amide brain imaging12, or varied between 6 and
14 ppm for semisolidMT imaging43. The saturation blockwas followed by a
3D centric reordered EPI readout module82,83, providing a 1.8 mm isotropic
resolution. The in-plane axial matrix size was 116 × 88, with 50 slices
(169K–194K brain voxels) used per subject. The full sequences can be
accurately reproduced using previously published Pulseq (.seq) files49. Each
3DMRF acquisition took 2:36 (min:s). The same readout module was used
for acquiring additional B0, B1, T1, and T2 maps, via WASABI84, saturation
recovery, and multi-echo sequences, respectively. The total scan time per
subject was 9 min. The WASABI sequence used a preparation scheme
realized by a rectangular pulse of 5 ms and nominal B1= 3.7 μT. Twenty-
four frequency offsets were equally spaced between−1.8 ppm and 1.8 ppm
with a recovery time of 4.5 s. An M0 image was taken at -300 ppm with a
recovery time of 12 s. The saturation recoveryT1mapping protocol used the
following TR (s) values: 10, 6, 4, 3, 2, 1, 0.8, 0.5, 0.4, 0.3, 0.2, 0.1. The T2

mapping multi-echo sequence used the following echo times (s): 0, 0.01,
0.025, 0.03, 0.04 0.05, 0.1, 0.2, 0.3, 0.5, 1.0 with a TR = 10 s.

MRI data pre-processing
In vitro images with no L-arginine vials, partial vials, or severe image arti-
facts were removed. Regions of interest (ROIs) were defined using circular
masks. In-vivo brain images were motion-corrected and registered using
elastix85. WM/GM ROI segmentation of the T1 map was performed using
statistical parameter mapping86. Quantitative reference CEST-MRF values
(Fig. 2) were obtained using dot-productmatching, as extensively described
previously44,49.

NBMF architecture for semisolid-MT and CEST quantification
The self-supervised learning framework comprises two main components
(Fig. 1, Top):

(A)ReconstructorR - a fully-connectedmulti-layer perceptron (MLP)
NN, applied voxel-wise on the raw input data10,12,13,87. The NN is composed
of three layers, with 256 neurons and ReLU activation in each hidden layer.
Theoutput layer consists of 5neurons, encoding the estimates for theproton
volume fraction and exchange rate of the compound of interest and their
joint uncertainty expressed as noise covariance. It utilizes a sigmoid acti-
vation, with the output scaled to a predefined range of the parameter values,
which effectively defines the prediction boundaries as follows: semisolid
proton volume fraction fss∈ [0, 30] (%), semisolid proton exchange rate
kssw∈ [0, 150] (s−1), amide proton volume fraction fs∈ [0, 1.2] (%), amide
proton exchange rate ksw∈ [0, 400] (s−1), L-arginine concentration [L-
arg]∈ [10, 120] (mM) and Nα-amine (of L-arginine) proton exchange rate
ksw∈ [100, 1400] (s−1)44. Several auxiliary maps X, including water relaxa-
tion T1, T2, and B0/B1 inhomogeneities, are appended to theMRF raw data
D to be used as inputs for the tissue parameter estimation: ~P ¼
R ðD;XÞ;wð Þ where w are the weights to be trained.

(B) Simulator F—a differentiable multi-pool spin physics solver. A
numerical simulation of the piecewise-constant coefficient Bloch-McConnell
(BM) differential equations was implemented in the open-source JAX38

computing framework, leveraging its strong auto-differentiation and GPU-T
ab
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acceleration capabilities for matrix operations. The simulator concatenated
and chained the calculations of the BM closed-form solution across all pulses
and delays of the protocol. This was carried out by inversion and expo-
nentiation of the 9 × 9 BM-matrix A, which expresses all precession,
saturation, relaxation and exchange terms of the multi-pool magnetization
vector (M) dynamics, as previously defined33:

_M ¼� AMþ C ! Meq: ¼ AnC;Mðt þ ΔtÞ
¼e�AΔt MðtÞ �Meq:

� �
þMeq:

ð1Þ

This solver is compatible with the rectangular pulse-train shape employed
in this study and others12,43,81, while arbitrary pulse shapes can be
supported using a simple matched-RMS approximation, or to any order
through a Magnus expansion88. For two-pool imaging cases (such as
semisolid MT data acquired using saturation pulses with a frequency
offset higher than 6 ppm), additional acceleration was obtained by
implementing the interleaved saturation-relaxation (ISAR2) approximate
analytical solution33 of the saturation stage. TheRFpulses of spin-lock and
readout flips were approximated as hard pulses generating precise flip
angle rotations.

The model is designed to represent the whole sequence by simulating
the Z-magnetization dynamics during the recovery, saturation, and readout
stages, provided that spoilers are applied. For eachof the two (semisolidMT/
amide) sequences, the Nx31 non-steady-state MRF measurements from
169K-194K brain voxels were normalized using an unsaturated M0 refer-
ence image. Thus, the resulting acquired data D ¼ fDngNn¼1 2 ½0; 1� is
directly related to themagnetization vector governedbyEq. (1), at the endof
the saturation pulse block. Therefore, given ~P, an estimate of the sought
parameters, the simulator provides a re-synthesis of the data as:
~D ¼ F ð~P;X;ωrf ;B1Þ, where ωrf and B1 are the saturation pulse frequency
offsets and powers implemented in theMRFprotocol, andX are any known
tissue parameters.

The NBMF reconstruction of the semisolid-MT proton exchange
parameters from the first (1) subject, was obtained by using the MT-MRF
data Dð1Þ

ss alongside independently quantified auxiliary parameter maps

Xð1Þ
w;B ¼ fT1w;T2w; B1;B0g, for training the weights wð1Þ

ss of a neural

reconstructor Rð1Þ
MT , designed to quantify the associated proton exchange

parameters (~P
ð1Þ
ss ¼ f ss; kssw). To that end, the NBMF optimizes the fol-

lowing self-supervised objective of consistency with the biophysical model
F :

wð1Þ
ss ¼argminw∣∣~D�Dð1Þ

ss ∣∣

¼argminw∣∣F R ðDð1Þ
ss ;X

ð1Þ
w;BÞ;w

� �
;Xð1Þ

w;B

� �
�Dð1Þ

ss ∣∣
ð2Þ

The L2 norm was used as the regression loss. A cosine-decay learning rate
schedule and simple early-stopping upon convergence (loss trend reaching
plateau) were applied. Augmentation by noise was applied, twice: (a)
Adding a ±0.1% Gaussian noise to the raw samples (b) Adding a Gaussian
noise to the ~f ;~k tissue parameters estimate, using covariance derived from
extra outputs of the NN, inspired by a recent work89.

This process was repeated using the non-steady-state amide rawMRF
data Dð1Þ

s for NBMF quantification of the amide proton exchange para-
meters (Ps = fs, ksw). For human brain experiments, we also appended the
semisolid MT pool parameter estimates ef ss and ~kssw (obtained from the
semisolid MT NBMF procedure) to the auxiliary vector X. This vector
served as input for the amide reconstructorRs and the 3-pool biophysical
model F s, so that: XB;w;ss ¼ fXB;w; Pssg ¼ fT1w;T2w;B1;B0;

~f ss;
~ksswg12.

For the two-pool L-argininephantomexperiments, the auxiliaryparameters
were assigned constant values based on previous reports (T1w = 2800ms,
T2w= 1200ms)43.

Importantly, we obtain both the subject-specific proton exchange
parameters ~P

ð1Þ ¼ Rð1ÞðDð1Þ;Xð1ÞÞ and the trained reconstructor R at the

convergence of the NBMF. This enables ultra-fast quantification of the
proton exchange parameters ~P

ð2Þ ¼ Rð1ÞðDð2Þ;Xð2ÞÞ from a new subject (2)
(Fig. 1 bottom). Notably, this rapid inference is only applicable for new data
drawn from the same distribution and cannot be applied to entirely new
systems (such as muscle creatine quantification using brain-data
trained NBMF).

As a natural ablation of the systemby removing the neural component,
the auto-diff simulator can be used for direct voxelwise parameter fitting:
~P
ð1Þ ¼ argminjjF Pð1Þ� ��Dð1Þjj, referred to here as voxelwise Bloch-

McConnell fitting (VBMF). This simpler process can be described in the
context of Fig. 1 as stopping the gradients at the tissue parameters, which
now assume the role of independent per-voxel variables. Apart from the
obvious drawback of not yielding a neural reconstructor, VBMF’s perfor-
mance is inferior toNBMF for brain imaging (Supplementary Fig. 6), which
we ascribe to the implicit smoothing regularization by the neural network.
However, it is a viable directmethod for in vitro analysis that is equally able
to converge to the minimum of the modeling-error landscape (Supple-
mentary Figs. 1, 2).

Finally, additional acceleration was achieved by parallelization of the
computational graph across consecutive readout pairs {Dn−1, Dn}, decou-
pling the single-iteration simulatorsF n. Assuming that the Dn−1 snapshot
captures the preceding spin history evolution, the re-synthesis stage is now
formulated as ~D ¼ fF nðeP;Dn�1Þg

N
n¼1 and embedded in Eq. (2) as such. See

Supplementary Note 4 for further elaboration.

Statistical analysis
The SSIM and ICC(2,1) were calculated using the open-source SciPy and
Pingouin scientific computing libraries for Python. In slice-statistic box
plots (Fig. 5e), the central horizontal lines representmedian values, box size
represents the two central (2nd, 3rd) quartiles, whiskers represent 1.5× the
interquartile range above and below the upper and lower quartiles, and
circles represent outliers. In the voxel-statistic box plots (Figs. 3, 4) the
central horizontal lines representmedian values, box size represents the two
central (2nd, 3rd) quartiles, thewhiskers represent the 90 central percentiles
and outliers are omitted. Numerical results in the text are presented as
mean ±SD.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data for the phantom experiment and sample human brain datasets (a
single slice for each of the n = 4 subjects) are available at https://github.com/
momentum-laboratory/neural-fitting and https://doi.org/10.5281/zenodo.
15021550. The complete 3D human data cannot be shared due to subject
confidentiality and privacy.

Code availability
The code used in this work is available at https://github.com/momentum-
laboratory/neural-fitting and https://zenodo.org/records/15021550.
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