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Heat engines for scale invariant systems

dual to black holes
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According to holography, a black hole is dual to a thermal state in a strongly coupled quantum system.
One of the best-known examples of holography is the Anti-de Sitter/Conformal Field Theory (AdS/
CFT) correspondence. Despite extensive work on holographic thermodynamics, heat engines for CFT
thermal states have not been explored. We construct reversible heat engines where the working
substance consists of a static thermal equilibrium state of a CFT. For thermal states dual to an
asymptotically AdS black hole, this yields a realization of Johnson’s holographic heat engines. We
compute the efficiency for a number of idealized heat engines, such as the Carnot, Brayton, Otto,
Diesel, and Stirling cycles. The efficiency of most heat engines can be derived from the CFT equation of
state, which follows from scale invariance, and we compare them to the efficiencies for an ideal gas.
However, the Stirling efficiency for a generic CFT is uniquely determined in terms of its characteristic

temperature and volume only in the high-temperature or large-volume regime. We derive an exact
expression for the Stirling efficiency for CFT states dual to AdS-Schwarzschild black holes and
compare the subleading corrections in the high-temperature regime with those in a generic CFT.

Heat engines form a central topic in thermodynamics and played a pivotal
role in its historical development'™. A heat engine consists of a system
(working substance) that converts heat into work and operates in a ther-
modynamic cycle. In such a cycle, an amount of heat (Qy,) is supplied from a
heat source to the system, part of which is converted into work (W) per-
formed on a work output device, and the remainder waste heat (Qqy) is
expelled from the system to a heat sink (we define these three quantities to be
positive). The heat source and sink can be any external systems that supply
and absorbs heat, respectively, but here we take them to consist of one or
more thermal reservoirs, which are large enough to exchange finite amounts
of heat without changing their temperature.

The operation of a heat engine is constrained by the first and second
law of thermodynamics. The first law, expressing energy conservation,
reads: Q;, = W + Qqy. Historically, Carnot® gave the earliest formulation of
the second law in terms of engine efficiency. The efficiency of a heat engine is
defined as the ratio of the work done by the system and the heat supplied
into the system:

€Y

where the final expression follows from the first law.
Carnot’s theorem consists of two parts. First, for two reservoirs at fixed
temperatures T, (hot) and T, (cold), no engine can exceed the efficiency of a

reversible engine operating between them. Here, reversible means reco-
verable: the cycle can be run backward, restoring the working substance and
all surroundings (including both reservoirs) to their initial states without net
change. Because the reservoirs maintain fixed temperatures, recoverability
implies that the working substance be at the same temperature as the
reservoir during any heat exchange, making these processes isothermal. In
this special case of two fixed-temperature reservoirs, recoverability coincides
with the thermodynamic (textbook) definition of reversibility: quasi-static
and free of entropy production. Second, all such reversible engines —
exchanging heat only isothermally with the two reservoirs — attain the same
efficiency, independent of the working substance or cycle details. This
universal value is known as the Carnot efficiency: fcamot = 1 — To/ T, which,
by the second law, is an upper bound for any irreversible engine operating
between the same two reservoirs: #<fcarnot-

The efficiency of an idealized heat engine that is reversible in the
thermodynamic sense (quasi-static at all stages and no entropy production)
is determined by the cyclic path that the working substance traces in ther-
modynamic state space, which differs between engines and depends on the
type of working substance. In textbooks, the ideal gas is typically used as an
example for computing efficiencies of such idealized cycles, but other
working substances - such as a Van der Waals fluid’ or a magnetic material®
— are also possible. In this work we consider a working substance consisting
of a static, global thermodynamic equilibrium state of a conformal field
theory, i.e., a quantum field theory with conformal symmetry.
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Our motivation for studying such heat engines comes from
holography™”, ie., the idea that a gravitational theory in a (D + 1)-
dimensional spacetime is equivalent to a quantum gauge theory without
gravity living on the D-dimensional boundary of the spacetime. The best
understood example of such a gauge/gravity duality is the AdS/CFT
correspondence’ ™. A thermal high-energy state in a holographic CFT
living on the (conformal) boundary of asymptotically AdS spacetime is dual
to a black hole in the bulk geometry'*'°. Therefore, CFT heat engines are a
tool to probe black hole physics with a thermodynamic non-gravitational
system.

Theorizing about black holes as heat engines'’ and interpreting black
hole heat engines in terms of a dual holographic field theory”*’ is a com-
mon theme in the literature. Particularly, the idea of holographic heat
engines has been proposed by Clifford Johnson™. We offer a conceptually
distinct realization of this idea, which, to our knowledge, has not been
explored before. There are fundamental differences between Johnson’s heat
engines and those considered in our work. On the one hand, Johnson’s
starting point is an extended version of the thermodynamics of black holes
in the bulk where the cosmological constant A is allowed to vary™™* (see’
for a review). That is, he employs a bulk pressure that is proportional to A
and inversely proportional to Newton’s constant G, Py, = — A/(87G), and
defines the thermodynamic volume as the conjugate thermodynamic
quantity. On the other hand, we construct heat engines in the boundary
theory, and define the pressure and volume in the CFT in the standard
thermodynamic way. It is important to mention that the bulk pressure is not
dual to the CFT pressure. In fact, the bulk pressure corresponds to a central
charge Cin the CFT or the number of colors N in a large-N SU(N) strongly-
coupled gauge theory. It is questionable whether C is a thermodynamic
variable, since varying it changes the physical theory™. We keep the central
charge fixed, so this is not an issue in the present work. Moreover, we stress
that even though we define the heat engine in the boundary CFT, there is a
one-to-one correspondence between black hole thermodynamics'™'***
and CFT thermodynamics'®. In this work we will use the recently developed
holographic dictionary in refs. 39-43 to compute the efficiency for heat
engines dual to AdS black holes.

Our aim is to present a construction of holographic heat engines and to
compute the efficiencies of various idealized engines: Carnot, Brayton, Otto,
Diesel, Stirling and the rectangular pressure-volume cycle. We show for
most heat engines, except for Stirling, the efficiency is uniquely determined
by the CFT equation of state, and is hence the same for holographic and
non-holographic CFTs. The Stirling efficiency is only fixed in terms of its
characteristic temperature and volume in the high-temperature or large-
volume regime, and we compare the subleading corrections in this regime
for a generic CFT and for a holographic CFT.

Results
CFT heat engines
We consider heat engines whose working substance is a static, global
thermodynamic equilibrium state of a CFT in D spacetime dimensions. The
working substance traces a closed thermodynamic cycle, returning to its
initial state. We assume the cycle consists of processes that are reversible in
the thermodynamic sense: they proceed quasi-statically, so the system
remains in equilibrium throughout, and they produce no entropy.

For such quasi-static processes, the first law of thermodynamics reads

AE = Q — PAV (quasi-static), 2)

where Q is positive when heat enters the system and negative when it leaves.
We hold fixed all other conserved quantities (such as electric charge or
angular momentum) as well as the central charge of the CFT. The heat
source and sink are modeled as (one or more) thermal reservoirs, large
enough that their temperatures remain constant during heat exchange; this
allows us to work with finite heat and work transfers (A) rather than
infinitesimals.

Because the processes are reversible in this sense, Clausius’ relation
holds,

Q=TAS (reversible), 3)
so adiabatic and isentropic processes coincide. We can thus regard the
internal energy as a function of entropy and volume, E = E(S, V), sup-
pressing dependence on other fixed parameters. For a CFT at finite tem-
perature and in a finite volume, E and S are not extensive, ie.,
E(aS, aV) # a E(S, V); however, in the high-temperature or large-volume
limit, extensivity is recovered (see below).

For the idealized heat engines that we study the cycle consists of
four paths and each path corresponds to a particular thermodynamic
process, such as adiabatic (Q = 0), isochoric (AV = 0), isobaric
(AP = 0), and isothermal (AT = 0) processes. Depending on the type
of processes that constitute the cycle, there are different types of
heat engines. We label the vertices of the four paths by i = 1, 2, 3, 4,
and A; denotes the value of the thermodynamic variable A at the i
vertex.

In order to compute the efficiencies of various CFT heat engines, we
will make use of the scale invariance of CFTs. For homogeneous systems,
scale invariance implies that the equation of state is E = (D — 1)PV, often
called the conformal equation of state. Note that an ideal gas system satisfies
a similar equation as a CFT, given by E = fEPV, which holds in any number
of dimensions. This equation follows from combining the standard equation
of state for an ideal gas PV = NT and the equipartition theorem E = gN T (in
units kg = 1), where f is the number of degrees of freedom of the gas. For
example, for a monatomic gas f= D — 1 and for a diatomic gas f= 2D — 3.
Note that the CFT and ideal gas equations of state are the same if
f=2(D — 1), which occurs, for instance, for a triatomic (f = 6) ideal gas
inD=4.

In order to compare the CFT and ideal gas engines, we treat the two
cases simultaneously and represent their linear equations of state, collec-
tively, as

E = aPV, (@)

with a = /2 for an ideal gas and « = D — 1 for a CFT. Further, for adiabats the
following relation holds

PV = const. (adiabat). (5)

In the case of an ideal gas the exponent is (& + 1)/a = 1 + 2/f, which is equal

to the ratio y = Cp/Cy > 1 of the (temperature independent) heat capacities
at constant pressure and constant volume.

Efficiencies of CFT heat engines

We now summarize our results for the efficiencies of various CFT heat
engines. Supplementary Note 1 contains more detailed derivations. We
express the efficiencies in terms of the characteristic thermodynamic vari-
ables of the engines that are kept fixed along the thermodynamic cycles. For
the ideal gas our expressions for the efficiencies are consistent with the
literature, e.g.,***.

A Carnot cycle consists of isothermal expansion (1 — 2), adiabatic
expansion (2 — 3), isothermal compression (3 — 4) and adiabatic com-
pression (4 — 1). There is an inward heat flow from the hot reservoir to the
system along path 1 — 2 and an outward heat flow to the cold sink along
3 — 4. The Carnot efficiency is

T
Hcamot = 1- T—; (6)

In the Brayton (or Joule) cycle the working substance is first compressed
adiabatically (1 — 2), heated up isobarically (2 — 3), expanded adiabatically
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(3 — 4) and cooled isobarically (4 — 1). The Brayton efficiency is

P\
r]Brayton =1- (P_z) . (7)

In an Otto cycle, which is a rough approximation of a gasoline engine, the
working substance is first compressed adiabatically (1 — 2), then heated up
isochorically (2 — 3), expanded adiabatically (3 — 4), and finally cooled
isochorically (4 — 1). The Otto efficiency is

A%
__(" 8
rlOtto 1 (Vl) . ()

The Diesel cycle consists of adiabatic compression (1 — 2), isobaric heating
up (2 — 3), adiabatic expansion (3 — 4) and then isochoric cooling (4 — 1).
In terms of the compression ratio V;/V, and cutoff ratio V3/V, the Diesel
efficiency reads

S

Cat1\V, (%_1
2

The efficiency of the Diesel cycle is always less than that of the Otto cycle if
V3 > V,, for a given compression ratio (see also Fig. 1).

For the cycle that forms a rectangle in a PV-diagram, paths 2 — 3 and
4 — 1 are isobars, and paths 1 — 2 and 3 — 4 are isochores. The efficiency
for this cycle is

NDiesel = 1

1
(@+1) (Pzizp) N a<_v4vjvl)

r’rectangular = ( 10)

Note that for y> 25 the Brayton, Otto and rectangular engines are more
efficient for ideal gases than for CFT working substances (see Fig. 1 for the
Otto engine).

The Stirling cycle consists of two isothermal paths (expansion along
1 — 2 and compression along 3 — 4), and two isochores (2 — 3 and
4 — 1). In the absence of a regenerative heat exchanger there is heat gain
along paths 1 — 2 and 4 — 1, and heat rejection along the paths 2 — 3
and 3 — 4. Without regeneration the Stirling efficiency for an ideal gas
and generic CFT is

TS, = Sy +aVy(P, — Py)
To(S, — S,) + aV,(P, — P,)

1

nStirling =

This is a universal expression that holds for a generic scale invariant system,
however it depends on four thermodynamic variables, in contrast to the
efficiencies of other engines. This is because in the non-regenerative Stirling
cycle there is heat exchange along all four paths, and the heat exchanges
along the isotherms and isochores cannot be expressed in terms of the same
thermodynamic variables. We want to express the efficiency (11) in terms of
Tand V alone, which are the characteristic parameters of the Stirling engine,
since they are constant along the isotherms and isochores, respectively, and
they are experimentally controllable. In order to so do we need to know the
functions S(T, V) and P(T, V), which depend on the details of the CFT and
the spatial geometry.

For concreteness, we now consider a CFT working substance with a
characteristic scale R and volume V o R}, such as a round sphere of radius
R. The dimensionless products ER and TR are then scale invariant, which do
not change as one varies the volume. This implies the entropy and
dimensionless energy ER only depend on T and V via the product TR. In a
high-temperature or large-volume expansion of the entropy and energy the
leading term is extensive, ie., S & (TR)”™" o« T°"'V and ER « (TR), or,
equivalently, E o T°V*. The pressure follows from inserting the scaling of

the energy into the conformal equation of state, yielding P « T°. Moreover,
the scaling of the subleading terms in an expansion around TR = o is also
fixed: the next order is always subleading in (TR)> with respect to the
previous order. For instance, the expansion of the scale invariant product of
the canonical free energy F and R in any CFT is*

—FR = ap(2nTR)P + ap, ,2nTRP™2 + O(TR"™).  (12)
From this expansion the entropy and pressure can be explicitly computed
via the standard thermodynamic relations S = — (0F/0T)y and P = — (9F/

dV)p; see Supplementary Note 3. Inserting this into the Stirling efficiency
(11) yields

T?(szlz -Vi&)+ Vz% (TEXzz - T?Xlz)

gtli:r};ng =1- D D—1 D D ’ (13)
TR (Vi = Viky) + Vi 55 (Tth1 - T Xu)
where &; and y; are up to order o1 V;4/ (Dfl))

(14)

g~ 1
)

2
+ ap_,(D —3) Qp_4 o
ap(D — 1))’ T? \ 'V, '

2
+ ap_,(D—=2) (Qp_, ”
apD@2m)? *\ V; ’

Xij ~ 1 (15)

Here T; = T, and T, = T;,. Note the Stirling efficiency is uniquely fixed to
leading order in the high-temperature or large-volume expansion. But to
subleading order qgﬂn depends on ap and ap_,, which are defined via (12)
as the coefficients of the leading and subleading terms in the free energy
expansion. These coefficients are independent of (T, V), but do depend on
the matter content of CFTs. They have been explicitly computed for free
CFTs in D = 4 and D = 6 in”. For instance, for A" = 4 SYM theory with
SU(N) gauge group in D=4 we have ay= (N’ — 1)/48 and a, = — (N* — 1)/8,
S0 ayla, = — 1/6.

Further, for an ideal gas the change in the entropy along an isotherm is
givenas AS = N'In(V,/V,) and the pressure s related to the temperature
and volume by the equation of state P = NT/V. Hence, the Stirling efficiency
for an ideal gas is given by

T n(V,y/ V) +5(T, = To)
TyIn(Vy/ V) +4(Ty, — T.)

ideal gas
Stirling

(16)

We thus find that the dependence of the Stirling efficiency on T and V is
different for an ideal gas and a CFT working substance.

Although all the heat cycles we consider are reversible in the ther-
modynamic sense, their efficiencies are not constrained by the second part
of Carnot’s theorem (see Introduction) to equal the Carnot efficiency -
except for the Carnot cycle itself. This part of the theorem applies only to
engines that are recoverable, which for two fixed-temperature reservoirs
means all heat exchange must be isothermal with the appropriate reservoir.
The Brayton, Otto, Diesel, and rectangular cycles fail this condition, as they
contain no isothermal steps; heat is transferred along non-isothermal paths
where the working substance’s temperature changes. Even if such cycles are
carried out quasi-statically and without entropy production, these steps
would require a continuum of reservoirs to remain reversible, violating the
two-reservoir assumption. The Stirling engine does include isothermal
expansion and compression with fixed-temperature reservoirs, but also has
isochores where the working substance’s temperature changes, making
those steps non-isothermal and likewise non-recoverable. The Carnot cycle
alone consists entirely of isotherms and adiabats, is recoverable, and satisfies
all the assumptions of the theorem, thus achieving #camor = 1 — To/ T

In Fig. 1 we plotted the efficiencies as a function of compression ratio v
(the ratio of larger volume and smaller volume, i.e., V1/V, for Otto and
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Fig. 1 | Efficiency vs. compression ratio. This plot shows the efficiency # as a
function of compression ratio v for Otto (blue), Diesel (green), and Stirling (red)
engines in D = 4. The solid lines correspond to a monatomic ideal gas (f = 3) and
dashed lines to general CFTs (for Stirling: CFT on a plane). The fixed temperature
ratio for Stirling is t = T},/T. = 2 and the fixed cutoff ratio for Diesel is V3/V, = 1.5.

Diesel and V,/V/ for Stirling) for the Otto, Diesel and Stirling engines. For
Stirling the temperature ratio t = T,/ T, is kept fixed and for Diesel the cutoff
ratio V3/V, is fixed. The Otto and Diesel efficiencies asymptote to 1, and the
v — oo limit of the Stirling efficiency is 1 — ¢ for an ideal gasand (1 — £ °)/
D for a CFT on a plane. In Fig. 2 we plotted the efficiencies as a function of
the temperature ratio t, at fixed compression ratio v, for the Carnot and
Stirling engines. These plots show that the efficiency is universally higher for
(monatomic) ideal gases than for CFTs. The Carnot efficiency asymptotes to
1, and the Stirling efficiency asymptotes to (v — 1)/(Dv — 1) fora CFT on a
plane and to In(v)/(f /2 + In(v)) for an ideal gas.

Finally, we plotted the PV-diagrams for all heat engines in Fig. 3 (for
a holographic CFT) and Fig. 4 (for a monatomic ideal gas), and the TS-
diagrams in Fig. 5 (for a holographic CFT) and Fig. 6 (for a monatomic
ideal gas). In Supplementary Note 2 we derive the equations for the
various cycle paths that are used to make these plots. The PV-diagrams
for the CFT and ideal gas systems are identical for the Brayton, Otto,
Diesel and rectangle engines, but different for the Carnot and Stirling
engine. Moreover, the TS-plots corresponding to the CFT and ideal gase
systems are different for the Brayton, Otto, Diesel, rectangle and Stirling
engines, but identical for the Carnot engine. By comparing the Carnot
(Figs. 3a and 4a) and Stirling cycles (Figs. 3e and 4b) we see that the
isotherm for a CFT monotonically increases with V whereas the isotherm
for the ideal gas monotonically decreases with V. The slope of the
adiabats is also different for the two systems. Further, by comparing the
cycles in Figs. 5 and 6 we see that the isochores and isobars in a TS-
diagram are different for CFT and ideal gas systems.

Holographic heat engine

So far we have considered heat engines for generic CFTs. Next, we construct
heat engines for holographic CFT states that are dual to AdS black holes. We
stress that the generic CFT results for the engine efficiencies above also hold
for holographic CFTs, but for the Stirling engine we can compute the effi-
ciency exactly by invoking holography. For heat engines of holographic
CFTs the geometry is fixed to be equivalent (up to Weyl rescaling) to the
boundary geometry of the dual black hole spacetime. That is because we take
the working substance of holographic heat engines to be the entire spatial
geometry of the holographic CFT. Furthermore, we only consider black
holes with positive heat capacity, since if the heat capacity were negative the
cycles in the PV-diagrams 3 and 4 would act as refrigerators (and the reverse
cycles would be heat engines). Large enough AdS black holes indeed have
positive heat capacity and thus their thermodynamic cycles (in the order
1 — 2 — 3 — 4 — 1) can operate as heat engines.

n
1.0,

Fig. 2 | Efficiency vs. temperature ratio. This plots shows the efficiency 7 as a
function of t = Ty,/ T, for Stirling (red) and Carnot (blue) engines in D = 4. The solid
lines correspond to a monatomic ideal gas (f = 3) and the dashed line to a CFT on a
plane. The fixed compression ratio for Stirling is v = V,/V; = 2.

Concretely, here we consider static, spherically symmetric,
uncharged asymptotically AdS black holes, a.ka. AdS-Schwarzschild
black holes, in D + 1 spacetime dimensions. Hence, in our setup the
spatial geometry of the holographic heat engine is a round sphere with
radius R and volume V = Qp_;R”". For these black holes the holo-
graphic dictionary reads (see Supplementary Note 4 for a derivation)”*

S = 4nCxP7!, c:%, 17)
E:%(l +x%), (18)
Tzliﬂ;j (1+D122x2), (19)

We defined x = r;,/L with r}, the horizon radius of the black hole and L the
AdS curvature radius. The heat capacity at fixed V and C is positive if
x>+/(D — 2)/D. Crucially, the boundary volume V and the central charge
C can be independently varied, since they depend on R and L, respectively.
In previous dictionaries, e.g., in’***”', R was set equal to L, so that V.and C
could be independently varied only if Newton’s constant G is allowed to
change. For holographic heat engines, however, we want to keep the theory
parameters in the bulk and boundary fixed (G and C) while allowing V to
vary, which is possible only if R = L"'.

We now compute the Stirling efficiency by invoking the holographic
dictionary above. From (17)-(20) one can derive exact expressions for
S(T, V) and P(T, V) (see Supplementary Note 5). Inserting them into (11)
yields that the Stirling efficiency for CFT states dual to AdS-
Schwarzschild takes the same form as (13), but now the functions E,-j
and y;; are given by
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Fig. 3 | Pressure-volume diagrams for holographic CFT heat cycles. These plots
are heat cycles for thermal CFT working substances dual to AdS-Schwarzschild
black holes. The number of CFT spacetime dimensions is D = 4. In all figures dotted
lines correspond to isotherms, short dashed lines to adiabats, long dashed lines to
isobars, and dotdashed lines to isochores. The red curves indicate the cycle, the
numbers at the vertices denote the ordering of the cycle, and the arrows the direction

(e) Rectangle Engine

(f) Stirling Engine

of the cycle. Tj, and T, are the temperatures of the hot and cold reservoirs, respec-
tively. The panels represent (a) the Carnot cycle (isotherm-adiabat-isotherm-
adiabat), (b) Brayton cycle (adiabat-isobar-adiabat-isobar), (c) Otto cycle (adiabat-
isochore-adiabat-isochore), (d) Diesel cycle (adiabat-isobar-adiabat-isochore), (e)
rectangle cycle (isochore-isobar-isochore-isobar), and (f) Stirling cycle (isotherm-
isochore-isotherm-isochore).

(a) Carnot engine

Fig. 4 | Pressure-volume diagrams for ideal gas heat cycles. These plots are heat
cycles for (a) Carnot (isotherm-adiabat-isotherm-adiabat) and (b) Stirling (iso-
therm-isochore-isotherm-isochore) engines with a working substance consisting of
a monatomic (y = 5/3) ideal gas in D = 4 spacetime dimensions. The dotted lines

(b) Stirling engine

correspond to isotherms, short dashed lines to adiabats, and dotdashed lines to
isochores. The red curves indicate the cycle, the numbers at the vertices denote the
ordering of the cycle, and the arrows the direction of the cycle. Tj, and T, are the
temperatures of the hot and cold reservoirs, respectively.

These are exact expressions in the temperature and volume. We can
expand them at high temperature or large volume. The result up to
subleading order is the same as (14) and (15) with the ratio of the
coefficients given by

ap, __DD-1) 22)
ap 4 '

This agrees with earlier findings for these coefficients in holographic
CFTs**. Importantly, the holographic Stirling efficiency is lower than
the leading order contribution to the efficiency in the high-temperature
and large-volume expansion, for which §; = y; = 1. Moreover, we
checked by plotting that for A" = 4 SYM theory in D = 4 the Stirling
efficiency is higher at zero 't Hooft coupling (for which a,/a, = — 1/6)
than at infinite coupling (with as/a, = — 1/12, cf. (22)). Thus, this

Communications Physics| (2025)8:379


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02291-y

Article

T T . T
N : H
. . ~ H H
H H ‘2 P, H
Tyfree 1 e 3
N
~ -~
1 T
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ! Py 4
e 4 3 : :
: : S : : S S
Sy S S, Sy
(a) Carnot engine (b) Brayton engine
T T
: : ~a2.07 P2 3.
S -2 P2 13 V4 -
- > Va
..... <1 P P - =-====-
V’q‘ e 4
e Vi : e
: : s
S Ss S S

(d) Diesel engine

Fig. 5 | Temperature-entropy diagrams for holographic CFT heat cycles. These
plots are heat cycles for thermal CFT working substances dual to AdS-Schwarzschild
black holes. The number of CFT spacetime dimensions is D = 4. In all figures dotted
lines correspond to isotherms, short dashed lines to adiabats, long dashed lines to
isobars, and dotdashed lines to isochores. The red curves indicate the cycle, the
numbers at the vertices denote the ordering of the cycle, and the arrows the direction

(e) Rectangle engine

(f) Stirling engine

of the cycle. T}, and T are the temperatures of the hot and cold reservoirs, respec-
tively. The panels represent (a) the Carnot cycle (isotherm-adiabat-isotherm-adia-
bat), (b) Brayton cycle (adiabat-isobar-adiabat-isobar), (c) Otto cycle (adiabat-
isochore-adiabat-isochore), (d) Diesel cycle (adiabat-isobar-adiabat-isochore), (e)
rectangle cycle (isochore-isobar-isochore-isobar), and (f) Stirling cycle (isotherm-
isochore-isotherm-isochore).

(a) Brayton engine

(d) Rectangle engine

Fig. 6 | Temperature-entropy diagrams for ideal gas heat cycles. These plots are
heat cycles for monatomic (y = 5/3) ideal gas working substances in D = 4 spacetime
dimensions. The dotted lines correspond to isotherms, short dashed lines to adia-

bats, long dashed lines to isobars, and dotdashed lines to isochores. The red curves
indicate the cycle, the numbers at the vertices denote the ordering of the cycle, and
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(e) Stirling engine

the arrows the direction of the cycle. T}, and T, are the temperatures of the hot and
cold reservoirs, respectively. The panels represent (a) the Brayton cycle (adiabat-
isobar-adiabat-isobar), (b) Otto cycle (adiabat-isochore-adiabat-isochore), (c)
Diesel cycle (adiabat-isobar-adiabat-isochore), (d) rectangle cycle (isochore-isobar-
isochore-isobar), and (e) Stirling cycle (isotherm-isochore-isotherm-isochore).
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suggests for CFTs the Stirling efficiency decreases as the coupling
increases.

Comparison with Johnson’s holographic heat engines

Next we compare our holographic heat engines with those in Johnson’s
work™™* and subsequent follow-ups. Apart from the fact that both heat
engines make use of the AdS/CFT correspondence, they are completely
different. The key predictions for the efficiencies of all heat engines are
distinct, and the way the engines operate is also different, as we explain
below. Moreover, we do not just give predictions for holographic heat
engines, but also for generic CFTs.

The main difference between the two constructions lies in the defini-
tions of pressure and volume. Johnson considers the bulk pressure
Py = — A/(87G), proportional to the cosmological constant A, and defines
the volume as its conjugate quantity in the extended first law of black holes,
in which A is being varied****. On the other hand, we construct heat engines
in the dual thermal conformal field theory, where pressure and volume are
defined in standard thermodynamic terms. These distinct definitions of
pressure and volume imply that our holographic heat engines function in an
entirely different way from Johnson’s engines. For instance, Johnson™
considered charged AdS black holes instead of Schwarzschild-AdS black
holes, because in his approach the former allow for nontrivial engine cycles
in the PV-plane, while the latter do not. Our construction already gives
nontrivial cycles for Schwarzschild-AdS black holes.

A consequence of the previous point and a crucial difference is that
in Johnson’s heat cycles, the underlying theory changes when pressure
varies, whereas in our construction, the theory remains fixed. This is
because varying the bulk pressure in Johnson’s approach corresponds to
adjusting the cosmological constant and the number of colors N in the
boundary theory. Consequently, in his model, the boundary theory itself
changes during the thermodynamic cycle. However, pressure should be a
thermodynamic state variable, meaning it is a property of the state and
not of the theory. As emphasized in ref.”’, N is not a function of the
boundary spacetime, which is required for a state variable describing
local thermodynamic equilibrium. This implies that changing N does not
correspond to a standard thermodynamic process, but rather a flow
within the space of CFTs. Therefore, Johnson® conjectured that his
engine cycles could be realized using renormalization group flow, but it
remains unclear whether this is feasible, and it stands in conflict with the
usual operation of heat engines. Our holographic heat engines, on the
other hand, operate in the conventional thermodynamic sense, by
adjusting the thermal state quasi-statically, which is a major advantage
over Johnson’s approach. Furthermore, we demonstrated that the effi-
ciency of our scale-invariant heat engines is comparable to that of ideal
gas engines, showing that our approach follows standard thermodynamic
principles.

A more fine-grained difference is that in Johnson’s approach the
Carnot and Stirling engine are identical for charged AdS black holes,
since adiabats are equal to isochores, whereas in our approach they are
not. This is because both the entropy and the volume in extended
thermodynamics of static AdS black holes depend only on the horizon
radius, so they are not independentSz. This is problematic in itself,
because it implies that the energy function E(S, V) and its partial deri-
vatives (g—g lv, g—g | s) are ill defined. Our approach does not suffer from
this degeneracy, since entropy and volume are independent variables.
Thus, in our construction the Carnot and Stirling engine are distinct, as
they should be.

Another key advantage of our proposal is that the efficiencies of
holographic heat engines can potentially be experimentally tested. This is
possible because our working substance consists of a strongly coupled
CFT thermal state, which can be realized at the quantum critical point of
a condensed matter system at finite temperature, such as high-
temperature superconductors (see ref. 53 for a review). The Stirling
efficiency in (13) and (21) provides a distinct prediction for a thermal
CFT system dual to a black hole. As a result, our work offers a framework

for experimentally testing holographic models in a condensed matter
setting. In contrast, no direct experimental connection can be made with
Johnson’s heat engines, as the theory evolves along the heat cycles, and
because the bulk pressure and volume do not agree with those in the
CFT. Furthermore, Johnson’s heat engines do not implement the CFT
equation of state, which played a crucial role in our approach.

Conclusion

In this paper we proposed a way to construct heat engines in holographic
field theories. The working substance can be modeled by a strongly coupled,
large-N, conformally invariant thermal system that is dual to a black hole
spacetime'**. A crucial aspect of the holographic dictionary that we used is
that the volume can be independently varied from the other thermodynamic
variables. We computed the efficiencies of various idealized engines for
(holographic) CFTs.

For future work there are many generalizations of our setup worth
studying. We only described the simplest holographic heat engines as a
proof of principle that our construction works. First, one could study other
types of engines, ideally more realistic ones for which the efficiency of
holographic systems can be experimentally tested. Second, we considered
only field theories with conformal symmetry, but one could define heat
engines for holographic field theories with different global symmetries, such
as anisotropic scaling symmetry’>*. Third, one could compute the Stirling
efficiency for specific CFTs at finite temperature and volume, for instance
perturbatively at weak coupling, and compare with the holographic result. It
would be particularly valuable to investigate the coupling dependence of the
Stirling efficiency and to understand the physical origin behind the higher
efficiency at weak coupling. Finally, one could study holographic engines for
different types of black holes, such as charged or rotating black holes or black
hole solutions to higher curvature gravity.
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