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Recent experiments have implemented resetting by means of a time-varying external harmonic trap,
whereby the trap stiffness is changed in finite-time and the system is reset when it relaxes to an
equilibrium distribution in the final trap. Such setups are very similar to those studied in the context of
the finite-time Landauer erasure principle. In this work, we analyze the thermodynamic costs of such a
setup by deriving a moment generating function for the work cost of recurrently changing the trap
stiffness, thereby maintaining a non-equilibrium steady state. For this heretofore unstudied case, we
obtain explicit expressions for the mean and variance of the work both for a specific experimentally
viable protocol as well as an optimal protocol which minimizes the mean cost. For both these
procedures, our analysis captures both the large-time and short-time corrections. For the optimal
protocol, we obtain a closed form expression for the mean cost for all protocol durations, thereby
making contact with earlier work on geometric measures of dissipation-minimizing optimal protocols
that implement information erasure.

Stochastic resetting refers to processes in which a system’s natural evolution
is interrupted and restarted according to some predefined scheme, naturally
driving the system out of thermal equilibrium1,2. Rich behaviors, such as
non-trivial non-equilibrium steady state properties3,4, anomalous relaxation
dynamics5–7 and potential for optimization in search processes8,9, have
attracted much attention over the past decade, both theoretically and
experimentally. Given this rich behavior and the multitudinous applica-
tions, it is very natural to consider the thermodynamic cost of a resetting
operation or the cost associated with maintaining a steady-state resetting
process. Particularly interesting are questions relating to fundamental
thermodynamic bounds for such costs.

These questions take on an even greater significance in the light of the
fact that the conceptually simple yet powerful renewal structure built into a
resettingprocess (every reset erasesmemory and correlations of the system’s
past evolution) also hints at deep connections to information erasure10,11.
Early studies on the thermodynamic cost of resetting12,13, quantified this
connection by bounding the average entropic cost for (instantaneous)
resetting in analogy with Landauer’s principle of information erasure10.
However, these studies did not take into account the actual work needed to
implement a reset, which would necessarily also be influenced by the
mechanism used to accomplish resetting, finite-time effects, as well as
imperfections in the actual resetting.

Recent experiments14–16 that implement resetting provide a very
easy and elegant framework within which to investigate such ques-
tions further. In these experiments, a colloidal particle moves either
freely or within a trap until it is reset. Here, the resetting mechanism
is facilitated via an optical confining (resetting) trap. The resetting

trap is switched on either periodically or stochastically, for a duration
long enough to relax the particle to the corresponding equilibrium
thermal distribution in the trap. After this duration, the resetting trap
is switched off. Notice that in contrast to resetting to an exact
location (see ref. 17 for the corresponding experimental procedure),
here the particle resets instead to a position drawn from the equili-
brium thermal distribution in the resetting trap.

In this guise too, the resetting problem can be posed as an information
erasure problem, whereby, in analogy to how classical bit erasure is
implemented via optical traps18–22, one could ask what the thermodynamic
cost is for turning on the resetting trap, very slowly, instantaneously or in
finite-time, and hence erasing all previous information at a (time-depen-
dent) cost. In analogy with Landauer’s principle, it is also very interesting to
understand what the fundamental bound is on such a cost now taking into
account the physical constraints of both time and energy which need to be
spent to carry out the erasure.

In previous work, we have studied such a system and obtained the
average and fluctuations of the work needed to turn on the resetting trap23,24

or the heat dissipated25 as the particle relaxes in the resetting trap. Other
studies involving “first-passage-resetting", i.e., when an optical trap is kept
switched on until the particle makes a first-passage to a specified location,
have also considered average work costs26–28 and fluctuations27. In all these
studies however, the resetting trap is considered to be switched on instan-
taneously. If however, in analogy with several studies on finite-time bit
erasure18–22,29–32, one is interested in lower bounds on the thermodynamic
cost of resetting, it is necessary to consider the cost as a functionof the time it
takes to switch on the resetting trap. Such a cost will now also depend on the
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protocol used for turning on the trap, namely on how the trap parameters
are modified to transform the initial trap into the final one.

If the state of the system at the start is an equilibrium state, the second
law of thermodynamics places a bound on the minimum work required to
change the control parameter; this is just the equilibrium free energy dif-
ference between the initial and final state. Any protocol that pays only this
minimum cost is a protocol that operates quasi-statically, so that the system
is never out of equilibrium for the entire duration. In the context of bit
erasure, many experiments18–22,31 have been performed to probe both the
bound aswell as the actual cost to carry out the erasure process infinite time.
Several theoretical works29,30,32,33 also address this issue.

Although it is possible to look at specific, experimentally viable pro-
tocols, theoretically, such questions are best addressed in the context of
optimal protocols; a protocol engineered so as to minimize some cost of
interest such as the mean work performed or the mean dissipation. Two
optimization problems that are typically studied in this context are: 1)
Designing optimal protocols that transition between two specified dis-
tributions within finite time34–40 and 2) designing optimum protocols that
minimize the cost needed to shift between two different potential energy
landscapes, often harmonic, in finite time38,39,41–46. A different but related
class of problems, inspired by the so-called shortcut to adiabatically
processes47–51, study optimal protocols devised so as to take the system from
one equilibrium state to another in a time much faster than the intrinsic
relaxation time of the system52.

In this paper, we address the second optimization problemmentioned
in the above paragraph. Namely, we address the question of estimating the
work cost of a classical overdamped system when changing the potential
from U to V, effectively implementing an erasure in a fixed time τ. We
formally write down the moment generating function for this process for
any U and V. However, we carry out explicit calculations for the mean and
variance of the work for harmonic potentials where we transform a har-
monic potentialU to a harmonic potentialV by changing the stiffness of the
trap in afinite time τ according to a generic experimentally viable protocol as
well as an optimal protocol. This systemhas been studied very extensively in
the past, in experiments14,16,52–57 and theoretically41,42,58–68. In contrast tomost
of these previous studies (two exceptions are16 which studies this case albeit
from a different aspect and63 who study an out-of-equilibrium though
Gaussian state createdby ameasurement),we consider a steady-state system
obtained by repeated applications of our erasure scheme shown in Fig. 1.
The resulting state that needs to be erased is hence an out-of-equilibrium,
non-Gaussian state. This fact has implications for the work cost of both

generic as well as optimal protocols. As noted recently in the context of bit
erasure69, it is possible, when beginning with an out-of-equilibrium initial
state, to get costs lower than kBT ln 2 in agreement with a generalized
Landauer bound70.We study this aspect in-depth for our systemby formally
obtaining, under very general conditions, the full moment generating
function of the work performed in one cycle. From the expression for the
moment generating function, we are able to compute the average work
required to carry out one erasure cycle (as in Fig. 1) in the case of harmonic
traps, both for a generic experimentally-viable protocol as well as optimal
protocol. Our results hold for all time andnot only in the short or large-time
limits as in most earlier works. Our formalism also allows us in principle to
look at and optimize highermoments of the work, or Pareto-optimal fronts
encoding trade-offs (as done theoretically in71, numerically in67, or in Ref. 72
for quantum systems).

Results and discussions
Model
Our system is subjected to a sequence of erasing protocols in time. Each
erasing cycle (see Fig. 1) involves a single resetting event composed of two
switching processes: 1) An instantaneous jump from the resetting (or stiff)
potential V(x) to an exploration (or shallow) potential U(x) at time t = 0,
after which the system stays in the potential U(x) for a time distributed
according to some temporal distribution f(t). We call this phase the
exploration phase. 2) After the completion of the exploration phase, a time
varying potential Uðx; λðtÞÞ is switched on, in such a way that at the
beginning and end of the resetting protocol, respectively, Uðx; λðt ¼ 0ÞÞ ¼
UðxÞ and Uðx; λðt ¼ τÞÞ ¼ VðxÞ. Here, τ is the duration of the potential-
switching time. We call this phase the resetting phase. Once the potential
V(x) has been turned on, the system stays a fixed amount of time in this
potential, say a few times the relaxation-time, so that at the end of this
relaxation phase, the system has relaxed to the Boltzmann distribution in
this potential. At this point the cycle is complete and we switch instanta-
neously back to U(x). For convenience, henceforth, we drop the explicit
mentionof the time-dependence fromλ(t). The time evolutionof the system
consists of a series of such erasing cycles.

The system’s dynamics is governed by the overdamped Langevin
equation:

dx
dt

¼ �βD
∂Uðx; λÞ

∂x
þ

ffiffiffiffiffiffi
2D

p
ηðtÞ ; ð1Þ

for the inverse temperature β � ðkBTÞ�1, and the diffusion constant D.
Notice that the above equation is valid for both exploration and relaxation
phase by respectively replacing Uðx; λÞ ! UðxÞ and Uðx; λÞ ! VðxÞ. In
the last termη(t) is aGaussian thermalwhite noisewhichhas zeromeanand
delta-correlations in time: hηðtÞηðt0Þi ¼ δðt � t0Þ.

In this paper, we are interested in the cost of performing a complete
erasing cycle. By the definition of our erasing cycle, this consists of two
contributions. For the initial instantaneous jump, the performedwork along
a single stochastic trajectory is the change in the energy due to an instan-
taneous switch from potential V(x) to U(x),

w1ðxÞ � UðxÞ � VðxÞ ; ð2Þ

whereas theworkperformedduring the changeof thepotential fromU(x) to
V(x) in a time-dependent manner via the control parameter λ(t) is

w2½xð�Þ� �
Z τ

0
dt _λ

∂Uðx; λÞ
∂λ

; ð3Þ

for the switching time τ. Here, x( ⋅ ) represents the system’s trajectory.
Therefore, the total stochastic work for one implementation of the erasing
cycle is w = w1 + w2. Notice that during the relaxation phase, there is no
work contribution since the control parameter is fixed. The stochasticity in
this quantity has its origins in two factors: 1) the system’s size is small, so

Fig. 1 | Schematic for an erasing cycle. V(x): Resetting potential. U(x): Exploration
potential. Uðx; λðtÞÞ: Potential with a time-dependent protocol λ(t) such that
Uðx; λð0ÞÞ ¼ UðxÞ andUðx; λðτÞÞ ¼ VðxÞ. The trapped particle is represented by the
red sphere. The exploration time-interval t_1 is drawn from a distribution f(t_1) and
duration for the protocol is τ. xðVÞ

0 and xðUÞ
0 , respectively, are the particle’s positions at

the beginning and end of the exploration phase.
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thermalfluctuations are significant, and2) the time to stay in the exploration
phase is drawn from a distribution f(t).

Moment generating function
For a trajectory containingn erasure cycles, i.e.,n replicas of the cycle shown
in Fig. 1, the total stochastic work performed will just be the sum of the
stochastic works performed during each of these n cycles. Hence, we turn
our attention first to understanding the distribution of work for a single
cycle. The moment generating function of work w for a single erasure,
implemented according to the scheme in Fig. 1, is defined as (For n cycles,
the moment generating function is hekwin):

Cðk; τÞ � hekwi ; ð4Þ

where the angled brackets indicate the average over thermal fluctuations,
initial condition, and stochastic exploration time t. Here k is the conjugate
variable with respect to work w. This implies

Cðk; τÞ ¼
Z 1

0
dt f ðtÞ

Z þ1

�1
dxðVÞ0 Peq;V ðxðVÞ0 Þ

×
Z þ1

�1
dxðUÞ

0 PU ðxðUÞ
0 ; tjxðVÞ0 Þ

× ek½UðxðVÞ0 Þ�VðxðVÞ
0 Þ� ekw2

� �
0;xðUÞ

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
C0ðk;τ;xðUÞ

0 Þ

;

ð5Þ

where we have substituted w1 from Eq. (2). Several comments are in
order. C0ðk; τ; xðUÞ

0 Þ is the moment-generating function of work
performed while changing the potential from U to V in a time-
dependent manner (3), and herein we average the trajectories emanating
from the position xðUÞ

0 . This xðUÞ
0 is the position of the particle at the end

of the exploration phase, therefore, xðUÞ
0 � PU ðxðUÞ

0 ; tjxðVÞ0 Þ, where xðVÞ0 is
the initial condition for the exploration phase’s trajectories. Notice that
xðVÞ0 is drawn from the initial equilibrium distribution with respect to the
potential V, Peq;V ðxðVÞ0 Þ, since the system initially instantaneously
switches from V to U after the relaxation phase. We have weighted Eq.
(5) with respect to a temporal density, f(t), of time intervals in the
exploration phase.

Inverting the above Eq. (5) for any form of potential seems difficult;
nevertheless, it provides the means to obtaining the nth order moments of
work. This is done as follows. Differentiating both sides of Eq. (5) n-times
with respect to k and setting k = 0, we get,

hwni ¼
Z 1

0
dt f ðtÞ

Z þ1

�1
dxðVÞ0 Peq;V ðxðVÞ0 Þ

×
Z þ1

�1
dxðUÞ

0 PU ðxðUÞ
0 ; tjxðVÞ0 Þ

×
Xn
m¼0

n

m

� �
wm
1 ðxðVÞ0 Þhwn�m

2 i0;xðUÞ
0
:

ð6Þ

Analytical calculations of the moments for arbitrary potentials is
involved. Therefore, in what follows, we restrict ourselves to the case of
harmonic potentials, as these are easily implemented and manipulated in
experiments14,15. For this case, we obtain the mean and second moment of
the work as follows (see Supplementary Note S1 for more details):

hwi �W ¼ � kBT
2

1� tV
tU

� �

þ D
2

Z τ

0
dt _λ tU ζ

2Gðt; 0Þ þ 4
Z t

0
dsGðt; sÞ

� 	
;

ð7Þ

hw2i ¼ I1 þ I2 þ I3 ; ð8Þ

where

Gðt; sÞ � e�2βD
R t

s
dt0λðt0 Þ

; ð9Þ

and we have defined a dimensionless length

ζ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� tV=tU Þ~f ð2=tU Þ

q
; ð10Þ

for the trap relaxation time tV;U � ðβDλV ;U Þ�1.Here λV,U are the stiffnesses
in the traps U and V respectively and ~f ðsÞ ¼ R1

0 dt e�st f ðtÞ is the Laplace
transform of the exploration time density. Note that tV/tU≤ζ

2≤1 for any
distribution f(t). I1,2,3 in Eq. (8) are respectively evaluated in Supplementary
Eqs. (S16), (S17), and (S22).

The moment generating function for the work performed as the
stiffness of the harmonic trap changes, has been studied in earlier
work58,61,64,65,68 but only when the process begins from an equilibrium
initial state. (We note that ref. 65 has a closed form expression for the
moment generating function for arbitrary initial conditions. They
investigate it however only for equilibrium initial conditions.) In the
process we study here, the initial state is in general out-of-
equilibrium. It becomes a Boltzmann distribution in the trap U
only if the mean exploration time 〈t1〉 ≫ tU (see Fig. 1).

An experimentally motivated protocol with a Poissonian
resetting rate
While the above analysis and the expression for the moments [Eqs. (7)
and (8)] are true for any protocol λ(t), we specialize to an experimentally
feasible protocol16:

λðtÞ ¼ λU þ ðλV � λU Þ tanh½t=t�� : ð11Þ

Here, t* controls the speed of the protocol: the smaller the t* the faster λU
transforms to λV. The total averageworkW [Eq. (7)] is the sumof two terms
W1 +W2;W1 is the mean contribution of the instantaneous switch at the
beginningof the cycle [this is thefirst term in theEq. (7)] andW2 is themean
contributionof thefinite-time switchback topotentialV [the second term in
Eq. (7) which we can now calculate explicitly].

Figure 2 shows the comparison of analytical mean and variance of the
workW [using Eqs. (7) and (8)] for f(t) = re−rt as a function of t*, where r is
the resetting rate. In both simulations and analytical results, we set the
duration of the protocol to τ = 10t* so that at the end of protocol λ(τ) ≈ λV,
as required. Both the mean and variance approach their respective stationary
values in the quasi-static driving regime t* → ∞. From Fig. 2a we see,
however, that unlike transformations between equilibrium states, the
work performed during the quasistatic limit is not necessarily the minimum.
To investigate this further, we focus only on the average work in what
follows and compare what we get from an instantaneous versus quasi-static
protocol.

In the limit t* → 0 (i.e., the fast switching limit), the total work sim-
plifies to the following two contributions: 1) an instantaneous switch fromV
toU starting fromequilibriumPeq,V(x), and2) another instantaneous switch
from U to V:

W inst � h½UðxÞ � VðxÞ�iPeq;V ðxÞ þ h½VðxÞ � UðxÞ�iPta;U ðxÞ ; ð12Þ

starting from the time-averaged distribution:

Pta;U ðxÞ �
Z 1

0
dt f ðtÞ PU ðx; tÞ ; ð13Þ

in the U(x) potential, where PU ðx; tÞ �
Rþ1
�1 dx0PU ðx; tjx0ÞPeq

V ðx0Þ. This
time-averaged distribution is the non-equilibrium state at the beginning of
our resetting/erasure protocol. Note that because of the renewal structure of
our scheme, this distribution does not depend on any details of λ(t).

https://doi.org/10.1038/s42005-025-02277-w Article

Communications Physics |           (2025) 8:355 3

www.nature.com/commsphys


In contrast, in the infinitely slow switching of potential t* → ∞ (i.e.,
t*≫ tU,V), we expect the average work to be

Wslow � h½UðxÞ � VðxÞ�iPeq;V ðxÞ þ ΔFeq
U!V ; ð14Þ

i.e., we expect that changingpotentialU to potentialV sufficiently slowlywill
give rise to a work cost equal to the free energy difference between the two
potentials. For this protocol, we can explicitly carry out an expansion in the
long-time limit (see Supplementary Note S2) and show that this is indeed
the case. Aswewill see in the next section however, this neednot necessarily
be the case for arbitrary protocols, i.e., an arbitrary protocol connecting out-
of-equilibrium states need not have a work cost that equals the equilibrium
free energy difference at long times.

The right-hand side of Eq. (14) can also be rewritten in the form of a
KL-divergence (DKL½pðxÞjjqðxÞ� �

R
dx pðxÞ ln pðxÞ

qðxÞ):

Wslow ¼ β�1DKL½Peq;V ðxÞjjPeq;U ðxÞ� ; ð15Þ

for the equilibrium distributions Peq,V(x) and Peq,U(x), respectively, with
respect to potentials V and U. Thanks to the non-negativity of the KL-
divergence we expectWslow≥0. Using Eqs. (12) and (15), we get

W inst �Wslow ¼ h½VðxÞ � UðxÞ�iPtaðxÞ � ΔFeq
U!V ð16Þ

¼ β�1 R1
0 dt f ðtÞ DKL½PU ðx; tÞjjPeq

V ðxÞ�þ



�DKL½PU ðx; tÞjjPeq
U ðxÞ�

�
:

ð17Þ

Thus, the sign of the left-hand side depends on the KL-distance of PU(x, t)
from the equilibrium distributions in the V and U potentials.

For harmonic potentials, we can explicitly compute the total average
work in the instantaneous (12) and slow switching (14) limits, and hence
also their difference. The total average work isW1 +W2, where

W1 ¼
kBT
2

tV
tU

� 1

� �
; ð18Þ

and

W2;inst ¼
kBT
2

tU
tV

� 1

� �
ζ2 ; ð19aÞ

W2;slow ¼ ΔFeq
U!V ¼ kBT

2
ln
tU
tV

; ð19bÞ

W inst �Wslow ¼ kBT
2

tU
tV

� 1

� �
ζ2 � ln

tU
tV

� 	
; ð19cÞ

Fig. 2 | Mean and variance of work. Harmonic
exploration and resetting potentials are used. Mean
(〈W〉) and variance (〈W2〉− 〈W〉2) as a function of
time t* are plotted. Symbols: Numerical simulation.
Lines: Analytical results using Eqs. (7) and (8) with
f(t) = re−rt and the protocol in Eq. (11). a, b Red
horizontal dashed lines indicate asymptotic values
of mean work Wslow (14) and variance
½DtV ðλV � λU Þ�2=2 (see Supplementary Note S2 for
more details). The color intensity increases with
increasing resetting rate r. Here, we take the diffu-
sion constant D = 0.5, γ = 1, λU = 0.125, λV = 0.25,
and simulation time τ = 10t*. Number of resets: 105.
a Error bars are one standard error of mean and are
smaller than the symbol size.

Fig. 3 | Characterization of mean work. Harmonic exploration and resetting
potentials with f(t) = re−rt are used. a Phase diagram using Eq. (19c) in the (rtU, rtV)
plane, for resetting rate r and relaxation time tV ;U � ðβDλV ;U Þ�1.b, cMeanwork as a
function of time t*; inset in c shows work as a function of t* (where t* is longer than
that of themain panel). Note that the approach to the asymptotic value is from above
in (c), indicating non-monotonic behavior at large times. Lines: Analytical results

Eq. (7). The horizontal dashed line indicatesWslow (19b). Here, we take the diffusion
constant D = 1. Number of resets: 105. Error bars show one standard error of mean.
dPhase diagram fromPanel awith added panels [obtained using Eq. (20)] indicating
regions where mean work W is non-monotonic “NM” or monotonic “M” as a
function of time. Blue regions: Winst <Wslow. Red regions: Winst >Wslow.
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where the dimensionless length ζ is defined in Eq. (10).
Figure 3a shows the parameter regimes for f(t) = re−rt, where the

average workWinst [Eq. (19a)] is larger or smaller thanWslow [Eq. (19b)]; in
the unshaded regionWinst >Wslow otherwiseWinst <Wslow. Note that our
erasure protocol can lie anywhere below the red diagonal (where tV < tU). In
the shaded region, switching the potential in a finite time costs less work
than switching quasi-statically, and is therefore a finite-time cost-effective
region.

Figure 3b, c shows the mean total work W (in the region below the
diagonal line in Fig. 3a) as tV increases from region II to I for a fixed tU
for f(t) = re−rt. We can see that the work can be made smaller for smaller t*
in region I of phase diagram 3a. Additionally, Fig. 3b, c exhibits the
non-monotonic nature of the average work for some values of the para-
meters. To understand where in parameter space this occurs, we need to
explore the large but finite t* to understand how the t* → ∞ limit is
approached.

In order to do this, we adapt a technique sketched in64 to our system
and expand the average work W2 in the slow-switching limit (t* → ∞) to
first order in 1/t*(see Supplementary Note S2 for a detailed derivation).We
show that the difference of average work W2 from the equilibrium free-
energy difference in this limit is given by the correction term

W2 � ΔFeq
U!V ¼ α

kBT
4

tU ζ2 � 1
2

1þ t2V
t2U

� �� 	
þOðα2Þ ; ð20Þ

where α∝ 1/t* [Supplementary Eq. (S25)] is the slowness-parameter in the
limit t*→∞. Depending on the sign of the term inside the square brackets
in Eq. (20), the approach to 0 is either positive or negative. Note that
beginning fromanequilibriumstate (as in64whichwe can also get byputting
ζ2 = 1) results in a purely positive correction term. The fact that we get either
apositive ornegative contribution fromthe correction term ispurely a result
of the non-equilibrium state at the start of the protocol. Equation (20)
together with the phase diagram in Fig. 3a, hence helps us identify regions
where the average work is non-monotonic as a function of t*. This is
displayed as a modified phase diagram in Fig. 3d.

Bounds on the average total workW
Long-time limit. Even though the above results hold for a specific pro-
tocol, it is clear that the equilibrium free energy difference is no longer in
general a lower bound on the average work required for performing our
erasure cycle, when the system starts from an out-of-equilibrium state (as
was also noticed in the context of bit erasure in ref. 69). It is interesting to
understand nevertheless if there are bounds on the total average work
even in this case. As we have seen, the total average work is composed of
two contributions: a contribution due to the average instantaneous work
W1 and the averageworkW2 related to our protocol λ(t) formanipulating

the trap stiffness. Since the first contribution to the total work does not
depend on the protocol at all, we concentrate henceforth on W2. On
very general grounds [irrespective of protocol λ(t), exploration time
distribution f(t), and arbitraryU(x) andV(x)], it is expected that a bound
onW2 will relate to the non-equilibrium free energy differences between
the states at the start and end of the protocol. Theminimal work required
to transform one out-of equilibrium state into another is studied in ref. 70
and translates in our case to the following expression:

W2 ≥ΔF
eq
U!V þ kBTDKL½Pðx; τÞjjPeq

V ðxÞ�
� kBTDKL½Pta;U ðxÞjjPeq

U ðxÞ�;
ð21Þ

where Pta,U(x)(13) and P(x, τ), respectively, are the probability of the par-
ticle’s position at the beginning [λ(0) = λU] and end of the protocol
[λ(τ)≈λV].We refer to this boundas theGeneralizedLandauerwork-bound
(GL work-bound)70. For completeness we follow ref. 70 in Supplementary
Note S3 to show howEq. (21) can be derived just from the requirement that
the the total entropy production be non-negative for the above process.

Figure 4a shows that the GL work-bound (21) clearly bounds the
average work cost W2 of implementing the protocol (11). Tighter bounds
may be found by minimizing W2 as a functional of the protocol λ(t) to
obtain an optimal protocol as discussed below.

Optimal protocol: long-time bounds. We search for the optimal pro-
tocol of varying the control parameter λ(t) that minimizes the average
work W = W1 + W2. Since W1 does not depend on the protocol λ(t), it
suffices to considerW2. Optimal protocols for harmonic traps have been
studied in a wide range of contexts, including overdamped and under-
damped Brownian motion34,35,39,41,46,63,67,73,74, with constraints on max-
imum trap stiffness44,75 as well as for active particles76,77.

In the context we are interested in, the calculation of the optimal
(minimal work) protocol can be performed by using the standard
Euler-Lagrange minimization of the work functional W2[λ(t)] as car-
ried out in ref. 41. As opposed to all earlier studies however, we begin
with a non-Gaussian out-of-equilibrium state Pta,U(x0) (13) at the start
of the protocol, and this has to be incorporated into the minimization
procedure. In ref. 63, the authors consider an initial state which has
been rendered out-of-equilibrium by a measurement process. The state
is however still Gaussian.

The optimal work performed on the system is

Wopt
2 ¼ kBT

2
ð1þ c2τÞ2ζ2tU=tV � ζ2 þ


þ 2ðc2τÞ2ζ2tU=τ � 2 ln½1þ c2τ�
�
;

ð22Þ

Fig. 4 | Work and deviation from
theoretical bound. aMean work W2 as function of
(dimensionless) protocol duration rτ for the
hyperbolic tangent protocol (7) (points) and the
optimal protocol Eq. (22) (solid line). We use
resetting probability density function f(t) = re−rt.
The dashed line represents the theoretical bound
(21). Here, we take the non-dimensionalized har-
monic trap relaxation times rtU = 4, rtV = 0.5 where r
is the resetting rate and tU, tV are the harmonic trap
relaxation times. b Deviation from the theoretical
Generalized Landauer (GL) work-bound (21) in the
quasi-static limit as a function of the ratio of trap
relaxation times tV/tU. Parameters used are
D = γ = kBT = r = 1, and tU = 4.
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where the dimensionless length ζ is defined inEq. (10), and the constant c2 is
given by

c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ

tU ζ
2 τ=tV þ 2
� 
þ 1

q
� τ=tV þ 1
� 


τ τ=tV þ 2
� 
 : ð23Þ

A detailed derivation of the optimal protocol is included in Supple-
mentary Note S4. The out-of-equilibrium initial state plays a role in the
initial conditions. In the long-time limit (τ → ∞), we can show that

c2τ ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tV=ðtU ζ2Þ

q
, and this gives

lim
τ!1

Wopt
2 ¼ ΔF

eq
U!V þ kBT

2
ln ζ2 þ ð1� ζ2Þ
 �

: ð24Þ

Several points areworthnoting. Since ln ζ2 þ ð1� ζ2Þ is non-positive for all
ζ, the long timework limτ!1Wopt

2 ≤ F
eq
U!V irrespective of the choice of f(t),

with the equality holding onlywhen ζ2 = 1.Notice that ζ2 = 1 is only achieved
by either tV = tU or ~f ð2=tU Þ ¼ 0. The former is a trivial solution and not
interesting. The latter corresponds to when the system is in equilibrium in
the U-trap. Hence, beginning from an out-of-equilibrium state reduces the
long-time cost below the equilibrium value. (See Supplementary Fig. S1 for
discussion onWopt

2 and behavior of the optimal protocol.)
Equation (24) can also be used to get a lower bound on the work as the

distribution of the duration in the exploration phase, f(t), is varied.Notefirst
that since ~f ð2=tU Þ≤ 1, tV/tU≤ζ2≤1. In this range, the function ln ζ2 þ ð1�
ζ2Þ is non-positive and monotonic and attains a maximum value at ζ = 1.
This ultimately gives the bound

lim
τ!1

Wopt
2 ≥

kBT
2

1� tV
tU

� �
: ð25Þ

Here, the equality is obtained for the case of vanishing duration in the
exploration phase, f(t) = δ(t). In fact, the same holds for any protocol
duration τ in the limit of vanishing explorationduration.This can be seenby
expanding ~f ð2=tU Þ ¼ 1� 2ht1i=tU þ . . . in Eq. (22), which results in

Wopt
2

kBT
¼ 1

2
1� tV

tU

� �
þ 1� tV

tU

� �2 ht1i
tV

þOðht1i2Þ : ð26Þ

Thefirst termon the right-hand side is thenegativeof the averageworkdone
due to the potential switch at time t = 0, i.e., −W1 [see the first term on the
right-hand side of Eq. (7)]. Interestingly, to the first order there is no
dependence on protocol duration (in the limit of vanishing duration in the
exploration phase). Intuitively, in this regime the particle has no time to
relax in the shallow trap, and the state at the beginning of the protocol is
close to the Boltzmann state in the sharp trap.Hence, the optimal protocol is
simply to discontinuously switch almost fully back to the sharp trap and
remain there for the rest of the protocol duration, and therefore, the total
work,W1 þWopt

2 , performed in this limit vanishes.
In the opposite limit ζ2 = 1, the particle has time to equilibrate in the

exploration phase, and the protocol connects two equilibrium states. In
this case, we expect the work in the quasistatic limit to be given by the

free energy difference limζ2!1limτ!1W�
2 ¼ ΔF

eq
U!V , as we verify from

Eq. (24). One can also verify that the two limits commute,
i.e. limζ2!1limτ!1W�

2 ¼ limτ!1limζ2!1W
�
2.

Another interesting aspect of the optimal protocol is that the average
work is monotonic as a function of the duration τ, in contrast to the
hyperbolic tangent protocol, i.e., for an optimal protocol, large τ implies
lowermeanwork.This is seen inFig. 4a,where the solid line shows themean
work associatedwith the optimal protocol.We also see that the optimal case
indeed results in a lowermean work as compared to the hyperbolic tangent
protocol, as it should. The late timework in the optimal protocol approaches
the bound (24), which is different as explained above, from the GL work-

bound (21). InFig. 4bwequantify this byplotting the difference between the
optimal work bound that we obtain and the GL bound Eq. (21). The bound
is approachedmonotonically as tV→ tUwhich is the limit corresponding to
the trivial case when both potentials are identical and hence both the mean
optimal work and the GL work-bound are zero.

Information-geometric interpretation. Equation (24) has a natural
information-geometric interpretation. Since our initial state deviates
from the Boltzmann state, we expect the information content of this non-
equilibrium state to contribute to the work70,78. However, the full infor-
mation content may not always be converted into (negative) work since
we are constrained to harmonic trap shapes79. To make this argument
more precise, we first consider the so-called m-projection

π½Pta;U �ðxÞ ¼ argminq2B DKLðPta;U k qÞ ; ð27Þ

into a subspace B of Boltzmann states compatible with our trap, i.e.,
Gaussian densities in the context of harmonic traps (Fig. 5).

Since q(x) is a generic Gaussian density, let’s say it has mean μ and
standarddeviation σ, theKL-divergencewewant tominimize canbewritten
as

DKLðPta;U k qÞ ¼ �S½Pta;U � þ
hðx � μÞ2ita;U

2σ2
þ ln

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
; ð28Þ

where S[Pta,U] is the Shannon entropy of the true initial state. To minimize
this over (μ, σ), we simply take the derivative with respect to these two
parameters and solve for stationary points. This results in μ = 0 and
σ2 ¼ hx2ita ¼ DtU ζ

2. Hence, the projected state π[Pta,U](x) is simply a
Gaussian with matching first two moments of Pta,U.

The information between the true initial state and the instantaneous
equilibrium state associated with the initial trap is measured by
DKLðPta;U k Peq

U Þ, which in principle can be converted into work as seen in
the GL work-bound (21). However, due to the constraints on the protocol
(i.e., harmonic traps) only the KL-divergenceDKLðπ½Pta;U � k Peq

U Þ between
the projected initial state and the instantaneous equilibrium state (the
accessible information) can be converted intowork; see Fig. 5. Indeed, using
well-established formulas for the KL divergence between twoGaussians, we
find that Eq. (24) can be rewritten as:

lim
τ!1

W
opt
2 ¼ ΔF

eq
U!V � kBT DKLðπ½Pta;U � k Peq

U Þ : ð29Þ

Fig. 5 | Information-geometric representation. Projection π[Pta,U] of the true state
Pta,U at the beginning of the protocol into a subspace B of Boltzmann densities
compatible with the trap. DKL(p∣∣q) is the KL-divergence between two distributions
p(x) and q(x). Only the deviation from the initial equilibrium state Peq

U measured
within this subspace can be converted to work.

https://doi.org/10.1038/s42005-025-02277-w Article

Communications Physics |           (2025) 8:355 6

www.nature.com/commsphys


Hence, the deviations from the bound given by Eq. (21) originates in the
information loss associated with the projection of Pta,U → π[Pta,U].

Optimal protocol: finite-time results. The manner in which the bound
in Eq. (24) is reached can be better understood in the light of recent work
on geometrical measures of optimal minimum-work or minimum-
dissipation protocols (see80 for a recent review on some of these aspects).
To understand these results in our context, we first get the full τ-
dependence of the optimal work Wopt

2 by separating the time-
independent and time-dependent terms in Eq. (22) by substituting c2
from Eq. (23):

W2
kBT

¼ βΔF
eq
U!V þ 1

2 ln ζ2 þ ð1� ζ2Þ
 �

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tV

τ þζ2 tU tV
τ2

q
ð1þ2tV

τ Þ þ
ffiffiffiffiffiffiffiffiffiffi
ζ2tU tV

p
τð1þ2tV

τ Þ

2
4

3
5

� tU ζ
2

τ
1
ζ

ffiffiffiffi
tV
tU

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tV

τ þζ2 tU tV
τ2

q
ð1þ2tV

τ Þ � ð1þtV
τ Þ

ð1þ2tV
τ Þ

2
4

3
5 :

ð30Þ

The time-independent terms are just the non-equilibrium free
energy difference that we obtained in Eq. (24). From general
considerations32,34,35,37–39,80, we expect the time-dependent terms to be
strictly positive for all time and equal to the entropy production in
the system due to finite driving speeds. For overdamped systems, the
entropy production has been shown to be related to the L2- Wasserstein
distance36,37,39 between specified initial and final distributions. As we have
emphasized, our problem involves instead changing a potential U to a
potential V in a finite time. However, the structure is similar46,80.

It is easy to show in certain limits that the time-dependent terms in Eq.
(30) are indeed related to the L2- Wasserstein distance. If we carry out a
large-τ expansion on the time-dependent terms, it is easy to see thatW2 can
be written as:

W2
kBT

¼ βΔF
eq
U!V þ 1

2 ln ζ2 þ ð1� ζ2Þ
 �
þ 1

2τ

ffiffiffiffiffiffiffi
2tV

p � ζ
ffiffiffiffiffiffiffi
2tU

p
 �2
:

ð31Þ

In this limit the τ-dependent term can be expressed in terms of the
square of the L2-Wasserstein distance between twoGaussians, where one of
the Gaussians is simply the Boltzmann distribution in the V-trap while the

other is aGaussian in amodified shallow trapwithvarianceDζ2tU. This is the
Gaussian projection of the time-average nonequilibrium state asmentioned
in Subsection “Information-geometric interpretation”.

When ζ2 = 1 (which is the limit when Pta,U(x)→ Peq,U(x)), the second
term in Eq. (31) vanishes and the third term simplifies to the square of the
L2-Wasserstein distance between the two Boltzmann distributions in the
harmonic potentials U and V45. In this limit Eq. (31) takes on the form
expected from the Jarzynski equality81 which connects in this context, the
expected value of thework to the variance58. It is interesting that Eq. (31) has
this formfor anyvalueof ζwhereas the Jarzynski equalityholds strictlywhen
starting from equilibrium.

In the opposite limit of ζ2 ¼ tV
tU
it is easy to see from both Eqs. (30) and

(31), that the τ-dependent terms entirely vanish. This is consistent with the
interpretation of this limit as the trivial case of vanishing exploration
duration, as also mentioned earlier.

The instantaneous limit τ→ 0 can also be taken in Eq. (30). In this case
one recovers Eq. (19a). Details of the limits as well as the derivation of Eq.
(30) are given in Supplementary Note S4.

In all of the above, the out-of-equilibrium nature of the initial state is
parametrized via ζ which is itself a function of the strength of potentials U
and V as well as the distribution of durations in the exploration phase f(t1)
[Eq. (10)]. To understand the role of f(t1) better, we plot Eq. (30) in Fig. 6a,
for a Gamma distribution

f ðt1Þ ¼
rrht1i

Γðrht1iÞ
e�rt1 trht1i�1

1 ; ð32Þ

where r〈t1〉 ≠ 1 corresponds to deviations from the Poissonian case. In
the following, we fix the mean duration in the exploration phase 〈t1〉 = 1
and vary r. This changes the shape of the distribution f(t1) (Fig. 6b). In
Fig. 6a we plot the mean work as a function of protocol duration. We
see that, for all protocol durations, W2 increases with r. To relate this
to the shape of f(t1), we see that P < ¼ R ht1i

0 dt f ðtÞ grows as r decreases.
This implies that largefluctuationswhich enable stochastic realizationswith
sub-mean exploration duration result in a lower work value while
suppressing fluctuations in f(t1) results in higher work values. This is in
line with our previous discussions on Eq. (25) which showed that the lesser
the time in the exploration phase, the lower the value ofW2. Indeed, when
r → 0 the probability accumulates at zero (Fig. 6b), resulting in the same
work as the bound in Eq. (25) (dot-dashed line in Fig. 6a). When r→∞ in
the Gamma distribution the fluctuations around the mean become
vanishingly small, and we approach the limit of deterministic exploration

Fig. 6 | Gamma-distributed exploration dura-
tions. a Mean work W2 as a function of resetting
duration τ. Here the exploration durations t1 are
drawn from a Gamma distribution f(t1) with dif-
ferent shape parameter r〈t1〉. The value of r, ζ

2 as well
as the sub-mean probability mass P < is reported.
The dashed line shows the boundwhen r→∞ (small
fluctuations around mean), and the dot-dashed line
r→ 0 (small fluctuations around zero). b Corre-
sponding probability density f(t1) for durations of
the exploration phase. Vertical grey dashed-dotted
line marks t1 = 〈t1〉. Parameters are set to
tU = 4, tV = 0.5 and 〈t1〉 = 1.
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durations. In Fig. 6a the dashed line shows the resulting work for the
corresponding case.

Conclusions
We have investigated the connections between the thermodynamic cost of
an experimental procedure which has been used to implement resetting14–16

and earlier well studied problems of information erasure70,78 and geometric
measures of optimal protocols that minimize work or heat in overdamped
stochastic systems32,34,36,37,39,45,80. The problem we study is very similar to
those studied in the above contexts, but a few important distinguishing
aspects are the out-of-equilibrium nature of the system we study, the
moment generating function of work from which we can, in principle,
obtain all moments of the work for this system, as well as the explicit
expression we obtain for the optimal work Eq. (30) which holds for all
protocol durations τ and not just in the slow and fast limits as often studied.

We see from the expressions for the optimalwork that at late times (31)
appears to be the square of a L2-Wasserstein distance between two Gaus-
sians, one of which has a varianceDζ2tU. The non-dimensional length ζ is a
quantifier of the out-of-equilibrium initial state at the start of the resetting
protocol and itself depends on both potentialsU andV aswell as thewaiting
time f(t) in a non-trivial manner [Eq. (10)]. In addition this length scale
quantifies the variance of the projected state π[Pta,U](x). This seems to
suggest that, at least for some results, we can replace our time-averaged non-
equilibrium state Pta,U by aGaussian with the samemean and variance, if all
manipulations are only done via harmonic traps. It would be interesting to
see how general this result is and whether it translates to other non-
harmonic potentials.

Investigating optimal protocols further in the context of the erasure of
out-of-equilibrium states is a very interesting direction to pursue. In parti-
cular, it would be very illuminating to understand if there are trade-offs
betweenminimizing the mean work andminimizing the variance67,71 of the
work done or the heat dissipated and if this results in phase-transitions in
protocol space67. It would also be interesting to understand if there are cases
when these protocols can be non-monotonic as observed in46. Investigating
the so-called thermodynamic metric structure of the optimal-protocol-
parameter space40,43,82,83 is yet another interesting direction to pursue, as is
also the study of optimal transport in discrete cases84.

Finally, coming back to the context of resetting, it is very interesting to
also understand thermodynamic costs when there is an absorbing barrier.
Such an analysis has been done in ref. 28, though resetting has been
implemented there by considering a first passage excursion to a specific
point in a trap ("first-passage resetting"), unlike in our case when resetting is
accomplished when the Boltzmann distribution in the trap has been
reached. Itwould be very interesting to carry out a similar analysis as done in
ref. 28 for our case. The nature of optimal protocols in the presence of
absorbing barriers is also very interesting to understand26,28.

Data availability
Thedata that support thefindings of this study are available on request from
the corresponding author [D.G.].
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