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Metabolic coordination and phase
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cellular systems
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During overflow metabolism, cells excrete glycolytic byproducts when growing under aerobic
conditions in a seemingly wasteful fashion. While potentially advantageous for microbes with finite
oxidative capacity, its role in higher organisms is harder to assess. Recent single-cell experiments
suggest overflow metabolism arises due to imbalances in inter-cellular exchange networks. We
quantitatively characterize this scenario by integrating spatial metabolic modeling with tools from
statistical physics and experimental single-cell flux data. Our results provide a theoretical
demonstration of how diffusion-limited exchanges shape the space of accessible multi-cellular
metabolic states. Specifically, a phase transition from a balanced network of exchanges to an
unbalanced, overflow regime occurs as mean glucose and oxygen uptake rates vary. Heterogeneous
single-cell metabolic phenotypes occur near this transition. Time-resolved tumor-stroma co-culture
data support the idea that overflow metabolism stems from failure of inter-cellular metabolic
coordination. In summary, environmental control is an emergent multi-cellular property, rather than a
cell-autonomous effect.

Cell populations adapt to an environment on at least two different levels: (i)
via intra-cellular regulation (e.g. metabolic, signaling, genetic), which
underlies essential maintenance, biosynthetic and, possibly replicative
processes; and (ii) via extra-cellular mechanisms (e.g. sensing, signaling,
motility), necessary to harvest information and control exchanges with the
medium. The latter level prompts inter-cellular interactions and introduces
an ecological dimension tomulti-cellular systems, where cells can be seen as
agents that need to meet certain requirements while jointly modulating a
shared environment. The way in which the two layers integrate is a key
determinant of adaptation, viability, and ultimately fitness1–4. This raises a
rather basic question: is a viable environment the result of the straightfor-
ward aggregation of a large number of autonomous actions by individual
cells, or is it rather an emergent property of the collective behavior of many
interacting cells? In the former case, intra-cellular constraints (and possibly
cell-specific objective functions) effectively direct population behavior5.

In the latter, inter-cellular interactions play the central role6. Can one
quantitatively separate the two contributions?

The contours of this problembecome especially clear upon focusing on
a cellular process that directly links the two levels described above, namely
carbon overflow (CO). In short, CO consists of the excretion into the
medium of carbon-based waste products of intra-cellular carbon catabo-
lism, such as acetate, ethanol, or lactate, in aerobic conditions7,8. This may
occur for instance because the cell’s oxidative capacity is saturated (e.g. due
to excess glucose availability or dysregulated import pathways), so that, even
in the presence of abundant oxygen, incoming carbon is diverted towards
fermentation5,9–11. CO appears to be a ‘universal’ feature of cellular meta-
bolism, which has been consistently observed across domains. While in
microbial systems it can be partly explained by the evolutionary advantage
of a higher growth rate at the cost of lower energy yield12–15, the root cause of
CO in higher organisms or in tumors (where it underlies the Warburg
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effect16) is more difficult to ascribe, especially when it is not associated with
growth and replication4,17–21.

An ecological role for CO derives from the fact that accumulation of
fermentation byproducts in the extra-cellular medium leads to acidification
and, in turn, detrimental effects ranging from the slowdown of protein
synthesis to growth inhibition due to apoptosis22. Remediation of the shared
environment is therefore of paramount importance for cell populations. On
the other hand, exporters of overflow products effectively supply the
medium with additional carbon equivalents on which cells can rely for
sustenance (via oxidation)23,24. Importers thereby contribute to correcting
environmental pollution. Taken together, these processes are major drivers
of functionally- and ecologically-significant inter-cellular crosstalk25–28.
Nevertheless, how decisive such a crosstalk is compared to individual cel-
lular decisions in engineering the environment remains an open question.

We attempt to address this issue by integrating (a) constraint-based
metabolic modeling (CBM)29 and diffusion constraints, (b) the statistical
physics approach to the study of emergent phenomena30, and (c) high-
resolution data for single-cell behavior in a cell population adapting to a
glucose-based medium31. More specifically, we first employ CBM to
demonstrate that a spatially distributed population of cells with identical
metabolic requirements coupled through an exchange network undergoes a
crossover between two distinct metabolic regimes when the population-
averaged metabolic rate changes. The first regime is characterized by weak
medium acidification, while significant accumulation of overflow products
occurs in the second. Next, we rationalize these findings mathematically
using ahighly stylized but analytically tractable version of themodel.Within
this approach, the crossover takes the form of an order-disorder transition

similar to those that characterize thermodynamic systems in statistical
physics30, and bulk overflow appears as an emergent feature of a population
of interacting cells. Finally, building on the theory, we exploit statistical
inference techniques to reconstruct the metabolic trajectory of an
experimentally-studied mixed population of cancer cells and cancer-
associated fibroblasts that displays theWarburg effect and self-organizes its
collective metabolism over time to reduce lactate spillover via metabolic
exchanges. We will focus on the lag phase with negligible glucose depletion
and growth, because it provides insights into the cellular and molecular
mechanisms that govern cancer cell adaptation and subsequent prolifera-
tion. We show in particular that the population, while coordinating at
themetabolic level and reducing lactate spillover, collectivelymoves towards
states where the ATP yield on glucose is optimal. This provides a quanti-
tative, low-dimensional, and interpretable representation of the complex,
high-dimensional dynamics of the population in the space of feasible
metabolic states.

Results
Single-cell metabolic model and flux space
To build our theoretical setup, we begin by modeling the metabolic flux
space available to a single mammalian cell through CBMwith the minimal
reaction network for energy production by central carbon pathways dis-
played in Fig. 1a. This simplistic model consists of just three metabolic
reactions that carry out (a) the import and conversion of glucose to pyruvate
(representing glycolysis), (b) the interconversion of pyruvate and lactate
(representing lactate import/export), and (c) the generation of ATP using
pyruvate and oxygen (representing oxidative phosphorylation).Wewant to

Fig. 1 | Constraint-based metabolic model. a Sketch of the single-cell metabolic
network representing the central carbon pathways (uG glucose uptake, uL lactate
flux, uO oxygen uptake). b Feasible single-cell flux space (F 1) in the (uO, uG) plane,
bounded by Eqs (3) (glucose intake), (4) (oxygen intake), and (5) (ATP main-
tenance). For a single cell (as well as for the average bulk behavior) the purple region
(uL > 0 or lactate import) is unfeasible unless lactate is exogenously provided. Points
A-G are thosewhere the cell wouldmaximize rate of ATP production (A),maximize
rate of ATP production with zero net lactate exchange (B), maximize rate of ATP
production while using lactate as the only carbon source (C), minimize rate of ATP
production while using lactate as the only carbon source (D), minimize rate of ATP

production with zero net lactate exchange (E), minimize rate of ATP production
anaerobically (F), ormaximize rate of lactate excretion (G). cThe possibility for cells
to exchange lactate defines an extended metabolic flux space for a system of N cells
(FN ) whose configurations can be projected into single-cell flux space. In turn, the
corresponding lactate fluxes define a spatial concentration gradient in the medium
via (8). dCaseN = 2, feasible space in the plane ðuð1ÞL ; uð2ÞL Þ. In cases A and E cells are
coupled via lactate exchange, one cell acting as a donor (red) for the other (blue).
This makes the uL > 0 (purple) region of panel (b) viable for the acceptor cell even in
absence of an external lactate source.
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model a typical overflow scenario like the one presented in31, where the
medium is glucose enriched, there is lactate accumulation in aerobic con-
ditions andmetabolism is runningmainly for the sake of energy production
with negligible biomass build-up. This corresponds to the initial part of the
growth curve, during which the population adapts to the environment.

Because the experimental timescales we consider (hours after seeding)
are much longer than typical metabolite turnover times (seconds for
ATP)32–34, we can make the same stationarity assumption for metabolite
levels that is standard in approaches based on Flux Balance Analysis35. At
steady state, the equation for carbon mass-balance is

uG þ uL
2
� uO

6
¼ 0; ð1Þ

whereuG≥0 is theflux for import of glucose from the environment (inunits
mmol/gh), uL is the corresponding lactate exchange flux (uL > 0 for import,
uL < 0 for export) anduO≥ 0 is the flux for import ofmolecular oxygen (that
we assume corresponds to respiratoryflux, so that it enters the carbonmass-
balance due to its equivalence to carbon dioxide secretion). The net rate of
ATP production is instead given by

f ATP ¼ �uL þ 5uO; ð2Þ

where we used empirical coefficients for ATP produced by respiration and
fermentation pathways (Supplementary Note 1). Along with (1), the space
of viable fluxes is defined by the additional constraints

0≤ uG ≤UG ð3Þ

0 ≤ uO ≤UO ð4Þ

f ATP ≥ LM ð5Þ
representing respectively the limited capacities of glucose import channels
(Eq. (3)) and mitochondrial activity (Eq. (4)), and a minimal rate of energy
production required for cell maintenance (Eq. (5)). Values for the para-
meters UG, UO and LM are also available from the literature (Supplemen-
tary Note 1).

The resulting single-cell flux space is represented by the
2-dimensional polytope in the (uO, uG) plane shown in Fig. 1b, whose
oblique boundary corresponds to the maintenance requirement (5).
Lactate fluxes can be read off from (1). The line separating the purple and
pink shaded regions corresponds to states with uL = 0. States with con-
stant but non-zero lactate exchange are represented by lines parallel to it.
In particular, states with uL > 0 (resp. uL < 0), i.e. with lactate import
(resp. export) foliate the purple (resp. pink) shaded region. In the absence
of environmental lactate, an isolated cell can only attain states with uL ≤ 0
(lactate import is not allowed). In the presence of a lactate source,
however, states with uL > 0 become accessible (lactate import is allowed).
We shall use the symbol F 1 to denote the viable single-cell flux space of
Fig. 1b. An independent cell that autonomously adjusts its metabolism to
optimize a linear objective function (as in Flux Balance Analysis35) would
be found at specific points on the boundary of F 1. For instance (Fig. 1b),
at point A it maximizes the rate of ATP production. (More examples are
given in the caption of Fig. 1).

Exchange coupling and multi-cellular flux space
When N cells share the same extra-cellular environment, lactate-excreting
cells effectively act as lactate sources. This makes the uL > 0 portion of F 1
(purple region in Fig. 1b) potentially accessible to other cells even if there is
no external source of lactate in the culture. Cells therefore become meta-
bolically coupled through the exchange of lactate, as endogenous lactate is
shuttled across the population by diffusion. By modeling cells as spherical
sources or sinks of lactate, with radius R and located at fixed positions ri
(i = 1, 2, . . . , N), one can show that, at steady state (i.e. in practice for

timescales larger than the diffusion time of lactate across the experimental
length-scale we consider, which roughly equals L2/DL ≃ 4 min, with
L = 0.5 mm the system size and DL ≃ 700 μm2/s the diffusion constant of
lactate), the lactate exchangefluxesuðiÞL of all cellsmust obey anadditional set
of N constraints described by (Supplementary Note 2; see also36)

XN
j¼1

Aiju
ðjÞ
L ≤ 0 ði ¼ 1; 2; . . . ;NÞ; ð6Þ

Aij ¼ δij þ ð1� δijÞ
R

jri � rjj
>0; ð7Þ

where ∣ri − rj∣ ≥ 2R and δij = 1 if i = j and zero otherwise. In rough words,
these constraints effectively couple cells by imposing that the net con-
sumption of lactate across the culture can not exceed its endogenous supply.
However, the generalization that accounts for an exogenous lactate source
or for lactate accumulated in the culture is straightforward (Supplementary
Method 4). In principle, similar diffusional coupling constraints hold for
glucose and oxygen. For the cell densities we consider, though, they are
immaterial (i.e. cells donot compete for either of the two, see Supplementary
Method 5). Combined with N copies of (1) and (3)–(5), one for each cell i,
the inequalities (6) define a 2N-dimensional convex polytope containing the
feasible flux configurations of a systemofN cells coupled through diffusion-
limited lactate exchanges (Fig. 1c).We henceforth denote this space byFN .
In turn, each point in FN can be represented by N points in the single-cell
spaceF 1 (oneper cell, Fig. 1c). Finally, it is possible to reconstruct the spatial
concentration profile of lactate by assuming that lactate levels in the culture
obey the Laplace equation. Specifically, the concentration at position r is
given by (Supplementary Note 2)

cLðrÞ ¼
XN
i¼1

uðiÞL
DLjr� rij

þ BðrÞ; ð8Þ

where B(r) is a term accounting for exchanges with the boundary of the
system. (Note that we are assuming that cells are identical, in that the
parameters UG, UO, LM and R are the same for each cell.)

The effect of the diffusion constraint is most easily visualized dia-
grammatically in the case of two cells (N = 2, Fig. 1d), where the maximal
lactate uptake rate for one cell is determined by both a minimum rate of
lactate production by the other and the distance between them (reflected in
the slopes of the dashed lines in Fig. 1d). Clearly, (6) does not allow for both

cells to import lactate (uð1ÞL > 0, uð2ÞL > 0) if none is supplied externally. This
picture generalizes toN cells: it can be shown (Supplementary Note 3) that

environmental lactate accumulation (
PN

i¼1u
ðiÞ
L ) can not be zero unless the

lactate flux of each individual cell vanishes. Conversely, if lactate is
exchangedbetweenany cellswithin the population then theremust be some
non-zero leakage of lactate in themedium, i.e. an accumulation of overflow
product akin to the Warburg effect.

Environmental lactate spillover as a failure of inter-cellular
coordination
While constraints (1) and (3)–(6) define the space FN of feasible multi-
cellular metabolic flux configurations and implicitly include a lactate
exchange network, interpreting FN in terms of population-level metabolic
states is not straightforward. To gain a deeper understanding, we resorted to
a statistical approach based on sampling FN according to a controllable
probabilistic rule. A simple and theoretically convenient choice for a
probability density over the 2N-dimensional flux space is given by the
Boltzmann distribution37

pðujβÞ ¼ exp½βhðuÞ�
ZðβÞ ðu 2 FN Þ; ð9Þ
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where u � fðuðiÞG ; uðiÞO ÞgNi¼1 denotes an N-cell configuration of metabolic
degrees of freedom, β is a numerical parameter, h is a prescribed function of
the glucose and oxygen import fluxes of every cell, while

ZðβÞ ¼
Z
FN

exp½βhðuÞ�du ð10Þ

is a factor ensuring normalization overFN . For β= 0, (9) coincides with the
uniform distribution over FN , under which each viable N-cell state is
equally likely. When β → + ∞ (resp. β → − ∞), instead, the sampling
concentrates on N-cell states of maximum (resp. minimum) h. Notably,
since

hh iβ �
1
N

Z
FN

hðuÞpðujβÞdu ¼ ∂

∂β
lnZðβÞ; ð11Þ

σ2h � h2
� �

β
� hh i2β ¼

∂2

∂β2
lnZðβÞ; ð12Þ

fixing the value of β is equivalent to constraining the population-averaged
value of hwhile still allowing for variability in single-cell metabolic profiles.
Most importantly, for any β, (9) describes the distribution with constrained
mean value of h having maximum entropy and, therefore, minimum extra
bias37.Asβ changes, therefore, (9) allows for the explorationof a broad range
of population-level features.

Previous applications of maximum-entropy frameworks to metabolic
datamainly focused on bacterial growth, where the biomass synthesis rate is
a natural choice for h38,39. Here we want to focus instead on the adaptation
part of the dynamics, during which biomass synthesis is negligible31. In this
regime, natural choices for h are the overall glucose and oxygen import
fluxes, as they represent the key independent degrees of freedom the culture
can coordinate to control. Any other linear function (e.g., ATP production)
can be obtained from these via linear combination.We therefore opted for a
version of (9) that allows to maximize or minimize these quantities inde-
pendently, i.e. (u 2 FN )

pðujβG; βOÞ / exp βG
XN
i¼1

uðiÞG þ βO
XN
i¼1

uðiÞO

" #
; ð13Þ

where βG and βO are real parameters, and sampled the spaceFN according
to (13) for different values of βG and βO via Hit-and-Run Monte Carlo
(Supplementary Method 2, and ref. 39). (Identities similar to (11) and (12)
valid for (13) are given in Supplementary Method 1). Representative
configurations for 150 cells uniformly scattered at random over an area of
0.5 × 0.5 mm2 are showcased in Fig. 2a.

We focus on the case where βO is fixed to a finite value and βG is varied
from −∞ to +∞ (Fig. 2a, b), thereby modulating the mean glucose con-
sumption in the population from minimal to maximal. When βG → −∞,
cells independently maximize their ATP/glucose yields (Fig. 2a, leftmost

Fig. 2 | Emergent bulk overflow in CBM simulations. Simulations are performed
by sampling the feasible space FN for N = 150 cells distributed over an area of
500 × 500 μm2 according to (13) via Hit-and-Run Monte Carlo Markov chains for
fixed βO = 0 and different values of βG. This interpolates between the states of
maximum ATP yield (βG → − ∞) and maximum ATP rate (βG → ∞). aMulti-
cellular flux configurations projected into single-cell space in the (uO, uG) plane

(same as in Fig. 1b) for different values of βG. bTypical spatial lactate concentration
gradient across the culture (background color) and single cell lactate fluxes (colored
circles) for the same values of βG as in (a). cMean net lactate excretion fluxes
(� uL

� �
) as a function ofβG and (d) of themean glucose uptake for different values of

βO. The shaded region indicates standard error on the mean. Notice the approxi-
mately threshold-linear behavior for larger values of βO.
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panel), corresponding to point E in Fig. 1b.With our (biologically plausible)
choice of parameters, this leads to a homogeneous configuration where all
cells run on respiration, none produce lactate, and thus no lactate accu-
mulates in themedium (Fig. 2b, leftmost panel). As βG increases, cells begin
to excrete and import lactate, leading to highly heterogeneous lactate fluxes.
Remarkably, the resulting spillover is very small, implying that the lactate
exchange network is nearly balanced in spite of the presence of large
excretion fluxes. However, a further increase in βG destabilizes the network,
causing lactate to accumulate in the medium at significant levels (Fig. 2a, b,
middle panels). Finally, for βG→+∞, when cells independently maximize
their ATP production rates (Fig. 2a, rightmost panel), the population
returns to a homogeneous state in which all cells run strongly on fermen-
tation and excrete large amounts of lactate (Fig. 2b, rightmost panel). This
corresponds to point A in Fig. 1b.

The crossover from the state of maximum ATP yield to the state of
maximum ATP rate is clearly reflected by the fact that the average net
flux of lactate excretion across the population (� uL

� �
) increases as βG

increases (Fig. 2c). We observe that a range of values of βO exists for
which � uL

� �
closely resembles a threshold-linear function of βG,

marking a sharp transition between regimes with small and large lactate
spillover, respectively. Such a behavior is reminiscent of that of an order
parameter in standard order-disorder transitions in statistical physics
(e.g., see ref. 40, Ch. 3).

To summarize, numerical exploration of the feasible space of a
multi-cellular metabolic system subject to diffusion-limited lactate
exchange suggests that the metabolic activity of cells gives rise to a
complex and highly heterogeneous interaction network that couples
lactate producers to lactate importers. Environmental lactate accumula-
tion may emerge from imbalances in this network that, depending on the
mean oxygen consumption (βO), can set in abruptly as βG (i.e. the
average net glucose consumption rate) increases. Finally, the model is
able to reproduce in a stylized way typical bulk overflow-rate curves8,12,41,
unraveling the underlying single-cell dynamics.

Mean-field theory links the emergent threshold behavior to a
phase transition
Toelucidate the behavior uncoveredby samplingFN for varyingβG andβO,
we analyzed a mathematically solvable approximation of our constraint-
based model. To define it, we focused in particular on the set of constraints
(6), which distinguishes FN from N independent copies of the single-cell
spaceF 1. Upon isolating the contribution of cell i, the diffusion constraints
(6) can be re-cast as

uðiÞL þ
X
j≠i

Aiju
ðjÞ
L ≤ 0 ði ¼ 1; 2; . . . ;NÞ: ð14Þ

The sum on the left-hand-side depends on the specific values of the fluxes
uðjÞL as well as on the relative positions of cells (see (7)). For the sake of
tractability,wehowever assumeN≫1and replace all coefficientsAijwith an
N-dependent constant factor K/N, thereby discarding effects due to the
spatial organization of cells so that all pairs of cells interact with the same
strength. To estimate K, we note that, upon neglecting fluctuations,

X
j≠i

Aiju
ðjÞ
L ’ KuL; ð15Þ

where uL denotes the mean lactate flux across cells (coinciding with the
ensemble average 〈uL〉 for large N, see also Supplementary Method 3), and

X
j≠i

Aiju
ðjÞ
L ’ NuL

R
d
¼ αRLρuL; ð16Þ

withd themean cell-to-cell distance in a square of sizeL,ρ=N/L2 the density
of cells, and α ≃ 1.918 a numerical constant. It then follows that K ≃ αRLρ
(see Supplementary Note 1 for the actual numerical values). Within this

approximation, we therefore re-write (6) as

uðiÞL þ KuL ≤ 0 ði ¼ 1; 2; . . . ;NÞ: ð17Þ

One sees that, from a physical viewpoint, our choice is equivalent to
assuming that the lactate flux of every cell in the population is coupled to a
bulk lactate flux to which all cells contribute. This is known in physics as a
‘mean-field approximation’ (e.g., see ref. 40, Ch. 3).

A detailed examination of the mean-field model is presented in Sup-
plementaryMethod 3, including the analytical solution in the limitN→∞.
Crucially, in this approximation the constraints (6) become formally
identical for all i (see (17)), which effectively reduces the study of the multi-
cellular spaceFN to that of the single-cell spaceF 1 supplemented with the
additional constraint (17). The mean-field approximation leads in turn to
non-linear self-consistency equations for two emerging order parameters,
one ofwhich canbe identified, in the thermodynamic limit, with the average
net lactateflux 〈uL〉. The equations admit an explicit analytical solution only
for 〈uL〉 < − UO/(3K); for larger uL

� �
they have to be solved numerically.

The presence of background lactate can be accounted for by adding a
constant to the term KuL in the equations (Supplementary Method 4).

The numerical solution for 〈uL〉 versus βG at fixed βO quantitatively
reproduces the sampling results of the previous section (see Fig. 3a, compare
with Fig. 2c). Furthermore, we found that the derivative of uL

� �
displays a

discontinuity at the onset point of overflow metabolism. The values of βO
and βG where the discontinuity occurs define a curve in the (βO, βG) plane
that separates aphasewith large lactate spillover (‘overflowphase’, above the
curve) from onewithout (‘balanced phase’, below the curve). Such a curve is
displayed in Fig. 3d. Points along the curve denote critical values of (βG, βO)
corresponding to the transition between the two regimes. The comparison
between numerical simulations and the mean-field analytical predictions
shows an excellent quantitative agreement for the flux averages over the
whole range of parameters, as well as for the average flux fluctuations (σ�uL )
in the unbalanced phase. However, mean-field theory underestimates
fluctuations below the phase transition, seeFig. 3c. This is an expected pitfall
of mean-field approximations, and more refined combinatorial42 or field-
theoretic40 calculations would be required to overcome it.

A key difference between the two phases is the presence of negative
inter-cellular flux correlations in the balanced phase that are absent in the
overflow phase, where fluctuations approximately follow the law of large
numbers (σuL ’ σuL=

ffiffiffiffi
N

p
, as can be seen from continuous vs dashed blue

lines in Fig. 3c, see also Supplementary Method 6). Our results therefore
support the idea that the management of lactate levels in the medium is a
genuine emergent phenomenon, achieved through a population-level
coordination of lactate exchange fluxes. Likewise, coordination failures
triggered by small changes in βG and/or βO can lead to excess accumulation
of extra-cellular lactate.

Inverse modeling experimental data
To compare our theoretical scenario with actual experimental data, we
focused on recent experiments characterising the dynamical pH landscape
in co-cultures of human pancreatic cancer cells (AsPC-1) and cancer-
associated fibroblasts31. Advances in nanofibers technology have nowmade
it possible to probe the cellularmicroenvironment in cultures at high spatial
and temporal resolution43. In the dataset we considered, local pH data were
collected every 10min over a 6 h timespan, yielding 36 snapshots of the
population’s adaptation (lag phase) to the culture medium. Time-resolved
estimates for single-cell lactate fluxes have been previously calculated from
extracellular proton levels (see ref. 31 and Supplementary Method 7). A
highly heterogeneous flux profile was found, suggesting a complex under-
lying lactate exchange network.

We used these single-cell flux data to inform a constrainedmaximum-
likelihood inference problem returning the values of βG and βO that, at each
time frame, yield the best prediction of the empirical bulk lactate flux, the
single-cell standard deviation, and correlations between the lactate fluxes of
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nearest-neighbor cells, i.e.,

Cn:n: ¼
1
N

XN
i¼1

uðiÞL uðnðiÞÞL ; ð18Þ

where n(i) denotes the nearest neighbor of cell i. The inference pipeline is
described in detail in Supplementary Method 8. Cn.n. plays an especially
important role. In a systemof non-interacting cells behaving independently,
Cn.n. would be constrained to be positive definite (and equal to the square of
the average flux, see Supplementary Method 6). Empirical values of Cn.n.

however strongly deviate from this expectation both in absolute value and in
sign (Supplementary Method 6), thereby stressing the need for an
interactingmodel. Further, a non-interactingmodel made of isolated single
cells is unable to fit experimental fluctuations and averages of the lactate
fluxes given its strongly constrained scaling behavior (Supplementary
Method 8). Global diffusion constraints like (6) indeed enable for both
negative correlations and larger absolute values thereof (Supplementary
Method 8). To obtain quantitative agreement, however, we found that one
must account for twoadditional ingredients. First is the lactate accumulating
in the medium over time, which, as said above, alters the form of (6)
(SupplementaryMethod 4). The net effect of a constant background term in
themean-fieldmodel is a downward shift of the line separating the overflow
from the balanced regime in the (βO, βG) plane (SupplementaryMethod 4).
In experiments, thebulk lactate levelwas found to increaseover timeat a rate
that decreases in time31 (See also Supplementary Method 7). In such a
scenario, the critical line of the mean-field model is expected to move
downward in time. During most of the experiment, the empirical bulk
lactate level appears to have a small impact on the population, as e.g. Cn.n.

stays positive. In the last two hours, however, when the background lactate
concentration exceeds around 30 μM, Cn.n. becomes negative (implying net
exchanges between neighbors) with a small net lactate intake. The latter is at
odds with empirical data, which display that lactate is on average still

excreted, albeit at reduced rates (Supplementary Method 7). We therefore
solved this quantitative inconsistency by adding to the likelihood function a
small phenomenological constant J > 0 coupling nearest neighbors, which
amounts to including a factor of the form

exp �J
XN
i¼1

uðiÞL u
ðnðiÞÞ
L

" #
ð19Þ

in the Boltzmann weight. While it is necessary to fully recover empirical
data, this term only causes a small perturbation when accounted for in the
mean-field model (Supplementary Method 6).

To summarize, the inference protocol is based on three fitting para-
meters, namelyβOandβG (which take a different value for each time frame),
plus the coupling constant J > 0 (which instead is the same for all frames).
The complete likelihood function is reported in SupplementaryMethod 10,
along with the details of the inference pipeline.

Results are reported in Fig. 4. Panels (a) and (b) display a comparison
between lactate levels and fluxes from empirical data and simulations
respectively (obtained by sampling the inferred model) over time, showing
for simplicity a reduced set of 6 frames (every hour). Besides the qualitative
frame-by-frame agreement, one can see how inferredmodels quantitatively
capture the dynamics of the culture by comparing empirical and model-
derived time trends of bulk lactate flux (Fig. 4c), single-cell variability
(Fig. 4d) and nearest-neighbor correlations (Fig. 4e). Note that, in order to
appraise the predictive capabilities of the model, data were divided into a
training set and a test set (ratio 9 to 1). A very good agreement is found, for
both the training and test sets (reduced χ2training ’ χ2test ’ 0:8).

We next mapped the values of (βO, βG) that provide the best fits over
time onto the phase diagram obtained from the mean-field model (Fig. 4f).
Following a transient, the points display a clear time-ordering (i.e. a rather
well defined trajectory in the (βO, βG) plane), which suggests a strong

Fig. 3 | Mean-field approximation of the CBM simulations.Comparison between
mean-field analytics (lines) and numerical simulations (points) for (a) the mean
lactate flux (� uL

� �
), (b) mean oxygen flux ( uO

� �
), and (c) standard deviation of the

mean lactate flux (σ�uL , the dashed lines stand for the single cell standard deviation)
as functions of βG at fixed βO (left), and of βO at fixed βG (right). Error bars
everywhere indicate the standard error on the quantities. Simulations were per-
formed by sampling the feasible space FN of N = 150 cells spread in an area of

500 × 500 μm2 according to (13) via Hit-and-Run Monte Carlo Markov chains.
Analytical lines were obtained by solving the mean-field model (Supplementary
Method 3). dMean-field phase diagram in the plane spanned by βO and βG. The
white line is a line of phase transitions where average flux variances are dis-
continuous (see panel (c)), and separates the `overflow phase' (above the line) from
the `balanced phase' (below), the two differing by the rate of lactate accumulation in
the medium (background color scale).
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population-level regulation of both βG and βO toward negative values: over
time, the population appears to reduce its overall metabolic rate. A different
representation of the same result is given in Fig. 4g, where the average net
glucose and oxygen fluxes ( uG

� �
and uO

� �
, respectively) are used as control

parameters instead of βG and βO. In short, as time progresses and lactate
accumulates in the medium, the population exhibits greater metabolic
coordination (reflected in negative correlations), so that the spillover
reduces in time in spite of the presence of cells that sustain large lactate
export fluxes. In other terms, CO at the level of single cells does not
necessarily imply environmental spillover of lactate. Furthermore, since
both the inferred βG and βO tend to decrease in time as adaptation to the
mediumprogresses, this population appears tomove in the single-cell space

F 1 close to the uL = 0 line and (roughly) toward the state of optimal ATP
yield (see Fig. 4g versus Fig. 1b). However, because the threshold for the
balanced phase shifts over time due to accumulating lactate, the population,
while reducing lactate spillover, remains in the overflow regime throughout
the dynamics.

Mitochondrial saturation versus local hypoxia: dynamics of
oxygen usage
In light of the above results, it would be important to understandwhether, in
the observed scenario, lactate excretion by individual cells is triggered by
saturated mitochondrial capacity (which diverts excess carbon towards
fermentation) or, rather, by local hypoxic conditions (which limit the

Fig. 4 | Comparison between theoretical results and empirical data. Snapshots of
lactate gradient and single-cell fluxes from (a) experimental frames of ref. 31 (at
intervals of 1 hour) and (b) fromCBM simulations performed by sampling (13) with
parameters βG and βO that, at each time step, provide the maximum likelihood
reconstruction of the empirical average lactate flux. See SupplementaryMethod 8 for
details. Comparison between empirical (line: mean value, shaded region: standard
error from jackknife resampling) and theoretical (error bars; black: fit, red: predic-
tions) flux values as a function of time for (c) mean lactate flux, (d) standard
deviation of single cell lactate flux and (e) nearest-neighbor correlations. The errors

on the inferred quantities were calculated from the errors on the inferred values of βG
and βO. fMean-field phase diagram with the critical lines and the inferred values of
βO and βG (markers with error bars) colored according to the time stamp for the 36
frames of the experimental dataset. For details on how the errors were estimated, see
SupplementaryMethod 8. g Same as (f ), but in the plane (huOi; huGi). Only the first
and last critical lines are shown. The dashed black line corresponds to uL

� � ¼ 0.
(Note that the latter line does not appear in (f )). Inset: zoomed out view in the single-
cell flux space F 1 of Fig. 1b.
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oxidative processing of nutrients).Within the frameworkof ourmodel, cell i
has saturatedmitochondrial capacity if its oxygen import flux uðiÞO is close to
the limitUO = 3mmol/g h (see (4)); on the other hand, it suffers from local
hypoxic conditions if it experiences a local concentration of oxygen so small
that its oxygen import flux becomes diffusion-limited. In this case, a dif-
fusion constraint for oxygen would kick in, of the form

uðiÞO þ
X
j≠i

uðjÞO
jri � rjj=R

’ 4πDOR cO;1; ð20Þ

with cO,∞ ≃ 250 μM the background oxygen concentration (Eq. (20)
expresses that fact that the concentration of oxygen at the boundary of cell i
is cðiÞO ’ 0, see Supplementary Note 2).

In absence of high-resolution data about local oxygen levels in the
culture, addressing this question requires an inference framework that goes
from learning distributions to learning single-cell fluxes. We can however
use single-cell lactate fluxes derived from the dataset of 31, along with the
estimate for the average oxygenfluxderived above, to obtain a prediction for
single-cell oxidative fluxes via a Boltzmann sampling of the N-cell space of
feasible flux configurations FN . Theoretical and computational details
of the method employed are given in Supplementary Method 9. While

single-cell oxygenfluxes show largeuncertainties due to the “sloppiness”44 of
the inferredmodel,we can reconstruct a plausible scenariowhose key results
are given in Fig. 5.

We first notice (Fig. 5a) that, due to a faster diffusion rate, oxygen
profiles across the culture appear much more homogeneous than lactate
profiles. In addition, single-cell fluxes display a time trend towards down-
regulation and reduced heterogeneity, a pattern consistent with the time-
course of βO shown in Fig. 4f. This is quantified by how the normalized
histogram of single-cell uO values shifts over time (Fig. 5b). Cells sustaining
anoxygen importfluxcloser to the saturationpoint (UO~2–3mmol/gh, see
(4)) become rarer as time progresses.

A closer look at the time course (Fig. 5c)highlights twodistinct regimes
in the population’s dynamics.While remaining consistently below 10%, the
fraction f of saturated mitochondria initially increases as cells seem to
increase oxygen consumption (consistentlywith the transient increase of βO
that is visible in Fig. 4f), leading to a decrease of average environmental
oxygen levels cO. After about 2 hours, f inverts the trend and begins to
decrease while cO concomitantly increases, signaling that cells have stabi-
lized their metabolism at reduced levels of lactate export, import and
exchange (Fig. 4a–d). Note that mitochondrial saturation can occur both
under excess glucose intake, leading to the release of lactate in the medium,
and under intake of lactate from themedium.Wedenote by f− (resp. f+) the

Fig. 5 | Inferred dynamics of oxygen usage. a Snapshots of oxygen levels and single-
cell fluxes inferred from experimental frames (at intervals of 1 hour). Note that
oxygen fluxes cannot exceed stamps the value UO = 3mmol/g h (see (4)). See Sup-
plementaryNote 1 for details. bNormalized histogram of inferred single-cell oxygen
fluxes at different times from coarse-grained snapshots. c Inferred time course for
bulk oxygen level (cO), fraction of cells with saturated oxidative capacity (f), and

fraction of saturated cells with lactate release (f−) and import (f+). Note: f = f−+ f+.
d Mean-field phase diagram in the (βO, βG) plane plotted using the corresponding
values of cO, f, f− and f+ as a background heat map. The critical line is in white, while
values of βO and βG (markers) inferred from the 36 frames of the experimental
dataset of31 are colored according to their time stamp. For visual clarity, only the first
critical line is shown.
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fraction of cells in the former (resp. latter) condition. Figure 5c shows that,
while (perhaps surprisingly) saturation with lactate import is more com-
mon, both f+ and f− follow the same time trend as f.

Overall, these results, along with evidence that oxygen concentration
consistently stays above typicalhypoxia levels (2–3mg/LofO2≃60μmol/L45),
imply that the inferred single-cell oxygen fluxes stay well above the diffusion
limit in our experimental conditions (see also SupplementaryMethod5). This
suggests that the observed dynamics is more likely coupled to the collective
behavior of the population and the emergent exchange network than to a
depletion of local environmental oxygen.

To further support this picture, it is useful to revisit the phase structure
of Fig. 4f against the background of the quantities used to analyze oxygen
dynamics, reported in detail in Fig. 5d. While macroscopic features appear
to be strongly tied to the value of βO, one notices that the region where
acidification is most severe (βG > 0, βO < 0) is not generically associated to
hypoxic conditions ormitochondrial saturation and, again, both conditions
characterize the region where acidification is mild (βG < 0, βO > 0). This
shows that single-cell and population-level features are separated, the latter
being essentially driven by inter-cellular interactions.

Discussion
The broad biological question we faced here asks whether the metabolic
phenotype of a multi-cellular system emerges from the interactions among
its individual components or is rather the result of a multitude of inde-
pendent cell-autonomousbehaviors. The resultswepresent support the idea
that metabolic interactions between cells play a central role in shaping their
shared environment, thus influencing the overall fitness of the population.
More precisely, cells appear to collectively regulate the levels of medium-
acidifying compounds through time-dependent coordination of their
exchangeswith the surroundings. This process is ultimately sustained by the
establishment of cell-to-cell interactions facilitated by the transport of
overflowproducts. In the presence of coordination, environmental spillover
is limited despite the presence of cells exporting these compounds at high
rates. Conversely, the accumulation of compounds in the medium can be
seen as a failure to coordinate.

Our findings furthermore provide robust evidence that the large-scale
metabolic organization of cell populations exhibits hallmarks of phase
transitions, and may therefore be understood, and possibly controlled,
through the application of concepts derived from statistical physics. Indeed,
whenviewed through the lens of collective phenomena, the crossover froma
balanced to an unbalanced state with overflowmetabolism bears significant
similarities to the standard disorder-to-order transitions that occur, for
example, in magnetic systems. These models have shown that highly non-
trivial macroscopic properties can arise from the interaction patterns of
large assemblies of simple, identical variables30. In recent years, many of the
methods and insights developed for the study of these systems have been
ported to other disciplines, including ecology46–48. In view of its focus on
inter-cellular couplings and their consequences, our work is indeed close to
ecological settings, albeit perhaps on the more basic ground of cellular
metabolic dynamics.

Finally, our results confirm that heterogeneous cell populations can be
described effectively by maximum-entropy distributions like (9)38,39,49–53,
suggesting that, at least in some conditions, the constrainedmaximisationof
population-level variability might be a reasonable objective for multi-
cellular systems.

On the more biological side, the inverse-modeling scheme we
developed indicates quantitative ways to appraise the adaptive metabolic
response of populations of cells to their environment, with single-cell
resolution. As a plus, our protocol requires inferring only a small number
of parameters and constraints in order to effectively describe the meta-
bolism of large, spatially organized populations over time. This stands in
contrast to the complex task of inverse modeling spiking data using e.g.
Ising neural networks, which typically demands the inference of one
parameter per synaptic connection54. Upon analyzing experimental data
from real tumor-stroma cell cultures during the adaptation phase, we

found that cells coordinate their metabolism and reduce their metabolic
rate over time to prevent environmental deterioration caused by lactic
acid overflow. Further analysis indicates that individual cells operate far
from mitochondrial saturation and well below the oxygen diffusion limit
(i.e., away from local hypoxia). Overall, this picture strongly suggests that
the primary driver of the observed population-level dynamics is not to be
found in metabolic constraints but, rather, in a failure of cellular coor-
dination. We showed that a version of the model made of isolated single
cells (the usual assumption of flux balance analysis models35) is unable by
construction to retrieve observed negative cell-cell correlations and the
fluctuations scaling of metabolic fluxes (Supplementary Method 8).
Unfortunately, such a scenario could only be validated using a single
dataset, and should ideally be contrasted with single-cell flux data taken
in different experimental conditions (e.g., different cell populations,
density, geometry and medium composition). Although recent
advancements in high resolution mass-spectrometry hold promise55,56,
they are currently expensive and invasive. On the other hand, the very
recent development of micro-environmental sensing protocols57–60,
coupled with ad hoc inverse modeling schemes, has the potential to lead
to fully time-resolved single-cell metabolic flux analysis.

Besides thehighly simplifying assumptions onwhich it relies, themajor
limitation of our theoretical work lies, we believe, in its static (quasi-equi-
librium) character. A constant background lactate level allows for the
analytical tractability that, in turn, unravels the connection between over-
flow phenomena and phase transitions. Empirical data are however not
stationary. In our case study, this aspect appears to become especially
important only in the final part of the adaptation dynamics. To make our
theoretical framework applicable tomore general datasets, it will howeverbe
important to explicitly consider the coupled dynamics of the state of
environment and the behavior of cells. This could generalize models of
populationmetabolism that rely on the assumption of single cell optimality
(like COMETS61). Such an implementation could benefit from recent
generalization of the maximum-entropy scheme in out-of-equilibrium
settings known as maximum-caliber62.

In addition to fundamental aspects, our work offers insights in the
context of tumor metabolism. In higher organisms, where metabolic
behavior is specialized and compartmentalized according to cell type, the
exchange ofmetabolites such as lactate occurs acrossmultiple scales: organs,
tissue and single cells63. This division of labor through metabolic speciali-
zation and exchange provides significant benefit to healthy tissues. How-
ever, it also renders these systems vulnerable to exploitation by malignant
cells, which undergo metabolic rewiring during carcinogenesis64. As first
observed byWarburg in the 1920s65, tumours exhibit a notable tendency to
consume excessive amounts of glucose while producing lactate, even in the
presence of oxygen. However, despite extensive research efforts, a com-
prehensive understanding of the Warburg effect in cancer has remained
elusive to date66. The approach presented herein supports the idea that the
Warburg effect may reflect an emergent feature of a large population of
interacting cells characterized by a highly heterogeneous pattern of lactate
exchange among individual cells. This in turn would place considerable
weight on the ecological dynamics of tumor development, particularly in its
early stages. Such a scenario would be fully consistent with recent experi-
mental findings67.

Methods
Model and simulation parameters
The model parameters were chosen to closely match the experimental
settings 31, with approximately 40,000 cells of radius 10 μm and dry weight
1 ng randomly distributed in an area of 1 cm2, with background glucose (cG)
and oxygen (cO) concentrations 25mM and 0.25mM respectively. The
simulations were performed in a window of 500 × 500 μm2, consisting of
about 150 cells. The maximum glucose import UG and maximum oxygen
importUO were chosen to be 1mmol/g h and 3mmol/g h respectively. The
ATP maintenance demand LM was fixed at 1mmol/g h. All parameters for
the model and simulations obtained from literature, including the diffusion
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coefficients used for the relevant metabolites, are provided in Supplemen-
tary Table 1, along with other relevant derived quantities.

The sampling algorithm
The space of feasible multi-cellular metabolic flux configurations FN was
sampled according to the specified probability distribution (13) using a hit-
and-run Markov chain algorithm. The steps are provided in detail in Sup-
plementary Method 2. The code to perform the sampling is made available
online68.

Mean-field approximation
The detailed derivation of the explicit partition function in terms of the
parameters is provided in Supplementary Method 3. See also Supple-
mentary Method 4 for details on how the mean-field equations are
modified when a background lactate term is introduced. The code to
calculate various quantities under the mean-field approximation is made
available online68.

Inverse modeling experimental data
For inference of themodel parameters that yield the best prediction of time-
resolved experimental lactate flux data31,69, predictions from themodel were
fitted to key statistical features of the observed flux distribution: the average
lactate flux, its standard deviation (fluctuations), and nearest-neighbor
correlations. Themodel parameters βG and βOwere allowed to vary for each
experimental time point, and the phenomenological nearest-neighbor
coupling constant was kept constant. The inference procedure involved
maximizing the likelihood of experimental data and sampling parameters
according to the posterior probability distribution using a Metropolis
Monte-Carlo algorithm, and is described in detail in Supplementary
Method 8, along with the various attempts that were made including and
excluding different terms in the likelihood function before the final form
was used.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The experimental data analyzed in this work were published previously31

and are available online69.

Code availability
The code to perform simulations, mean field calculations and inference is
available online68.
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