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Symmetry protected topological (SPT) phases are fundamental quantum many-body states of matter
beyond Landau’s paradigm. Here, we introduce the concept of quantum restoration of SPT (QRSPT)
phases, where the protecting symmetry appears to be spontaneously broken at the shortest
spatiotemporal scales, but restored after averaging over quantum fluctuations, so that topological
features re-emerge. To illustrate the concept, we study a one-dimensional fermionic Su-Schrieffer-
Heeger model with fluctuating superconducting order. We solve this problem in several limiting cases
using a variety of analytical methods and compare them to numerical (density matrix renormalization
group) simulations, which are valid throughout the parameter regime. We thereby map out the phase

diagram and identify a QRSPT phase with topological features which are reminiscent of (but not
identical to) the topology of the underlying free fermion system. The paradigm of QRSPT phases
thereby stimulates a new perspective for the constructive design of novel topological quantum many-

body phases.

Symmetries play an exceptional role in characterizing quantum materials.
On the one hand, following Landau’s legacy', spontaneous symmetry
breaking (SSB) has been of paramount importance for classifying many-
body ground states. More recent advances demonstrate that, even when
symmetry-breaking order parameters form locally, strong quantum fluc-
tuations of their orientation may impede true SSB and give way to exotic
phenomena such as vestigial order™’ and quantum paramagnetism such as
quantum spin liquids’ - a mechanism sometimes called “quantum
restoration” of symmetry’™. On the other hand, symmetries are also of
paramount importance for characterizing order beyond the Landau para-
digm. Specifically, a given Symmetry Protected Topological (SPT) phase’"!
represents a class of gapped short-range entangled many-body quantum
states that cannot be connected adiabatically to a different SPT phase aslong
as the symmetry is unbroken'”. Amongst the most glaring properties that are
robust to symmetry-preserving perturbations are protected gapless
boundary excitations in the presence of non-trivial SPT order.

Classic examples of states exhibiting non-trivial SPT order are free
fermion topological insulators™ and the bosonic, strongly correlated “Hal-
dane” phase of antiferromagnetic spin-1 chains'“"". There exist multiple
theoretical and numerical ways of characterizing and detecting phases (or
classes) of SPT order''*. In particular, the classification of interacting SPT
phases (for a given symmetry group) can be different from their non-

interacting counterpart™ .

Of particular interest for the present work are SPT phases where the
protecting symmetry is present only on average. The historically first
example regards disordered systems where the symmetry may be broken in
each realization, but restored upon ensemble average” . In mathematical
terms, consider disorder fields ¢ with a probability distribution P[¢], which
is invariant under the protecting symmetry. Then, the effective Euclidean
action of replicated matter fields v,

seff[{w,}]=—1n( / D¢P[¢]exp{—Zso[wr,¢]}>, )

may display features of an SPT phase even if So[y,, ¢] for a given config-
uration ¢ breaks the protecting symmetry. Recent advances generalize the
concept of such average SPT phases to amorphous systems” and open
quantum systems with decoherence and mixed quantum states™.

In this paper, we introduce the concept of quantum restoration of
symmetry protected topological (QRSPT) phases: They occur in failed SSB
states where strong quantum fluctuations of the local order parameter
orientation lead to restoration of a symmetry protecting an SPT phase.
Subsequently, the main part of the paper is devoted to an exemplary model,
a spinful Su-Schrieffer-Heeger model with fluctuating s-wave super-
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conductivity (see Eq. (3)), displaying the outlined general phenomenology.
We have obtained the phase diagram of this model using various analytical
and numerical techniques. The QRSPT phase obtained for this model
confirms the above-mentioned idea of how quantum fluctuations can
restore the symmetries in certain regimes.

Results and Discussions

Quantum restoration of SPT phases

For an illustration of the general QRSPT paradigm, see Fig. 1. First, con-
centrate on a clean, free fermion topological insulator or superconductor
with symmetry group G. Unitary symmetries allow to block diagonalize the
Bloch Hamiltonian, each block being subsequently topologically scrutinized
by the tenfold-way methodology ™. In particular, we consider the case where
the topological invariants in the various blocks are non-zero but sum up to
zero. Importantly, the protecting symmetry ensures different quantum
numbers for zero boundary states emanating from different blocks, pre-
cluding any mutual annihilation.

Next, Fig. 1b), we include interactions and assume that a finite order
parameter amplitude develops such that the symmetry which ensures the
block-diagonalization of the Hamiltonian appears to be spontaneously
broken. At the level of a static mean-field order parameter, one may still
resort to non-interacting band topology but the Bloch Hamiltonian can no
longer be block diagonalized. It must thus be treated as a whole, and the
topological invariant vanishes.

The formation of mean-field order parameters is insufficient to
demonstrate actual SSB. In particular, for continuous groups G, quantum
fluctuations of the orientation of the order parameter ("Goldstone modes”
¢) may inhibit true long-range order. In this case, at the longest time/length
scales G symmetry is recovered and can lead to quantum restoration of SPT
phenomenology, Fig. 1c). In mathematical terms, the effective Euclidean
action of fermions y

Seff[v/] =—In (/ D¢ eXp{_S[W? ¢] - SGoldstone[¢]}) ) (2)

displays features of a SPT phase, even though a given order parameter field
configuration ¢ breaks the protecting symmetry G at each instance of
imaginary time.

We conclude this section with a few comments. First, the difference
between the average over static disorder in Eq. (1), and the average over
Goldstone modes in Eq. (2) is the appearance of temporal correlations. These
are a consequence of Ehrenfest’s theorem, which ties real-time quantum
fluctuations of the observable ¢ to their commutator with the Hamiltonian
(one may equally well represent Eq. (2) in the Wick-rotated real-time field
integral). Second, the reader may question the physical relevance of the
intermediate technical step, Fig. 1b), which introduces a static symmetry-
breaking order parameter. On the one hand, the two-step logic may reflect
theoretical approaches in which, first a mean-field solution is searched and
subsequently fluctuations are included. It is valid in situations that are parti-
cularly relevant to low dimensions, where the coherence length/time scales of

quantum restoration may be exponentially larger than spatiotemporal scales
suggested by mean-field physics. On the other hand, independently of any
methodology, the QRSPT phases explain how SPT states emerge near SSB, e.g,,
how the blue SPT phase emerges out of the green superconductor in Fig. 2c).
Third, in the above, we discussed the situation of intrinsic SSB within the
topological fermionic system. In one and two dimensions, it is equally con-
ceivable that the fluctuating order parameter and the Goldstone modes ¢
emanate from proximitizing the G-symmetric fermionic material with a sec-
ond material with spontaneous symmetry breaking (e.g., a magnet or super-
fluid). Such a heterostructure also represents bona-fide implementation of
two-fluid models of the type of Eq. (2). Fourth, we highlight that the interplay
of Dirac electrons with quantum disordered order parameters, in particular
through condensation of topological defects, has been discussed in the past,
particularly in connection with interacting topological insulator boundary
states” and with the paradigm of symmetric mass generation®. Fifth, one may
wonder what happens to the system if the quantum fluctuations are weak and
the true long-range order is established. Per Goldstone’s theorem, the bulk
system is gapless, yet it is possible that the underlying free fermion topology
enforces the emergence of additional topological terms in the action describing
order parameter fluctuations™”, leading potentially to topological Goldstone
phases of matter”. Finally, one may argue that S{y] is nothing but a model
for a very specific interacting fermionic SPT phase™*, in particular when ¢
correlations are short-range deep in the quantum disordered state, so that
Sely] describes a local theory. While this statement is in principle true, the
model scrutinized in this paper demonstrates that the paradigm of QRSPT
phases promises much richer physics, in particular near the phase transitions
of the system, where fermions and Goldstone bosons mutually stabilize the
physics of long-range interacting quantum systems" (the classic solid state
example is RKKY*™ interactions).

Model

As a paradigmatic model to illustrate the concept of QRSPT phases, we study a
mesoscopic topological Josephson junction array. We assume fermionic
quantum dots forming a spinful Su-Schrieffer-Heeger (SSH)**** chain, Fig. 2a)
and couple it to an array of floating superconducting islands” as follows

H=E.Y N+~ N
X
- Z(t d;(,A,UdX,B,U + t, d;(+17A,UdX,B,0' + H'C~)
X, 0 (3)

A -
—iy 7t i

- 5X§ (e ’¢xdxj‘g[ay]w,dx o T HC),
40,0

where X € 7Z,j€{A, B} and 0 € {1, |} denote the unit cell, sublattice of SSH
chain and the spin, respectively. The operator Ny, = —id, measures the
number of Cooper-pairs at the Xth Cooper-pair box and is conjugate to the
Cooper-pair annihilator e~*x (i.e. to the fluctuating superconducting order
parameter). Similarly 71y = Zjvgd; jox o measures the number of
electrons in the unit cell X. We denote the unit cell using the uppercase

Fig. 1 | Illustration of the quantum restoration of a
symmetry protected topological phase. a Consider
a free fermion symmetry protected topological
(SPT) phase where the symmetry group G prevents
the admixture of distinct topological sectors of the
Bloch Hamiltonian and of zero-energy boundary
states with distinct quantum numbers.

b Spontaneous symmetry breaking (SSB) of G tri-
vializes the free fermion topology, but ¢ strong
quantum fluctuations of the order parameter may
destroy long-range order even if the local expecta-
tion value of the order parameter amplitude is non-
zero. Thereby, topological features reemerge, and
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Fig. 2 | Schematic representation of the model and
the phase diagram at the mean field level and
beyond. a Schematic representation of the model,
Eq. (3). The rectangular boxes denote the Cooper
pair boxes. b Phase diagram of the Bogoliubov-de
Gennes free-fermion Hamiltonian, Eq. (4): A breaks
the symmetry protecting the free-fermion topology
(cf Fig. 1b) so that topological and trivial phases may
be adiabatically connected. TI and triv.I. represent
topological and trivial insulator respectively. Note
that there is a gap closure (as expected from standard
SSH physics) at t = t' (for A = 0). ¢ Schematic phase
diagram of Eq. (3). Note the region exhibiting 0
quantum restoration of symmetry protected topo-

logical (QRSPT) phase appears at small A and ¢ <t'.
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index X, whereas the lowercase index x represents the continuum position
variable (appears later in the paper). Note that the proximity-induced
coupling strength A is much smaller than the bulk superconducting gap; this
allows to ignore the quasiparticle states within the superconductor for
physical considerations limited to the lowest energy excitations of the
model. We also assume that the dimensions of the superconductor are much
larger than the coherence length of the Cooper-pairs, which allows us to
neglect crossed Andreev reflection’’”*’. For simplicity, we set the Josephson
coupling between the superconducting islands to be zero. We restrict
ourselves to Ei, </t + 2 (since our analytical calculations are only valid
in this regime) and even values of the gate voltage N,. The basic symmetries
of Eq. (3) are the conservation of total charge > 2Ny + i1y (U(1)
symmetry) and a combined sublattice and particle-hole transformation
denoted by C, see methods and supplementary note 1.

We first elucidate in which sense Eq. (3) displays QRSPT phenom-
enology. At A = E¢ = 0, the fermionic sector decouples from bosons and
displays standard SSH topology. Next, we include superconductivity. A
static mean-field approximation corresponds to Ec = 0 such that the
superconducting phase at each island becomes a classical variable which we
gauge to ¢x = 0, throughout. The Bloch Hamiltonian in Nambu space

D
H(p) = ( Df(p) g”)) (42)
[ —(t+teP) iA
IXp)—-( —iA (t+—ﬂe—¢))’ (4b)

ceases to be block diagonal in the presence of A (U(1) and C symmetry
breaking) term, thereby losing the compensated topology of electron and
hole bands, cf. the loss of winding numbers of D(p) illustrated in Fig. 1a) vs.
b). Note that commonly Bardeen-Cooper-Schrieffer (BCS) trial states are
not regarded as Slater determinants. However, using the combination of
spin-selective particle-hole symmetry and unitary (Bogoliubov) transfor-
mation, they can be manifestly written as a Slater determinant™. Thus, we
have used the term trivial Slater insulator for trivial BCS states as well. The
model is gapped for all non-zero values of A, Fig. 2b), thus allowing for an
adiabatic connection of the topological phase of the SSH model (at
A = 0, t <t’) to the trivial phase (at A = 0, ¢ > t'). Simultaneously, the edge
spectrum of the SSH model in the presence of static, homogenous A is
gapped out as the spinful fermionic edge states combine into Cooper pairs.

Physics beyond the semiclassical short-range order is introduced by
Coulomb interactions (represented by E term) which, by Ehrenfest’s the-
orem, leads to quantum fluctuations of the phase.

The phase diagram (schematically shown in Fig. 2¢), contains a QRSPT
phase at small A and t<t’, a superconductor emanating from the free
fermion critical point A = 0, t = ¢ and a trivial gapped phase for ¢ > t' and
small A. Leaving details to the remainder of the paper, we now summarize
the pecularities of these phases. Most importantly, the QRSPT phase is

characterized by edge states even for non-zero values of A as derived by
perturbing the system around an integrable limit at t < ' and by analyzing
soliton solutions of the field theory near t = #'. A particular curiosity of the
present model is the boundary transition from spin to charge edge modes
within the QRSPT which is also confirmed numerically. Additionally, the
topological nature is corroborated by symmetry fractionalization arguments
and, numerically, by the observation of degeneracies in the entanglement
spectrum. Contrary to the implications of Eq. (4), we observe -both in
analytical field theory and DMRG (Density matrix renormalization group)-
a phase transition (or intermediate phase) near t = ¢’ for non-zero values of
A. Tt separates the topological phase from a trivial phase without edge states
or degeneracies in the entanglement spectrum. The critical point serves as a
seed for a superconducting phase at large A, which is stabilized by emergent
Josephson coupling between the islands.

Perturbation about the dimerized limits

We first study the effect of introducing A and E perturbatively about the
two extreme regimes corresponding to t = 0 and t' =0 assuming
A, Ec < +/t? + 1”2 In the former regime, contrary to Eq. (4) we do observe a
gapless edge spectrum (accompanied by a peculiar boundary transition
from gapless spin edge modes to gapless charge edge modes) for A = 0 as
discussed below.For t =0 (A, Ec =0), the SSH model is in its topological state
with intercell dimers. Assuming periodic boundary conditions, the
groundstate of the SSH model in this regime is given by:

N
lW(ND) = [[INx) ® vsu ),
X=1

=[]t (st s
SSH I NG /2

where N is the number of unit cells and |0) is the vacuum state. Note that the
number Ny of bosons in each cell is arbitrary in Eq. (5) since the terms Ec
and A are zero implying no coupling of bosons and fermions. This massive
degeneracy is lifted upon introducing Ec as a perturbation (A induced
matrix elements within the ground state manifold vanish) so that the cor-
rection to groundstate energy is positive and extensive in Ec up to first
orders in A and Ec.. The average fermion occupation of two in |y/g;;) implies
that the groundstate corresponds to Eq. (5) with Nx= N, — 2 (N o € 27,),see
supplementary note 2 for details (we choose N = 2 henceforth).

To study the edge states of this model in this regime, we transform to
open boundary conditions (OBC) by assuming that the state |y,) =
|[w({Nx = 0})) still describes the ground state under OBC except for the
first and last Cooper-pair box and fermionic site. Thus, the effective edge
Hamiltonian is given by:

(©)

<W0|H|V/0> = Hleft—edge + Hright—edge + Ebulk’ (6)
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where E,, corresponds to the energy of the state |y,) in the bulk. The
effective edge Hamiltonian on the left edge is given by:

. . . 2
Hyeg_eqge =Ec(2N; + Ng1 — 1)

edge ( )
AL i E 7
_ E(e—mﬁl d} 40,d] , +H.c)+ 7C

This edge-Hamiltonian can be readily solved; the lowest energy edge
excitations as a function of A are plotted in Fig. 3(a). Analogous results hold
at the right edge. While the ground state is always degenerate, an edge
transition from gapless spin edge modes to gapless charge edge modes at
A = E¢ occurs.

We use techniques of symmetry fractionalization to demonstrate
that both the spin and charge edge modes are protected at least by the
antiunitary particle-hole symmetry C, see supplementary note 2 for details.
This antiunitary symmetry, which squares to unity in the bulk, fractionalizes
at low energies into operators which act locally on the edge states. As the
fractionalized representation squares to —1, it implies that C protects edge
degeneracy by a generalized Kramers theorem. Thus, contrary to the case of
Eq. (4), there exists an SPT phase for non-zero values of A. When a similar
perturbative calculation is performed near ¢ = 0, the edge spectrum is
gapped throughout, indicating a trivial phase, and no correction to the
ground-state energy occurs to first orders in A and E. The latter result
highlights the fact that our model is asymmetrical upon an exchange of tand
t', see the schematic phase diagram shown in Fig. 2¢).

16,18,51

Field theory near the free fermion critical point

We now turn to study signatures of the bulk phase transition for non-zero
values of A and concentrate on the limit A <« Ec¢
and |t — t'| KEo < /12 + 172,

For the unperturbed Hamiltonian (corresponding to A = 0 in Eq. (3)),
the fermionic gap is controlled by the term |t — #'| (the mass gap in the SSH
model), and the bosonic gap is controlled by the term Ec. Thus, bosons are
fast as compared to fermions and can be integrated out to obtain an effective
low-energy theory of interacting fermions, see supplementary note 3. The

value of /2 + "2 serves as an estimate for the bandwidth of the single
particle spectrum of free fermions (corresponding to A = E¢ = 0) and the
assumption of E. < +/t2 4 1’ controls the bosonization approach on top
of the linearized fermionic Hamiltonian. Its bosonized representation is
given by the following action:

1 (0,0,
S - Z /X T 47TKOC ( ulx + (aan)Zua)

e (®)
- / [G, cos(2®;) + M cos(D,) cos(D,)],

where s and p denote the spin and charge degrees of freedom, respectively
and @, ;= @, (x, 7) are bosonic fields in the corresponding sector. In terms
of parameters of Eq. (3), G, ~ A?*/(Eca), M ~ (¢ — t)/a while Luttinger
parameters K, and hydrodynamic velocities u,, are contained in the
methods section. To study the phase diagram of the effective action in Eq.
(8), we perform a perturbative Renormalization Group (RG)™ analysis of
the bosonized action in Eq. (8) (about the fixed point of Luttinger liquid
theory for both the charge and spin sector, and up to first order in prefactors
of cosines). The flow equations are

dG
$=(2-2K
dl ( s)Gs7

dM K, K,
‘I—(‘7‘7yﬁ ©)

where ] = In(A/A’) and A (A') is the momentum cutoff of the theory (the
running momentum cutoff). Note that in the present theory K; < 1, hence
the G; term is always relevant and the system displays a spin gap for any non-
zero A. In contrast, K, > 1 is possible and the mass term changes from
relevant (displayed in Fig. 3¢)) to irrelevant (not shown) when K, + K, = 4
which corresponds to A ~ /E-t’ in terms of microscopic parameters
entering Eq. (3).

This leads to the phase diagram illustrated in Fig. 2¢): For A < y/Et/,
non-zero M flow to a fully gapped and topologically trivial (non-trivial)
insulator, the two phases being divided by a critical line. In contrast, for

Fig. 3 | Edge transition and the renormlization
group flow. a Eigenvalues of the edge Hamiltonian,
Eq. (7), as a function of A for ¢ = 0, N, = 2. Note the
edge transition from gapless spin edge modes to
gapless charge edge modes at A = E¢. N represents
the number of bosons on the first bosonic site.
Niotal = 2N + 1, represents the total charge on the
left edge. b Edge states correspond to kink-like field
configurations within the effective field theory near

a Fa

1SEJC |Nt<)lal - 0>7 |]Vto1z11 - 2>

[Ny =0;1),[ N1=0;])

charge density

o

spin density

0.5E,

the free fermion critical point, Eq. (8). The blue and
yellow regions are used to distinguish the trivial and

topological insulating regimes. @, stand for the E
bosonic fields corresponding to charge (red curve) c
and spin (blue curve) degrees of freedom, respec-
tively. The charge (red curve) and spin (blue curve)
densities, Eq. (11) and Eq. (12), exhibit the locali-
zation of respective densities close to the boundary
of the trivial and non-trivial insulating states, which
is the character of edge states. ¢ Renormalization
Group (RG) flow obtained using the flow equations
given in Eq. (9). The black arrows represent flow
towards an insulating state, whereas the red arrows
represent flow towards a state without a charge gap.
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A> ,/E.t' one expects that the insulating phases are separated by a third
phase without a charge gap. Note that this requires pushing the field
theory discussed in this section beyond its limits of applicability; hence, we
prove this claim later by complementary means. Importantly, unlike the
case depicted in Fig. 2b), a critical theory without a charge gap separates
the two insulating phases even for non-zero values of A. This gapless
state corresponds to a singlet s-wave superconductor as it has dominant

_i% 5350 . .
correlations of the type e V2 cos(®,)”*** where ©, is the bosonic field
conjugate to @,

We also studied edge modes at the interface of the phases corre-
sponding to negative and positive values of M using semiclassics (see
supplementary Note 3). Taking into account the periodicity of the
bosonic variables o, and @y, the ground state in terms of the bosonic
variables for M > 0 corresponds to (CIDP_f7 <D5_f) = (0, 0). For M < 0, the
groundstate corresponds to four possible values of the bosonic vari-
ables given by:

(@, 5, Dp) = (£7,0),(0, £7), (10)
where these different configurations of (®,5 @) lead to the same
groundstate energy in the bulk, but they imply four different edge
states represented by half-kink or half-antikink in spin or charge sector, see
Fig. 3b). A spin mode leads to an accumulation of spin 1/2 at the edge, which
can be seen by calculating the corresponding S, magnetization:

1 1
S,==— [ dx0, O, = * ~. 11
° 2 xS 2 (1)
Similarly, charge modes lead to an edge accumulation of charge
N, = 5/ dxd,®, = te, (12)
s

relative to the ground state charge configuration. We analytically determine
(see supplementary note 3) the kink energies, demonstrating that the charge
and spin kinks are each two-fold degenerate. Comparing those energies at
non-zero A, we find that the ground states within this effective continuum
model feature spin (charge) edge states for small (large) A < A, (A > A,) with

a non-analytic edge transition curve:

A, ~ _0.177715W(—oclog(|69|))’ (13)
log(1661)

where 60 ~ izﬁ’/ﬂ, W represents Lambert’s W function and « = 0.000034.
This curve is schematically shown in Fig. 2c), see supplementary note 3 for
more details. Far away from the bulk transition 7 << 1, the same formalism
yields an edge transition at A =~ E, consistent with the edge transition

obtained from perturbation theory above.

Field theory around the superconducting phase

In the regime E <A, |t — t'|, the upper bound on the bosonic gap is con-
trolled by the term E and is much smaller than the fermionic gap controlled
by the term A and |t — #'|. Thus, we can integrate out the fermions in this
regime and obtain a low-energy effective theory of bosons. Around the
regime where the bosons become gapless, the effective bosonic theory can be
described by a Luttinger liquid, and we determine the corresponding Lut-
tinger liquid parameters. The procedure of integrating out fermions is non-
trivial for the total Hamiltonian in Eq. (3) due to the presence of the electron
density 71y in the Ec term. To make the procedure relatively simpler and
transparent, it is useful to perform a basis change to a basis where fermionic
fields effectively follow the slowly fluctuating superconducting phase. The
bosonic action obtained after integrating out fermions is given by

_ 1 (ar¢)2 2
Ser(¢) = E/MK + ugc(0,9)° (14)

The main steps in the process of integrating out fermions and the definition
of Ksc and ugc in terms of model parameters are given in the methods
section and supplementary note 4. Ksc denotes the inverse superconducting
stiffness, and a phase transition from the insulating regime to a super-
conducting regime occurs at Ksc = 1. Note that this transition from the
insulator to the superconductor is the Berezinskii-Kosterlitz-Thouless
transition™ and corresponds to the proliferation of phase slips. This
condition and the expression Ksc in terms of microscopic parameters
determine the phase boundaries plotted in red in Fig. 4a) (no fitting
involved). On the side, we remark that within the effective Luttinger liquid

a b oo it c 12 =
(] ~ . cJata =
23 "g fe B — & B
S -0.2 . 10 "
S -
. =
0.4 5o = \\ . \
BN -04 ", -
4+ | | 0 1 2 - -
AL 15 In(|X-X")) € 6 )
0.2 | f% -1.6. fit . -
g - data 4 -
= -17 B
} -0.5 ;:i -1.8 \ 2 :
F— — — B — — 4 s -19 Y
0.0 00 X -~ 0 : . .
02 04 06 08 1.0 1.2 14 1 2, 0.0 02 04 06 08 10 1.2 14
arctan(#/t') In(|X-X7) arctan(#/t')

Fig. 4 | Numerical phase diagram, correlators and entanglement spectrum.

a Color plot of the central charge obtained using finite DMRG for a system size of 40
and N, = 4. The phase diagram is obtained for % = 0.01. Red lines denote the
analytically obtained position of the Berezinskii-Kosterlitz-Thouless transition line.
The grey dot (grey dashed line) correspond to the locations in parameter space at
which the data in b and c are taken. b Log-Log plot of the bosonic and fermionic
correlator for A = 50E¢ and arctan(}) = 0.47. The power-law fit for the bosonic and
fermionic correlator gives a Kgc value of 0.89 + 0.01 and 1.04 + 0.01 respectively

while the analytical value of Kgc at this point in the phase diagram corresponds to

0.84 (see supplementary note 5 for details). The linear fit on the log-log scale
indicates off-diagonal superconducting correlations as also expected from our
analytical study of the phase diagram. ¢ Entanglement spectrum obtained using
iDMRG for A = 4E¢ and % = 0.01 and N = 2. The green-shaded regime
corresponds to criticality. Consistent with analytical expectations, we observe even
degeneracy throughout the regime corresponding to quantum restoration of sym-
metry protected topological (QRSPT) phase in Fig. 2c. Note that we only show the
entanglement spectrum values upto €; = 12.
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theory, the superconducting regime is not observed for 5= W >0.02, which
could signal Mott localization throughout.

DMRG results

To model the Hamiltonian in Eq. (3) numerically, we truncate the local
Hilbert space dimension of Cooper pairs (created/annihilated by e* i4x) toa
finite value of 8 (we observed that choosing a value as small as 4 did not affect
the overall phase diagram). We used the finite and infinite Density Matrix
Renormalization Group (DMRG and iDMRG, respectively) algorithms to
study various features of our model. All numerical calculations were per-
formed using the TeNPY library™.

The phase diagram obtained using DMRG is shown in Fig. 4a) and the
relevant correlation function plot in the critical phase is shown in Fig. 4b).
Overall, the numerically observed phase diagram corroborates the analytical
results: The Berezinskii-Kosterlitz-Thouless transition line out of the
superconducting phase (red) as obtained from Eq. (14) (corresponding to
Ksc = 1) captures well the boundary of the area where the central charge is
¢ = 1. The correlators (given by (dx de 19x 4y 1) and (b by ) inside the
regime with ¢ = 1 are consistent with off- dlagonal long-range order of a
singlet  superconductor,  Fig.  4b).  As  expected, for
A<\/Ect ~ 0.13/t? 4 1’2, the wide superconducting phase narrows to a
sharp line located at t = ¢/, cf. Fig. 2c) and 4a). Finally, the nature of the
insulating (¢ = 0) phases is verified using iDMRG, by means of which we
obtained the entanglement spectrum of the system, see Fig. 4c). We observe
an even degeneracy of all levels throughout the entanglement spectrum in
the regime corresponding to the topological insulator in Fig. 2¢), but not in
the topologically trivial regime. Since even degeneracies are a signature of
SPT order", this supports our analytical result of QRSPT order in our
model. We also observed a similar entanglement spectrum for N, = 2 as well.
We also observe (see supplementary note 5) edge states by measuring local
charge and spin expectation values of the DMRG ground state and an edge
phase transition analogous to Fig. 3a).

Contrary to the analytical expectation, the numerically obtained cen-
tral charge continuously reaches three at t = t' as A is decreased. We
attribute this observation to numerical limitations. Non-integer central
charge values are not to be expected in the present context. A discussion of
numerical limitations in terms of the energy variance of the obtained
groundstates in the regime of large c¢ as well as the error bars of Fig. 4c) are
relegated to supplementary note 5.

Although the numerical observation of both charge and spin edge
modes is consistent with C being the protecting symmetry, we observe that
breaking only the C symmetry (by adding a symmetry-breaking perturba-
tion) does not lift the degeneracies in the entanglement spectrum. This
possibly implies the existence of other symmetries protecting the SPT phase,
and/or it is even possible that the symmetry arguments are modified due to
the presence of bosonic degrees of freedom in our model since the existing
theoretical arguments are valid, for C being the protecting symmetry, only
for non-interacting/interacting fermionic systems”’. However, the degen-
eracies are lifted in the presence of a term that breaks total charge (U(1))
symmetry implying that U(1) has a non trivial representation at the edge -
which is not expected on general theoretical grounds™. At the same time, it is
known that the topological classification changes from Z, (for U(1) x C) to
7 (for C)”. Thus, this indirectly implies that U(1) symmetry can play a role
in topological characteristics of our model. Further details regarding the
symmetry-breaking perturbations can be found in supplementary note 5
and we leave a detailed numerical/analytical study to characterize relevant
symmetries for future works.

Conclusion

In summary, we have introduced the concept of quantum restoration of
symmetry-protected topological phases, i.e. topological systems in which
the underlying protecting symmetry is broken at each instance of time, but
restored upon time average. To illustrate this concept, we carefully studied
an interacting one-dimensional model corresponding to a spinful Su-

Schrieffer-Heeger model with fluctuating superconductivity. Using com-
bined analytical and numerical methods, we demonstrate that the features of
the SPT phase are restored. It is worthwhile to highlight a phase diagram that
is distinct from and arguably richer than purely fermionic interacting SSH-
chains™®, both in terms of phases and phase transitions in the bulk and of
those at the boundary. While it is generally expected that insulating QRSPT
phases are related to topological zeros in the fermionic Green’s
function®*”, we leave this as an open question for future studies along
with, first, which QRSPT phases can be expected based on a given under-
lying free fermion SPT phase, second, whether there are universal patterns
in the corresponding phase diagram between QRSPT phase and trivial
phase, third, a careful analysis in higher dimensions, and fourth, robustness
of QRSPT states to weak disorder. We also hope that our work will motivate
the design of new physical models exhibiting SPT features by exploring the
role of quantum fluctuations.

Methods

Symmetries

The model in Eq. (3) has U(1) symmetry (corresponding to a conserved total
charge ", 2Ny + 71y) and combined sublattice and particle-hole sym-
metry (in the second quantization language) C given by:

Cd;r(‘A‘acil = dX‘A.m CdXAA,ocil = d)T(,A,ov
Cd;r(,B,oC_l = _dX,B,ou Cdxs,ac_l = -
CoyC' = ¢y + m,CiIC™! = —i,

(15)

i
dX,B,o7

where C? = 7. As compared to refs. 57,71, note that we have extended C to
bosons such that it reverses the charge of the bosons and preserves the
commutation relations.

Bogoliubov-de Gennes Hamiltonian
The Bloch Hamiltonian for static, homogenous A takes the form
= [EV OHEYp) whete V() = (dy (). dy (01}, (p)
dg ¢( p)) Clearly, in the absence of SSB, ie. for A = 0, H(p) is block
diagonal as illustrated schematically in Fig. 1. It is convenient to choose a
different basis leading to Eq. (4). The winding represented in Fig. 1a), b)
correspond to the parametric plot of eigenvalues of D(p) at t = 0.1¢' and
A =0 for a) and A = 0.1¢' for panel b).

Parameters of the continuum field theory
The parameters in Eq. (8) are defined as follows in terms of the model
parameters in Eq. (3):

—_ 1 — 1
Ks - 1+8EA1[, ’ Kp - I Fe ’
chr (1= Bbcl’n)( 8Ect EaRTE
A2 Ec
= — oy, [T (16)
u,=1ra, uP = U —a_
BEC/ 7
S _ 2=
GS ~ 8m?Eca’ M= na

Note that these expressions are valid close to t = ' and we generally
assume E; < /12 + 12,

Luttinger parameters of the superconductor

To integrate out fermions, we expand the transformed Hamiltonian,
obtained after the unitary transformation, in terms of (¢ 1= ¢y) up to
second order and also rewrite it in the action formalism. The corresponding
action is given by:

S =S8,(¢) + Sy(d, d) + AS, (¢, d, d)

+ ASZ(¢7 d7 a)v (17)
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where d/d represent Grassmann variables and ¢ represents the super-
conducting phase. The effective bosonic action is given by:

S () = 5,(6) + (48,(d.d.9))
+ <ASZ(37 d7 ¢)>
(S}, d, ) — (85,4, )",

(18)

where,

1

V=@ d g

/ DdDd.e~ 5D, (19)

The parameters entering the effective superconducting theory in Su(¢)
given in Eq. (14) are related to the microscopic parameters as follows:

Ko = 4m2Ea
s vl
vIEca
Usc = Mo
, 47 (20)
v=ta,
P in(260
i 27682 cos(@)ElhptlcE(— %)
V& +1—sin(260) (6% + 1 + sin(26)) '
where 6 = arctan(¥) and 6 = ﬁ. Ksc represents inverse super-

conducting stiffness. Further details are provided in supplementary note 4.

Data availability
The numerical data that support the findings of this study are available from
Zenodo repository 10.5281/zenodo.11243225™.

Code availability

The code used for numerical simulations is available from Zenodo reposi-
tory 10.5281/zenodo.112432257.
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