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CLOVE, a Travelling Salesman’s approach
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Theembeddingof complexnetworks intometric spaces has emergedas aprominent area of research,
accompanied by a diverse array of proposed methodologies. Low-dimensional hyperbolic spaces
provide a natural target for such embeddings, facilitating an approximately uniform spatial distribution
of nodes – even in scale-free networks –while enabling efficient navigability andaccurate estimation of
linking probabilities. Despite ongoing state-of-the-art advancements, hyperbolic embedding
techniques increasingly exhibit diminishing marginal returns. Recent findings indicate that, following
optimization, the communities within a complex network can be effectively represented as distinct
angular sectors in the hyperbolic space. In this work, we present CLOVE, a scalable embedding
approach that leverages this property through an iterative hierarchical arrangement of communities
down to the level of individual nodes. A key step of our method involves determining the optimal
angular ordering of communities at each hierarchical level, a challenge addressed by formulating and
solving an instance of the Travelling Salesman Problem. Given that CLOVE surpasses many
alternative techniques across various embedding quality metrics while maintaining high
computational efficiency, it holds significant promise for downstream machine learning applications,
including AI-driven pattern recognition.

The network approach for describing and analysing complex systems has
become ubiquitous in the last two decades1–5, building on the fundamental
concept of representing the interactions between the constituents of the
studied system by a graph. A general approach for augmenting the network
reflecting the structure of the web of connections (that serve as a sort of a
skeleton for a complex system) is to apply network embedding techniques6–9.
These methods are aimed at finding an optimal arrangement of the network
in ametric space, thereby associating coordinates to the nodes of the network
based on the network topology. These coordinates can be useful from several
different aspects, e.g., they enable the prediction of missing links, can help
navigation over the network, or may serve as input for further machine
learning tasks such as node classification, community finding, etc.

Although the majority of network embedding techniques operate in
Euclidean spaces, hyperbolic methods offer an alternative approach with
unique advantages9,10. Probably most important is that while Euclidean
algorithms usually embed in high dimensions, hyperbolic approaches can
yield good-quality embeddings already in 2 dimensions. The intuitive rea-
son behind this is that the exponential growth of the volume as a function of

the radius for spheres in hyperbolic spaces allows more “freedom” in node
placement compared to the case of Euclidean spaces, where the volume is
increasing only like a power-law11. Most of the hyperbolic embedding
methods work in the native representation of the hyperbolic space, which in
2dimensions is often referred to as thenative disk. In this representation, the
radial coordinates are usually strongly coupled with the node degree, where
the high-degree nodes tend to be placed closer to the centre of the native
disk, while the low-degree nodes occupy the disk periphery. (A brief
description of the native disk andhyperbolic geometry is given inMethods).

Several different hyperbolic embedding algorithms have been pro-
posed in the literature, ranging from likelihood optimizationwith respect to
hyperbolic network models12,13, to non-linear dimensionality reduction
techniquesbasedonLaplacianmatrices14,15, anddimensionality reductionof
Lorentz matrices using the hyperboloid model16,17. The family of coalescent
embeddings applies dimensionality reduction to various pre-weighted
matrices that capture the network structure18. In addition, hybrid methods
that combine dimensionality reduction with local optimization19–21 have
also been developed. A related approach, the Minimum Curvilinear
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Automaton (MCA), employs minimum spanning trees to generate hyper-
bolic embeddings of complex networks22.

Hyperbolic embeddings have also been explored in machine learning
and neural networks through variousmethods, such as replacing Euclidean
vector spaces in the Skipgram model with hyperbolic counterparts23,
introducing hyperbolic graph convolutional networks operating on the
hyperboloidmodel of hyperbolic space24, and applying implicit hierarchical
learning within hyperbolic space25.

It is important to note that hyperbolic embeddings are also closely
coupled with the modular structure of networks26–29. On the one hand,
graphs generated by geometric network models operating explicitly in
hyperbolic spaces have been shown to exhibit a highly pronouncedmodular
nature, wherein communities (corresponding to densely connected mod-
ules in the networks) occupy tightly localized domains within the geometric
space sharing an asymptotically negligible fraction of inter-connections
between one another27–29. On the other hand, this separability of network
modules in the metric space can also be considered a fundamental pre-
requisite for high-quality hyperbolic embeddings, suggesting a deep con-
nection between the embeddings and the community structure of complex
networks26. Indeed, when embedding a given network, we essentially mean
toprovide an fEmapping functionof the form f E : V ! Rd equippedwith
a metric, where V denotes the set of nodes in the network and d is the
dimension of the embedding space. In parallel, partitioning the same net-
work is equal to the construction of a f P : V ! Nmapping, which can be
regarded to some extent as a coarsened version of its embedding26. Fur-
thermore, it has been shown that the embedding technique based on the
Laplacian Eigenmap is simply a specific instance of a more general trace
maximization problem involving the generalized modularity matrix30.

Notably, the emergence of this formal analogybetweenembedding and
partitioning gives rise to a variety of intriguing implications; e.g., one can
reasonably assess the quality of hyperbolic embeddings by quantifying the
extent to which nodes within the same community have similar angular
coordinates in the embedding space (angular coherence of the commu-
nities). As expected, state-of-the-art hyperbolic embeddingmethods such as
the coalescent embedding18, or theD-Mercator20 perform excellently in this
respect, as shown through specific quality measures capturing the com-
munities’ angular coherence20,31. Additionally, an efficient Markov chain
Monte Carlo algorithm – BIGUE (Bayesian Inference of a Graph’s
Unknown Embedding) – has been introduced, which uses a set of cluster
(community) based transformations to improve the exploration of the
posterior distribution32.

Perhaps, an even more explicit manifestation of the previous analogy
emerges when the hyperbolic embeddings of a given network are con-
structed based on the information encoded in its community structure33,34.
Herein, the authors introduce a family of embedding methods that rely on
the iterative assignment of the network communities and their respective
sub-communities to distinct angular sectors on the native disk. It is
important to note, however, that the crux of the aforementioned procedure
lies in the reasonable arrangement of communities, a task that unfortunately
lacks a well-principled systematic solution scheme. Although a computa-
tionally very fast greedy-like methodology has been proposed under the
name of Hyperbolic Mapping based on the hierarchical Community
Structure (HMCS) method34, our empirical findings show its diminished
efficiency under specific circumstances. Driven by this incompleteness, in
the present paper we propose a hyperbolic embedding method built upon
the modular structure of networks, where the arrangement problem of the
found communities is solved according to the renowned Travelling Sales-
man Problem35–38 (TSP). Originally, the TSP focuses on finding the mini-
mum weight Hamiltonian path, which, in this context, can directly be used
to determine the angular order of (sub-)communities on the native disk.
Since the angular arrangement is optimised according to awell-knownroute
finding problem borrowed from the domain of computer science, we
abbreviate our method as CLOVE, standing for Cluster Level Optimised
Vertex Embedding. The core idea of thismethod is to identify communities
within the network, build a weighted super-graph where each node

represents a community, and then use approximate solutions to the Tra-
velling Salesman Problem to find a minimum-weight cycle that determines
the placement order of the communities in the hyperbolic disk. This process
is applied hierarchically at progressively finer scales, iteratively refining the
positions of smaller subgraphs, until no additional community structure can
be uncovered.

On the one hand, since theTSPhas to be solved only on relatively small
networks, the method is surprisingly fast, capable of embedding networks
having millions of nodes in just a few hours. On the other hand, due to the
multi-scale optimisation process, the quality of the obtained embedding is
high according to various different quality measures. In the upcoming
sections, we introduce CLOVE in detail, and compare its performance with
various state-of-the-art embedding algorithms in terms of both the com-
putation time and the quality of the end result.

Results
Embedding networks into hyperbolic space via the Travelling
Salesman problem
The Travelling Salesman Problem (TSP) is one of themost well-known and
extensively studied optimization problem in computer science and
mathematics35–38. It deals with the issue offinding the shortest possible route
that a salesman can take to visit a given set of cities and return to the starting
point, visiting each city only once (tour). The problem can effectively be
modelled as a graph, wherein the nodes represent the cities to be visited by
the salesman, whereas the edges of the graph correspond to the paths along
which the salesmanmay travel. Each edge connecting two cities in the graph
is assigned a weight being equivalent to the distance or cost of travelling
between the two cities. In addition, provided that the resulting graph is fully
connected, i.e., all pairwise distances are known in advance, the TSP can
eventually be reformulated as the task of finding the shortest Hamiltonian
cycle in the graph.

In our approach, the first step is the identification of the commu-
nities in the network and the definition of weighted links between them
based on their level of connectivity. Notably, the pre-weighting scheme
we apply satisfies the triangle inequality, endowing the assigned weights
with the role of virtual distance measures encapsulating the hyperbolic
proximity between the detected communities (see Supplementary
Note 1.2 in the Supplementary Information for more details). Conse-
quently, this metric property ensures the seamless adaptation of the TSP
to unveil the optimal angular arrangement of the modules in the native
disk. As a next step of the algorithm, sub-modules are identified sepa-
rately within each community and are arranged locally, again with the
help of the TSP. This iteration is continued hierarchically, always
dividing the communities at a given level into smaller parts, defining
weighted links between the found sub-modules and optimising the
angular arrangement of the sub-modules within the original community
via the TSP. After settling the angular coordinates in the above manner,
the radial coordinate r of the nodes are determined based on the node
degree k, following a simple relation between r and k established in
multiple hyperbolic network models11,19,39 and used in various other
embedding methods13,21,33,34 (the details are described in Methods).

An illustrating flow-chart of our algorithm is presented in Fig. 1,
where the communities detected in the original network are marked by
the different colours in Fig. 1a. This is followed by the definition of a
complete, weighted graph between the modules found (shown in
Fig. 1b), where the strength of a given connection roughly quantifies the
extent of surprise associated with observing that link relative to a
configuration-model-like baseline, while the resulting weights also
satisfy the triangle-inequality (see Methods and Supplementary Note 1.2
in the Supplementary Information for details). By solving the TSP on
this weighted graph and taking the found shortest Hamiltonian path, we
can arrange the communities on the native disk representation of the 2
dimensional hyperbolic space (Fig. 1c), where each community occupies
an angular range proportional to its size, measured in the number of
member nodes.

https://doi.org/10.1038/s42005-025-02306-8 Article

Communications Physics |           (2025) 8:397 2

www.nature.com/commsphys


In the next stage, we iterate over the communities, locating and
arranging sub-modules within each of them. These sub-modules are found
by simply applying the same communityfindingmethodas in the caseof the
original network, but now only on the sub-graph of the given community
(detached from the original network). Similarly to the top-level commu-
nities, we arrange the sub-modules based on the TSP; however, this time the
weighted graph between the sub-modules also includes two neighbouring
communities from the top-level as indicated byFig. 1d, e. The reasonbehind
this is that these provide “anchors” for the sub-modules, allowing an
arrangement that uses information coming from the surroundings of the
original module. The angular range of the sub-modules is again propor-
tional to their size.

The above procedure is repeated hierarchically over each sub-
module (and the even smaller sub-modules found within). When
reaching to the point where the community finding method does not
break the sub-module to further smaller communities, one can either
use a simple heuristic for the arrangement of the nodes within the sub-
module (detailed in Methods) or treat the individual nodes as if they
were the communities to be arranged on the next level below (and use
again the TSP as in the case of the higher levels in the community
hierarchy).

In addition to the method for arranging the nodes at the lowest level
of the hierarchy, our framework also allows a large flexibility at multiple
strategic points of the embedding algorithm. First, the applied commu-
nity finding method can be freely chosen (we use Leiden40, corresponding

to a fast method that guarantees well-connected communities). Second,
there are several different possibilities for solving the TSP (we apply the
Christofides algorithm, sometimes referred to as Christofides-
Serdyukov41,42 algorithm with a threshold accepting boosting scheme43).
Third, to make the approach even more general, our framework
also allows for replacing the TSP-based angular arrangement by
other arrangement procedures (in the present work, we included a
solution that relies on the minimum curvilinear attachment22 (MCA)
process). A fully detailed description of our embedding algorithm is given
in Methods.

Tests using synthetic networks
The efficacy of our embedding framework is best demonstrated using
networks with known geometric properties and modular structure. The
non-uniform Popularity Similarity Optimisation (nPSO) model44 provides
a naturalmethod for generating such hyperbolic networkswith controllable
communities. The original Popularity Similarity Optimisation (PSO)
model39, a well-knownhyperbolic networkmodel, places nodes sequentially
into the native disk representation of the 2d hyperbolic space with loga-
rithmically increasing radial coordinates and uniformly random angular
coordinates, with a connection probability decreasing as a function of the
hyperbolic distance.Thismodel generates highly clustered, small-world and
scale-free random graphs, reproducing the most important key character-
istics of real-world networks. The nPSO model extends the PSO model by
sampling the angular coordinates from either a Gaussian-mixture

Fig. 1 | Illustration of the Cluster Level Optimised
Vertex Embedding (CLOVE) algorithm. a A net-
work with the detected communities indicated by
the different colours. b The weighted network
between the communities. c Optimal arrangement
of the communities on the native disk according to
the solution of the Travelling Salesman Problem
(TSP) on the weighted network in (b). d Zooming
into one of the modules with the two neighbouring
communities also shown. e Sub-modules in the
previous community and their optimal arrangement
based on the TSP, taking into account also the
neighbours from the top-level. f Optimal arrange-
ment of the sub-modules at the second level based
on the local TSPs. g Shows the network embedded
into the native disk.
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distribution or a Gamma-mixture distribution instead of a simple uniform
random distribution. This creates denser angular regions, leading to the
formation of communities. (A more detailed description of the PSO and
nPSOmodels is provided in Supplementary Note 3.1 in the Supplementary
Information.)

InFig. 2awe showannPSOnetworkof sizeN=1000where the angular
coordinates were drawn from a mixture of 10 equally spaced Gaussian
distributions (having also equal standard deviations and also uniform
relative weights). The layout generated by embedding this network with
CLOVE, displayed in Fig. 2b, demonstrates that our algorithm correctly
captured the angular ordering of the ground truth communities. Although a
rotation andmirroring of the original angular ordering can be observed, this
is natural, since the link generation process in the nPSO model depends
solely on the hyperbolic distance between the nodes rather than their
absolute coordinate in the native disk. In Fig. 2c we plot the angular coor-
dinate in the embedding, θ(CLOV E), as a function of the original angular
coordinate θ(nPSO), illustrating that CLOVE could also correctly determine
the ordering of the nodes within the communities in most of the cases.
Finally, Fig. 2d shows a scatter-plot of the hyperbolic distance betweennode
pairs in the embedding as a function of the original hyperbolic distance
during the nPSO network generation. The Pearson correlation coefficient,
RPearson = 0.930, and the Spearman’s rank correlation coefficient
RSpearman = 0.938. indicate a very strong agreement. These high correlation
values confirm that CLOVE not only accurately captured the community
structure but also faithfully reproduced the distance relationships between
the nodes.

In addition to the above discussed correlation coefficients, we
also evaluated the Angular Separation Index31 (ASI), quantifying
how well CLOVE separated the ground truth communities, and the C-
score, providing an alternative similarity measure between the com-
pared angular orderings of the nodes in the entire network.
(A detailed description of the ASI and the C-score is given

in Methods.) For the embedding shown in Fig. 2., we obtained ASI =
0.989 and C - score = 0.948. By repeating this experiment on
20 nPSO networks (with the same parameters as in the
example shown in Fig. 2), we also calculated the average value for these
indicators, resulting in RPearson ¼ 0:859, RSpearman ¼ 0:823, ASI ¼ 0:967
and C� score = 0.819. These high values show that CLOVE performs
very well on hyperbolic networks with known ground truth
communities.

Apart from nPSO networks, we also tested CLOVE on synthetic net-
works generated by the original PSOmodel. Although these lack adjustable
planted communities, according to recent works, they still possess a strong
modular structure where communities arise in a somewhat spontaneous
manner28,29,45. This makes PSO networks well suited to be embedded by
CLOVE, which is demonstrated in Fig. 3, showing the results for a PSO
network of N = 1000 nodes in a similar fashion to Fig. 2. Apparently,
CLOVE produced an embedding (Fig. 3b) that shows a remarkably high
similaritywith the original layout of thePSOnetwork (Fig. 3a).According to
Fig. 3c, the angular ordering of the smaller and larger subgraphs in the
embedding can achieve a perfectmatchwith the original down to the level of
individual nodes in some parts of the system. However, occasional small
regions with reversed ordering can also be observed. Nevertheless, the
Pearson correlation coefficient, RPearson = 0.897, the Spearman’s rank cor-
relation coefficient, RSpearman = 0.882, and the C-score, = 0.977 indicate a
very high overall similarity between the embedding and the original PSO
network.

Similarly to the nPSO networks, we repeated the embedding experi-
ment for the PSO network as well, and calculated the average value of these
indicators over 20 instances, resulting in RPearson ¼ 0:829, RSpearman ¼
0:865 and C� score ¼ 0:882. These indicate that CLOVE is also very well
suited for embedding PSO networks, representing an emblematic example
for hyperbolic networkswithhomogeneous angular node coordinates in the
hyperbolic plane.

Fig. 2 | Test for a hyperbolic network with known
ground truth communities. a A non-uniform
Popularity Similarity Optimisation (nPSO) network
of size N = 1000 with 10 planted communities,
indicated by the different node colours. The further
parameters of the nPSO network werem = 4 β = 0.5
and T = 0.1. b The embedding of this network with
Cluster Level Optimised Vertex Embedding
(CLOVE), where nodes are coloured according to
the ground truth communities in (a). c The angular
coordinate of the nodes in the embedding, as a
function of the angular coordinate in the original
nPSO network. d The hyperbolic distance between
node pairs in the embedding, as a function of the
hyperbolic distance in the original nPSO layout.
Colours indicate node pairs in the same ground
truth community, whereas gray colour indicates
nodes in different communities.
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PSOnetworks also provide an ideal testing ground for the sensitivity of
CLOVE concerning the strength of the modular structure. The fact that
CLOVE embeds the input networks based on the communities found in
their structure implies that this approach is expected to work best for sys-
tems with a strong modular organisation. The detailed examination of the
parameter space of PSO networks for the generated community structure
revealed that the modularity (corresponding to the most widely used
quantity for measuring the strength of communities46–48) is maximal when
the temperature parameter is set toT=0 and shows a decreasing tendency if
T is increased28,29,45.

According to the above, in order to study the connection between the
embedding quality and the strength of the community structure, we also
embedded PSO networks generated with varying T and all the other

parameters kept fixed. In Fig. 4. we show theC-score calculated between the
embedding and the original PSOcoordinates as a functionof themodularity
of the communities found by the Leiden algorithm. Although theC-score is
consistently high across all modularity values, the distinct increasing trend
of the point cloud indicates that (in agreement with the expectations)
CLOVE provides the best embeddings when the input network possesses
the strongest modular structure.

In SupplementaryNote 4.2 in the Supplementary Information, we also
extend the studies of nPSO and PSO networks by embedding nPSO net-
works with a hierarchical ground truth community structure. The results
confirm that thanks to the efficacy of the Leiden algorithm, CLOVE can
recover and arrange the hierarchically nested communities with high
fidelity.

Fig. 3 | Test on a homogeneous hyperbolic net-
work. aAPSO (Popularity Similarity Optimisation)
network of size N = 1000, where node colours are
distributed according to the angular coordinate. The
further parameters of the PSO network were m = 4,
β = 0.5, and T = 0.1. b The embedding of this net-
work with CLOVE (Cluster Level Optimised Vertex
Embedding), where nodes are coloured according to
the ground truth coordinate in (a). c The angular
coordinate of the nodes in the embedding, as a
function of the original angular coordinate. d The
hyperbolic distance between node pairs in the
embedding, as a function of the original hyperbolic
distance.

Fig. 4 | The C-score between the Cluster Level
Optimised Vertex Embedding (CLOVE) and the
ground truth coordinates as a function of the
modularity for Popularity Similarity Optimisa-
tion (PSO) networks.We embedded PSO networks
with the temperature parameter ranging between
T = 0 and T = 1 while keeping the other parameters
fixed at N = 1000,m = 4 and β = 0.5, and located the
communities using the Leiden algorithm. Each
symbol in the scatter plot corresponds to a single
PSO network where the T parameter is indicated by
the colour of the symbol. The increasing tendency of
the scatter plot shows that we can expect a higher
similarity between the embedding and the original
coordinates when themodular structure of the input
network is strong.
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Comparison with current state-of-the-art methods on real
networks
By moving from synthetic networks to real systems, we tested CLOVE on
several real networks that represent the network of connections in various
complex systems. The size of these networks spanned fromN = 103 nodes to
N = 2.7 ⋅ 106 nodes and the studied systems belonged to various domains,
including social, biological and technological networks alike.We compared
the performance of our approach with different state-of-the-art hyperbolic
embeddingmethods according tomultiple quality scores. These include the
mapping accuracy7, MA, measuring the correlation between the shortest
path distance and the geometric distance in the embedding space, the edge
prediction precision, EPP, and the area under the receiver operating char-
acteristic curve, AUR, in graph reconstruction49,50, the greedy routing suc-
cess rate51, GR, corresponding to the fraction of successful paths when
navigating according to the node coordinates in the network, the greedy
routing score18, GS, taking into account also the length of the paths during
greedy routing and the greedy routing efficiency52, GE, comparing the
geometric distances and the projected greedy routing paths (the precise
definition for all of these measures is provided inMethods). Before actually
analysing the performance of CLOVE for real networks, we also tested the
behaviour of these quality scores usingCLOVE embeddings of the synthetic
PSO networks where the strength of the community structure was varying.
We detail the results in Supplementary Note 3.3.3 in the Supplementary
Information, where we observed high correlation coefficients with mod-
ularity. This is in agreement with the tendency shown in Fig. 4, which
indicates that for inputnetworkswith a strongmodular structure,CLOVE is
expected to produce better results compared to systems where the com-
munities are blurred or absent.

The alternative embedding methods - serving as a baseline for com-
parison -were the followingones: i)Thehyperbolicnon-centeredminimum
curvilinear embedding (ncMCE)18, relying on the dimension reduction of a
weighted matrix encoding the distance relations; ii) Mercator19, combining
the dimension reduction of the Laplacian matrix with a local optimisation
concerning the random hyperbolic graph; iii) The HMCSmethod34, taking
advantage of the hierarchical community structure of networks in a similar

fashion to our approach, however, arranging themodules and sub-modules
in a simple greedy fashion.

In Table 1 we show the quality scores averaged over 10 real networks
falling into the size range between N = 1000 and N = 20000. (In
Tables S2–S11 in the Supplementary Informationwe also display the results
for the individual networks one by one.) In addition to quality scores,
Table 1 also provides the running time and the peak memory usage during
the different processes. According to the results for the different algorithms,
Mercator achieved far the best mapping accuracy score and the best AUC
value, whereas CLOVE with an additional simulated annealing during the
solutionof theTSP turnedout tobe the best according to the edgeprediction
precision, the greedy routing score, the greedy success rate and the greedy
routing efficiency. We note that all CLOVE versions outperformed both
HMCS and hyperbolic ncMCE according to all quality scores, and also
Mercator regarding the greedy routing-based scores (GR, GS and GE).

In terms of time consumption, HMCS was, as expected, the fastest,
followed by the various CLOVE variants. Moreover, in our experiments, all
CLOVE variants were approximately 10 times faster than hyperbolic
ncMCE and over 200 times faster than Mercator. For a more detailed
discussion of CLOVE’s time complexity, see the Methods section. Finally,
HMCShas the lowest peakmemoryusage,where the results for the different
CLOVE versions are not far behind and are considerably smaller compared
to the memory usage of hyperbolic ncMCE and Mercator.

In Table 2 we provide the average values for the studied embedding
quality scores in large networks, corresponding to systems where the
number of nodes varies between N = 2 ⋅ 103 and N = 1.3 ⋅ 106. The same
quality indicators for the individual networks are listed similarly in
tables S12–S25 in the Supplementary Information. An important difference
compared to the case of smaller networks is that, since the scores are defined
as various sums over node pairs, their exact evaluation becomes unfeasible,
and therefore, we relied on sampling from all possible node pairs when
calculating the quality measures. In Supplementary Note 4 in the Supple-
mentary Information, we examine the relation between the exact quality
score values and their estimates based on sampling in smaller systems,
arriving at the conclusion that sampling offers a reasonably precise estimate

Table 1 | Average quality scores for small and medium sized real networks

MA EPP AUC GR GS GE Running Time (min.) Peak Mem. (GB)

CLOVE(default) 0.365 0.485 0.962 0.505 0.426 0.180 0.496 0.426

CLOVE (with SA) 0.364 0.487 0.962 0.507 0.428 0.181 0.500 0.453

CLOVE (Louvain) 0.362 0.485 0.962 0.500 0.421 0.178 0.546 0.438

ncMCE (hyperbolic) 0.328 0.173 0.946 0.168 0.147 0.066 5.918 9.475

Mercator 0.506 0.449 0.976 0.329 0.299 0.119 123.921 4.176

HMCS 0.331 0.237 0.957 0.300 0.262 0.117 0.220 0.356

We show the results for the mapping accuracy, MA, the edge prediction precision, EPP, the area under the receiver operating characteristic curve, AUC, the greedy routing score, GR, the greedy success
rate, GS and the greedy routing efficiency, GE, averaged over 10 real networks with size ranging between N = 1000 and N = 20,000 nodes. For each indicator, the best performing value is shown in
bold. Besides the quality scores, we also display the running time in seconds and the peakmemory usage in GB. In the top part of the table, we list the scores obtained for CLOVE with default settings, for
CLOVE with simulated annealing optimisation during the solution of the TSP problem and for CLOVE with Louvain communities. For comparison, in the bottom part of the table, we give the results for
hyperbolic ncMCE, Mercator and HMCS.

Table 2 | Average quality scores for large real networks

MA EPP AUC GR GS GE Running Time (min.) Peak Mem. (GB)

CLOVE(default) 0.278 0.405 0.964 0.304 0.223 0.079 663.259 2.708

CLOVE (with SA) 0.276 0.409 0.964 0.306 0.225 0.079 693.016 3.163

CLOVE (Louvain) 0.277 0.406 0.962 0.291 0.214 0.076 649.248 3.181

HMCS 0.271 0.108 0.955 0.073 0.059 0.021 89.061 3.113

We display themeasured average scores for themapping accuracy,MA, the edge prediction precision, EPP, the area under the receiver operating characteristic curve, AUC, the greedy routing score, GR,
thegreedy success rate, GSand the greedy routing efficiency,GE, averagedover 17 real networkswith size rangingbetweenN= 20000andN=2.7 ⋅106 nodes. For each indicator, the best performing value
is shown in bold. Besides the quality scores, we also display the running time and the peakmemory usage in GB. In the top part of the table, we list the scores obtained for CLOVEwith default settings, for
CLOVE with simulated annealing optimisation during the solution of the TSP problem and for CLOVE with Louvain communities. For comparison, in the bottom row we give the results for HMCS.
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of the exact values already at relatively low frequency values. A further
difference compared to Table 1 is that due to the larger resource require-
ments in terms of computation time or memory, Mercator and the
hyperbolic ncMCE method were not applied to the larger networks.

According to the results shown in Table 2, CLOVE significantly out-
performs HMCS according to all quality scores at the cost of having a
roughly 8 times as large computation time. While CLOVE with extra
simulated annealing seems to be the best among the different CLOVE
versions in Table 2, when examining the detailed list of results for the
individual networks in tables S12–S25 in the Supplementary Information, it
becomes clear that in certain systems it is the default version or the one
relying on Louvain communities that achieves the best result. However, in
addition to MA and AUC, a clear gap is always present between CLOVE
scores and HMCS scores.

In Fig. 5 we show the computational resource usage of the studied
embedding methods as a function of the network size (measured in the
number of nodes). Naturally, all of the curves show an overall increasing
tendency; however, they are not strictly monotonic, indicating that
besides the size, also the structure of the network can have a strong effect
on the amount of computational resources needed for the embedding.
The comparison between the different curves leads to a conclusion that is
consistent with the previous results shown in Tables 1, 2: As expected,
among the studiedmethods HMCS is the fastest followed by our different
CLOVE implementations. The time curves for hyperbolic ncMCE and
Mercator seem steeper than the previous approaches, and these methods
run slower by at least one order of magnitude at the upper size limit of
smaller networks (N = 20,000 in our study). In parallel, the peak memory
usage (Fig. 5b) displays two bundles of curves, where the CLOVE
implementations andHMCS show very similar memory needs, which are
considerably more moderate compared to those of Mercator and
hyperbolic ncMCE.

Hyperbolic maps of real networks with ground-truth modules
In this section, we demonstrate that the embeddings generated by our
approach can provide intuitive node arrangements in the native disk for
different complex systems. For a small fraction of the networks we
analysed, “ground truth” modules and/or additional node labels were
also available besides the network topology. Although our method is
agnostic concerning any extra node labels and calculates the coordinates
solely based on the network structure, still, the organisation of the
obtained layouts is meaningful also in the light of these additional
features.

The network of tennismatches between ATP players. ATP stands for
the Association of Tennis Professionals, which serves as the governing
body for men’s professional tennis. It is responsible for overseeing and
managing various aspects of this sport, including the organization of
tournaments and the establishment of player rankings. Related to that,
here we examine a tennis dataset accessible at53, with a central question in
mind: Does the network representing matches between tennis players fit
well to the two-dimensional hyperbolic space? Can the two-dimensional
hyperbolic space efficiently host the network representing the matches
between ATP tennis players?

In order to investigate this question in detail, we first build the network
by considering the matches between the top-ranked ATP players who
competed against each other during the period from 1969 to 1989 and
participated in at least 7 official matches. Subsequently, we apply the
CLOVE algorithm with various parameter settings to map this network to
the native disk representation of the two-dimensional hyperbolic space.Our
approach consists of two rather different embedding strategies. In the first
case, we run our algorithm with its default settings, where communities are
identified andarranged in anested fashionusing a fast communitydetection
method (e.g., Louvain or Leiden) applied across increasingly finer scales.
The resultinghyperbolic layout is displayed inFig. 6a, alongwith the angular
sectors where players from distinct continents are predominantly clustered.
Moreover, in Fig. 6a we also indicate the position of a prominent tennis
player for each continent.

In our second embedding approach, the identification of network
modules to be positioned on the native disk is not dictated by the output of a
pre-defined community detection method. Instead, we rely on a two-level
dendrogram that incorporates ground-truth information regarding the
ethnicities of the players. The first level pertains to the nationalities of the
players, while the second level maps nations to continents, thus forming a
complete dendrogram of communities. This regional dendrogram is passed
to the embedding algorithm, which then arranges the communities
accordingly, again based on the TSP. We show the obtained hyperbolic
layout in Fig. 6b, where, similarly to Fig. 6a, both the angular sectors cor-
responding to the continents and the same top-tier players for each con-
tinent are highlighted.

Overall, by observing the quality scores displayed at the top-right
corner of the panels in Fig. 6, we can deduce that the embedding quality is
superior in the first scenario, i.e., when the modules to be arranged on the
disk are derived from a community detection method, rather than being
constructed based on the regional dendrogram. This phenomenon can
roughly be explained by the presence of intercontinental links in the ATP

Fig. 5 | Resource usage of the studied algorithms as
a function of the size of the embedded networks.
Weplot the average running time in (a) and the peak
memory usage in (b), with the colour code of the
different methods given in the legends. The resource
usage for the Cluster Level Optimised Vertex
Embedding (CLOVE) with default settings is shown
in dark blue, for CLOVE with simulated annealing
optimisation at the solution of the Travelling
Salesman Problem in red, for CLOVE based on
communities found by the Louvain algorithm
instead of Leiden in green, for Hyperbolic Mapping
based on the hierarchical Community Structure
(HMCS) in purple, for Mercator in orange and for
the hyperbolic non-centered minimum curvilinear
embedding (ncMCE) in light blue.
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network. More specifically, when modules are defined based on regional
information, these intercontinental links can become excessively long, as
different continents may be positioned far apart on the native disk, even-
tually leading to a sub-optimal embedding. Contrarily, whenmodules to be
arrangedby the algorithmare derived froma community detectionmethod,
themajority of links tend to fall within the same angular sector. This spatial
concentration of the links results in shorter average link lengths, which in
turn enhances the overall quality of the embedding. This explanation is
perfectly corroborated by the observation of fewer link crossings in the
embedding shown in Fig. 6a.

The air transportation network. The OpenFlights database54 provides
detailed information on regular commercial flights between major air-
ports worldwide, containingmore than 3000 airports and roughly 67,000
flights, defining a transportation network of crucial importance. Similarly
to theATP tennis network, in our study of this systemwe appliedCLOVE
both with default settings (results shown in Fig. 7a) and with a pre-
defined dendrogram of geographical regions (results shown in Fig. 7b).
The seemingly large similarity between the two layouts in Fig. 7. indicates
that our algorithm was able to find a natural arrangement for the nodes,
even when it was completely unaware of the ground truth geographical
categorisation of the airports and calculated the embedding coordinates
solely based on the network structure.

Additionally, in Fig. 8a we plot the embedding distance (measured on
the native disk) as a function of the real-world geodesic distance a given
flight covers between two airports. The intercontinentalflights (Fig. 8b) tend
to travel the largest distance in both the real world and in the embedded
space. In turn, the flights within a given continent (Fig. 8c–h) are usually
shorter, again according to both distance measures. This shows that despite
the difference in the curvature of the underlying geometry and the fact that
the embedding is completely unaware of the true flight distances (i.e., it is
inputted an unweighted network), still our algorithm is finding an
arrangement of the airports on the native disk which is coherent with the
real world geographical positioning of the airports. This is also supported by
a Pearson correlation coefficient of 0.40 between the embedding distance
and the geodesic distance.

In summary, as demonstrated by the examples ofATPandOpenflights
networks, CLOVE performs notably well, whether using its default settings
(see Figs. 6a, 7a) or a pre-defined dendrogram of geographical regions (see
Figs. 6b, 7b). However, the former strategy is generally better than the latter,
as evidenced by the reduced number of long-range interconnections in
Figs. 6a, 7a corresponding to the default versions of CLOVE. This super-
iority is further reflected by the fact that running themethodwith its default
settings almost always yields highermetric scores (shown in the upper right
corner of panels Figs. 6a, b and 7a, b).Nonetheless, it is important to note an
exception, specifically the ASI score, whichmeasures the angular coherence
of communities. In general, a high ASI value indicates well-separated
communities in terms of angular coordinates, thus reaching its maximal
value when the arrangement is explicitly constructed based on the ground-
truth dendrogram of communities. This observation is supported by the
radar charts illustrated in Figs. 6b, 7b. For amore detailed description ofASI
and the other metric scores employed in our analysis, please refer to the
Methods section.

Customizing the embedding framework
Our framework, built on recursive hierarchical partitioning of the network,
opens up multiple possibilities for customization. As an illustration, we
explore one suchmodification involving themethod used for arranging the
extracted modules. Although the TSP approach, corresponding to the
default method in CLOVE, has proven to be fast and very efficient, further
options may also be considered, especially when aiming for a further
increase in the speed of the algorithm.

An alternative arranging scheme we have tested and built into our
framework is provided by the minimum curvilinear attachment (MCA)
process22. In this approach, the ordering of the modules is obtained
according to a growingminimum spanning tree based on Prim’s algorithm,
where we use the same weighting scheme as in the case of the TSP for
defining the weighted graph between the extracted communities. (The
details of the MCA approach are given in Supplementary Note 1.3.2 in the
Supplementary Information). Due to its simpler nature (lower computa-
tional complexity), this is expected to give even lower running times com-
pared to the TSP-based embeddings.

Fig. 6 | The ATP tennis network embedded into the two-dimensional hyperbolic
space using two different strategies. a The hyperbolic layout obtained by running
the Cluster Level Optimised Vertex Embedding (CLOVE) method in its default
settings alongside the associated metric scores displayed in a radar chart at the top-
right corner.We show the results for themapping accuracy,MA, the edge prediction
precision, EPP, the area under the receiver operating characteristic curve, AUC, the
greedy routing score, GR, the greedy success rate, GS, and the greedy routing effi-
ciency, GE. b Embedding the tennis network by relying on a regional dendrogram

comprising ground-truth information about the ethnicities of the players.
In a similar fashion to (a), the same metric scores are presented again in a radar
chart at the top-right corner. In both panels, the network nodes are coloured based
on the continent to which the corresponding players belong, with the continents
outlined and positioned according to the angular coordinates of their respective
players. In (a), the higher metric scores and fewer edge crossings suggest that using
CLOVE with the default settings, as shown, generally yields better embedding
quality.
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In Table 3 we compare the embedding quality scores and the resource
usage of CLOVE with MCA-based arrangement to the default settings
relying on TSP. According to the results, the MCA-based angular
arrangement is indeed faster,with running times roughly equal toonehalf of
that of the CLOVE default version. Meanwhile, the CLOVE default version
is superior according to all the quality scores except for EPP,whereCLOVE-
MCA is slightly better, and for AUC, where they perform equally well.
Nevertheless, the overall performance of CLOVE-MCA falls not far behind
that of CLOVE with default settings.

Discussion
A prevalent and very essential feature of numerous complex systems –
observed in either nature or society – lies in the presence of an inherent
hierarchical structure that governs the relationships among their constituent
components55–57. Gaining access to these nested hierarchical structures can
be beneficial from various aspects; for instance, it can streamline the design
of efficient search protocols among the constituents58, facilitate optimal
decision-making55, and even economize the costs associated with reliable
information transfer59.

In this study, we utilised these distinctive architectures to effectively
address the hyperbolic embedding of complex networks. Specifically, we
introduced a method called CLOVE, which accomplishes the mapping of
networks into the two-dimensional hyperbolic space through a series of
optimization tasks performed hierarchically. When dealing with a given
network, the CLOVE method involves two fundamental steps; initially, it
begins by reasonably partitioning the network into smaller interconnected
entities, followed by determining their optimal arrangement within the
hyperbolic disk. While advanced community finding methods, such as the
Leidenmethod, can effectively achieve a sensible partitioning of the network
into smaller units,finding theoptimal arrangement of these sub-modules on
the hyperbolic disk remains a highly challenging task. The CLOVEmethod
brings significant progress in addressing this challenge by leveraging the
Travelling Salesman Problem35–38 – an extensively studied problem in
computer science – to optimize the arrangement of communities and their

respective sub-communities in the hyperbolic disk. Although the MCA
method employs a somewhat related minimum spanning tree-based
approach22, to our knowledge, this study is the first to explicitly use the TSP
for solving the embeddingof complexnetworks.CLOVE introduces awhole
family of embedding techniques, providing a highly efficient alternative
framework towell-establishedmethods such as likelihood optimization and
spectral-based embeddings.

The TSP is undoubtedly one of the best-known combinatorial opti-
misation problems, with applications ranging from DNA sequencing60,
aerospace engineering61, the analysis of crystals’ structures62, to the planning
of telescope movement in astronomy63,64. Additionally, it has proven to be
highly effective in defining and measuring the geometric separability (both
linear and non-linear) ofmesoscale patterns inmultidimensional datasets65.
In this paper, we introduced a further application in complex network
theory, facilitating the rapid optimization of node arrangements in the two-
dimensional hyperbolic space.

While the chosen heuristic approximation method for solving the
TSP has a complexity ofOðC3Þ concerning the number of “cities”C, it is
applied only to modules co-occurring at the same level within indivi-
dual branches of the module hierarchy, rather than to all nodes
simultaneously. Consequently, assuming that the community den-
drogram is given by a q-ary tree, where each level l ¼ 1; :::; logqðNÞ � 1
comprises ql number of communities with sizes N/ql and q(N) ~ Nc for
some 0 < c < 1, the overall complexity becomes bounded above by
O N2cþ1
� �

(for further details see theMethods section). This favourable
scaling enables the embedding of networks with millions of nodes in
under 50 hours. Although this falls behind the running time of very fast
methods like HMCS34, in our opinion, CLOVE provides a favourable
balance between speed and accuracy. On average, CLOVE out-
performed HMCS according to all studied quality indicators and its
embedding quality is comparable, and in many cases, even superior to
state-of-the-art methods, such as Mercator19.

Tomake our embedding frameworkmore general, besides the TSP, we
have also built in the possibility for using the MCA algorithm22 when

Fig. 7 | Embedding of the air transportation network. The major geographical
regions, such as continents and sub-continents, are colour coded and the size of
the nodes indicates the degree. The most important airports are marked by their
International Air Transport Association (IATA) code and the radar plots in the
insets show the different quality scores of the embedding. a The embedding
obtained with Cluster Level Optimised Vertex Embedding (CLOVE) at default
settings. bThe embedding with CLOVE using a dendrogram corresponding to the
hierarchy of geographic locations. In both panels, the radar charts positioned in

the top-right corners show the qualities of the embeddings using the same
metric scores as depicted in Fig. 6. The large similarity between the panels indi-
cates that CLOVE with default settings in (a) found an arrangement very
close to the ground truth categorisation of geographical regions solely based
on the network structure. This is accompanied by a clear separation of
continents in terms of angular coordinates, despite the embedding being com-
pletely agnostic to geographical information.
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arranging the hierarchical communities. This CLOVE-MCA version is
preferred in applications where extremely low running time is crucial,
whereas otherwise the usage of the TSP-based default CLOVE embedding
seems more advantageous. While CLOVE provides a highly flexible fra-
mework with multiple points of customization throughout the algorithm,

one minor limitation is its ability to embed networks exclusively into the
two-dimensional hyperbolic space. Recent progress in complex network
theory has both generalised the fundamental hyperbolic networkmodels to
higher dimensions66–68 and has also introduced higher-dimensional
hyperbolic embeddings17,20. Nonetheless, extending CLOVE to higher

Fig. 8 | Embedding distance and geodesic
distance in the air transportation network.
We plot the distance measured on the
hyperbolic disk (the embedding distance) for
connected airport pairs as a function of the
geodesic distance on the globe, measured in
kilometres. The panels depict heat maps cor-
responding to different large geographical
regions. Panel (a) shows the results for
all pairs, while the remaining panels (b–h)
show results for specific continental pairs: (b)
intercontinental, (c) Africa, (d) Asia, (e)
Europe, (f) North America, (g) Oceania,
and (h) South America. The fact that
intercontinental connections tend to be
longer than continental ones also in
the embedding space reinforces that the
embedding obtained solely based on the net-
work structure captures essential features of
the original system.

Table 3 | Average quality scores when CLOVE is arranging the communities according to the MCA algorithm

MA EPP AUC GR GS GE Running Time (min.) Peak Mem. (GB)

CLOVE-MCA (Symmetric) 0.361 0.488 0.962 0.479 0.410 0.177 0.212 0.476

CLOVE-MCA (Asymmetric) 0.360 0.478 0.962 0.453 0.390 0.170 0.212 0.478

CLOVE(default) 0.365 0.485 0.962 0.505 0.426 0.180 0.496 0.426

We show the results for the same quality scores as in Tables 1, 2 for the same networks as in Table 1. For each indicator, the best performing value is shown in bold. First row corresponds to the symmetric
version of MCA, whereas the second row corresponds to the asymmetric version (the details of MCA are given in Supplementary Note 1.3.2 in the Supplementary Information). For comparison, in the third
row we show the results for CLOVE with default settings.
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dimensions poses a non-trivial task, offering an intriguing challenge for
future research, although it falls beyond the scope of the present paper.

In conclusion, owing to the scalable nature of CLOVE, it becomes
feasible to map even very large networks into hyperbolic space within a
reasonable amount of time, moreover, with a high level of reliability. This
remarkable efficiency of the CLOVE method undoubtedly represents a
significant step towards the creation of hyperbolic maps for a wide range of
real-world complex networks.

Methods
Networks in the native disk representation of the
hyperbolic space
Acommon approach to the study of hyperbolic network geometry is the use
of the native representation of the two-dimensional hyperbolic space11,
where the hyperbolic plane of constant curvature K < 0 is represented by a
disk of infinite radius in the Euclidean plane. The advantage of this repre-
sentation compared to the famous Poincaré disk model is that the radial
coordinate r of a point (defined as its Euclidean distance from the disk
centre) is equal to its actual hyperbolic distance from the disk centre. In
addition, the Euclidean angles between hyperbolic lines are also equal to
their hyperbolic counterparts.

Thehyperbolic distance between twopoints can bemeasuredalong the
connecting geodesic, which is either a hyperbola, or – if the disk centre falls
on the Euclidean line connecting the two points – the corresponding dia-
meter of the disk. The hyperbolic distance x between two points at polar
coordinates (r, θ) and ðr0; θ0Þ can be calculated from the hyperbolic law of
cosines written as

coshðζxÞ ¼ coshðζrÞ coshðζr0Þ � sinhðζrÞ sinhðζr0Þ cosðΔθÞ; ð1Þ

where ζ ¼ ffiffiffiffiffiffiffiffi�K
p

and Δθ ¼ π � jπ � jθ � θ0jj is the angle between the
examined points. For sufficiently large ζr and ζr0, and when
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2ζr þ e�2ζr0p

<Δθ, the hyperbolic distance can be approximated as11

x � r þ r0 þ 2
ζ
� ln Δθ

2

� �
: ð2Þ

When generating random graphs via geometric network models
operating in the native disk, or embedding networks into the native disk,
there seems to be an intimate relation between the node degree and the
radial position. Hyperbolic network models are centred around the idea of
placing nodes on the native disk (in a uniform or close to uniform fashion)
and drawing links with a probability depending on the metric distance. In
general, suchmodels canbe regarded as aparticular case of a broader hidden
variable framework69–73, where the hidden variables of the nodes are asso-
ciatedwith the coordinates of the nodes in the hyperbolic space, whereas the
connection probability between pair of nodes depends specifically on their
respective distances.

One of the best-known hyperbolic network models is given by the
Popularity-Similarity Optimisation (PSO) model39. In case of the PSO
model (where new nodes are added to the network one by one with loga-
rithmically increasing radial coordinate and random angular coordinate), a
rather intuitive analogy was drawn between the coordinates and plausibly
important features of the nodes, such as the popularity and similarity that
govern the network growth. In this picture, a small angular distance indi-
cates a high similarity between a node pair, whereas the popularity (the
degree) of the nodes is controlled by their radial coordinate, with hubs
appearing closer to the disk centre and low degree nodes occupying the disk
periphery.

More specifically, in the PSO-model the expected degree of node i at
time point t in the network generation is �kiðtÞ � expðrit � rttÞ where rtt ¼
2
ζ ln t is the radial coordinate of the newly appearing node at t (with ζ ¼ffiffiffiffiffiffiffiffi�K
p

originating from the hyperbolic curvature K, usually assumed to be
ζ= 1) and rit is the actual radial coordinate of node i that was shifted from its
original rii value as rit = βrii+ (1− β)rtt, where β∈ (0, 1] corresponds to the

popularity fading parameter39. Related to this, when assuming that a net-
work was generated by the PSO-model, the maximum likelihood estimate
for the radial coordinate be given as13

r�ii ¼
2
ζ
ln i�; ð3aÞ

r�iN ¼ βr�ii þ ð1� βÞr�NN ; ð3bÞ

where the optimal ordering of the nodes given by i* is following the node
degrees, with the largest degree node in the network obtaining i* = 1, second
largest degree node receiving i* = 2, etc., and equation (3a) corresponds to
the initial radial coordinate of node i*, whereas equation (3b) takes into
account also the outwarddrift due to the popularity fading. (Amore detailed
description of network generation in the PSO model is provided in Sup-
plementary Note 4.1.1 in the Supplementary Information).

A similarly close relationoccurs between thenodedegree and the radial
coordinate in the random hyperbolic graph (RHG) model11, also known as
the S1=H2 model19. In this static approach, nodes are given uniform ran-
dom angular coordinates and a hidden degree variable κ sampled from a
power-lawdistribution.Node pairs are connected according to a probability
that is decreasing as a function of the angular distance but also takes into
account theproduct of the hiddenvariables, resulting in a scale-free network
where the degree decay exponent is the same as for the hidden variable
distribution and the expected degree of node i is given by κi.Whenmapping
the network onto the native disk, the radial coordinate is defined as
ri ¼ R0 � 2 lnðκiÞ where R0 is a constant depending on the model para-
meters. Hence, similarly to the PSO-model, the hubs are placed close to the
disk centre, the low-degree nodes are located towards the periphery and
there is an overall logarithmic dependence between the degree and the radial
coordinate.

Numerous hyperbolic embedding methods take advantage of the
above intrinsic connection between the radial coordinate and the node
degree. For example, Hypermap13, one of the first hyperbolic embedding
methods, is based on likelihood maximisation concerning a generalised
version of the PSOmodel, where the optimisation shuffles only the angular
coordinates with the radial coordinates being assigned according to the
degree. Another well-known hyperbolic embedding approach is provided
by the family of coalescent embeddings18, where the angular coordinates are
inferred using dimension reduction techniques on weighted matrices
representing the distance relations between the nodes, however, the radial
coordinates are again distributed according to the PSOmodel, based on the
degree. This choice for setting the radial coordinates was left unchanged
when the coalescent embedding approach was combined with local angular
optimisation of the node positions21. The radial arrangement of the nodes is
according to the PSO model, also in the case of Laplacian Eigenmaps14,
where the angular coordinates are obtained from the non-linear dimension
reduction of Laplacian matrices. The RHG model can also be used for
inferring the radial coordinates based on the node degree, as was shown in
the case of the Mercator embedding method19,20. Nevertheless, the radial
coordinates assigned based on the PSOmodel or based on the RHGmodel
are very similar, since both depend logarithmically on the node degree. The
only major difference between these two options is that all nodes obtain a
unique radial coordinate according to the PSOmodel, whereas it is allowed
for multiple nodes to have the same radial coordinate in the RHG model.

Detailed description of the CLOVE method
Let us consider the task of embedding an arbitrary undirected (and not
necessarily connected) network consisting of N number of nodes and E
number of edges into the two-dimensional native disk representation of the
hyperbolic space. We employ a hierarchical multi-level arrangement of the
communities within the native disk by leveraging information about the
connectedness of these communities and their respective sub-communities
across different scales of the network.Wedenote the communities at a given
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hierarchy level l by tðlÞm , where the lower index m runs from 0 to the total
number of communities at the given level.
• Arranging the communities at the topmostl= 0 level

(a) Detecting communities:We can identify the top-level communities
tð0Þm by using any arbitrary non-overlapping community finding
algorithm. Here, the Leiden method40 is adopted as the default
approach for community detection, which is an advanced
technique based on modularity maximisiation. Nevertheless,
other built-in options, such as the Louvain method, are also
available in the provided code. (A brief description of both the
Leiden and the Louvain approaches, as well as the concept of
modularity is provided in Supplementary Note 1.1 in the
Supplementary Information). If an entire hierarchical dendro-
gram of the communities is accessible, e.g., as might be the case for
the Louvain algorithm74, in this step we use the partition at the
topmost level (l = 0) of the dendrogram.

(b) Defining a weighted network between the communities: We construct
the proximity graph of the communities, i.e., build up a complete
weighted super-graph, whose nodes correspond to the communities
tð0Þm found earlier in step 1a). The edge weight between any pair of
super-nodes i and j is defined as

Wij ¼ f
2ElCij

KiKj

 !
þ 1; ð4Þ

where El= E0 is the number of edges,Ki andKj denotes the number of
intra-community links within the communities tð0Þi and tð0Þj ,
respectively, and Cij stands for the number of inter-connections

between tð0Þi and tð0Þj . Note that although the function f defined in

Eq. (4) canbe any arbitrary decreasing functionof its argument, taking
values on the unit interval, we use an exponentially decaying form
f(x) = e−x by default. In SupplementaryNote 1.2 in the Supplementary
Information, we demonstrate that adopting this choice for theweights
between modules guarantees compliance with the triangle inequality,
thereby justifying the utilization of TSP in the later steps.

(c) Approximate solution for the TSP:We look for the minimal-weight
Hamiltonian cycle of the super-nodes (communities) in the
proximity graph defined in 1b). This corresponds to solving the
TSP on the proximity graph, and the obtained solution represents
the inferred angular order of communities. We use the
Christofides method supplemented with a threshold accepting
boost43 for solving the TSP by default, however, further possible
choices are also available in the provided code, including e.g., the
greedy method, simulated annealing, or the threshold accepting
method solely. Note that the latter two metaheuristic algorithms
can also be applied in combination with the greedy or Christofides
method, providing therefore, an option of boosting that may
enhance the quality of the final embedding in particular cases. (We
give a summary of the implemented TSP solvers in Supplementary
Note 3.1 in the Supplementary Information).

(d) Alternatively, applying MCA for angular ordering: If preferring a low
running timeover highquality, onemayopt for using theMCA instead
of the TSP in the calculation of the angular order between themodules.
Here, the communities (nodes in the proximity graph) are inserted one
by one into a growing minimum spanning tree following Prim’s
algorithm, where we use the weights given by (4). TheMCAhas both a
symmetric and an asymmetric version, for which the details are
described in Supplementary Note 3.2 in the Supplementary
Information.

(e) Circular arrangement of the communities: We arrange the commu-
nities on the native disk such that subsequent communities become
adjacent on the disk. Each community is allocated a circular sector, the
size of which is proportional to the number of nodes within that

community.More precisely, the community tð0Þi in theminimal-weight
order is assigned to the angular interval

Φð0Þ
i;start;Φ

ð0Þ
i;end

h �
¼ 2π

N

Xi�1

j¼1

nð0Þj ;
2π
N

Xi
j¼1

nð0Þj

" !
ð5Þ

where nð0Þm denotes the number of nodes in community tð0Þm .
• Arranging the communities at levell + 1 > 0 For convenience, the

current level is considered to be level l+ 1, whereas the previous level
(immediately above the hierarchy) is assumed to be level l.

a. Detecting sub-communities: For each community at the previous level,
l, we run the same community finding algorithm as in 1a) on the sub-
graph spanning between the communitymembers (detached from the
rest of the network). Let us focus on the sub-modules found this way

within community tðlÞi from the previous level, and let us denote these

sub-modules as tðlþ1Þ
i1 ; tðlþ1Þ

i2 ; . . . tðlþ1Þ
ik for convenience.

b. Defining a weighted network between the sub-communities: For each
group of sub-modules found within a specific larger community from
the previous level, we define a separate weighted network, similarly to
step 1b). However, an important difference is that this time we also
include two extra nodes in this complete graph, corresponding to the
neighbouring communities from the previous level. These serve as
“anchors” for a more optimal arrangement of the sub-modules.
Specifically, for the sub-modules tðlþ1Þ

i1 ; tðlþ1Þ
i2 ; . . . tðlþ1Þ

ik listed in 2a), we
include the left and right neighbouring communities of tðlÞi according to
the angular arrangement of the communities in level l. The linkweights
are defined again by using (4).

c. Approximate solution for theTSP:For each separateweighted complete
graph defined in 2b), we solve the TSP using the same heuristic as in
1c), receiving a Hamiltonian cycle over the sub-modules and the two
extra neighbouring communities from the previous level.

d. Alternatively, applying MCA for angular ordering: If have chosen to
use MCA instead of TSP in the angular arrangement, then for each
separate weighted complete graph defined in 2b) we apply the MCA
similarly to as in 1d), receiving a Hamiltonian cycle over the sub-
modules and the two extra neighbouring communities from the
previous level.

e. Arrangement of the sub-communities: Naturally, the sub-modules

located within tðlÞi must be placed inside the angular range

ΦðlÞ
i;start;Φ

ðlÞ
i;end

h �
associated with tðlÞi . Any sub-module tðlþ1Þ

ik receives a

circular sector having a central angle of 2πN nðlþ1Þ
ik (with nðlþ1Þ

ik denoting

the number of nodes in tðlþ1Þ
ik ), and the order of the sub-modules is

determined by the Hamiltonian cycle received in 2c). Under optimal
circumstances, the “anchoring” super-nodes (communities from level
l) are neighbours in the Hamiltonian cycle, and we can apply a cyclic

permutation bringing the “anchor” placed aside tðlÞi at ΦðlÞ
i;start to the

beginning of the cycle and the “anchor” placed aside tðlÞi atΦðlÞ
i;end to the

end of the cycle. Based on the cycle obtained, now aligned with the

“anchor” positions, the angular range of tðlþ1Þ
ik can be given as

Φðlþ1Þ
ik;start;Φ

ðlþ1Þ
ik;end

h �
¼ ΦðlÞ

i;start þ
2π
N

Xk�1

j¼1

nðlþ1Þ
ij ; ΦðlÞ

i;start þ
2π
N

Xk
j¼1

nðlþ1Þ
ij

" !

ð6Þ

In cases where the “anchors” are not adjacent in the Hamiltonian
cycle obtained in step2c), wefirst seek a cyclic permutationwhere the
left “anchor” is positioned correctly, specifically as the starting point
(leftmost element) of the Hamiltonian cycle. Beginning from this left
anchor node, we proceed to the right, preserving the sequence
obtained in step 2c) until we encounter the right “anchor”. To ensure
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that this right “anchor” becomes the rightmost element in the final
order, we perform a reflection transformation (chirality change) on
the remaining segment of the cycle, starting from the right “anchor”
node. Thismodified segment is then concatenatedwith the preceding
unchanged segment. By constructing the final order in this way, we
ensure that both anchors are correctly positioned and the longest
directionally consistent sub-sequences of the Hamiltonian cycle are
maintained, preserving the structural integrity of the original
sequence as much as possible.

• Iteration and stopping criterion for the angular arrangement of the
communities After the completion of the angular arrangement of the
communities at any level l, we proceed to the next level as described in

2. However, if for any communities tðlÞi the community finding algo-

rithm returns no sub-modules in 2a), meaning that tðlÞi is already so
small and compact that it is not worth dividing into sub-communities,

we do not carry out steps 2b-d, and leave tðlÞi as it is. Although tðlÞi can
still act as an anchor for the sub-modules of neighbouring
communities, the angular arrangement procedure is locally stopped

at tðlÞi . Naturally, for other communities at the same level, the algorithm
will carry on and may discover contained sub-modules, where we
position these according to steps 2.
When the recursive discovery of contained sub-communities is
stopped locally everywhere, we have reached the stage where it is not
worth dividing further any of the modules at the lowest level in any
branch of the community hierarchy. (Naturally, the maximal depth
of the branches can vary.) In order to fully specify the angular
coordinates of the individual nodes, we can nowmove on to the next
phase in the algorithm, described in step 4.

• Angular arrangement of individual nodes within communities
There are several options for arranging the members of a given com-
munity (assumed to be on the possible lowest level in the corre-
sponding branch of the community hierarchy). In all cases, the node
positions are distributed in a uniform regular fashion inside the con-
sidered sub-module, where the angular distance betweenneighbouring
nodes is always 2π

N .
a. Probably the most natural choice is to apply the same principles as in

the case of the sub-modules, outlined in step 2. Here we basically
replace the sub-modules tðlþ1Þ

i1 ; tðlþ1Þ
i2 ; . . . tðlþ1Þ

ik by the individual
community members, but otherwise carry out exactly the same steps
from 2b to 2e. Although this is likely to provide the best quality local
arrangement among the other options, it is also computationally the
most demanding.

b. Another very simple choice is to distribute the members randomly
among the available angular positions. This is the fastest option, albeit
also with the lowest quality.

c. A further heuristic solutionwe propose is based on the node degrees. If
the number of community members is odd, the member with the
largest degree will occupy the central position and the node with sec-
ond largest degreewill be its left or rightneighbour (chosenat random).
If the number of members is even, the first two nodes according to the
degrees will occupy the two central positions (again, in random order).
The further nodes are added in the order of their degree, always
occupying a positionnext to the already occupiedpositions either from
the left or from the right.We decide about inserting to the left or to the
right based on the number of connections between the given node and
the already inserted nodes on the right or on the left. (In the case we
observe an equal number of connections to the right and to the left, we
choose randomly). This method yields usually better quality arrange-
ments compared to random positions and it is faster compared to
option a).

Bydefaultweuseoption c), however, the codeweprovide allowsboth a) and
b) as well.
• Radial arrangement of the nodes The radial coordinates are defined

solely based on the node degree, independently of the angular

coordinates. For simplicity, we use the radial coordinates predicted
based on the PSO model and apply Eqs. ((3b)-(3b)) for assigning ri,
where the node indices are distributed according to the order dictated
by the nodedegrees, as explained in SectionNetworks in the native disk
representation of the hyperbolic space. The parameter β necessary for
calculating the coordinates is obtained by fitting the tail of the degree
distribution of the embedded network with a power-law decaying
function and applying the well-known relation β ¼ 1

γ�1 between the
degree decay exponent γ and the popularity fading parameter.

Additional parameters of the CLOVE method.
• Number of “anchor” nodesOriginally, CLOVE uses z = 2 number of

“anchor” nodes in steps 2b)-d) by default. However, the imple-
mentation we provide allows to handle neighbors of higher orders as
well. In such cases, for each sub-community, we include z ¼ 2l; l 2
Nþ; l > 1 number of neighbouring communities from the preceding
level, hence exploiting a more global information about the con-
nectedness of the communities in the arrangement step.

• Decomposition of isolated nodes and components
Embedding networks with multiple components Despite the diffi-
culty that most embedding algorithms have in dealing with networks
comprising multiple connected components, the CLOVE algorithm
can handle this type of networks in a natural manner. If the network
we need to embed is not fully interconnected, the default approach for
CLOVE is to start by optimizing the position of the different com-
ponents on the hyperbolic disk instead of the top-level communities.
Subsequently, the algorithmproceed conventionally by detecting sub-
communities inside these distinct components using a predefined
community finding method. Notably, the default application of the
Leiden algorithm ensures the preserved connectivity of these
identified sub-communities40. This embedding option of the
algorithm is referred to as the decomposition of connected
components, which is governed by a Boolean variable in the provided
code. Conversely, if the decomposition of connected components is
disabled, the algorithm can still effectively manage multiple
components. In such cases, instead of seeking the optimal arrange-
ment of the separate components at the highest level, the algorithm
directly arranges the communities themselves consistently across all
scales.
Decomposition of nodes with degree k= 0 If the network contains
isolated nodes, CLOVE can embed these isolated nodes separately by
detaching them from the rest of the network. When this feature is
enabled, random angular coordinates are allocated to the isolated
nodes, while the remaining portion of the network is embedded using
the standard procedure outlined in steps 1-5 above. The assignement
of the radial coordinates are not affected. It is important to note that
this option is primarily designed to improve runtime efficiency;
nevertheless, it may also result in enhanced accuracy in particular
cases. We refer to this feature of the algorithm as the “decomposition
of k0 nodes” controlled by a boolean variable in the provided code.
Decomposition of nodes with degree k = 1 Similarly to the
decompositionof isolatednodes,CLOVEallows thedecompositionof
nodeswith degree k= 1 as well. Upon enabling this feature, controlled
again by a boolean variable, the algorithm starts by detaching nodes
with only one degree from the rest of the network. First, the remaining
part of the network is embedded, then detached nodes with only one
degree receive the same angular coordinates as their single neighbor.
In case twonodes are only connected to eachother, hence having been
detached during the decomposition procedure, they both receive the
same uniformly sampled random angular coordinate. The assigne-
ment of the radial coordinates are not affected here either.

• The sizes of angular sectors corresponding to the communities
During the arrangement of the communities in steps 1d) and 2d), the
CLOVE method allocates an angular sector to each community with
the central angle beingproportional to the number of nodes it contains,
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as demonstrated by Eq.(5) and Eq.(6). However, in the code we pro-
vide, there is also an option to allocate circular sectors to each com-
munity in such away that their central angle is proportional to the sum
of node degrees within the community. This method, also utilized by
the HMCS method34, enhances the flexibility of the algorithm.

Time complexity analysis of CLOVE
The overall running time of CLOVE is primarily determined by two key
factors: first, the complexity of the community detection algorithm
used, and second, the complexity of the method that arranges the
obtained communities on the hyperbolic disk. Since both processes are
applied iteratively at increasingly finer scales and more frequently, the
computational cost depends heavily on the structure of the resulting
dendrogram, making it difficult to precisely estimate CLOVE’s time
complexity.

In order to provide a somewhat simplified, yet reasonable estimation,
let us assume that the community detectionmethod operates inOðnaÞ time,
where n represents the size of the (sub-)network, and the arrangement of
communities has a complexity of OðCbÞ, where C is the number of com-
munities to be arranged on the hyperbolic disk. Since no community
detection algorithm is faster thanpurely linear, andmostTSP solvers have at
least quadratic complexity in C41–43,75,76, the reasonable range for the para-
meters a and b is a≥1 and b≥2. Additionally, for simplicity, we neglect the
logarithmic factors that may appear in either the complexity of community
detection or community arrangement. Taking all of these factors into
account, we begin by presenting the complexity in the worst-case scenarios
in the following subsection, and then proceed to discuss more realistic
estimations.

Complexity in theworst-case scenarios. Let us suppose that the width
of the dendrogram produced by the algorithm is constant, meaning that
each level l = 1, . . . ,N− 1 consists of exactly two communities with sizes
N − l and 1, where N denotes the size of the input network. In this case,
community detection is performed on a network of sizeN− l at each level
l, while community arrangement is carried out for 2 different commu-
nities at each level. As a consequence, the complexity of CLOVE Ct can be
estimated by

CtðNÞ ¼O
XN�1

l¼0

ðN � lÞa þ 2b
� � !

¼ O
XN
l¼1

la þ 2b
� � !

� O Naþ1

aþ 1
þ 2bN

� �
� O Naþ1

� �
;

ð7Þ

which indicates that the overall runtime is primarily determined by the
runtime of the community detection algorithm. This happens when the
dendrogram is extremely deep, but has minimal width. On the other
hand, the opposite scenario-where the width is maximized and the depth
is minimized-also leads to a highly suboptimal case. In this situation,
there is only a single level containing N distinct communities, each of
which has size 1, resulting in a complexity of Ct ¼ OðNbÞ. Here, the
dominant factor in the overall complexity comes from the method used
to arrange the communities on the hyperbolic disk. Combining these
observations, the estimated worst-case complexity of CLOVE can
concisely be expressed as

CtðNÞ ¼ O Nmaxðaþ1;bÞ� �
: ð8Þ

Note, however, that the estimation in Eq. (8) is highly unrealistic, as CLOVE
typically produces dendrograms whose width and depth scale with the size
of the network. To provide a more reasonable estimation, in the following
subsection, we assume that the dendrogram generally takes the form of a
tree with a branching factor of q. In other words, each community at level l
decomposes into q smaller sub-communities at level l+ 1,where qmayvary
with the network size, i.e., q = q(N).

Complexity incaseofq-ary treedendrogram. If the dendrogram is a q-
ary tree each level l ¼ 1; :::; logqðNÞ � 1 comprises ql number of com-
munities with sizes N/ql. To resolve the sub-communities at the sub-
sequent level l + 1, the community detection method used in CLOVE
must be applied to the graphs induced by these communities. Each of
these operations has a time complexity of O ðN=qlÞa� �

alone, and there
are altogether ql number of such operations, which gives an overall
O qlðN=qlÞa� �

complexity for extracting the communities at level l + 1.
Since each of the ql communities at level l breaks down into q smaller
communities at level l+ 1, and each of these smaller groups requires local
sorting with a complexity ofOðqbÞ, the overall complexity for arranging
all the communities at level l+ 1 isOðqlþbÞ. Taking all these into account
and summing up the contributions at each level l ¼ 1; :::; logqðNÞ � 1,
the complexity of CLOVE in case of a q-ary tree dendrogram can roughly
be estimated by

CtðNÞ ¼O
XL�1

l¼0

qlðN=qlÞa þ qlþb

 !

¼O Na
XlogqðNÞ�1

l¼0

ðq1�aÞl þ qb
XlogqðNÞ�1

l¼0

ql

0
@

1
A ð9Þ

¼ O Na ðq1�aÞlogqðNÞ � 1
q1�a � 1

þ qb
qlogqðNÞ � 1

q� 1

 !
ð10Þ

¼ O Na N
1�a � 1

q1�a � 1
þ qb

N � 1
q� 1

� �
: ð11Þ

Sinceq>1, in the limit of largenetworks, i.e., asN→∞, Eq. (11) canbe safely
approximated by

CtðNÞ �
O Na

1�q1�a þ Nqb

q�1

� �
; if a≠ 1;

O N lnN
ln q þ

Nqb

q�1

� �
; if a ¼ 1:

8><
>: ð12Þ

Under the additional assumption that q(N) ~ N c for some 0 < c < 1, this
expression simplifies further to

CtðNÞ � O Na þ Ncb�cþ1
� �

; if a≠ 1;

O N þ Ncb�cþ1
� �

; if a ¼ 1;

(

¼ O Nmaxða;cb�cþ1Þ� �
:

ð13Þ

The default implementation of CLOVE employs Leiden40 for community
detection, which corresponds to a = 1 in the case of sparse networks (dis-
regarding logarithmic factors), and utilizes the Christofides algorithm with
an additional boost as a TSP solver41, implying b ≈ 3. By substituting these
hyperparameter values back into Eq. (13), the computational complexity of
the default CLOVE method further simplifies to

CtðNÞ � O N2cþ1
� �

; ð14Þ

which matches reasonably well with the results of numerical simulations in
Fig. 5. Although Eq. (13) offers a more realistic estimate than Eq. (8), it still
slightly overestimates the overall complexity, as the dendrograms used in
CLOVE are typically not perfect q-ary trees expanding uniformly with each
level, but rather irregular, narrowing graph structures that decrease com-
plexity compared to ideal trees.

Embedding quality metrics
Broadly speaking, embedding qualitymetrics are scalar values ranging from
0 to 1, used to quantify how well an embedding of a given network fits into
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the two-dimensional hyperbolic space. In order to reasonably assess the
quality of our resulting embeddings and to make meaningful comparisons
with other state-of-the-art methods, we systematically tracked various such
metrics for each and every studied embedding algorithm. The results of
these assessments are presented in themain text of themanuscript,while the
subsequent section provides a comprehensive list and detailed explanations
for each metric score employed in our analysis.

The Angular Separation Index (ASI) and the C-score. The introduc-
tion of the ASI was motivated by the fact that in hyperbolic networks,
communities tend to occupywell-defined angular regions, having little or
no overlap with each other, as observed in several studies in the
literature31,33,34,45. In order to quantify this tendency, the ASI counts the
number of “mistakes” in the angular arrangement, given by the number oi
of nodes belonging to other communities falling between the boundaries
of the given module i, aggregated over all communities. This is then
compared to themaximum of the observed number ofmistakes when the
angular coordinates are shuffled at random over a number of randomi-
sations, formally expressed as31

ASI ¼ 1�
PNcom:

i¼1 oi

maxr
PNcom:

i¼1 oðrÞi
� � ; ð15Þ

where we used 1000 independent shuffles labeled as r = 1, 2, …, 1000 by
following31. Based on the above, anASI value near 1 indicateswell-separated
clusters with minimal angular intermixing, while a value near 0 suggests
random angular arrangement of cluster members.

The C-score was introduced for hyperbolic networks with known
ground truth coordinates used during network generation as a quantitative
comparison between the angular ordering of the nodes in a hyperbolic
embedding and in the original layout18. Formally it is defined as

C� score ¼
P

i;j;i≠jδði; jÞ
NðN � 1Þ=2 ; ð16Þ

where δ(i, j) is 1 if the shortest angular distance between i and j has the same
direction (i.e., clockwise or anticlockwise) in both layouts, and is 0otherwise.
In order to allow the mirroring of the layout, the C-score is computed also
with the inferred angular ordering in the opposite clock direction, and the
maximum value between the C-score of the embedding and its mirrored
version is chosen.

Mapping accuracy. Mapping accuracy (MA) assesses the relationship
between geodesic distances and topological shortest paths in an
embedded network by determining the Spearman’s rank correlation
between the two:

MA ¼ cov ½RðGDÞ;R ðTPÞ�
θRðGDÞθRðTDÞ

: ð17Þ

Here, GD and TD represent the lists of geodesic distances and topological
distances for vertex pairs, respectively, while R(GD) and R(TD) denote the
corresponding ranks of these lists.

Edge prediction AUROC. The Edge Prediction AUROC is a measure
that evaluates how well an embedding reflects the anticipated pattern of
positioning connected vertices closer together than unconnected ones. It
involves computing the area under the ROC curve, where predicted
scores are determined by the inverse of vertex distances. Positive ground
truth classes are represented by existing edges, and negative ground truth
classes are represented by non-existing edges. The ROC curve depicts the
true positive rate (TPR) against the false positive rate (FPR), showcasing
the performance of a binary classifier across different acceptance
thresholds. An AUROC score of 0.5 is expected for a random predictor.

Edge predicition AUPRC. Edge Prediction AUPRC is an alternative
metric that assesses the same behavior as AUROC, but employs a
different approach. In this case, the area under the Precision-Recall
curve is computed for the same predictions and ground truth
occurrences.

Greedy routing success rate. The Greedy Routing Success Rate (GR) is
an embedding metric that evaluates the efficiency of Greedy Routing
paths in reaching their target vertex. This is determined by simply
counting the number of successful greedy paths and dividing this sum by
the total number of directed vertex pairs. More precisely, the GR score is
defined as

GR ¼ 1
jV jðjV j � 1Þ=2� 2jEj

X
8u 2 V

8v 2 �NðuÞ

ρðu; vÞ;
ð18Þ

where ρ(u, v) counts the number of successful greedy paths between vertices
u, v, �NðuÞ is the complement of theneighbourhoodof the vertexu, i.e. the set
of vertices v∈V that are not adjacent to u (including u itself). By excluding
adjacent vertex pairs in Eq. (18), we eliminate a constant offset from the
definitionof theGRmetric.This is due to the fact that suchpairs consistently
represent successful greedy paths in embeddings that forbid the assignment
of identical coordinates to more than one vertex.

Greedy routing score. TheGreedy Routing Score (GS) is an extension of
the previously discussed Greedy Routing Success Rate, introducing
weights to provide a more comprehensive metric for evaluating the
embedding quality. In this refined approach, successful paths are
assigned weights determined by the ratio of the topological shortest path
length between the source and target vertices to the number of visited
vertices along the greedy path. This weighting scheme ensures that the
contribution to the score is diminished for successful greedy paths that
are significantly longer than the topological shortest path. Mathemati-
cally, the GS can be expressed as

GS ¼ 1
jVjðjVj � 1Þ=2� 2jEj

X
8u 2 V

8v 2 �NðuÞ

TSPLðu; vÞ
GPL ðu; vÞ ; ð19Þ

where TSPL(u, v) is the length of the topological shortest path between
vertices u and v, andGPL(u, v) is the length of the greedy path starting from
vertex u and ending in v. If a path is unsuccessful, GPL(u, v) is set to infinity,
thus having zero contribution to the GS in Eq.(19).

Greedy routing efficiency. The Greedy Routing Efficiency metric
evaluates the relationship between geodesic distances and projected
greedy paths, as given by the formula:

GE ¼ 1
jVjðjVj � 1Þ=2� 2jEj

X
8u 2 V

8v 2 �NðuÞ

GDðu; vÞ
PGPL ðu; vÞ ; ð20Þ

where GD(u, v) is the geodesic distance between vertices u and v, and
PGPL(u, v) is the projected greedy path length between u and v, i.e. the sum
of the lengths traveled along the greedy path.

Data availability
All data used in this work is publicly available from the KONECT project at
http://www.orgnet.com. The access links the individual network data sets
are provided in the Supplementary Information.
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Code availability
The Python implementation of CLOVE will be available at http://github.
com/samu32ELTE/hypCLOVE upon publication.
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