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Self-sustained patchy turbulence in
shear-thinning active fluids
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Henning Reinken ® < & Andreas M. Menzel ®

Bacterial suspensions and other active fluids are known to develop highly dynamical vortex states,
denoted as active or mesoscale turbulence. We reveal the pronounced effect of non-Newtonian
rheological conditions on these turbulent states, concentrating on shear thinning. A self-sustained
heterogeneous state of coexisting turbulent and quiescent areas develops, which results in
anomalous velocity statistics. The heterogeneous state emerges in a hysteretic transition when
varying activity. We provide an extensive numerical analysis and observe features consistent with a
directed percolation transition. Our results are important, forinstance, when addressing active objects

in biological media with complex rheological properties.

Bacterial suspensions are a paradigmatic example of active matter'~. Due to
the constant energy input on the scale of bacterial microswimmers, such
suspensions exhibit various kinds of spatiotemporal dynamics®. These
include biofilm formation’ as well as collective motion and swarming states®’,
which enable the rapid expansion to new territories. In particular, swimming
bacteria display swirling and vortex patterns™', which have been denoted as
active or mesoscale turbulence'"”. In contrast to inertial turbulence, these
states exhibit a characteristic vortex size. observed, for example, in suspen-
sions of Bacillus subtilis*'"". The key features are captured by continuum-
theoretical descriptions'""*'® in terms of the velocity field.

Both the propulsion mechanism and the interactions between
microswimmers are mediated by the solvent medium. In general, the
environments inhabited by bacteria and other biological microswimmers
often display non-Newtonian and viscoelastic properties'”. Examples
include spermatozoa in the reproductive tract' and pathogenic bacteria in
gastric mucus or other extracellular fluids”. Predominantly, blood shows
shear thinning and can display complex rheological properties such as
viscoelasticity and thixotropy”’. During biofilm formation, bacteria excrete
extracellular polymeric substances™', likewise resulting in non-Newtonian
rheology™.

The development of realistic models for collective motion of micro-
swimmers thus necessitates to include non-Newtonian effects. So far,
complex solvents have mostly been investigated in the case of single-
swimmer dynamics, for instance, exploring the impact of viscoelasticity and
shear thinning or thickening on the swimming speed” . These studies
show that, depending on various parameters such as swimmer geometry
and fluid properties, complex rheology can enhance or hinder self-
propulsion”®”. It allows for reciprocal deformations of the swimmers to
achieve propulsion™™', in contrast to Newtonian fluids featuring time-
reversible Stokes flow’>”.

So far, only a limited number of studies explore the impact of complex
rheological properties on the collective motion of microswimmers. Here, the
focus has generally been on viscoelastic fluids. Diverse spatiotemporal
pattern formation is observed, which results in enhanced complexity or
calming effects depending on the elastic parameters™’. Recent studies have
further demonstrated that complex rheological properties such as shear
thickening® and viscoelasticity"' can be utilized to control emergent states.
However, in experiments bacterial suspensions often display shear thinning
due to the presence of extracellular polymers™. The impact of such shear-
thinning rheological conditions on active turbulence are still to be explored.

We address this open question through a recent continuum theory'>****
that shows turbulent dynamics consistent with experimental observations on
both bacterial microswimmers and ATP-driven microtubular networks". Its
versatility, besides characterizing pure active turbulence, has been demon-
strated, for example, by extensions for shear-thickening active suspensions™.
We now provide the missing and significantly more abundant case of
mesoscale turbulence in shear-thinning suspensions. That is, viscosity locally
decreases with increasing local shear rate. We explore the resulting patterns of
mesoscale turbulence and find, as a key observation, that shear thinning leads
to hysteretic behavior of the turbulent state when varying the activity. More
precisely, a regime of coexisting patterns of turbulence and macroscopically
quiescent patches (vanishing collective velocity) emerges through shear
thinning. Anomalous velocity statistics are found in this regime. Thus, we
uncover a self-sustained dynamic state of heterogeneity combining regions of
turbulence with nonturbulent patches.

Results

Mesoscale turbulence

To quantify the given situation, we consider a recent continuum
theory">***** that describes the dynamics of the overall (collective) velocity
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field v(x, t) of the entire incompressible suspension via a generalized
Navier-Stokes equation,

ov+v-Vv=-Vp+V.a, V-v=0 (1)
Here, the constant density p is absorbed into the pressure and stress tensor,
P =p/p and 6 = a/p. The stress tensor is expanded in gradients of the
deformation rate tensor X = [(V v) + (VV)"]/2,

6=+ 0L,V2+T,VH (VW) + (V)] Q)
where T marks the transpose'>*****’. Key features are the emergence of
highly dynamic vortex patterns and the selection of a specific length scale of
the vortex size. In the context of microswimmer suspensions, the resulting
state is usually denoted as mesoscale turbulence'".

For T, = T, = 0, the theory reduces to the familiar case of vanishing
activity. Then, Ty corresponds to the kinematic viscosity v. We adopt the
relation Iy = v for the active case. The coefficient I'y must be positive to ensure
stability at short wavelengths. Activity of the swimmers increases the coeffi-
cient I',, which excites patterns of intermediate wavelengths once T', > /41T,.
A linear stability analysis reveals a critical finite wavenumber k., = /T, /2T .
The resulting band of unstable modes indicates wavenumbers at which energy
is pumped into the system as a result of the intrinsic activity of the micro-
swimmers. Subsequently, nonlinear advection, represented by v - V v in
Eq. (1), is responsible for the development of turbulence and associated energy
transport between wavenumbers. The resulting balance between energy input
and dissipation leads to a statistically stationary state'>***>*,

For further details of the theoretical description, we refer to Supple-
mentary Note 1. There, we also point out important differences to the
Toner-Tu* and Toner-Tu-Swift-Hohenberg equations''*'*. The latter
represent a related framework to model mesoscale turbulence. Compared to
those, the here-employed description is formulated in terms of the overall
velocity of the suspension instead of the velocity of only the microswimmers.
Consequently, incorporating non-Newtonian rheology is straightforward.

To investigate how the interplay of non-Newtonian rheology and
active energy input impacts the emerging dynamic structures, we now turn
to the abundant case of shear-thinning active suspensions. In a minimal
approach, the dependence of the local viscosity v(x) on the local shear rate
#(x) is described in terms of the frequently considered Cross fluid*™*. Its
main feature is a viscosity V.. at high shear rate that is smaller than the
viscosity v, at low shear rate, accompanied by a continuous crossover region
in between,
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Fig. 1 | Hysteretic behavior. Hysteresis loops for the degree of mesoscale turbulence
as a function of microswimmer activity a for parameters of shear thinning v/

Ve = 1.5, { = 2, and different n. For increasing 4, the isotropic, macroscopically
quiescent state becomes linearly unstable beyond ay,. When decreasing a, turbulence
persists down to the critical values a}; < ay,. a Quantification via the system-averaged

The local shear rate is calculated from the deformation rate tensor via
P(x) = \/2Z(x) : Z(x). While the exponent n quantifies the steepness of the
crossover, the reference shear rate j_, locates this crossover, see the inset of
Fig. 1a. In our case, the non-Newtonian properties included in our model are
induced by the carrier fluid and thus appear in the continuum description,
which represents both microswimmers and solvent by one velocity field.
Bacterial suspensions during biofilm formation provide an example of this
situation. There, extracellular polymers excreted by the bacteria lead to
complex, non-Newtonian rheology of the suspension™.

We utilize the length k., the time (kgym)_l, and the speed k... to
rescale Eq. (1),

OV+v -Vv=—-Vp+V.QuE/v,)+aVv+ V), (4

where v/v,, =1+ (vy/ve, — 1)/{1 +[v2Z : Z/{]"}. Thus, the para-
meters characterizing shear thinning are the viscosity ratio /v.., the
rescaled crossover shear rate { = j,,/(k’v), and the exponent 1. More-
over, a = IZ/(4v,T,) sets the strength of the activity of the micro-
swimmers. Finally, v(x, ) quantifies the solvent flow on length scales several
times larger than that of individual microswimmers. Thus, the isotropic
state v(x, t) = 0 describes macroscopic quiescence. In this state, the swim-
mers are active on the microscopic scale, but their orientations are dis-
ordered, resulting in the absence of collective motion.

A straightforward stability analysis shows that the quiescent state
v(x, t) = 0 is linearly stable below a threshold activity ay, = 1//v.. (see
Methods). Intuitively, viscosity counteracts turbulence. Thus, the active
driving has to overcome the hindrance by the viscosity v, for turbulent
instabilities to set in. Increasing the activity above ay,, this state becomes
unstable with respect to the growth of turbulent patterns characterized by a
band of unstable modes. The fastest-growing mode k., is close to the critical
mode k. = 1 for values of a close to ag,. For a = 0, we recover the familiar
Navier-Stokes equation without activity for a shear-thinning Cross fluid.

Emerging heterogeneous patterns

To analyze the emerging patterns that result from this combination of
mesoscale turbulence and shear thinning, we solve Eq. (4) numerically for a
large two-dimensional system of size 1287 x 1287 with periodic boundary
conditions (see Methods). We start from random initial conditions and set
the parameters to { = 2 and vy/v.. = 1.5, while varying the activity a. The
viscosity ratio is in the range of recent experimental results on bacterial
biofilms, where the rheological properties of the extracellular polymer
matrix resulted in a viscosity decrease at high shear rates of up to 75%
depending on the species™. We begin below the threshold, a < ag,, and then
increase activity a. Turbulence develops across the whole system once the
threshold ay, is passed, where the quiescent state becomes linearly unstable,
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enstrophy (w®). Inset: considered effect of shear thinning as described by the
dependence of the local viscosity v on the local shear rate j in the framework of the
Cross fluid model**. b Quantification via the time-averaged area fraction of tur-
bulent patches ®. Inset: @ as a function of the distance to the critical value, a — aj,
revealing a regime of power-law scaling. Error bars denote the standard error.
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Fig. 2 | Coexistence of turbulent and macroscopically quiescent regions. Snap-
shots of the vorticity field w (rescaled by its respective maximum value w,,, ) for
activities (a) a = 1.55 > ay,, (b) a = 1.41 < ay, and (c) a = 1.39. Quiescent patches of
increasing size develop for decreasing a. d Velocity distribution function P(v).
Statistics are very close to Gaussian (indicated by the dashed line) for large activity a.
Yet, they develop pronounced tails and an elevated maximum for decreasing a. Both
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axes are normalized using the standard deviation o,. Inset: excess kurtosis 3, as a
function of a, quantifying deviations from Gaussian statistics. e, f Snapshots of the
locally averaged, coarse-grained viscosity vc,(x) for the same values of a as in (b, c).
Remaining parameters are vo/v.. = 1.5, n = 4, { = 2, and the size of the snapshots is
647 X 4871.

see the vertical black arrow in Fig. 1a. There, the degree of mesoscale tur-
bulence is quantified by the mean enstrophy (w”), where we define the
vorticity field w = (Vxv),.

The case of decreasing activity a features even more interesting
behavior. We start above the threshold, a > ay,, implying that the macro-
scopically quiescent state is linearly unstable. Thus, vortex patterns grow
across the whole system according to the finite-wavelength instability dis-
cussed above. For illustration, Fig. 2a shows a snapshot of the vorticity field
at a = 1.55 > ag,. When now decreasing the activity 4, turbulence persists
down to below the threshold value ay,. We have not observed such hysteretic
behavior for regular Newtonian fluids. The associated hysteresis loops of
mesoscale turbulence, quantified by the mean enstrophy (w?), are plotted in
Fig. 1b for different values of n. To explain this hysteretic behavior, that is,
the persistence of existing turbulence when decreasing the activity down to
a < ag, we note the following. The actively induced turbulent state is
characterized by relatively high local shear rates. Locally, due to shear
thinning, these high shear rates significantly reduce viscosity. Reduced
viscosity, in turn, favors turbulence. This feedback mechanism thus provides
a channel for the self-sustenance of turbulence below the instability
threshold ay,, resulting in hysteresis.

Decreasing activity further, we observe increasingly heterogeneous
states, see the snapshots in Fig. 2b, c. Compared to Fig. 2a, the system now
exhibits turbulent regions coexisting with increasingly large quiescent areas
devoid of vortices. This emergent heterogeneous state is highly dynamic and
the locations of the macroscopically quiescent patches continuously change
while the vortex patterns rearrange (see also Supplementary Movie 1).

The development of heterogeneous states of coexistence also sig-
nificantly changes the velocity statistics P(v). Here, v represents an arbitrary
component of the velocity field, v = v, or v = v,. Due to macroscopic isotropy,
see Supplementary Note 2 and Supplementary Fig. 1, either component can
be used. In previous studies, employing a similar statistical evaluation'"*"~*
for the Newtonian case, the velocity statistics were found to be very close to
Gaussian in mildly active regimes. Strong activity, however, may lead to
anomalous statistics*’. In our case, we observe Gaussian behavior in the fully
turbulent state for a > ay,, see Fig. 2d, suggesting a mildly active regime.
However, when decreasing activity below the threshold value ag, the

distribution function develops pronounced tails together with a sharper
maximum at v = 0. In our situation of shear thinning, these features reflect
heterogeneous states of coexisting macroscopically quiescent areas (v = 0)
and turbulent regions of elevated local macroscopic velocities.

Since already the turbulent regions themselves are very heterogeneous,
we employ a coarse-graining procedure to further quantify the emerging
structures. First, we determine the local viscosity from local shear rates via
the rescaled version of Eq. (3). Then, across the system, we locally average
the viscosity over square regions of a size corresponding to the critical length
scale 27tk" (see Methods). Snapshots of the resulting coarse-grained visc-
osity field v4(x) are depicted in Figs. 2(e) and (f). To distinguish between
turbulent and macroscopically quiescent regions, we introduce a color
scheme. If the locally coarse-grained viscosity is large enough to suppress the
linear instability and thus turbulence, v4(x) > v.(a) = a v.. (see Methods),
we employ green color. Contrarily, low-viscosity regions of locally self-
sustained turbulence are dyed in purple. In particular, Figs. 2(e) and (f)
demonstrate the coexistence of turbulent and macroscopically quiescent
regions of comparable area fraction. Further visualizations are provided in
Supplementary Fig. 2 and Notes 3 and 4. (Supplementary Movie 1 shows the
stable coexistence of rearranging domains at a constant activity, whereas
Supplementary Movie 2 shows how the turbulent domains grow when the
activity is increased suddenly from a value in the regime of coexistence.)

Critical behavior at the transition to turbulence

To further quantify the transition from fully developed turbulence to
macroscopically quiescent states, we determine the time-averaged area
fraction of turbulence ® via the coarse-grained viscosity. We define the fluid
at position x as turbulent if v4(x) < v.(a) = av... @ acts as an order
parameter. Its bounds indicate a macroscopically quiescent state of the
entire system (® = 0) and fully turbulent ones (® = 1). Figure 1b shows ® as
a function of activity a for different values of n. For decreasing a, we observe
a clear transition from a fully turbulent to a completely quiescent state. The
critical activity a; is determined numerically and marks the point where
turbulent patches are finally unable to persist. Here, a’; is shifted to smaller
activities for larger n, thus extending the region of hysteresis and
coexistence.
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and pP = 1.5495(10)".

gap length /¢ quiescent time 7

When we plot @ as a function of the distance to the critical point
(a—a}), see the inset of Fig. 1b, we observe power-law behavior
® o (a —a*)’. We find that the exponent 8% does not change when
varying the steepness of the shear thinning crossover determined via the
parameter 7. Fitting the curves in Fig. 1, we obtain $* = 0.352(20), where the
number in brackets denotes an error estimate corresponding to a confidence
interval of 95%. However, additional simulations, demonstrate that the
exponent ¥ is in fact not universal, see Supplementary Note 5 and Sup-
plementary Figs. 3 and 4. Although independent or only weakly dependent
on both vy/v.. and n, it depends on the value of the crossover shear rate (.

The power-law scaling indicates that the transition may be linked to a
universality class of non-equilibrium phase transitions. Indeed, recent
studies™ " have shown that emergence of turbulence in various systems can
be understood as a transition of directed percolation (“DP”). In this analogy,
turbulent domains spreading to neighboring regions correspond to the
excited state, whereas laminar domains correspond to the absorbing state.
Above a certain critical Reynolds number, the turbulent domains may
persist in time, thus leading to a percolation transition. The direction of the
spreading process of directed percolation therefore corresponds to the time
dimension of the driven fluid flow. In addition to driven Couette flows of
passive systems™*, directed percolation transitions have been found in
channel flow”, pipe flow’', turbulent liquid crystals™, as well as active
nematics in microchannels™.

Motivated by these studies, we investigate whether the transition
between a fully macroscopically quiescent system and patchy self-sustained
turbulent states, as observed in our shear-thinning active fluid, exhibits
features consistent with directed percolation as well. As discussed, the
power-law exponent f*, governing the scaling of the turbulence fraction
with a — a depends on the magnitude of the crossover shear rate  of shear
thinning. Directly comparing exponents that govern the scaling in terms of
the distance to the critical point with those of the directed percolation
universality classes thus seems futile. In fact, there is no a priori reason why
the activity a should linearly correspond to the spreading probability, which
is the control parameter in directed percolation. Thus, we rather focus our
attention on the critical point directly and not on how it is approached.

In directed percolation, the spatial and temporal correlations become
scale-free at the critical point™. Accordingly and motivated by previous
works™*>* we thus focus on the distributions of certain characteristics of the
absorbing state, which here is the quiescent state. Specifically, those char-
acteristic parameters are the distances (gap lengths) between turbulent
domains, ¢, and the time intervals (duration) of quiescence between the
occurrences of turbulence at fixed spatial positions, 7. We employ the coarse-
grained viscosity v/c,(x, £) to determine these quantities. For example, the flow
field exhibits a quiescent gap of length £, in x direction if (x, y, t) < v1.(a) and
Veg(X + o 3, 1) < i(@), but v, (x + £, y, 1) >v,(a) for 0< ¢ <. The gap
length €, and quiescent time 7 are determined analogously.

To obtain the distributions P(¢) and P(7) at the critical point, we
perform additional long-running, large-scale numerical evaluations for the

sets of parameters explored so far. Here, we choose values of the activity a as
close to the critical value a;; as possible. We first determine distributions of
gap lengths for the x and y directions separately. As the system exhibits
isotropic symmetry in the statistical sense, see Supplementary Note 2, these
distributions, P(¢,)) and P(£,), are equal for large enough sample sizes. We
thus calculate P(¢) as the average of P(¢,) and P(¢,). The quiescent time
distribution, P(7), can be determined directly.

Figure 3 shows P(¢) and P(7) for { = 2, v/v.. = 1.5, different values of
n, and activities as close to the critical point as possible. Both distributions
exhibit power-law scaling for sufficiently large ¢ and 7, implying self-
similarity at the critical point. Here, the spatial and temporal critical
exponents, ¢, and g, are defined via P(¢) oc £+ and P(r) ox 7711,
Generally, for 2+ 1 directed percolation (two spatial, one temporal
dimension), the exponents are given by pPP =1.204(2) and
= 1.5495(10)"”, as indicated by the dashed lines in Fig. 3. The
obtained distributions show convincing agreement with these exponents,
indicating that the emergence of self-sustained, active turbulent states in
shear-thinning fluids may indeed be linked to a directed percolation tran-
sition. Additional simulations with different parameter values further sup-
port this conclusion, see Supplementary Note 5.

Exponents determined via fitting to the data points are close to the
exponents expected for 2+ 1 directed percolation as well. From corre-
sponding fitting procedures for Fig. 3 and additional data points, see Sup-
plementary Fig. 4, we obtain values of the spatial exponent between
py =1.172(5) and p; =1.218(6) and of the temporal exponent between
4y = 1.5280(30) and y; = 1.5860(32). Further details on the obtained values
and the fitting procedure are provided in Methods section, including
Table 1. We remark that the irregularities emerging in Fig. 3a for the largest
considered values of € are due to the finite system size of 1287 x 1287.

As intuitively implied above, the link to a 2 + 1 directed percolation
transition is possibly given by the emergence and time evolution of the two-
dimensional turbulent patches. Numerical results show that these may spread
or die out, suggesting a correspondence to the survival or decay of excited
clusters in directed percolation. To further establish this analogy, we perform
additional “critical-quench” simulations to determine how turbulent patches
decay. For this purpose, we start at an intermediate activity of high turbulence
fraction, abruptly decrease the activity to a value close to the critical point, and
then observe the time evolution of the turbulence fraction ®(t). For every
investigated magnitude of activity, these simulations are repeated 200 times to
obtain adequate statistics. Figure 4 shows ®(¢) for different values of a close to
the critical point for an exemplary set of parameters. Below criticality, O(f)
seems to decay exponentially to zero, whereas above criticality, ®(t) saturates
at a finite value. At the critical point, we observe approximately algebraic
decay according to a power law O(f) « ¢ “ in the long-time limit. In 2 + 1
directed percolation, the corresponding exponent is given as
aP" = 0.4505(10)**”. Fitting o for 300 < ¢ < 5000 in the situation presented in
Fig. 4, we obtain o = 0.4207(16). Thus, the decay of (f) at criticality is roughly
consistent with directed percolation.
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Table 1 | Critical exponents

4 Vo/Voo n a I’n M, 7D17D1 regions used for parameter fit

1 1.3 4 1.19399 1.197(19) 1.5860(32) 50 < £ <200 30 <7< 500
1 1.4 4 1.22216 1.218(6) 1.5280(33) 30<£<200 30 < 1< 500
1 1.5 4 1.24417 1.172(5) 1.5758(54) 20<£<200 30 <1< 500
2 1.5 2 1.41460 1.200(6) 1.5424(96) 50 < £ <300 90 < T< 400
2 1.5 4 1.38825 1.196(4) 1.5596(76) 50<£< 150 50 <7< 300
2 1.5 8 1.36585 1.211(8) 1.5443(51) 110 < £ < 300 50 <7< 700
43P and uPP for 2 + 1 directed percolation 1.204(2) 1.5495(10)

The exponents y/, and i, of the power-law scalings P(¢) « £+ and P(z) o« 7~# for different sets of parameter values very close to the critical point. P(¢) and P(z) are the distributions of the spatial distance
between turbulent patches (gap lengths) £ and of the local quiescent time intervals between the occurrences of turbulence T, respectively. Values for the exponents are obtained via fitting the scaling laws of
directed percolation (DP) to the data points in the intervals listed in the table. The exponent i, refers to the spatial dimension and p, to the direction of percolation, that is, the temporal dimension. For

comparison, the exponents ;2 and uP* for 2 + 1 directed percolation®***
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Fig. 4 | Critical-quench simulations. Evolution of the turbulence fraction ®(¢) after
abruptly reducing the activity from a = 1.4 to values close to the critical point. For
activities larger than the critical value, a > a*, () saturates at a finite value, whereas
for a < a*, @(t) decays to zero. At the critical activity, here a* = 1.3875, we observe
approximate power-law scaling, ®(f) o ¢, consistent with 2 + 1 directed perco-
lation. This is indicated by the dashed black line, which represents the exponent of
directed percolation " = 0.4505(10)>”. The remaining parameters are { = 2,

Vo = 1.5V, and n = 4. Error bars denote the standard error.

Our results open the path for further exploration of the actual nature of
the transition between quiescence and self-sustained patchy mesoscale
turbulence. We here find multiple features at the critical point that are
consistent with directed percolation. A major next step is to investigate how
the activity a relates to the control parameter in directed percolation. In this
context, key questions concern the spreading probability of turbulent pat-
ches as well as the motion of fronts separating turbulence and quiescence””.

State diagrams

Finally, to summarize, Fig. 5 shows state diagrams of the shear-thinning
active suspension as a function of activity a and viscosity ratio vo/v., for
different values of reference shear rate {. The linear instability of the
quiescent state for a > vy/v.. yields the diagonal line, right of which we
always encounter a fully turbulent state of the entire system. Left of the
diagonal, the hysteretic region of coexistence is found above a certain
threshold activity. Further to the left, we find the state of complete macro-
scopic quiescence.

When comparing Fig. 5a, b, we observe that an increase in crossover
shear rate shifts the region of hysteresis and spatial coexistence to higher
activity a. We give an intuitive explanation in the following. The turbulent
and quiescent states correspond to low- and high-viscosity domains,
respectively. Both regimes must be accessible for the system, so that these

are included as well. Error estimates correspond to 95% confidence intervals.

P T T T T T
(d) 15F(¢c=1 ,II “& |
S 14p fully J/ Xﬂg&@ 0061,\6 i
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§ 11E state i
&
>
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2 13F Eets hysteresis and |+
s spatial coexistence
& 1.2F -
8 fully turbulent
£ 119 state 7
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1 1.1 1.2 1.3 1.4 1.5

activity a

Fig. 5 | State diagrams. The observed states for the entire system as a function of
activity a and viscosity ratio v/v.. for n = 4 as well as (a) {= 1 and (b) { = 2. The

quiescent state is linearly unstable for a > 1/v.. (diagonal line), resulting in a fully
turbulent state. For activities below the linear instability, a < vo/v.., but right to the
dashed line, there is a region of hysteresis and spatial coexistence between turbulent
and quiescent regions.

two states can coexist. However, for too low activity, local shear rates mostly
remain too low so that shear thinning does not set in effectively. Thus, the
system does not reach the low-viscosity regime. In particular, local shear
rates must significantly exceed the crossover shear rate { for shear thinning
to play a significant role. Together with an increased value of {, the mini-
mum required activity to facilitate self-sustained turbulence based on shear
thinning thus becomes larger. Consequently, the coexistence region in the
state diagram is shifted to the top right.

Discussion

Summarizing, we reveal heterogeneous spatial coexistence of self-sustained
turbulent and macroscopically quiescent regions in shear-thinning active
suspensions. These states are found in emergent hysteretic regimes of
mesoscale turbulence as a function of activity. Concerning the associated
anomalous velocity statistics, we mention related experimental observations
on bacterial suspensions of Bacillus subtilis"***'. There, motile and immotile
areas coexist, induced, for example, by the presence of sublethal doses of
antibiotics® or elevated aspect ratios’. We here provide an illustrative
explanation via non-Newtonian shear thinning. For instance, excretions of
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bacteria™ " can induce such shear thinning in biological suspensions. Our
explanation is not based on density variations as involved, for example, in
motility-induced phase separation®®.

Concerning experimental realizations, it is useful to classify the
explored range of activities a. In a recent study, the turbulent states
obtained by solving the equation for a Newtonian suspension are com-
pared with the spatiotemporal patterns in bacterial suspensions of
Bacillus subtilis. For example, the parameter choice I'y =10’ um*s™", I/
[o=1.24 x 10’ ym” and T,/Ty = 3.53 x 10° ym* leads to good agreement.
In our rescaled equations, this choice corresponds to a dimensionless
activity of a = 1.1. This value is in the range of the activities investigated in
our study. Since we have observed the same qualitative behavior for all
parameter sets, we expect experimental studies aiming to investigate the
impact of shear thinning on active suspensions to be feasible. Our work
may serve as a guide to choose shear-thinning solvent media with
appropriate properties.

Obviously, Egs. (1) and (2) reproduce well the phenomenology of
active suspensions as observed in experiments. This was confirmed
quantitatively in a recent study®, where reasons for this match were dis-
cussed in detail. In particular, the theory including higher-order Lapla-
ceans in the stress tensor captures the selection of a characteristic vortex
size while the presence of the nonlinear advection term leads to
turbulence-like dynamics. One may raise the question about the sig-
nificance of the nonlinear term in the context of microswimmer sus-
pensions, which contain microscopic objects of micrometer size. In favor
of its relevance, the effective viscosity of the overall suspension on length
scales larger than the microswimmers can be substantially lowered in
active suspensions“"’”. Moreover, the characteristic length scale of col-
lective motion, that is, the vortex size, is much larger than single
microswimmers'*'""". Also the speed of collective motion can be larger
than the speed of individual microswimmers'®, All these effects, a lower
overall viscosity, larger relevant length scales, as well as increased collec-
tive speed of motion, contribute to an increase in the effective Reynolds
number. We refer to Supplementary Note 1 for a more detailed discussion.
Moreover, we note that the nonlinear term is not only connected to
inertial effects in the classical sense. Particularly, in the classical sense, it is
associated with advective transport. Therefore, in the present context, it
also expresses the fact of active transport induced by the active agents. This
active transport can certainly play a major role in thin films of active
suspensions. There is a previous consideration of this context®. Corre-
sponding active contributions stress the importance of the nonlinear term
and imply an additional increase in the effective Reynolds number.

The description may find its application also in further contexts,
beyond the field of active suspensions. For instance, expansions of the stress
tensor of the kind shown in Eq. (2) may provide useful approximative
characterizations of emerging patterns in various other types of fluids, for
example, in the case of magnetically driven flow” or, more generally,
forced” and instability-driven turbulence’”’. Furthermore, the one-
dimensional version of Egs. (1) and (2), denoted as the Nikolaevskiy
model’*, arises in the context of seismic waves’>”* and reaction-diffusion
systems’”.

From a fundamental perspective, our study extends recent attempts of
linking nonequilibrium transitions, such as the emergence of
turbulence™**”, to universality classes of statistical physics, ranging from
Ising behavior’®”” to directed percolation’*. In the more practical context
of applications, the observed phenomena are relevant for microfluidic and
mesoscale mixing based on active suspensions’*’. Mesoscale turbulence
enhances mixing. We have demonstrated that, through shear thinning, the
regime of mesoscale turbulence can be extended to lower activities, as the
system becomes heterogeneous and maintains self-sustained turbulent
patches. In a way, the situation reminds of type-II superconductors, where,
in analogy, applications can be extended to higher magnetic fields, main-
taining superconductivity through emergent spatial heterogeneities in the
system®,

Methods
Linear stability analysis
The linear stability analysis for the rescaled Navier—Stokes equation, that is,
Eq. (4), is provided in the following. In particular, we consider the stability of
the macroscopically quiescent solution v, = 0.

As a first step, we add small perturbations to velocity and pressure,

V(X7 t) =V + 6V(X, t) 5 ﬁ(x7 t) = [)0 + 613()(7 t) . (5)
To continue, we make the ansatz
Ov(x, t) = ov et Ex  §p(x, 1) = 8p MHRX (6)

where A is the complex growth rate and k is the wavevector of the perturbation.
We inset Egs. (5) and (6) into Eq. (4) and linearize around the quiescent
solution. Evaluating the temporal and spatial derivatives, we obtain

A8V = —ikdp — (volKI*/vg — 2alk|* + alk|®) 5% . 7)

Multiplying by k and using the incompressibility condition k - §v =0
implies that §p = 0. Thus, the growth rate A as a function of the wavevector
is determined as

Mk) = —v, k> /vy, + 2alk|* — alk|®. (8)
We note that A(k) is always real and find that it can become positive for

a>ay = Vy/Vs. 9)

This defines the threshold value ay, as introduced in the main text. At this
value, a finite-wavelength instability sets in and modes associated with the
wavenumber k. = 1 start to grow. Increasing a above ay,, a band of unstable
modes develops. The wavenumber of the mode of maximum growth rate k,,,
is close to the critical wavenumber k..

Numerical methods

We employ a pseudo-spectral scheme to solve Eq. (4) in a two-dimensional
system with periodic boundary conditions. Here, gradient terms are com-
puted in Fourier space, which significantly speeds up the calculations™.
Time integration is performed via a fourth-order Runge-Kutta method with
a time step of At = 0.05. It is combined with an operator splitting technique
treating the linear and nonlinear parts consecutively®. This approach
involves the following process for every Runge-Kutta step. We first consider
only the nonlinear terms in the evolution equation, which we integrate to
obtain an intermediate velocity field. This field is then used as the initial
condition for a second evolution problem using only the remaining linear
terms. In this Runge-Kutta step, we first ignore the pressure p. Instead, p is
subsequently obtained via a projection method to ensure that the incom-
pressibility condition, V -v=0is fulfilled®. Here, we compute the diver-
gence of the velocity field obtained via the Runge-Kutta step as describe
above. The pressure is then determined in Fourier space as the solution of a
Poisson equation that renders the velocity field divergence-free®.

The main results are obtained by starting the numerical calculations for
an activity a that is large enough for turbulence to develop. That is, we select
a > Vy/Ve, implying that the macroscopically quiescent state is linearly
unstable. The initial conditions are set to v(x, t) =0, with small random
perturbations added to each velocity component at every grid point, fol-
lowing a uniform distribution over [—0.01, 0.01]. We then decrease the
activity a in small steps, let the calculations run for 500 time units, and store
the resulting velocity fields for subsequent calculations. These fields are used
as initializations for further long-time calculations, which produce the
presented results within the hysteretic regime. We have confirmed that the
results do not depend on the specific numerical procedure. For example,
starting directly from an activity a within the hysteretic regime and adding a
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sufficiently strong local perturbation (such as a localized lattice-like
arrangement of vortices) results in patchy turbulent states as well, see
Supplementary Note 6.

Before analyzing the dynamics, we always let the simulations for a set of
parameters run for at least 3000 time units to ensure the development of
statistically stationary states. We have confirmed that these long waiting times
are sufficient to exclude transient behavior, see Supplementary Note 6. Close to
the critical point, simulations are run even longer (up to 30000 time units). The
mean enstrophy (w?), the velocity distribution P(v), and the turbulence
fraction @ are averaged over 5 consecutive time intervals of 1500 time units.
Error bars in the figures denote the standard error, that is, the standard
deviation divided by the square root of the number of time intervals.

The velocity statistics P(v) as shown in Fig. 2d are determined as an
average over P(v,) and P(vy), that is, the distributions for x and y velocity
components, respectively. Due to the statistical dynamical isotropy of the
turbulent state, see Supplementary Note 2, the two distributions are the
same within our statistical errors. The same holds for the quiescent gap
length distribution P(¢), which is determined as an average over P(¢,) and
P(¢,). The distributions PP(7) and P(¢) are determined as close as possible
to the critical point to investigate the transition regarding a possible link to
the directed percolation universality class. Here, we analyze the dynamics in
a window of at least 10000 time units.

For most calculations, the system size is set to 1287 x 1287 and the
spatial resolution to 768 x 768 grid points. We have checked that the sys-
tems considered are large enough so that finite-size effects do not play any
obvious role, see Supplementary Note 7 and Supplementary Fig. 6. To
obtain the state diagrams shown in Fig. 5, we rather use a system size of
647 x 64and 384 x 384 grid points. These sizes are quite large compared to
the vortex size, which is close to the critical length scale 271/k. = 27. To ensure
stability, we only explore activity regimes of a < 1.55".

Coarse-graining prodecure

To analyze the coexistence of turbulent and macroscopically quiescent
regions in space, we first employ a coarse-graining procedure to smoothen
the locally nonuniform vortex patterns. In particular, we average the local
viscosity over a square region of side length Ax around each point in space.
The resulting coarse-grained viscosity field v/.4(x, £) at location x = (x, y) is
thus obtained from the field (x, t) via

1 y+Ax/2 x+Ax/2 o
ch(x7 t) = A_Xz/ / V(i7 t) dxd)’ )

y—Ax/2 x—Ax/2

(10)

where X = (X,7). As the vortex structures emerge from the finite-
wavelength instability at a = 1/v.., we here choose a side length Ax equal
to the critical length scale, that is, Ax = 2n/k. = 27 The more refined
structure of patterns is thus averaged out.

When investigating the spatial coexistence of turbulent and macro-
scopically quiescent domains, we apply the relations derived above for global
linear stability to the local scale. Locally, the quantity of interest is the coarse-
grained viscosity Vq4(x, t). For our purpose, we replace in Eq. (9) v by
Veg(X, £). Then, approximately, we expect a quiescent domain to be stable if,
for that domain, v 4(x, ) > *(a) = av... Contrarily, if v4(x, f) < * = av..,
local perturbations grow and turbulence can sustain itself in this area.
Overall, this condition allows to distinguish between turbulent and quies-
cent regions. It forms the basis of the color scale that we have chosen for
illustration in Fig. 2e, f. Green color indicates quiescent domains of
Veg(X, 1) > 1%, whereas purple color marks turbulent regions of v.4(x, £) < .

Fitting critical exponents

In a directed percolation transition, the spatial and temporal structure of the
system becomes scale-free at the critical point. This is observed in the
distributions P(¢) and P(7) of the size £ and duration 7 of gaps between
excited (here corresponding to turbulent) domains. At the critical point,
these distributions follow power laws, P(¢) o< £#+ and P(7) o« 77#1. In
directed percolation, the critical exponents y; and y are related to the

exponents of perpendicular (spatial) and parallel (temporal) correlation
PP respectively, via uP? =2 — /P and

lengths, 1P and Y
u =2 - B°F/ VP, There, ™ is the critical exponent of the propor-

tion of excited regions™”.

So far, a direct linear correspondence between the control parameter in
directed percolation and the activity or other parameters in the type of
mesoscale turbulence addressed above has not been revealed. When com-
paring the results, we thus focus on the behavior at the critical point directly,
which in directed percolation is determined by the two exponents u0* and
yﬁp. To obtain an accurate estimate of corresponding exponents in our
active, shear-thinning system of mesoscale turbulence, we move as close to
the critical point as possible. Fitting the curves P(¢) and P(7) shown in Fig. 3
and Supplementary Fig. 4, we obtain the critical exponents for the six
parameter sets on display. The results are summarized in Table 1, which
includes the ranges of £ and 7 used for the fit. We find that the exponents
obtained from the fits to our data are consistent with the expected values for
2+ 1 directed percolation.

Data availability
The data in support of the reported findings are available within the paper
and its supplementary information files.

Code availability

The computer codes used for the numerical calculations and analysis are
published on the repository Zenodo and can be found at https://doi.org/10.
5281/zenodo.15718824.
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