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Recent experiments have implemented resetting by means of a time-varying external harmonic trap,
whereby the trap stiffness is changed in finite-time and the system is reset when it relaxes to an
equilibrium distribution in the final trap. Such setups are very similar to those studied in the context of
the finite-time Landauer erasure principle. In this work, we analyze the thermodynamic costs of such a
setup by deriving a moment generating function for the work cost of recurrently changing the trap
stiffness, thereby maintaining a non-equilibrium steady state. For this heretofore unstudied case, we
obtain explicit expressions for the mean and variance of the work both for a specific experimentally

viable protocol as well as an optimal protocol which minimizes the mean cost. For both these
procedures, our analysis captures both the large-time and short-time corrections. For the optimal
protocol, we obtain a closed form expression for the mean cost for all protocol durations, thereby
making contact with earlier work on geometric measures of dissipation-minimizing optimal protocols

that implement information erasure.

Stochastic resetting refers to processes in which a system’s natural evolution
is interrupted and restarted according to some predefined scheme, naturally
driving the system out of thermal equilibrium'’. Rich behaviors, such as
non-trivial non-equilibrium steady state properties*, anomalous relaxation
dynamics’” and potential for optimization in search processes®’, have
attracted much attention over the past decade, both theoretically and
experimentally. Given this rich behavior and the multitudinous applica-
tions, it is very natural to consider the thermodynamic cost of a resetting
operation or the cost associated with maintaining a steady-state resetting
process. Particularly interesting are questions relating to fundamental
thermodynamic bounds for such costs.

These questions take on an even greater significance in the light of the
fact that the conceptually simple yet powerful renewal structure built into a
resetting process (every reset erases memory and correlations of the system’s
past evolution) also hints at deep connections to information erasure'*"".
Early studies on the thermodynamic cost of resetting'>", quantified this
connection by bounding the average entropic cost for (instantaneous)
resetting in analogy with Landauer’s principle of information erasure'’.
However, these studies did not take into account the actual work needed to
implement a reset, which would necessarily also be influenced by the
mechanism used to accomplish resetting, finite-time effects, as well as
imperfections in the actual resetting.

Recent experiments'*™'® that implement resetting provide a very
easy and elegant framework within which to investigate such ques-
tions further. In these experiments, a colloidal particle moves either
freely or within a trap until it is reset. Here, the resetting mechanism
is facilitated via an optical confining (resetting) trap. The resetting

trap is switched on either periodically or stochastically, for a duration
long enough to relax the particle to the corresponding equilibrium
thermal distribution in the trap. After this duration, the resetting trap
is switched off. Notice that in contrast to resetting to an exact
location (see ref. 17 for the corresponding experimental procedure),
here the particle resets instead to a position drawn from the equili-
brium thermal distribution in the resetting trap.

In this guise too, the resetting problem can be posed as an information
erasure problem, whereby, in analogy to how classical bit erasure is
implemented via optical traps'®™*, one could ask what the thermodynamic
cost is for turning on the resetting trap, very slowly, instantaneously or in
finite-time, and hence erasing all previous information at a (time-depen-
dent) cost. In analogy with Landauer’s principle, it is also very interesting to
understand what the fundamental bound is on such a cost now taking into
account the physical constraints of both time and energy which need to be
spent to carry out the erasure.

In previous work, we have studied such a system and obtained the
average and fluctuations of the work needed to turn on the resetting trap™**
or the heat dissipated”™ as the particle relaxes in the resetting trap. Other
studies involving “first-passage-resetting’, i.e., when an optical trap is kept
switched on until the particle makes a first-passage to a specified location,
have also considered average work costs”** and fluctuations”. In all these
studies however, the resetting trap is considered to be switched on instan-
taneously. If however, in analogy with several studies on finite-time bit
erasure'* >, one is interested in lower bounds on the thermodynamic
cost of resetting, it is necessary to consider the cost as a function of the time it
takes to switch on the resetting trap. Such a cost will now also depend on the
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Fig. 1 | Schematic for an erasing cycle. V(x): Resetting potential. U(x): Exploration
potential. 2/(x; A(t)): Potential with a time-dependent protocol A(f) such that
U(x;M0)) = U(x) and U(x; M(1)) = V(x). The trapped particle is represented by the
red sphere. The exploration time-interval ¢_1 is drawn from a distribution f{#_1) and
duration for the protocol is 7. xgv) and xéU) , respectively, are the particle’s positions at
the beginning and end of the exploration phase.

protocol used for turning on the trap, namely on how the trap parameters
are modified to transform the initial trap into the final one.

If the state of the system at the start is an equilibrium state, the second
law of thermodynamics places a bound on the minimum work required to
change the control parameter; this is just the equilibrium free energy dif-
ference between the initial and final state. Any protocol that pays only this
minimum cost is a protocol that operates quasi-statically, so that the system
is never out of equilibrium for the entire duration. In the context of bit
erasure, many experiments'*~>"' have been performed to probe both the
bound as well as the actual cost to carry out the erasure process in finite time.
Several theoretical works™**** also address this issue.

Although it is possible to look at specific, experimentally viable pro-
tocols, theoretically, such questions are best addressed in the context of
optimal protocols; a protocol engineered so as to minimize some cost of
interest such as the mean work performed or the mean dissipation. Two
optimization problems that are typically studied in this context are: 1)
Designing optimal protocols that transition between two specified dis-
tributions within finite time***" and 2) designing optimum protocols that
minimize the cost needed to shift between two different potential energy
landscapes, often harmonic, in finite time*>**'~*, A different but related
class of problems, inspired by the so-called shortcut to adiabatically
processes”’ ", study optimal protocols devised so as to take the system from
one equilibrium state to another in a time much faster than the intrinsic
relaxation time of the system™.

In this paper, we address the second optimization problem mentioned
in the above paragraph. Namely, we address the question of estimating the
work cost of a classical overdamped system when changing the potential
from U to V, effectively implementing an erasure in a fixed time 7. We
formally write down the moment generating function for this process for
any Uand V. However, we carry out explicit calculations for the mean and
variance of the work for harmonic potentials where we transform a har-
monic potential U to a harmonic potential V by changing the stiffness of the
trap in a finite time T according to a generic experimentally viable protocol as
well as an optimal protocol. This system has been studied very extensively in
the past, in experiments'*'**"* and theoretically**>****". In contrast to most
of these previous studies (two exceptions are'® which studies this case albeit
from a different aspect and®”’ who study an out-of-equilibrium though
Gaussian state created by a measurement), we consider a steady-state system
obtained by repeated applications of our erasure scheme shown in Fig. 1.
The resulting state that needs to be erased is hence an out-of-equilibrium,
non-Gaussian state. This fact has implications for the work cost of both

generic as well as optimal protocols. As noted recently in the context of bit
erasure”, it is possible, when beginning with an out-of-equilibrium initial
state, to get costs lower than kzTIn2 in agreement with a generalized
Landauer bound”’. We study this aspect in-depth for our system by formally
obtaining, under very general conditions, the full moment generating
function of the work performed in one cycle. From the expression for the
moment generating function, we are able to compute the average work
required to carry out one erasure cycle (as in Fig. 1) in the case of harmonic
traps, both for a generic experimentally-viable protocol as well as optimal
protocol. Our results hold for all time and not only in the short or large-time
limits as in most earlier works. Our formalism also allows us in principle to
look at and optimize higher moments of the work, or Pareto-optimal fronts
encoding trade-offs (as done theoretically in”', numerically in”, or in Ref. 72
for quantum systems).

Results and discussions
Model
Our system is subjected to a sequence of erasing protocols in time. Each
erasing cycle (see Fig. 1) involves a single resetting event composed of two
switching processes: 1) An instantaneous jump from the resetting (or stiff)
potential V(x) to an exploration (or shallow) potential U(x) at time ¢ = 0,
after which the system stays in the potential U(x) for a time distributed
according to some temporal distribution f{f). We call this phase the
exploration phase. 2) After the completion of the exploration phase, a time
varying potential U(x;A(t)) is switched on, in such a way that at the
beginning and end of the resetting protocol, respectively, U (x; A(t = 0)) =
U(x) and U(x; M(t = 7)) = V(x). Here, 7 is the duration of the potential-
switching time. We call this phase the resetting phase. Once the potential
V(x) has been turned on, the system stays a fixed amount of time in this
potential, say a few times the relaxation-time, so that at the end of this
relaxation phase, the system has relaxed to the Boltzmann distribution in
this potential. At this point the cycle is complete and we switch instanta-
neously back to U(x). For convenience, henceforth, we drop the explicit
mention of the time-dependence from A(f). The time evolution of the system
consists of a series of such erasing cycles.

The system’s dynamics is governed by the overdamped Langevin
equation:

d 82/{(x AU Y)
i —BD

” —= +V2Dn(h), 1
for the inverse temperature 8 = (k;T)~", and the diffusion constant D.
Notice that the above equation is valid for both exploration and relaxation
phase by respectively replacing U(x; 1) — U(x) and U(x;1) — V(x). In
the last term #(f) is a Gaussian thermal white noise which has zero mean and
delta-correlations in time: (7(¢)5(¢)) = 8(t — t').

In this paper, we are interested in the cost of performing a complete
erasing cycle. By the definition of our erasing cycle, this consists of two
contributions. For the initial instantaneous jump, the performed work along
a single stochastic trajectory is the change in the energy due to an instan-
taneous switch from potential V(x) to U(x),

() = U — V), @)
whereas the work performed during the change of the potential from U(x) to
V(x) in a time-dependent manner via the control parameter A(f) is

U(x: A
wylx()] = /0 di i u(:; ) 3)

for the switching time 7. Here, x( - ) represents the system’s trajectory.
Therefore, the total stochastic work for one implementation of the erasing
cycle is w = w; + w,. Notice that during the relaxation phase, there is no
work contribution since the control parameter is fixed. The stochasticity in
this quantity has its origins in two factors: 1) the system’s size is small, so
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thermal fluctuations are significant, and 2) the time to stay in the exploration
phase is drawn from a distribution f{f).

Moment generating function

For a trajectory containing # erasure cycles, i.e., n replicas of the cycle shown
in Fig. 1, the total stochastic work performed will just be the sum of the
stochastic works performed during each of these # cycles. Hence, we turn
our attention first to understanding the distribution of work for a single
cycle. The moment generating function of work w for a single erasure,
implemented according to the scheme in Fig. 1, is defined as (For # cycles,
the moment generating function is (€)"™):

Clk, 1) = (™), @)
where the angled brackets indicate the average over thermal fluctuations,

initial condition, and stochastic exploration time ¢. Here k is the conjugate
variable with respect to work w. This implies

Clk,7) = / dtf(t) / A" Py (25"

+00
X / dxV PU(xf)U) t1x")

L o Mo 5)
V) V)
x AUV (o,
—_———
Co(k.,‘r:x((lv))

where we have substltuted w; from Eq. (2). Several comments are in
order. C,(k,T; x0 Y)) is the moment- generating function of work
performed while changing the potential from U to V in a time-
dependent manner (3), and herein we average the trajectories emanating
from the position x(U) This x(U) is the )posmon of the particle at the end
of the exploration phase, therefore, xo ~ PU(x(U) tlx(v) ), where x(v)
the initial condition for the exploration phase’s trajectories. Notice that
x( V) is drawn from the initial equilibrium distribution with respect to the
potential V, P, V(x0 ")), since the system initially instantaneously
switches from V to U after the relaxation phase. We have weighted Eq.
(5) with respect to a temporal density, f(t), of time intervals in the
exploration phase.

Inverting the above Eq. (5) for any form of potential seems difficult;
nevertheless, it provides the means to obtaining the nth order moments of
work. This is done as follows. Differentiating both sides of Eq. (5) n-times
with respect to k and setting k = 0, we get,

/ dt f(t) / dxg” Py (")
X/ st Py(xg”, t1xg") ®)
ARG

Analytical calculations of the moments for arbitrary potentials is
involved. Therefore, in what follows, we restrict ourselves to the case of
harmonic potentials, as these are easily implemented and manipulated in
experiments'*"”. For this case, we obtain the mean and second moment of
the work as follows (see Supplementary Note S1 for more details):

(w)y=W=— ks T(l—t—v>
2 ty

).
0 0

+§/0 dti[tuczc(t,0)+4/0 dsG(t,s)},

W =1 +1+1, (8)

where

Gt = e[ 40 ©

and we have defined a dimensionless length

(= \/1 — (1 =ty /1)) 2/ty), (10)

for the trap relaxation time ¢, ;; = (BDAy, v) . Here Ay, yare the stiffnesses
in the traps U and V respectively and f(s) = Jo© dt e~ f(t) is the Laplace
transform of the exploration time density. Note that ty/ty<(’<1 for any
distribution f(£). I , 3 in Eq. (8) are respectively evaluated in Supplementary
Egs. (S16), (S17), and (S22).

The moment generating function for the work performed as the
stiffness of the harmonic trap changes, has been studied in earlier
work®**4% but only when the process begins from an equilibrium
initial state. (We note that ref. 65 has a closed form expression for the
moment generating function for arbitrary initial conditions. They
investigate it however only for equilibrium initial conditions.) In the
process we study here, the initial state is in general out-of-
equilibrium. It becomes a Boltzmann distribution in the trap U
only if the mean exploration time (t;) > ty (see Fig. 1).

An experimentally motivated protocol with a Poissonian
resetting rate
While the above analysis and the expression for the moments [Eqs. (7)
and (8)] are true for any protocol A(t), we specialize to an experimentally
feasible protocol":

AMt) = Ay + (A, — Ay) tanh[t/t*]. (11)
Here, t* controls the speed of the protocol: the smaller the * the faster A,
transforms to Ay The total average work W [Eq. (7)] is the sum of two terms
Wi + W, W, is the mean contribution of the instantaneous switch at the
beginning of the cycle [this is the first term in the Eq. (7)] and W, is the mean
contribution of the finite-time switch back to potential V [the second term in
Eq. (7) which we can now calculate explicitly].

Figure 2 shows the comparison of analytical mean and variance of the
work W [using Egs. (7) and (8)] for f(f) = re " as a function of t*, where r is
the resetting rate. In both simulations and analytical results, we set the
duration of the protocol to 7= 10¢* so that at the end of protocol M(7) = Ay,
as required. Both the mean and variance approach their respective stationary
values in the quasi-static driving regime * — oo. From Fig. 2a we see,
however, that unlike transformations between equilibrium states, the
work performed during the quasistatic limit is not necessarily the minimum.
To investigate this further, we focus only on the average work in what
follows and compare what we get from an instantaneous versus quasi-static
protocol.

In the limit #* — 0 (i.e., the fast switching limit), the total work sim-
plifies to the following two contributions: 1) an instantaneous switch from V'
to Ustarting from equilibrium P,y 1(x), and 2) another instantaneous switch

from Uto V-
Winge = ([U) = VD s, 0 + (V) = U@Dp, ) 5 (12)
starting from the time-averaged distribution:
Pao= [ 0Py, (13)
0

in the U(x) potential, where P (x,t) = jf:j dxy Py (x, tlxy)P3(x,). This
time-averaged distribution is the non-equilibrium state at the beginning of
our resetting/erasure protocol. Note that because of the renewal structure of
our scheme, this distribution does not depend on any details of A(f).
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Fig. 2 | Mean and variance of work. Harmonic

exploration and resetting potentials are used. Mean
((W)) and variance ((W?) — (W)?) as a function of
time * are plotted. Symbols: Numerical simulation.
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b
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Lines: Analytical results using Egs. (7) and (8) with g T
f(t) =re " and the protocol in Eq. (11). a, b Red = —
horizontal dashed lines indicate asymptotic values Ng
of mean work Wy, (14) and variance ~
[Dt, (A, — A)I?/2 (see Supplementary Note S2 for (a) (b)
more details). The color intensity increases with 10-2 10-2
increasing resetting rate r. Here, we take the diffu- 10-1 10° 10! 102 103 10-1 10° 10! 102 103
sion constant D=0.5, y=1, A;;=0.125, 1,,=0.25, t* t*
and simulation time 7 = 10#*. Number of resets: 10°.
a Error bars are one standard error of mean and are
smaller than the symbol size.
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Fig. 3 | Characterization of mean work. Harmonic exploration and resetting
potentials with f(t) = re”" are used. a Phase diagram using Eq. (19¢) in the (rty, rty)
plane, for resetting rate rand relaxation time t,, ;; = (8D, ;)'.b,c Mean work asa
function of time £*; inset in ¢ shows work as a function of t* (where t* is longer than
that of the main panel). Note that the approach to the asymptotic value is from above
in (c), indicating non-monotonic behavior at large times. Lines: Analytical results

Eq. (7). The horizontal dashed line indicates Wy, (19b). Here, we take the diffusion
constant D = 1. Number of resets: 10°. Error bars show one standard error of mean.
d Phase diagram from Panel a with added panels [obtained using Eq. (20)] indicating
regions where mean work W is non-monotonic “NM” or monotonic “M” as a
function of time. Blue regions: Wi, < Wyjow. Red regions: Wi > Wjoy-

In contrast, in the infinitely slow switching of potential ¥ — o (i.e.,
* > t1;y), we expect the average work to be

Wslow = ([U(x) - V(x)])Peq‘V(x) + AF?;‘%V ’ (14)
i.e, we expect that changing potential Uto potential V sufficiently slowly will
give rise to a work cost equal to the free energy difference between the two
potentials. For this protocol, we can explicitly carry out an expansion in the
long-time limit (see Supplementary Note S2) and show that this is indeed
the case. As we will see in the next section however, this need not necessarily

=g ﬁ)oo atf(t) [DKL[PU(-X’ HIIP(x)]+ (17)
— Dy [Py(x, t)| |Pe(}](x)]] .
Thus, the sign of the left-hand side depends on the KL-distance of Py/(x, f)
from the equilibrium distributions in the V and U potentials.
For harmonic potentials, we can explicitly compute the total average
work in the instantaneous (12) and slow switching (14) limits, and hence
also their difference. The total average work is W; + W,, where

be the case for arbitrary protocols, i.e., an arbitrary protocol connecting out- W. = kgT [ty ) v
of-equilibrium states need not have a work cost that equals the equilibrium YU\ ) (18)
free energy difference at long times.
The right-hand side of Eq. (14) can also be rewritten in the form of a  and
KL-divergence (D [p(x)||q(x)] = [ dx p(x) ln%): T
_ W, :B—<—U—1)(2, 19a
Wow = B~ Dt [Peg yv(0)|Pq ()] (15) 2int = 5\, (192)
for the equilibrium distributions Peq1(x) and Peq (), respectively, with e kyT .ty
respect to potentials V and U. Thanks to the non-negativity of the KL- Watow = AFy_,y = N na ’ (19b)
divergence we expect W,20. Using Egs. (12) and (15), we get
kyT [ [ty , Lty
Winst = Waoy = (V) = URDp, ) — AFTL (16) Wing = Waow = —— KE - 1)( sl (19¢)
Communications Physics | (2025)8:355 4
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Fig. 4 | Work and deviation from

theoretical bound. a Mean work W, as function of
(dimensionless) protocol duration r7 for the
hyperbolic tangent protocol (7) (points) and the
optimal protocol Eq. (22) (solid line). We use
resetting probability density function f{t) =re™".
The dashed line represents the theoretical bound
(21). Here, we take the non-dimensionalized har-
monic trap relaxation times rt;; = 4, rty, = 0.5 where r
is the resetting rate and ty, t are the harmonic trap
relaxation times. b Deviation from the theoretical
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Generalized Landauer (GL) work-bound (21) in the 1
quasi-static limit as a function of the ratio of trap

relaxation times ty/ty. Parameters used are

D=y=kgT=r=1,and ty=4.
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where the dimensionless length ( is defined in Eq. (10).

Figure 3a shows the parameter regimes for f{(t) = re ", where the
average work Wi, [Eq. (19a)] is larger or smaller than Wy, [Eq. (19b)]; in
the unshaded region Wiyg > Wiy, otherwise Wing < Wow. Note that our
erasure protocol can lie anywhere below the red diagonal (where ty < ty). In
the shaded region, switching the potential in a finite time costs less work
than switching quasi-statically, and is therefore a finite-time cost-effective
region.

Figure 3b, ¢ shows the mean total work W (in the region below the
diagonal line in Fig. 3a) as ty increases from region II to I for a fixed ty;
for f{t) = re . We can see that the work can be made smaller for smaller £*
in region I of phase diagram 3a. Additionally, Fig. 3b, c exhibits the
non-monotonic nature of the average work for some values of the para-
meters. To understand where in parameter space this occurs, we need to
explore the large but finite t* to understand how the t* — oo limit is
approached.

In order to do this, we adapt a technique sketched in* to our system
and expand the average work W, in the slow-switching limit (#* — oo) to
first order in 1/¢*(see Supplementary Note S2 for a detailed derivation). We
show that the difference of average work W, from the equilibrium free-
energy difference in this limit is given by the correction term

. ky T 1 Iz
Wz_AF(?»V:“BTtU{(Z—E( +tTV)} + O(a?), (20)
U

where a o 1/* [Supplementary Eq. (S25)] is the slowness-parameter in the
limit #* — oo. Depending on the sign of the term inside the square brackets
in Eq. (20), the approach to 0 is either positive or negative. Note that
beginning from an equilibrium state (as in"* which we can also get by putting
{*=1) results in a purely positive correction term. The fact that we get either
a positive or negative contribution from the correction term is purely a result
of the non-equilibrium state at the start of the protocol. Equation (20)
together with the phase diagram in Fig. 3a, hence helps us identify regions
where the average work is non-monotonic as a function of #*. This is
displayed as a modified phase diagram in Fig. 3d.

Bounds on the average total work W

Long-time limit. Even though the above results hold for a specific pro-
tocol, it is clear that the equilibrium free energy difference is no longer in
general a lower bound on the average work required for performing our
erasure cycle, when the system starts from an out-of-equilibrium state (as
was also noticed in the context of bit erasure in ref. 69). It is interesting to
understand nevertheless if there are bounds on the total average work
even in this case. As we have seen, the total average work is composed of
two contributions: a contribution due to the average instantaneous work
W, and the average work W, related to our protocol A(f) for manipulating

the trap stiffness. Since the first contribution to the total work does not
depend on the protocol at all, we concentrate henceforth on W,. On
very general grounds [irrespective of protocol A(f), exploration time
distribution f{(f), and arbitrary U(x) and V(x)], it is expected that a bound
on W, will relate to the non-equilibrium free energy differences between
the states at the start and end of the protocol. The minimal work required
to transform one out-of equilibrium state into another is studied in ref. 70
and translates in our case to the following expression:

W,= AF?;]%V + ky Dy [P(x, T)| |Pevq(x)]

—ky TDKL[Pta,U(x)| |P?}l(x)]a @

where Py, /(x)(13) and P(x, 7), respectively, are the probability of the par-
ticle’s position at the beginning [A(0) = Ay] and end of the protocol
[A(7) = Ay]. Werefer to this bound as the Generalized Landauer work-bound
(GL work-bound)”. For completeness we follow ref. 70 in Supplementary
Note S3 to show how Eq. (21) can be derived just from the requirement that
the the total entropy production be non-negative for the above process.

Figure 4a shows that the GL work-bound (21) clearly bounds the
average work cost W, of implementing the protocol (11). Tighter bounds
may be found by minimizing W, as a functional of the protocol A(f) to
obtain an optimal protocol as discussed below.

Optimal protocol: long-time bounds. We search for the optimal pro-
tocol of varying the control parameter A(f) that minimizes the average
work W = W; + W,. Since W, does not depend on the protocol A(#), it
suffices to consider W,. Optimal protocols for harmonic traps have been
studied in a wide range of contexts, including overdamped and under-
damped Brownian motion*>*>*4653777 “with constraints on max-
imum trap stiffness*”* as well as for active particles””’.

In the context we are interested in, the calculation of the optimal
(minimal work) protocol can be performed by using the standard
Euler-Lagrange minimization of the work functional W,[A(#)] as car-
ried out in ref. 41. As opposed to all earlier studies however, we begin
with a non-Gaussian out-of-equilibrium state Py, ;(xo) (13) at the start
of the protocol, and this has to be incorporated into the minimization
procedure. In ref. 63, the authors consider an initial state which has
been rendered out-of-equilibrium by a measurement process. The state
is however still Gaussian.

The optimal work performed on the system is
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where the dimensionless length ('is defined in Eq. (10), and the constant ¢, is

given by
fif (t/ty + 2)+1— (t/ty +1)

T(t/ty +2)

= (23)

A detailed derivation of the optimal protocol is included in Supple-
mentary Note S4. The out-of-equilibrium initial state plays a role in the
initial conditions. In the long-time limit (r — o), we can show that

6,1 = —1 4/t /(ty¢%), and this gives

lim WP = AFSY, + kBTT I +@1-33).

T—>00

(24)

Several points are worth noting. Since In éz + (1 — &%) is non-positive for all
{, the long time work lim,_, . W5 <F (ejﬁ v irrespective of the choice of f(t),
with the equality holding only when * = 1. Notice that {* = 1 is only achieved
by either ¢, = ty or f(2/ty) = 0. The former is a trivial solution and not
interesting. The latter corresponds to when the system is in equilibrium in
the U-trap. Hence, beginning from an out-of-equilibrium state reduces the
long-time cost below the equilibrium value. (See Supplementary Fig. S1 for
discussion on W5 and behavior of the optimal protocol.)

Equation (24) can also be used to get a lower bound on the work as the
distribution of the duration in the exploration phase, f(t), is varied. Note first
that sincef(Z /ty) €1, ty/ty<C<l. In this range, the function In { +(1-
(2) is non-positive and monotonic and attains a maximum value at { = 1.
This ultimately gives the bound

lim W > kBTT (1 —t—V) .

25
T—00 tU ( )
Here, the equality is obtained for the case of vanishing duration in the
exploration phase, f(t) = 6(f). In fact, the same holds for any protocol
duration 7in the limit of vanishing exploration duration. This can be seen by
expanding f(2/t;;) = 1 — 2(t;)/ty + ... in Eq. (22), which results in

opt 2
w; =1<1_LV) N (1_&) N4 oy,

26
kyT ~ 2 ty) ty (26)

The first term on the right-hand side is the negative of the average work done
due to the potential switch at time ¢ =0, i.e., — W, [see the first term on the
right-hand side of Eq. (7)]. Interestingly, to the first order there is no
dependence on protocol duration (in the limit of vanishing duration in the
exploration phase). Intuitively, in this regime the particle has no time to
relax in the shallow trap, and the state at the beginning of the protocol is
close to the Boltzmann state in the sharp trap. Hence, the optimal protocol is
simply to discontinuously switch almost fully back to the sharp trap and
remain there for the rest of the protocol duration, and therefore, the total
work, W, + W5, performed in this limit vanishes.

In the opposite limit {* = 1, the particle has time to equilibrate in the
exploration phase, and the protocol connects two equilibrium states. In
this case, we expect the work in the quasistatic limit to be given by the

free energy difference lim,_,,lim W3 = AF S(iw as we verify from

T—00
Eq. (24). One can also verify that the two limits commute,
ie limpe \lim,_, W3 =lim_, Jlime W3

Another interesting aspect of the optimal protocol is that the average
work is monotonic as a function of the duration 7, in contrast to the
hyperbolic tangent protocol, i.e., for an optimal protocol, large 7 implies
lower mean work. This is seen in Fig. 4a, where the solid line shows the mean
work associated with the optimal protocol. We also see that the optimal case
indeed results in a lower mean work as compared to the hyperbolic tangent
protocol, as it should. The late time work in the optimal protocol approaches
the bound (24), which is different as explained above, from the GL work-

A\ 4
......... O ”[Pta,U]
Dy (”[P 1a,U) Il P Zq

Fig. 5 | Information-geometric representation. Projection 7[Py, ;] of the true state
P, iy at the beginning of the protocol into a subspace % of Boltzmann densities
compatible with the trap. Dk (p||g) is the KL-divergence between two distributions
p(x) and g(x). Only the deviation from the initial equilibrium state P{} measured
within this subspace can be converted to work.

bound (21). In Fig. 4b we quantify this by plotting the difference between the
optimal work bound that we obtain and the GL bound Eq. (21). The bound
is approached monotonically as ¢, — t;; which is the limit corresponding to
the trivial case when both potentials are identical and hence both the mean
optimal work and the GL work-bound are zero.

Information-geometric interpretation. Equation (24) has a natural
information-geometric interpretation. Since our initial state deviates
from the Boltzmann state, we expect the information content of this non-
equilibrium state to contribute to the work’*”*. However, the full infor-
mation content may not always be converted into (negative) work since
we are constrained to harmonic trap shapes”. To make this argument
more precise, we first consider the so-called m-projection
7[Pea y)(x) = argmin, s D1 (Praw || ) | @7)
into a subspace B of Boltzmann states compatible with our trap, ie.,
Gaussian densities in the context of harmonic traps (Fig. 5).
Since q(x) is a generic Gaussian density, let’s say it has mean y and
standard deviation o, the KL-divergence we want to minimize can be written
as

((x — )
Dy (Ptay | @) = —S[Pray]l + % +Inv2n0%,  (28)

where S[Py, ] is the Shannon entropy of the true initial state. To minimize
this over (u, 0), we simply take the derivative with respect to these two
parameters and solve for stationary points. This results in 4 = 0 and
ot = (x}), = DtUCZ. Hence, the projected state 7[Py, y](x) is simply a
Gaussian with matching first two moments of Py, ;.

The information between the true initial state and the instantaneous
equilibrium state associated with the initial trap is measured by
Dy1(Pta v || P}, which in principle can be converted into work as seen in
the GL work-bound (21). However, due to the constraints on the protocol
(i.e., harmonic traps) only the KL-divergence Dy; (n[Pt, ] || Pjy) between
the projected initial state and the instantaneous equilibrium state (the
accessible information) can be converted into work; see Fig. 5. Indeed, using
well-established formulas for the KL divergence between two Gaussians, we
find that Eq. (24) can be rewritten as:

. opt e
lim W, Pt — AFU(iV — kT Dyy ([ Pta ] |l P??)-

T—>00

(29)
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Fig. 6 | Gamma-distributed exploration dura- . . = 5
tions. a Mean work W), as a function of resetting r=0.1 r = 1 (Poissonian) =2z
duration 7. Here the exploration durations #; are {°~0.27 14 “2042 & 2% 0.46
drawn from a Gamma distribution f(t;) with dif-
ferent shape parameter r{t,). The value of r, {* as well 0.83 [FD< ~ 0.63 P< ~ 0.56
as the sub-mean probability mass P _ is reported. — —
The dashed line shows the bound when r — oo (small
fluctuations around mean), and the dot-dashed line
r — 0 (small fluctuations around zero). b Corre- 1.75 10
sponding probability density f(t;) for durations of 1.50
the exploration phase. Vertical grey dashed-dotted 1.25
line marks #; = (t;). Parameters are set to 1
tu=4, ty=0.5and () = 1. 1.00
s|% <
< 075 < 0.10
0.50 r—0 0.01
0.01 010 1 10 100 1000
() t1Ktr)

Hence, the deviations from the bound given by Eq. (21) originates in the
information loss associated with the projection of Py, ; — 7[Pya,u]-

Optimal protocol: finite-time results. The manner in which the bound
in Eq. (24) is reached can be better understood in the light of recent work
on geometrical measures of optimal minimum-work or minimum-
dissipation protocols (see® for a recent review on some of these aspects).
To understand these results in our context, we first get the full 7-
dependence of the optimal work W' by separating the time-
independent and time-dependent terms in Eq. (22) by substituting ¢,
from Eq. (23):

S+ (1 =)

Nyt

(142

ﬁAFU%V

2 2 ,
e g

(1+2)

1 Jtv
\ ty

The time-independent terms are just the non-equilibrium free
energy difference that we obtained in Eq. (24). From general
considerations™**>"2% we expect the time-dependent terms to be
strictly positive for all time and equal to the entropy production in
the system due to finite driving speeds. For overdamped systems, the
entropy production has been shown to be related to the L>- Wasserstein
distance’”" between specified initial and final distributions. As we have
emphasized, our problem involves instead changing a potential U to a
potential V in a finite time. However, the structure is similar**®.

It is easy to show in certain limits that the time-dependent terms in Eq.
(30) are indeed related to the L*- Wasserstein distance. If we carry out a
large-7 expansion on the time-dependent terms, it is easy to see that W, can
be written as:

(30)

2y, Pty
T oy

1+

2ty
1+9)

2= BAFGL, +1 I8 + (1= )

+4 [Py — (V2]

In this limit the 7-dependent term can be expressed in terms of the
square of the L?*- Wasserstein distance between two Gaussians, where one of
the Gaussians is simply the Boltzmann distribution in the V-trap while the

€29

other is a Gaussian in a modified shallow trap with variance D{*ty;. This is the
Gaussian projection of the time-average nonequilibrium state as mentioned
in Subsection “Information-geometric interpretation”.

When ¢* = 1 (which is the limit when Py, ;/(x) — Peq,u(x)), the second
term in Eq. (31) vanishes and the third term simplifies to the square of the
L*-Wasserstein distance between the two Boltzmann distributions in the
harmonic potentials U and V*. In this limit Eq. (31) takes on the form
expected from the Jarzynski equality’’ which connects in this context, the
expected value of the work to the variance™. It is interesting that Eq. (31) has
this form for any value of { whereas the Jarzynski equality holds strictly when
starting from equilibrium.

In the opposite limit of {* = " it is easy to see from both Egs. (30) and
(31), that the 7-dependent terms entlrely vanish. This is consistent with the
interpretation of this limit as the trivial case of vanishing exploration
duration, as also mentioned earlier.

The instantaneous limit 7 — 0 can also be taken in Eq. (30). In this case
one recovers Eq. (19a). Details of the limits as well as the derivation of Eq.
(30) are given in Supplementary Note S4.

In all of the above, the out-of-equilibrium nature of the initial state is
parametrized via { which is itself a function of the strength of potentials U
and V as well as the distribution of durations in the exploration phase f{t,)
[Eq. (10)]. To understand the role of f(;) better, we plot Eq. (30) in Fig. 6a,
for a Gamma distribution

i)
I(r(t;))

where 7(t;) # 1 corresponds to deviations from the Poissonian case. In
the following, we fix the mean duration in the exploration phase (f;) = 1
and vary r. This changes the shape of the distribution f(#;) (Fig. 6b). In
Fig. 6a we plot the mean work as a function of protocol duration. We
see that, for all protocol durations, W, increases with r. To relate this
to the shape of f(;), we see that P _ fot‘ dt f(t) grows as r decreases.
This implies that large fluctuations Wthh enable stochastic realizations with
sub-mean exploration duration result in a lower work value while
suppressing fluctuations in f{t;) results in higher work values. This is in
line with our previous discussions on Eq. (25) which showed that the lesser
the time in the exploration phase, the lower the value of W,. Indeed, when
r — 0 the probability accumulates at zero (Fig. 6b), resulting in the same
work as the bound in Eq. (25) (dot-dashed line in Fig. 6a). When r — oo in
the Gamma distribution the fluctuations around the mean become
vanishingly small, and we approach the limit of deterministic exploration

ft) = A AL (32)

Communications Physics| (2025)8:355


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02277-w

Article

durations. In Fig. 6a the dashed line shows the resulting work for the
corresponding case.

Conclusions

We have investigated the connections between the thermodynamic cost of
an experimental procedure which has been used to implement resetting' '
and earlier well studied problems of information erasure’””® and geometric
measures of optimal protocols that minimize work or heat in overdamped
stochastic systems™****7****_The problem we study is very similar to
those studied in the above contexts, but a few important distinguishing
aspects are the out-of-equilibrium nature of the system we study, the
moment generating function of work from which we can, in principle,
obtain all moments of the work for this system, as well as the explicit
expression we obtain for the optimal work Eq. (30) which holds for all
protocol durations 7and not just in the slow and fast limits as often studied.

We see from the expressions for the optimal work that at late times (31)
appears to be the square of a L>-Wasserstein distance between two Gaus-
sians, one of which has a variance D{t;,. The non-dimensional length (is a
quantifier of the out-of-equilibrium initial state at the start of the resetting
protocol and itself depends on both potentials Uand V as well as the waiting
time f{#) in a non-trivial manner [Eq. (10)]. In addition this length scale
quantifies the variance of the projected state 7[Py, y](x). This seems to
suggest that, at least for some results, we can replace our time-averaged non-
equilibrium state P, y by a Gaussian with the same mean and variance, if all
manipulations are only done via harmonic traps. It would be interesting to
see how general this result is and whether it translates to other non-
harmonic potentials.

Investigating optimal protocols further in the context of the erasure of
out-of-equilibrium states is a very interesting direction to pursue. In parti-
cular, it would be very illuminating to understand if there are trade-offs
between minimizing the mean work and minimizing the variance”"”" of the
work done or the heat dissipated and if this results in phase-transitions in
protocol space”. It would also be interesting to understand if there are cases
when these protocols can be non-monotonic as observed in*’. Investigating
the so-called thermodynamic metric structure of the optimal-protocol-
parameter space’™**>* is yet another interesting direction to pursue, as is
also the study of optimal transport in discrete cases™.

Finally, coming back to the context of resetting, it is very interesting to
also understand thermodynamic costs when there is an absorbing barrier.
Such an analysis has been done in ref. 28, though resetting has been
implemented there by considering a first passage excursion to a specific
point in a trap ("first-passage resetting"), unlike in our case when resetting is
accomplished when the Boltzmann distribution in the trap has been
reached. It would be very interesting to carry out a similar analysis as done in
ref. 28 for our case. The nature of optimal protocols in the presence of
absorbing barriers is also very interesting to understand™**".

Data availability
The data that support the findings of this study are available on request from
the corresponding author [D.G.].
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