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Ising machines are specialized devices designed to efficiently solve combinatorial optimization
problems. They consist of artificial spins that evolve towards a low-energy configuration representing
a problem’s solution. Most realistic problems require both spin-spin couplings and external fields. In
Ising machines with analog spins, these interactions scale differently with the continuous spin
amplitudes, leading to imbalances that affect performance. Various techniques have been proposed
tomitigate this issue, but their performance has not been benchmarked.We address this gap through
a numerical analysis.We evaluate the time-to-solution of thesemethods across three distinct problem
classes with up to 2400 spins. Our results show that the most effective way to incorporate external
fields is through an approachwhere the spin interactions are proportional to the spin signs, rather than
their continuous amplitudes.

Combinatorial optimization problems (COPs) lie at the heart of numerous
computational challenges in disciplines that range from industry to fun-
damental science. Some examples are problems in logistics1, finance2,
biology3,4, job scheduling5, and traffic flow regulation6. Many of these pro-
blems are nondeterministic polynomial-time (NP) complete, making it
exceptionally challenging to develop efficient algorithms to solve them.
Today, such problems are demanding vast amounts of energy, with high-
performance computing centers persistently dedicating substantial
resources to them7.

One promising solution is the use of specialized hardware rather
than general-purpose digital computers. More specifically, there has
been a surge of interest in Ising machines (IMs): hardware imple-
mentations designed to find low-energy states of the Ising model,
defined by the following Hamiltonian:

H fσ ig
� � ¼ � 1

2

XN
i;j

J ijσ iσ j �
XN
i

hiσ i: ð1Þ

Here, σi∈ {− 1, 1} are Ising spins, andN is the total number of spins. Jij and
hi denote the real-valued strengths of the spin couplings and external fields,
respectively.

It has been shown that it is possible to formulate any problem within
theNP complexity class as an Isingmodelwith only polynomial overhead8,9.
The ground state, i.e., the configuration of binary spins with the lowest

energy according to Eq. (1), then corresponds to the optimal solution of the
optimization problem.

Many IM implementations have been proposed so far10. Some
implementations are constructed using spins that are intrinsically binary,
such as implementations based on quantum annealing11, probabilistic
p-bits12,13, spatial light modulators14, and memristor Hopfield neural
networks15. Others utilize analog spins, which take continuous values while
satisfying constraints that enforce both the COP structure and spin bist-
ability. Examples are Isingmachines based ondegenerate optical parametric
oscillators16,17, opto-electric oscillators18, electrical resonators19, memristor
crossbar arrays20, and polariton condensates21,22. In this paper, we focus on
Ising machines with analog spins.

In general, analog IMs are modeled by a set of differential equations.
The time evolution of the amplitude of spin i, denoted si 2 R, is described
as:

dsi
dt

¼ F i si; α; βIi
� �

; ð2Þ

where F is a nonlinear function, α is the linear gain, β is the interaction
strength. Ii is the local field of spin i, which can be modeled as follows:

Ii ¼
X
j

J ijsj þ hi: ð3Þ
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The IM’s energy, as given by Eq. (1), can be evaluated with spin amplitudes
mapped to binary spins via σ i ¼ sgnðsiÞ, where sgnð�Þ denotes the sign
function.

While some studies have considered tasks that require external
fields23–28, the emphasis in benchmarking IMs (both with binary and analog
spins) remains largely on problems that do not require such fields, such as
theMax-Cut problem29. This focus contrasts with the requirements ofmost
industrially relevant COPs, which necessitate external fields for their
encoding into an IM30.

For IMs with analog spins, implementing external fields can be chal-
lenging. This is clear fromEq. (3),where as the spin amplitudes decrease, the
spin coupling terms (∝ Jijsj) are weakened relative to the external fields
(∝ hi), potentially causing the latter to dominate. Conversely, when spin
amplitudes exceed one, the couplings may dominate instead. Since
embedding a COP into an IM requires careful tuning of the values of Jij and
hi, such imbalances may undermine the IM’s performance.

In the past, various techniques have been proposed to mitigate this
issue26,27, but their impact on the IM’s performance has not yet been
benchmarked. In this work, we address this gap by conducting a numerical
study. Moreover, we include an alternative method that substitutes Jijsj for
Jij sgnðsjÞ in Eq. (3). This method was originally proposed for ballistic
simulated bifurcation31,32, a specific type of analog IMwhereF in Eq. (2) is a
linear function (whereas a nonlinear function is used in thiswork) and spins
evolvewithmomentumrather than following a gradientmethod.While this
binarization method is uncommon in other analog IMs10 and has not been
included in earlier studies of imbalances between spin couplings and
externalfields33, wewill show that it is particularly effective for incorporating
external fields and outperforms the previously proposed techniques.

We apply allmethods to three different problem classes, each requiring
a distinct mapping to embed problems into an Ising machine: (a)
Sherrington–Kirkpatrick (SK) Hamiltonians with random external fields,
which we generated ourselves, (b) quadratic unconstrained binary optimi-
zation (QUBO) problems from BiqMac’s Beasley benchmark set34, and (c)
Max-3-Cut problems, where graphs are generated using the Rudy
generator35.While SK problems serve as a general benchmark—sampling Jij
and hi from Gaussian distributions rather than relying on a structured
mapping—the other two classes represent typical ways external fields
emerge in problem embeddings (see “Results” for details).

In addition to the techniques discussed above, we also explore a simple
recalibration of the external fields by rescaling them with a constant factor,
i.e., replacing hi by ζhi in Eqs. (1) and (3) where ζ 2 R. This adjustment
essentially modifies the embedding process of COPs and can be easily
combined with any of the prior methods. This constant rescaling has been
proposed in previous works27,33, where it was suggested to enhance the
performance of IMs. In this work, we show that such a constant rescaling
can indeed be necessary when encoding COPswith soft constraints, such as
for Max-3-Cut problems. However, for COPs without such constraints,
such as in the SKandBeasley problems, this rescaling removes the guarantee
that the ground-state spin configuration solves the COP, resulting in an
incorrect COP embedding.

Methods
Transfer function
Ising machines with analog spins rely on nonlinear dynamics to establish
bistable spin amplitudes. This bistability is typically realized through a
pitchfork bifurcation, which can be achieved via different nonlinear func-
tionsF in Eq. (2). A prior study comparedmany nonlinear functions36, and
showed that the following nonlinearity achieves the best performance:

dsi
dt

¼ �si þ tanh αsi þ βIi
� �

: ð4Þ

This nonlinearity is commonly employed to incorporate the saturation of
the spin amplitudes, often observed in experimental setups18,37. Its good
performance can be attributed to its inherent suppression of amplitude

inhomogeneity, a common source of error when mapping COPs to IMs
with analog spins36. Moreover, this nonlinearity is particularly well-suited
when external fields are present. Indeed, as described in the introduction,
external fields (∝ hisi) dominate over the spin couplings (∝ Jijsisj) when spin
amplitudes are small (|si|≪ 1). Conversely, spin couplings dominate when
the spin amplitudes exceed one. Eq. (4) now constrains the spin amplitudes
to the range [− 1, 1], thereby excluding the latter scenario. For these reasons,
the remainder of this work exclusively considers the hyperbolic tangent
nonlinearity.

Annealing scheme
At the start of a simulation of the IM, the spin amplitudes are initialized near
zero, and their evolution is tracked over time by numerically integrating
Eq. (4). Specific details are provided in Supplementary Note 1. The inter-
action strength β is increased at each timestep, following a commonly used
linear annealing scheme38,39:

βðtÞ ¼ β0 þ vβt: ð5Þ

Here,β0 is the initialβ-value and vβ is the annealing speed.As alsodetailed in
Supplementary Note 1, we choose a relatively low and constant noise
strength while integrating Eq. (4).

Methods to incorporate external fields
In this manuscript, we will compare the performance of four methods for
incorporating external fields, which we outline below. For each of these
methods, we will illustrate the spin dynamics using a 3-spin COP, which is
visualized in Fig. 1a, and for which the ground state configuration
is (–1,1,–1).

Theoriginal externalfields. All consideredmethods essentially modify the
local field of spin i, as originally defined by Eq. (3). Hence, we will further
refer to Eq. (3) as the “original external fields”. For the 3-spin COP of Fig. 1a,
the evolution of the spin amplitudes under Eqs. (3) to (5) is visualized in
Fig. 1b where β0 = 0. As we start to increase β, the spins initially follow the
dotted lines. As shown in Supplementary Note 2, these dotted lines corre-
spond to dsi

dβ ¼
hi

1�α, such that the spin dynamics at low β are determined by
the external fields hi, independent of the spin couplings Jij. As the amplitudes
grow, the spin couplings strengthen (the first term in Eq. (3) grows), causing
spin 2 to flip and leading to the ground state configuration (-1,1,-1).

Thus, for this simple COP, the IM successfully overcomes the initial
field-driven behavior. However, for more complex problems, this may not
always be the case. As discussed in the introduction section, an imbalance
between the spin couplings and the external fields can undermine the
validity of the COP embedding. This occurs because the information
encoded in the couplings Jij is effectively ignored when |si| is small (cf.
Eq. (3)), even though it is essential for solving the COP. In such cases, the
Ising spins are drawn toward the sign(h) configuration, which acts as a
distractor in the spin dynamics.

The mean absolute spin method. One way to address the imbalance
between spin couplings and the external fields is to rescale the external
fields with the mean of the absolute values of the spin amplitudes27,
leading to the following local field:

Ii ¼
XN
j¼1

Jijsj þ hi
1
N

X
k

∣sk∣: ð6Þ

This approach ensures that the external field terms scale linearly with the
spin amplitudes, consistent with the scaling of the spin couplings.

Figure 1c shows the evolution of the spins following this approach.We
observe that the spin amplitudes remain zero until they bifurcate into the
ground-state solution. Hence, this method prevents the external fields from
dominating over the spin couplings.
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We observe that the origin (si = 0, ∀ i) is a stable fixed point up to a
certain β value, at which the spins bifurcate. Ideally, β0 would be set equal to
this critical value. However, as explained in Supplementary Note 3, deter-
mining this exact value is challenging, and we further choose to set β0 = 0
when using the mean absolute spin method. Although a heuristic could, in
principle, estimate β0 more accurately and potentially improve perfor-
mance, we do not explore that direction here. As shown in Supplementary
Note3, the choiceofβ0 has only amoderate effect anddoesnot influenceour
conclusions in the remainder of this work.

Theauxiliary spinmethod. An alternativemethod to rescale the external
fields is provided by the “auxiliary spin method”26. It introduces an
auxiliary spin amplitude sN+1, and replaces each external field hi by a
coupling between spin i and the auxiliary spin. The local field of spin i is
modified as follows:

Ii ¼

PN
j¼1

Jijsj þ hisNþ1; if i <N þ 1;

PN
j¼1

hjsj; if i ¼ N þ 1;

8>>><
>>>:

¼
XNþ1

j¼1

J 0ijsj; where J0 ¼ J h

hT 0

� �
:

ð7Þ

Hence, applying this technique only requires the implementation of spin
couplings.

It can be shown that if sopt is the optimal solution to the original Ising
problemofEq. (1), then (sopt, 1) and (− sopt,−1) aredegenerate solutionsof
the system with the auxiliary spin26. Hence, if the auxiliary spin amplitude
takes a negative value, all spins are flipped before evaluating the IM’s energy
via Eq. (1).

Figure 1d illustrates the evolution of the spins using this method.
Similar to the mean absolute spin approach, the spin amplitudes remain
zero until they bifurcate into the ground-state solution. However, for the
auxiliary spinmethod, we show in SupplementaryNote 4 that the β-value at
this bifurcation can be easily calculated, allowing us to set β0 to this value.

The spin signmethod. The spin signmethod31,32 defines the local field of
spin i as follows:

Ii ¼
X
j

J ij sgnðsjÞ þ hi: ð8Þ

Figure 1e shows the evolution of the spins following this approach
wherewe set β0 = 0. The inset provides amore detailed viewnear β0. For this
simple COP, we observe that the spin sign method first explores the sur-
roundings of the origin.Once the signs of the spins correspond to theCOP’s
solution, the local fields remain at constant values such that the spin
amplitudes continue to grow linearly until they saturate.

To the best of our knowledge, the spin sign method has not previously
been studied in detail forCOPswith externalfields.Wehypothesize that it is
particularly well-suited for this more realistic setting, as it inherently pre-
serves the relative magnitudes of the spin couplings with respect to the
external fields, i.e., as defined in the binary Hamiltonian of Eq. (1). That is,
these magnitudes are directly determined by the values of Jij and hi and are
independent of the continuous spin amplitudes si. Whereas both the mean
absolute spinmethod and the auxiliary spinmethod approximately achieve
this balance by multiplying the external fields with a continuously-valued
time-varying correction factor, the spin signmethod achieves this in amore
direct and accurate way (also see Supplementary Note 12).

Scaling external fields by a constant
Previous works have proposed to rescale the external fields by a constant
ζ 2 R27,33, thereby substituting hi for ζhi in Eqs. (3) and (6) to (8). However,
these works did not provide any insights into why this rescaling technique
should be adopted and for which COPs it is effective.

Embedding a COP into an IM determines the values of Jij and hi. For
many COPs, such as SK problems and Beasley problems, this embedding
guarantees that the ground state of Eq. (1) corresponds to a solution of the
COP.Hence, it is counterintuitive to set ζ ≠ 1, since thismodifies the energy
landscape of Eq. (1), thereby eliminating this guarantee. For example, if we
substitute hiwith ζhi in Eq. (1) and set ζ≫ 1, the externalfields dominate the
system, resulting in a ground-state configuration sgnðhiÞ. In this scenario,
the spin couplings—which encode information that is essential to solving
the COP—are effectively disregarded.

For some problems, such as Max-3-cut, so-called soft constraints are
used to embed a COP. These constraints are implemented by adding terms
to the energy function of Eq. (1), such that violating these constraints incurs
an energy penalty. These terms come with a prefactor that indicates the
importance of the corresponding constraint. However, when using soft
constraints, the ground-state configuration will only solve the COP if the
prefactors of all constraints are set to appropriate values. Specifically, for
Max-3-Cut problems, we will demonstrate that determining the correct
prefactor is challenging for realistically-sized COPs, but surprisingly, this
issue can be resolved by applying a factor ζ ≈ 0.6.

Fig. 1 | Four methods of incorporating external fields applied to an
exemplary COP. a Example of a 3-spin COP with ground state configuration
(–1,1,–1). The spins are indicated as σ0, σ1, and σ2. Spin-spin couplings Jij are shown
as wavy lines, and external fields hi as red arrows. The ground state is indicated with
blue arrows. (b)-(e) Spin evolution under the methods described in Eqs. (3) and (6)

to (8), respectively. In b, the initial direction of the spins (dotted lines) is given by hi/
(1− α), independently of the spin-spin couplings Jij. Methods in c–e are designed to
prevent the external fields from dominating the spin-spin couplings. The inset in
e shows a zoom-in near β = 0.
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Results
In this section, we discuss the performance of the rescaling techniques
introduced in the previous section.Wedo this using three different problem
classes, which are introduced in the following subsections.

The IM’s performance is evaluated using the time-to-solution (TTS)
metric, which represents the total time needed to reach the target state with
99% probability. It is defined as:

TTS ¼
T; if P > 0:99;

T logð0:01Þ
logð1�PÞ ; if 0 < P ≤ 0:99;

1; if P ¼ 0;

8><
>: ð9Þ

where P is the probability of reaching the target state, and T is the
(dimensionless) time window over which Eq. (4) is integrated. Whenever
possible, the ground state is chosen as the target. When the ground state is
unknown, a target energy is chosen corresponding to the best-known
solution, as detailed in later sections.

WhereasT is typically treated as a hyperparameter40, which leads to the
performance measure min

T
TTS T; PðTÞð Þ, here we choose to set T as the

average simulation time required to reach the target state across successful
runs. This choice provides a practical approximation of the TTS, as it
demands fewer computational resources for evaluation, compared to
treating T as a hyperparameter. We estimate the values of P and T over
100 runs.

The performance of the IM depends on the choice of the linear gain α
and the annealing speed vβ (cf. Eqs. (4) and (5)). Given aCOP and amethod
to incorporate external fields (cf. “Methods”), these hyperparameters are
optimized, and the corresponding value of min

α;vβ
TTS is reported. For the

Max-3-Cut problems, an additional hyperparameter specific to the Ising
formulation is optimized (see later). Unless stated otherwise, the constant
rescaling factor ζ, introduced in the previous section, is set to 1. Where
relevant, it is treated as an additional hyperparameter. Further details about
the hyperparameter optimization procedure are provided in the Supple-
mentary Note 1.

Sherrington–Kirkpatrick Hamiltonians with random
external fields
Thefirst typeof problemweconsider is a Sherrington–Kirkpatrick (SK) spin
glass. The goal of this task is to find the configuration of binary spins
σi∈ {− 1, 1} thatminimizes theHamiltonian in Eq. (1), where the elements
of the coupling matrix are drawn from a Gaussian distribution41 (with zero

mean and standard deviation 1). We extend the SK spin glass model with
external fields that are drawn from the same Gaussian distribution.

We considered problems with 50, 100, 150, and 200 spins, gen-
erating 10 instances for each size. For problems with 50 spins, the ground
state was obtained via an exact solver42. The larger problems could not be
solved using this exact solver with our computational resources. There-
fore, we used the state-of-the-art approximate solver PySA, which is
based on simulated annealing with parallel tempering43. The parameters
used can be found in Supplementary Note 5. The energies obtained by
this solver are equal to the lowest energies found by the Ising machine for
problems with 100 and 150 spins. However, for the problems with
200 spins, the Ising machine sometimes finds lower energies than PySA.
Therefore, we define the lowest energy found by the Ising machine
(across all methods to incorporate external fields) as the target energy.
Since our primary focus is on the relative comparison of different
methods for implementing external fields, this choice has no impact on
the validity of our conclusions.

Figure 2 compares the various methods to incorporate external fields
(cf. “Methods”) in terms of TTS when solving SK problems. Each subfigure
compares two methods. Each dot on the plot represents a problem. The x
(y)-coordinate of a dot is the TTS when the problem is solved using the
method on the horizontal (vertical) axis. Hence, the diagonal line represents
the situationwhere bothmethods have the sameTTS.Adot in the upper left
(lower right) of figure denotes a problem that is solved faster by themethod
on the horizontal (vertical) axis.

Figure 2a compares the original external field method of Eq. (3) with
the spin sign method of Eq. (7). 22 of the 40 COPs are positioned in the
grey region on the right, indicating TTS = ∞ when using the original
external fields. This means that for each of these 22 problems and across
all tested hyperparameter values, the original external fields failed to
reach the target energy in all 100 runs within the maximum time of
tmax ¼ 104 (cf. Eq. (9)). In contrast, the spin sign method successfully
solved these instances, yielding a finite TTS. The remaining 18 COPs
could be solved by either of the two methods. 14 of them were solved
faster by the original external fields, while 4 were solved faster using the
spin sign method.

In both Fig. 2b and c, one of the 40 problems appears in the grey region
on the right. Although not visible in the plots, this data point corresponds to
the same COP, which could only be solved by the spin sign method, while
the other three methods failed.

Figure 2b and c appear similar, but Fig. (c) has more dots below the
diagonal, indicating that the auxiliary spin method is generally faster than
the mean absolute spin method.

Fig. 2 | Performance comparison between different methods to incorporate
external fields for SK Hamiltonians with random external fields. Comparison of
the time-to-solution (TTS) for SK Hamiltonians solved using the spin sign method
(Eq. (8)) compared to the three alternative approaches: a the original external fields
(Eq. (3)), b the auxiliary spin method (Eq. (7)) and c the mean absolute spin method

(Eq. (6)). Dots in the grey area on the right denote combinatorial optimization
problems (COPs) that could be solved by the spin sign method within the allocated
compute time of tmax ¼ 104, but not by the method on the x-axis (TTS =∞, SR = 0).
The spin sign method can solve more problems within the allocated time than the
other methods, and it generally requires less time to do so.
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In Supplementary Note 10, we provide the values of the success rate
and the average runtime T of successful runs corresponding to the TTS
values of Fig. 2.

Overall, the spin sign method performs best for the SK problems.
While it solves all considered COPs, the original external fields fail onmore
than half. Both the auxiliary spin method and the mean absolute spin
method solve all but one COP; however, the latter is generally slower, while
the former is only slightly slower than the spin sign method on average,
making it the second-best-performing for these problems.

As discussed in “Methods”, previous works proposed to scale external
fields by a constant factor ζ 2 R. Ref. 33 indicates that the IM’s perfor-
mance, averaged over SK problems with at most 16 spins, is highly sensitive
to the choice of ζ. However, in the Supplementary Note 6, we show that this
sensitivity is due to the small problemsize.Our results indicate that applying
a scaling factor different from 1 is generally not beneficial here, reinforcing
that ζ= 1 is the best choice for solving SK problems. This is explained by the
fact that setting ζ ≠ 1 removes the guarantee that the ground state spin
corresponds to the problem’s optimal solution.

Quadratic unconstrained binary optimization problems
The problems analyzed in this section are the Beasley instances from the
BiqMac library34. These are examples of QUBO problems, meaning that
they are defined using binary variables xi∈ {0, 1}. Given a symmetricmatrix
Q, the goal is to find the configuration x that minimizes the objective
function xTQx.

These problems can be mapped to the Ising model using the following
transformation:

xi ¼
σ i þ 1
2

: ð10Þ

While the originalQUBO formulations of these problems include only
quadratic terms (∝xixj), SupplementaryNote 7 shows that applyingEq. (10)
results in both spin couplings (∝ σiσj) and external fields (∝ σi).ManyCOPs
of interest are naturally defined as QUBO problems, making the transfor-
mation of Eq. (10) a common mechanism that gives rise to external
fields in IMs.

The ground state energies forBeasleyproblemswithup to250 spins are
provided in the BiqMac library34. For problems with 500 spins, the exact
ground state is not known. For these problems, we use the upper bounds
provided in the BiqMac library34 as target values.

Figure 3 compares the various methods to incorporate external
fields, as defined in “Methods”, in terms of TTS, when applied to the
Beasley problems. Figure 3a compares the original external fields of Eq.

(3) to the spin sign method of Eq. (8). 17 of the 40 COPs appear at the
rightmost edge of the plot, indicating that they could not be solved using
the original external fields, while they could be solved using the spin sign
method.

Figure 3b compares the auxiliary spin method of Eq. (7) with the spin
sign method of Eq. (8). The plot looks similar to Fig. 3a, and our results
indicate that the same 17 COPs at the right edge of Fig. 3a could also not be
solved using the auxiliary spin method.

Figure 3c compares the mean absolute spinmethod of Eq. (6) with the
spin signmethodof Eq. (8). This time, only 5COPsof the 40 could be solved
exclusively by the spin sign method. Looking at the COPs that could be
solved using either of the two methods, which are displayed in the white
region of the plot, we see that the spin sign method generally reaches a
solution faster.

Overall, we conclude from Fig. 3 that the spin sign method performs
best as it can solve more Beasley problems than the other methods. The
mean absolute spin method is the second-best-performing method as it
solves more COPs than the original external fields and the auxiliary spin
method. The latter two methods yield comparable performance.

As explained in “Methods”, it has beenproposed in the past tomultiply
the external fields by a constant factor, but this removes the guarantee that
the ground state spin configuration solves these problems. In Supplemen-
tary Note 6, we demonstrate that applying a factor different from 1 is
generally not beneficial for Beasley problems, consistent with our findings
for SK problems.

Max-3-Cut problems
The goal of the Max-3-Cut problem is to partition the vertices of an
undirected graph into three sets, maximizing the number of edges that
connect different sets, i.e., maximizing the so-called cut-value. In other
words, we seek the best possible vertex coloring using 3 colors. In this
section, we consider graphs generated using the rudy generator34,35,44,45. To
benchmark the IM’s performance, the problems are solved to optimality
using the publicly available max_k_cut package42.

Max-3-Cut serves as a fundamental example of a COP requiring
multivariate integer variables. Such problems are native to the Potts model,
an extension of the Ising model, and are typically embedded in an Ising
machine using one-hot encoding. This encoding introduces external fields,
as will be explained in the next section.

Ising formulation. We utilize the Max-3-Cut Ising formulation as
described in Ref. 30.We denote the sets of vertices and edges in the graph
as V and E, respectively. For every vertex v ∈ V, a triplet of binary
variables is introduced: xv,i where i ∈ {1, 2, 3}. xv,i equals 1 if vertex v has

Fig. 3 | Performance comparison between different methods to incorporate
external fields for Beasley problems.Comparison of the time-to-solution (TTS) for
Beasley problems solved using the spin sign method (Eq. (8)) compared to the three
alternative approaches: a the original external fields (Eq. (3)), b the auxiliary spin

method (Eq. (7)) and c themean absolute spinmethod (Eq. (6)). Dots in the grey area
on the right denote combinatorial optimization problems (COPs) that could be
solved by the spin signmethod within the allocated compute time of tmax ¼ 104, but
not by the method on the x-axis (TTS = ∞, SR = 0).
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color i, and 0 otherwise. The energy is defined as follows:

H ¼ A
X
v2V

1�
X3
i¼1

xv;i

 !2

þ B
X
ðuvÞ2E

X3
i¼1

xu;ixv;i; ð11Þ

where A and B are positive scalars. The first term enforces that all variable
triplets {xv,1, xv,2, xv,3} are one-hot encoded since this positive term only
vanishes if every triplet contains a single 1 and two 0’s, ensuring the vertex
colors are well-defined. The second term enforces the maximization of the
cut value since an energy penalty is added for every edge that connects
vertices with the same color. The ratio B/A denotes the relative importance
of the two constraints.

The binary variables in Eq. (11) can be transformed to Ising spins using
Eq. (10). As detailed in Supplementary Note 7, this allows us to rewrite the
energy as follows:

H ¼ A
4

X
v

X
i≠j

σv;iσv;j þ
B
4

X
ðuvÞ2E

X3
i¼1

σu;iσv;i

þ ζ
X
v

X3
i¼1

A
2
þ B

4
degðvÞ

� �
σv;i;

ð12Þ

where deg(v) denotes the degree of vertex v. Note that we multiplied the
external fields (∝ σv,i) by ζ 2 R.Whereas Eqs. (11) and (12) are only strictly
equivalent when ζ = 1, we will show in the next section that setting ζ ≠ 1 is a
necessary modification for the IM to achieve good performance.

Scaling external fields by a constant counters mapping errors. As
explained in “Methods”, it is generally not expected that rescaling the
external fields with ζ ≠ 1 will improve the performance of an IM. Such a
rescaling can eliminate the guarantee that the ground-state configuration
solves the COP in question. In the previous sections, we confirmed that ζ
is generally best put to 1when solving an SK problem or Beasley problem.

However, we will show now that this is not the case for theMax-3-Cut
mapping of Eq. (12). The inspiration for this approach comes from Ref. 27,
which found that setting ζ ≈ 0.6 is optimal for a structure-based drug design
problem of which the mapping also contains one-hot encoding constraints
and edge constraints, similar to Eq. (12), along with additional external
fields. While the usefulness of this rescaling was observed, its underlying
reasons were not explained. In this section, we will clarify why this rescaling
works for Max-3-Cut.

First, we show that all implementation methods for external fields fail
when ζ= 1, but not when ζ≈ 0.6. For each of thesemethods, Fig. 4 compares
the casewhere ζ isfixedat 1 to the casewhere ζ is optimizedwithin [0, 1.2]. In
other words, the x-axis represents min

α;vβ;
B
A

TTS for ζ = 1, while the y-axis

represents minα;vβ;BA;ζTTS. As expected, all points lie on or below the diag-

onal, since tuning ζ can only maintain or improve performance relative to
fixing ζ = 1. Across all four methods, several problems fall into the gray
region on the right side of the figure. These instances cannot be solved with
ζ = 1 but become solvable when ζ is optimized within [0, 1.2]. Many of the
remaining points show that optimizing ζ can yield improvements in TTS by
several orders of magnitude.

Figure 5 shows the optimal value of ζ as a function of the graph size.
Each data point denotes the average optimal value across 10 problems of the
same size. The standard deviation is represented by a shaded area. For all
four rescaling methods, the optimal value of ζ converges to ~0.6. Although
the optimal ζ may deviate from 0.6 in some cases, fixing ζ = 0.6 generally
yields comparable performance to using the instance-specific optimal value,
as shown in SupplementaryNote 8. This is not the case for otherfixedvalues
such as ζ = 0.4 or ζ = 0.8, which tend to result in worse performance.

This result is consistent with a prior study that identified ζ = 0.6 as the
optimal value for a similar problem that also uses one-hot encoding, but
with k > 327 (recall that k = 3 here). This suggests that the value ζ = 0.6 holds
for a broader class of problems using one-hot encoding.

We now show that the reason why this rescaling is necessary stems
from the structure of Eq. (12). As explained in “Methods”, the ground state
configuration of amapping that contains soft constraints will only solve the
COPunder considerationwhen the prefactors of those constraints are set to
adequate values. It is often guaranteed that good values for these prefactors
exist, but they are not necessarily a priori known30. Consequently, given a
value of B/A, we can determine the error of the mapping in Eq. (12) as
follows. On the one hand, we obtain the highest achievable cut-value (the
number of edges connectingdifferent sets in the partition) via an exactMax-
k-Cut solver42. On the other hand, we determine the cut-value of the ground

Fig. 4 | Performance comparison between using ζ= 1 and the optimal ζ for Max-
3-Cut problems. Comparison of the time-to-solution (TTS) for Max-3-Cut pro-
blems between using ζ = 1 and using the optimal ζ that minimizes the TTS. Results
are shown for a the original external fields (Eq. (3)), b the auxiliary spin method

(Eq. (7)), c the mean absolute spin method (Eq. (6)) and d the spin signmethod (Eq.
(8)). Data points in the grey area on the right denote combinatorial optimization
problems (COPs) that could not be solved using ζ = 1 (TTS = ∞, SR = 0), given the
allocated compute time of tmax ¼ 104.

Fig. 5 | Optimal ζ values (which minimize TTS) as a function of the number
of spins. Each dot represents the mean optimal value across 10 Max-3-Cut pro-
blems. Shaded areas represent the standard deviation.
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state of Eq. (12) via an exhaustive search over the spin configurations. The
difference between these respective cut values is defined as the error.

Figure 6 shows the error of Eq. (12) as a function of B/A and ζ for an
arbitraryMax-3-Cut problem of 30 spins. In the white region, outlined by a
greendashed line, the ground-state configurationof Eq. (12) correctly solves
the COP. For the blue cells, we verified numerically that the one-hot
encoding constraints (the terms of Eq. (12) with prefactor A) are violated,
leading to ill-defined vertex colors. Consequently, the ground-state con-
figuration is not a valid solution in these cells, such that the error is nonzero.

It is important to note that in Fig. 6, the range of valid B/A values is
broader for ζ = 0.6 compared to ζ = 1. In general, as the graph size increases
for ζ=1, it turns out that themapping remains correct only for progressively
smaller values of B/A, as larger values violate the one-hot encoding con-
straints. Interestingly, this issue does not arise for ζ = 0.6. As detailed in
Supplementary Note 9, we confirmed these findings for small graphs by

evaluating the error of Eq. (12) (requiring an exhaustive search as also used
in Fig. 6) and extended them to larger graphs basedon the strong correlation
between the correctness of the mapping and the success rate.

Although decreasingB/A could theoretically eliminatemapping errors
at ζ = 1, this would require an unrealistic resolution of the interaction
parameters, making the approach impractical. In contrast, choosing ζ = 0.6
yields good performance across a much broader range of B/A values, sig-
nificantly reducing sensitivity to parameter choices. Moreover, as shown in
Supplementary Note 8, using ζ = 0.6 generally results in similar TTS as the
optimal ζ ∈ [0, 1.2]. Hence, we conclude that setting ζ = 0.6 effectively
mitigates mapping errors caused by violations of the one-hot encoding
constraint, without requiring impractically small values of B/A.

Comparison of external field implementations. Figure 7 compares the
TTS of the methods to incorporate external fields (cf. “Methods”) for
Max-3-Cut problems with ζ = 0.6. In addition to the graphs studied
earlier in this section, we now include the first five graphs from the Gset
benchmark set45. They each consist of 800 graph nodes, corresponding to
2400 Ising spins. Their target energies for the TTS measure are given by
the best known solutions from Ref. 46. Most data points lie below the
diagonal or in the grey area on the right, indicating that the spin sign
method generally outperforms the alternative methods. Its dominance is
particularly clear for the larger Gset instances: the spin sign method
successfully solves all five, whereas the other methods generally fail. Only
one instance, G4, is also solvable using the auxiliary spin method, and in
this case, it achieves a solution roughly three times faster. However, the
auxiliary spin method fails to solve the remaining four problems, high-
lighting the superior reliability, performance, and scalability of the spin
signmethod. Themaximally achieved cut-values for each of the methods
are provided in Supplementary Note 11. Overall, as with the SK and
Beasley problems, we find that it again performs best for the Max-3-Cut
problems, but that a key prerequisite for good performance is set-
ting ζ ≈ 0.6.

Hardware considerations
In the previous section, wehave shown that the spin signmethod is themost
effective approach to incorporate externalfields in analog IMs.Additionally,
it can easily be implemented in hardware using, for example, a comparator
in electronic systems.Moreover, analog spin amplitudes are oftenmeasured
before computing the local fields Ii

16–22. In such setups, a one-bit resolution
measurement device can enforce the spin sign method, provided this only
affects the local field computation and preserves the analog nature of
the spins.

Fig. 6 | Error of theMax-3-Cut mapping (Eq. (12)) as a function of BA and ζ for the
g05_10.0 graph. For every set of values ðBA ; ζÞ, the ground state configuration of
Eq. (12) is determined via exhaustive search. The error is defined as the difference
between the cut value of this configuration and the optimal cut value (obtained via an
exact solver42). The region where the ground-state configuration solves the Max-3-
Cut problem is surrounded by a green dashed line. Grey cells indicate that the
ground state is degenerate, including at least one configuration that does not solve
the Max-3-Cut problem.

Fig. 7 | Performance comparison between different methods to incorporate
externalfields forMax-3-Cut problems.Comparison of the time-to-solution (TTS)
for Max-3-Cut problems, using ζ = 0.6, solved using the spin sign method (Eq. (8))
compared to the three alternative approaches: a the original external fields (Eq. (3)),
b the auxiliary spin method (Eq. (7)) and c the mean absolute spin method (Eq. (6)).
Dots in the grey area on the right denote combinatorial optimization problems

(COPs) that could be solved by the spin sign method within the allocated compute
time of tmax ¼ 104, but not by the method on the x-axis (TTS =∞, SR = 0). The spin
sign method generally solves the COPs faster than the other methods. We include 5
large-scale graphs (⋆) from the Gset benchmark set45 to provide additional support
for the scalability of the approach.
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Whereas the spin sign method offers the best performance and can
be implemented in hardware relatively easily, the mean absolute spin
method performs worse and further complicates the calculation of Ii.
Indeed, in addition to the standard matrix-vector multiplication, it
requires computing the mean absolute spin value. This is a global
operation: at each iteration, the amplitudes of all spins must be collected,
their absolute values summed, and the result divided by N. Unlike local
operations, which are typically easier to implement in hardware, this
global aggregation demands extending an existing platform with addi-
tional electrical circuitry or optical components to perform the required
computation.

The auxiliary spin method, though less effective than the spin sign
method, may still be useful when directly implementing external fields in
hardware is challenging. Indeed, some analog hardware implementations of
Ising machines that perform matrix-vector multiplications without relying
on digital components like field-programmable gate arrays are specifically
optimized for pairwise spin interactions14,47. Adding single-spin terms to
incorporate external fields may require additional optical components or
electrical circuitry, which could reduce scalability or stability. However,
since the auxiliary spinmust connect to all spins affected by an externalfield,
it can pose difficulties in hardware that does not allow for all-to-all
coupling11,14,48. Moreover, while this method is often cited as a justification
for excluding external fields from hardware implementations26,31,48,49, we
emphasize that this approach is not ideal, as it leads to suboptimal
performance.

Hence, the spin sign method not only provides the best performance
but is also relatively easy to implement compared to the auxiliary spin and
mean absolute spin methods.

Conclusion
The initial implementation of external fields in IMs with analog spins,
Eq. (3), is prone to imbalances in magnitude between the external fields
and the spin couplings. To address this, the mean absolute spin method
of Eq. (6) and the auxiliary spin method of Eq. (7) were proposed in
the past.

In this work, we demonstrate that the spin sign method of Eq. (8)
consistently outperforms the earlier approaches across three distinct pro-
blem classes. For SK, Beasley, and Max-3-Cut problems, it enables solving
more COPs within the allotted time, and generally achieves faster solutions
than any of the other methods.

Although the spin sign method was previously shown to be
effective for ballistic simulated bifurcation31,32, its use has remained
largely confined to that setting, where F in Eq. (2) is linear and
spin dynamics involve momentum. It has not been widely adopted in
other analog IMs10 nor included in prior studies on balancing spin
couplings and external fields33. Moreover, to the best of our knowledge,
it has not yet been studied in detail for problems with external fields. In
this work, we show that the problems with external fields, which better
represent real-world COPs, are exactly the scenarios where this method
flourishes.

The reason for this is its inherent ability to preserve the relative mag-
nitudes between spin couplings and externalfields, such that they accurately
describe themagnitudes of all terms in the binaryHamiltonian of Eq. (1). In
contrast, the mean absolute spin method and auxiliary spin method
essentially rely on heuristic time-varying rescalings of the externalfields that
only approximate this balance.

Such approximations can distort the energy landscape imposed on the
IM, deviating from the intended Hamiltonian of Eq. (1). This is closely
related to the problem of spin inhomogeneity, where frustration causes
unequal spin amplitudes that attenuate the effective spin couplings and
ultimately degrade performance36,50. The spin sign method naturally alle-
viates such issues by preserving the correct relative magnitudes of external
fields and spin couplings.

It is important to highlight that the auxiliary spinmethod falls short in
performance, despite being widely used in practice. This approach is

commonly adopted to avoid the direct implementation of external fields,
meaning that only quadratic interactions need to be implemented26,48,49. Our
results show that this approach is not the most effective in practice. In
contrast, adopting the spin-sign method can significantly improve IM
performance.

Beyond refining IM dynamics, we shed light on the embedding
process of certain COPs. Contrary to some prior works, we showed that
the external fields should not be rescaled with a constant ζ ≠ 1 for
problems without soft constraints, such as SK and Beasley problems.
However, we confirmed that such a rescaling can be necessary when soft
constraints are used, as in Max-3-Cut. While this necessity had been
observed before, we identified the underlying reason: with ζ = 1, one-hot
encoding constraints are often violated due to the finite resolution of
interaction parameters. Choosing ζ ≈ 0.6 restores the embedding’s cor-
rectness for the problems considered here. Notably, prior work also
found this value to be optimal for one-hot encoding with more than three
states27, suggesting its robustness. Since many COPs represent multi-
variate variables using one-hot encoding, this insight is valuable for the
Ising machine community. Moreover, since real-world COPs often
involve numerous soft constraints—particularly when using IMs—it may
be worthwhile to explore whether similar rescalings could benefit other
types of soft constraints.
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