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One- and two-dimensional solitons under
the action of the inverted cubic-quintic
nonlinearity
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The usual cubic-quintic (CQ) nonlinearity is proved to sustain one- and two-dimensional (1D and 2D)
broad (flat-top) solitons. In this work, we demonstrate that 1D and 2D soliton families can be
supported, in the semi-infinite bandgap (SIBG), by the interplay of a lattice potential and the
nonlinearity including self-defocusing cubic andself-focusingquintic terms,with the signcombination
inverted with respect to the usual CQ nonlinearity. The families include fundamental and dipole
solitons in 1D, and fundamental, quadrupole, and vortex solitons in 2D. The power, shapes, and
stability of the solitons are reported. The results are strongly affected by the positions of the solitons in
SIBG, the families being unstable very close to or very far from the SIBG’s edge. The inverted CQ
nonlinearity, considered in this work, sustains sharp 1D and 2D stable solitons, which can be naturally
used as bit pixels in photonic data-processing applications.

The formation of solitons1–3 is a fundamental topic in nonlinear physics4–8,
especially in the fields of nonlinear optics and photonics9–15 and quantum
matter, such as Bose-Einstein condensates (BECs)16–22. Various types of
soliton families have been reported, a majority of them representing one-
dimensional (1D) states23–25. The creation of 2D solitons is a challenging
issue, as self-focusing cubic andquintic nonlinear terms acting in the free 2D
space, modeled by equations of the nonlinear-Schrödinger (NLS) type, give
rise to the critical and supercritical collapse, respectively, which makes all
free-space solitons, supported by the self-focusing, unstable in 2D26–29. To
stabilize 2D and 3D solitons against the collapse, it was proposed to use
linear and nonlinear potentials29–33. In particular, spatially periodic linear
and nonlinear potentials, alias linear30,31,34–36 and nonlinear37–41 lattices, can
be used to build various types of stable 2D solitons, including fundamental
ones42, dipoles43–45, multipoles46,47, solitary vortices48,49, and half-vortices50.
The stable 2D solitons, pinned to the underlying lattice, offer a significant
potential for the use as bit pixels in various data-processing schemes51,52.
Obviously, narrow 2D solitons are required to realize this application.

Another setting that provides stabilization of 2D53–56 and 3D57,58 soli-
tons, including ones with embedded vorticity, includes competition of the
self-focusing cubic and defocusing quintic nonlinear terms, which can be
readily implemented in optical waveguides. In particular, stable 2D53,54 and
3D57 vortex solitons, as well as the fundamental (zero-vorticity) ones59,
supported by the cubic-quintic (CQ) nonlinearity have been predicted. A
characteristic feature of thesemodes is their flat-top shape, as the increase of

the input optical power can be accommodated by the spatial expansion of
the solitons, while their local intensity is bounded by the balance of the cubic
self-focusing and quintic self-defocusing nonlinearities.

While the composite nonlinearity of this type is quite natural, as it
appears as an approximate form of the saturable nonlinear response of the
dielectricmedium to thepropagating electromagneticwaves, other types are
physically relevant too. As demonstrated experimentally and explained
theoretically60–62, the CQ nonlinearity (and its extension including the
septimal term)63,64 can be efficiently engineered, including a possibility to
separately choose the signs and magnitudes of the cubic and quintic terms,
in opticalmaterials based on colloidal suspensions ofmetallic nanoparticles,
using their radius, which takes values in the range of 1–100 nm, and volume
fraction f of the nanoparticles, varying in the range of 10−5–10−4, as control
parameters. The effective nonlinearity is produced by the nanoparticles
through the surface-plasmon-resonance mechanism.

The freedom in the engineering of the composite nonlinearities sug-
gests one to consider the “unusual” case of the inverted CQ nonlinearity,
composed of defocusing cubic and focusing quintic terms, which is the
subject of the present work. The inverted CQ nonlinearity should be con-
sidered in the combination with a lattice potential, as, otherwise, there is no
chance to construct any stable self-trapped state in the model. In this work,
we demonstrate that this setting is promising for the above-mentioned
applications, as the stable solitons can be maintained by the interplay of the
cubic self-defocusing and quintic self-focusing nonlinearities in the desired
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formofnarrowpixels,while theusual combinationof the cubic focusing and
quintic defocusing nonlinearities gives rise to the above-mentioned broad
(flat-top) modes, which cannot be used as pixels.

It is relevant to mention that, in the case of the cubic or quintic self-
defocusingper se, self-trappedmodes canbe foundas gap solitons populating
finite bandgaps induced by the lattice potential, while no bright solitons exist
in the semi-infinite bandgap (SIBG)65. In the case of the self-focusing non-
linearity, solitonspopulate theSIBG,butdonot exist infinitebandgaps. In the
latter case, 2D solitons are unstable in the free-space SIBG (no lattice
potential) due to the occurrence of the collapse26–29. Nevertheless, both fun-
damental and vortical 2D solitons can be readily stabilized in the SIBGby the
lattice potential in the self-focusing cubic medium30,31. The objective of the
present work is to produce families of stable 1D and 2D bright solitons in
SIBG under the combined action of the lattice potential and inverted CQ
nonlinearity. These are narrow (pixel-like) solitons of the fundamental and
dipole types in 1D, and ones of the fundamental, quadrupole, and vortex
types in 2D. The soliton solutions are constructed in the numerical form, and
their stability is identified by means of systematically performed simulations
of the perturbed propagation.We conclude that the position of the solitons in
the SIBG essentially affects their shape and stability.

The subsequent presentation is arranged as follows. Systematically
collected numerical results for the soliton families are presented in the
section of results, which is divided in twoparts, reporting thefindings for 1D
and 2D solitons. The paper is concluded by the section of conclusion. Then
the model is introduced in section of “Methods”, where we also produce
some simple analytical results for broad and narrow solitons, which suggest
their stability in terms of the well-known Vakhitov-Kolokolov (VK)
criterion26,66.

Results
One-dimensional solitons
The Bloch bandgap structure67,68 produced by the linearization of the 1D
version of Eq. (5) with lattice potential (3) is plotted in Fig. 1a, b, for the
moderate (V0 = 1) and deep (V0 = 6) potentials, respectively, with SIBG and
1stBG standing for the semi-infinite bandgap and the first finite bandgap,
respectively, which are separated by thin Bloch bands plotted by curves of
different colors.

It is observed that solely the first finite bandgap is open atV0 = 1, while
there are two of them at V0 = 6. Here we address 1D solitons in SIBG. The
family of the fundamental solitons is represented in Fig. 1c by the respective

dependence of the soliton’s powerP (seeEq. (7)) on propagation constant b.
TheP(b) features a narrowVK-unstable intervalwith dP/db<0, followedby
a broad one with dP/db > 0. In addition, a family of 1D dipole solitons is
represented by the corresponding P(b) curve in Fig. 1d. Naturally, for any
given b, the power of the dipoles is approximately twice its counterparts for
the fundamental solitons plotted in Fig. 1c.

Blue and red segments of the curves displayed in Fig. 1c, d represent
stable and unstable parts of the respective soliton families. Obviously, all
stable subfamilies satisfy theVK criterion, dP/db > 0, which, as said above, is
a necessary (but not sufficient) condition for the stability of solitons26,66. The
transition to instability of the fundamental and dipole solitons at larger
values of thepower (atP>1.83 andP>3.66, respectively,which correspond,
approximately, to −b < 0.3), i.e., deeper in the SIBG, is a natural effect, as,
deeply enough, the effectof the lattice potential becomes immaterial, and the
combination of the defocusing cubic and focusing quintic nonlinear terms
leads to instability as usual.

Profiles of typical 1D fundamental and dipole solitons, which are
marked by labels A1, A2 and B1, B2 in Fig. 1c, d are plotted in Fig. 2. It is
observed that, in accordance with the above-mentioned expectation, the
solitons take the shape of narrow pixels, which makes them appropriate for
applications. Further, note that eachpeakof ∣U(x)∣of the stabledipole, plotted
at b =−0.9 in Fig. 2b, is similar to the stable fundamental soliton, which is
plotted in Fig. 2a for the same value of b. While the stable solitons, such the
fundamental and dipole ones, displayed here for b =−0.9, which reside deep
in the SIBG, feature, respectively, the simple single- or double-peak shapes,
unstable solitons, which reside close to the SIBG edge (such as the ones
displayed in Fig. 2d, e for b =−1.55), demonstrate additional lower peaks
near themain ones,whichmakes their shape essentially different from that of
pixels. This feature is naturally explained by the fact that the unstable solitons
are located close to the Bloch modes, which are represented by spatially
periodic multi-peak patterns. The eigenvalues λ, produced by the numerical
solution of Eq. (10) for the solitons in panels (b) and (e), are presented in
panels (c) and (f), respectively. Obviously, panel (c) implies that the soliton in
panel (b) is stable, while the one inpanel (e) is unstable, according to panel (f).

To further investigate the variation of the solitons with the decrease of
∣b∣ for the 1D solitons, we display their amplitude jUðxÞjmax vs. the pro-
pagation constant b for 1D fundamental and dipole gap solitons in Fig. 1e, f,
respectively. It is obvious that the amplitude grows monotonously with the
decrease of ∣b∣, being nearly identical for the fundamental solitons and
dipoles.

Fig. 1 | Bandgap spectra, power and amplitude of
1D soliton families. a, b The bandgap spectrum
produced by the 1D version of the linearized equa-
tion (5) with potential (3), for V0 = 1 (a) and V0 = 6
(b). The spectrum is plotted in the plane of the quasi-
momentum k of Bloch modes and propagation
constant b. The red, blue, and green strips represent
the first, second, and third Bloch bands, respectively.
Acronyms SIBG and 1stBG stand for the semi-
infinite and first bandgaps, respectively. c, d The
soliton’s power P vs. propagation constant b in the
SIBG for families of 1D fundamental (c) and dipole
(d) solitons in the deep lattice potential, withV0 = 6.
Blue and red segments of the curves represent stable
and unstable solitons, respectively. e, f The ampli-
tude (maximumvalue of ∣U(x)∣) of the families of 1D
fundamental (e) and dipole (f) solitons atV0 = 6. The
vertical gray areas in panels (c–f) stand for the first
Bloch band.
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The (in)stability of the 1D solitons, which are represented by the blue
(stable) and red (unstable) colors of the P(b) curves in Fig. 1c, d, was corro-
borated by simulations of the perturbed evolution, examples of which are
presented in Fig. 3, including the evolution of the solitons whose stationary
shape is displayed in Fig. 2, which correspond to b =−0.9 and b =−1.55 for
stable andunstable ones, respectively. Inparticular, in this andother cases, the
unstable solitons exhibit gradual decay in the course of the propagation.

In addition to the fundamental and dipole solitons, Fig. 3 also exhibits
examples of stable and unstable higher-order solitons, viz., tripole and
quadrupole ones,which canbe readily constructed as additional solutions of
Eq. (5). As well as the fundamental and dipole solitons, the higher-order
ones are stable for b =−0.9 and unstable for b =−1.55.

The evolution of unstable fundamental and dipole solitons, which
belong to the red high-power segments inFig. 1c, d, is displayed in panels (a)

Fig. 2 | Profiles and eigenvalues of linear stability
analysis for 1D soliton families. Profiles of the 1D
stable fundamental (a) and dipole (b) soliton found
at b =−0.9, which correspond, respectively, to labels
A1 and B1 in Fig. 1c, d. c Eigenvalues produced by
the numerical solution of Eq. (10) for the soliton in
(b). Unstable fundamental and dipole solitons,
found at b = −1.55, which correspond to labels A2
and B2 in Fig. 1c, d, are plotted in panels (d) and (e),
respectively. fEigenvalues λproduced byEq. (10) for
the soliton in panel (e). The corresponding solutions
of Eq. (5) are obtained for potential (3) with V0 = 6.
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Fig. 3 | Perturbed propagations of 1D soliton families. The top row displays the
stable perturbed propagation of 1D solitons with b =−0.9: a the fundamental soliton
(which corresponds to point A1 in Fig. 1c); b the dipole soliton (corresponding to
point B1 in Fig. 1d); c the tripole soliton; d the quadrupole one. The middle row
displays the unstable propagation of the solitons with b =−1.55: e the fundamental

soliton (corresponding to point A2 in Fig. 1c); f the dipole soliton (corresponding to
point B2 in Fig. 1d); g the tripole soliton; h the quadrupole one. The bottom row
displays the unstable propagation of the solitons with b =−0.02: i the fundamental
soliton (corresponding to point A3 in Fig. 1c; j the dipole soliton (corresponding to
point B3 in Fig. 1d); k the tripole soliton; l the quadrupole one.

https://doi.org/10.1038/s42005-025-02355-z Article

Communications Physics |           (2025) 8:443 3

www.nature.com/commsphys


and (j) of Fig. 3. The higher-order unstable solitons with high power are
presented there too, featuring weak oscillations in the course of the
evolution.

Two-dimensional solitons
The Bloch bandgap spectrum69–71 produced by the linearized version of the
2Dequation (5) is presented inFig. 4 for the 2Dpotential (2)withV0 = 1 and
V0 = 6. As in Fig. 1, SIBG and 1stBG denote the semi-infinite and first finite
bandgaps, respectively. Panel (a) shows that only a narrow first bandgap
opens withV0 = 1, while both the first and second ones open withV0 = 6 in
panel (b). As above, we here focus on solitons populating SIBG.

Families of 2D fundamental and quadrupole solitons, produced by the
numerical solution of Eq. (5), are represented by the corresponding P(b)
curves (for the 2D integral power defined as per Eq. (6)) in Fig. 5a, b, where,
similar to Fig. 1c, d, stable and unstable subfamilies are designated by the

blue and red colors, respectively. Naturally, for any given b the total power
(6) of the quadrupole soliton is almost exactly fourfold the power of the
fundamental soliton with the same b. A difference from the similar results
for families of fundamental and dipole solitons in 1D, presented above in
Fig. 1c, d, is that the transition to the instability deep inside SIBG is more
pronounced (which is natural in the 2D case) and is explicitly related to the
breakup of the VK criterion.

Similar to the situation reported for the 1D solitons in Fig. 1c, d, stable
subfamilies of the 2D solitons obey the VK criterion in Fig. 5a, b. On the
other hand, an essential difference from the results for the 1Dmodel is that
the P(b) curves for the 2D solitons include relatively broad unstable seg-
ments deeper inside SIBG (specifically, these are ones at −b < 2.5 for the
fundamental solitons, and at −b < 2.57 for quadrupoles), whose instability
(unlike that of the above-mentioned narrow intervals of 1D unstable soli-
tons in Fig. 1c, d, at −b< 0.3) is directly explained by the violation of theVK
criterion. Indeed, the strongly destabilizing effect of the quintic self-focusing
term deeply in SIBG, where the effect of the lattice potential is immaterial, is
a natural feature in the 2D setting.

The families of the 2D fundamental and quadrupole solitons are
additionally characterized, in Fig. 5c, d, by the respective dependences of
their amplitude, jU jmax, on the propagation constant b. These dependences,
which are nearly identical for the fundamental solitons andquadrupoles, are
quite similar to their counterparts for the 1D fundamental and dipole
solitons, cf. Fig. 1e, f.

The shapes of the 2D fundamental solitons and quadrupoles, labeled
byC1,C2 andD1,D2 in Fig. 5a, b, are plotted in Figs. 6 and 7, respectively,
bymeans of 3D views and power contour plots in the x; y

� �
plane. Similar

to what is reported above for the 1D solitons in Fig. 2, the stable 2D
solitons and quadrupoles, located relatively deep in SIBG, feature isolated
sharp peaks (a single one for the fundamental soliton, and four identical
ones for the quadrupole), thus corroborating their potential use as pixels
in the applications, while the unstable solitons and quadrupoles, residing
close to the SIBG edge, exhibit additional small peaks around the major
ones, which makes them different from pixels. The eigenvalues λ of the
instability growth rate for these 2D modes are displayed in the right
columns of Figs. 6 and 7. In addition, the perturbed propagation of the
fundamental and quadrupole solitons are displayed in Figs. 8 and 9,
respectively.

The stability of 2D solitons was also identified by means of systematic
numerical simulations of their perturbed propagation. Typical examples of
the stable and unstable propagation of the 2D fundamental soliton with
propagation constants b = −2.8 and −3.15 are displayed in the left and
middle columns of Fig. 8. In particular, the unstable mode suffers gradual
decay in the course of the propagation, similar to the instability of the 1D
solitons (cf. Fig. 3e–h). In addition, the unstable propagation of 2D

Fig. 4 | The 2D Bandgap spectra. a, b The bandgap
spectrum produced by the linear version of the 2D
equation (5) with potential (2), for V0 = 1 (a) and
V0 = 6 (b). The spectrum shows the propagation
constant b of Bloch modes vs. the components kx
and ky of their quasi-momentum. As in Fig. 1,
acronyms SIBG and 1stBG stand for the semi-
infinite and the first bandgaps, respectively. In (a),
surfaces denote, from top tp bottom, the first, sec-
ond, third, fourth, and fifth Bloch bands.
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fundamental solitons deep in SIBG (with b =−2.3) is displayed in the right
column of Fig. 8. It is seen that the latter soliton suffers distortion in the
course of the propagation.

Similar results for the perturbed propagation of stable and unstable
quadrupole solitons are presented in Fig. 9. The gradual decay of unstable
quadrupoles is similar to that exhibited by the unstable 2D fundamental
solitons.

Solitons with embedded vorticity are also supported in the present
model, as shown inFig. 10bymeans of the contour andphases plots, and the
(in)stability eigenvalues for the vortex solitons with b = −2.8 and −3.1.
According to panel (c), the vortex from panel (a) is stable. On the other
hand, the vortex soliton in panel (d) is unstable, according to (f).

The perturbed propagations of the vortex solitons from Fig. 10 is
displayed in Fig. 11. This figure corroborates their stability in panels (a1, a2)
and instability in (b1, b2), respectively. It is seen that the stable vortex soliton
keeps its integrity in the course of the long-distance propagation (the top
row), while the unstable one is destructed (the bottom row).

Conclusion
We have demonstrated that stable 1D and 2D solitons of several types
(fundamental solitons, dipoles, quadrupoles, and vortices), belonging to
the SIBG (semi-infinite bandgap) in the system’s spectrum, can be
sustained by the unusual (inverted) but physically relevant combination
of the self-defocusing cubic and focusing quintic nonlinearities, in the
combination with the lattice potentials. On the contrary to the broad
(flat-top) solitons supported by the usual CQ (cubic-quintic)

nonlinearity, the inverted setting gives rise to stable narrow 1D and 2D
ones, which may be used as bit pixels in photonic data-processing
schemes. The inverted form of the CQ nonlinearity can be realized
experimentally in terms of the light propagation in a colloidal material
containing metallic nanoparticles. The soliton modes produced in this
work are characterized by their shape, power, and stability, which are
essentially affected by the position of the solitons in SIBG (semi-infinite
bandgap). Stable 1D and 2D soliton families obey the well-known VK
(Vakhitov-Kolokolov) stability criterion, the solitons being unstable in
narrow intervals of the propagation constant near the SIBG’s edge.
Unlike the sharp (pixel-like) stable solitons, the unstable ones feature
profiles that include low-amplitude peaks in addition to the sharp central
ones. The solitons are also unstable deep inside SIBG, where the effect of
the lattice potential becomes immaterial, and the combination of the
defocusing cubic and focusing quintic terms naturally leads to the
instability.

Themodel considered in this workmay be realized in opticalmedia. In
particular, a natural implementation of the 1D and 2D settings is possible,
respectively, in planar and bulk waveguides built in colloidal suspensions of
metallic nanoparticles60–62. The effective lattice potentials can be induced by
spatially patterned distributions of dopants in the waveguide, which affect
the linear interaction of the propagating light with the underlying material,
cf. ref. 72.

The results reported in this work are helpful for the comprehensive
understanding of the bright solitons supported by competing non-
linearities, such as that represented by the CQ terms with the inverted

Fig. 6 | The 3D views, contour maps, and eigenvalues of linear stability analysis
for 2D fundamental solitons. The 3D view (a), contour map of jU x; y

� �j (b), and
eigenvalues λ produced by Eq. (10) (c) for the stable 2D fundamental soliton, labeled

C1 in Fig. 5a, which is obtained as the numerical solution of Eq. (5) with b=−2.8 and
depth V0 = 6 of the lattice potential (2). Panels (d–f) show the same, but for the
unstable soliton with b = −3.15, which is labeled C2 in Fig. 5a.

https://doi.org/10.1038/s42005-025-02355-z Article

Communications Physics |           (2025) 8:443 5

www.nature.com/commsphys


combination of their signs (defocusing cubic and focusing quintic). The
solitons of the fundamental and higher-order types (dipoles, multipoles,
and vortices) are considered in the 1D and 2D geometries. The stable
solitons, featuring narrow shapes, may find applications as pixels in
photonic setups.

As an extension of the work, it may be interesting to explore vortex
solitons with higher values of the topological charge, and 2D solitons in the
model combining the inverted CQ nonlinearity in combination with lattice
potentials of other types, such as triangular, hexagonal, andquasiperiodic. In
addition, soliton families in two-component systems with the inverted CQ
nonlinearity may also be an interesting subject, including the fundamental,
dipole, multipole, and vortex solitons.

Methods
The basic equations
The propagation of amplitude E x; y; z

� �
of the optical wave under the

action of the inverted CQ nonlinearity, with the cubic and quintic coeffi-
cients, g > 0 and ξ < 0, and 2D lattice potential V x; y

� �
, is governed by the

respective NLS equation, written in the scaled form56,73:

i
∂E
∂z

¼ � 1
2
∇2E þ V x; y

� �
E þ g∣E∣2E þ ξ∣E∣4E ð1Þ

(or its 1D reduction). Here, z is the propagation distance, and the paraxial-
diffraction operator,∇2 = ∂2/∂x2+ ∂2/∂y2, acts on the transverse coordinates,
x; y
� �

. The lattice potentials with depth 2V0 > 0 (orV0 > 0, in 1D) are taken

in the usual form69,

V2D ¼ V0 ðsin2x þ sin2yÞ; ð2Þ

V1D ¼ V0 sin
2x: ð3Þ

The numerical results are reported below for coefficients g = 1 and ξ =−1
(one of these values is fixed by scaling, while the choice of the other one
makes it possible to produce generic results).

Stationary solutions of Eq. (1) with a real propagation constant b are
looked for as

E ¼ U x; y
� �

expðibzÞ; ð4Þ

where the stationary wave function U satisfies the equation

�bU ¼ � 1
2
∇2U þ V x; y

� �
U þ gjUj2U þ ξjUj4U: ð5Þ

The 2D and 1D stationary solutions are characterized by their total power:

P2D ¼
Z Z

∣Uðx; yÞ∣2dxdy; ð6Þ

P1D ¼
Z

∣UðxÞ∣2dx: ð7Þ

Fig. 7 | The 3D views, contour maps, and eigenvalues of linear stability analysis
for 2D quadrupole solitons. The 3D view (a), contour map of jU x; y

� �j (b), and
eigenvalues λ produced by Eq. (10) (c) for the stable 2D quadrupole soliton, labeled

D1 in Fig. 5b, which is obtained as the numerical solution of Eq. (5)with b=−2.8 and
depth V0 = 6 of the lattice potential (2). Panels (d–f) show the same, but for the
unstable soliton with b = −3.15, which is labeled D2 in Fig. 5b.
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As discussed in the Introduction, the crucially important issues are the
ability of the model to produce stable narrow (pixel-like) solitons. As con-
cerns the stability, perturbed solitons solution are introduced in the usual
form,

Eðx; y; zÞ ¼ ½Uðx; yÞ þ pðx; yÞeλz þ q�ðx; yÞeλ�z�eibz; ð8Þ

where p(x, y) and q(x, y) are components of the eigenmode of small per-
turbations with a stability eigenvalue λ, the instability taking place if there is,
at least, a single eigenvalue with Re λð Þ > 0, and the asterisk (*) stands for the
complex conjugate. In the 1D case, the perturbed solution is sought for as

Eðx; zÞ ¼ ½UðxÞ þ pðxÞeλz þ q�ðxÞeλ�z�eibz : ð9Þ

The substitution of the perturbed solution (8) into Eq. (1) and linearization
with respect to the small perturbations leads to the eigenvalue problem for λ,
represented by the following system of coupled equations:

iλp ¼ � 1
2∇

2pþ ðbþ VÞpþ gUð2U�pþ UqÞ
þξU2U�ð3U�pþ 2UqÞ;

iλq ¼ þ 1
2∇

2q� ðbþ VÞq� gU�ð2Uqþ U�pÞ
�ξðU�Þ2Uð3Uqþ 2U�pÞ:

ð10Þ

Stationary solutions are foundbelowbymeans of the squared-operator
method74, then the eigenvalues of instability growth rate are calculated by
the Fourier collocation method75, and the commonly known finite-

difference marching scheme is employed to simulate the perturbed pro-
pagation of the solitons.

Estimates of the stabilization of the Townes solitons (TSs) by the
lattice potential
Asmentioned above, the simplest stability condition is provided by the VK
criterion. In terms of definiton (4), it takes the form of

dP2D;1D=db > 0: ð11Þ

Note that the solitons are unstable not only in the case ofdP2D,1D/db< 0, but
also in the case of the Townes solitons (TSs) viz., the 1D and 2D ones in the
free space with the quintic or cubic self-focusing, respectively, which form
degenerate families, whose integral power (norm) does not depend on the
propagation constant, b, i.e., dP2D,1D/db= 0

26,65,76. In particular, the family of
the TS solutions of the 1D version of Eq. (5), with g = 0 and ξ = 1, is (for all
positive values of b)

UTSðx; bÞ ¼
3bð Þ1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh 2
ffiffiffiffiffi
2b

p
x

� �q : ð12Þ

The integral power of this solution indeed does not depend on b:
P1D

� �
g¼0 ¼

ffiffiffiffiffiffiffi
3=2

p
ðπ=2Þ. The initial development of the TS instability is

slow (of the power-law type, rather than exponential26), as it is formally
accounted for by vanishing instability growth rates. Therefore, it was
possible to experimentally observe weakly unstable 2D TSs in a binary BEC
under perturbation-free conditions77.

Fig. 8 | Perturbed propagations of 2D fundamental solitons. The perturbed
propagation of 2D fundamental solitons in the framework of Eq. (1) with depth
V0 = 6 of potential (2): a1–a2: the stable propagation with b = −2.8, which

corresponds to label C1 in Fig. 5a; b1–b2: the unstable propagation with b =−3.15,
which corresponds to label C2 in Fig. 5a; c1–c2: the unstable propagation
with b = −2.3.
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TheVKcriterionmakes it possible topredict the stabilizationof theTSs
by theweak lattice potential [presentedby the small coefficientV0≪ 1 inEq.
(3)] in the limit cases of very broad and very narrowTSs. In the former case,
which corresponds to b≪ 1 in Eq. (12), a perturbed solution of the 1D
version of Eq. (5) with g = 0 is looked for as

UðxÞ ¼ UTSðx; bÞ þ δUb≪1ðxÞ;

with correction δUb≪1(x) determined by the linearized equation:

� βδUb≪1 þ
1
2
d2

dx2
δUb≪1 � 5U4

TS x; β
� �

δUb≪1

¼ V0 sin
2x � UTS x; β

� �
;

ð13Þ

with β≡ b+V0/2. It is easy to see that, in the limit of β≪ 1, an approximate
solution to Eq. (13) is

δUb≪1ðx; βÞ �
V0

4
cosð2xÞ � UTS x; β

� �
: ð14Þ

The respective correction to the integral power P1D is

δPb≪1ðβÞ � 2
Z þ1

�1
UTSðx; bÞδUb≪1dx

¼
ffiffiffi
3
2

r
π

4
V0 sech

π

2
ffiffiffiffiffi
2β

p
 !

:

ð15Þ

Obviously, this expression produces dδPb≪1/db≡ dδPb≪1/dβ > 0, hence the
VK criterion (11) holds for the broad TSs perturbed by the lattice potential,
clearly suggesting the stabilization.

In the opposite limit of narrow TSs, which corresponds to b≫ 1 in Eq.
(12), it is sufficient to expand potential (3) around the potential’sminimum,
x = 0, which replaces the 1D version of Eq. (5) with g = 0 by the following
equation:

�bU ¼ � 1
2
d2U
dx2

þ V0x
2U � U5: ð16Þ

A simple analysis demonstrates that, in the case of large b, the respective
correction to theTS solution (12), produced by the perturbation termV0x

2U
in Eq. (16), is

δUb≫1ðx; bÞ � 31=4
4

V0b
�3=4x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh 2
ffiffiffiffi
2b

p
xð Þ

p
× 1� 2

ffiffiffiffiffi
2b

p
x tanh 2

ffiffiffiffiffi
2b

p
x

� �� �
;

ð17Þ

cf. Eq. (14). The respective correction to the integral power is

δPb≫1 � �
ffiffiffi
3

p
π3V0

128
ffiffiffi
2

p
b2

ð18Þ

[cf. Eq. (15)], which also satisfies the VK criterion (11). The fact that the TS
family perturbed by the lattice potential may be stable in the limits of the
broad and narrow solitons suggests that the entire familymay be stable. The

Fig. 9 | Perturbed propagations of 2D quadrupole solitons. The perturbed pro-
pagation of 2D quadrupole solitons in the framework of Eq. (1) with depthV0 = 6 of
potential (2): a1–a2: the stable propagation for b =−2.8, which corresponds to label

D1 in Fig. 5b; b1–b2: the unstable propagationwith b=−3.15, which corresponds to
label D2 in Fig. 5b; c1–c2: the unstable propagation with b = −2.3.
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full numerical analysis confirms that, indeed, the family of 1D fundamental
solitons is almost entirely stable; see Fig. 1c–f.

Data availability
The data supporting the results of this paper are available from the corre-
sponding author upon reasonable request.
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