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A plethora of next-generation all-optical devices based on exciton-polaritons have been proposed in
latest years, including prototypes of transistors, switches, analogue quantum simulators and others.
However, for such systems consisting of multiple polariton condensates, it is still challenging to
predict their properties in a fast and accurate manner. The condensate physics is conventionally
described by polariton Gross-Pitaevskii equations (GPEs). While GPU-based solvers currently exist,
we propose a significantly more efficient machine-learning-based Fourier neural operator approach to
find the solution to the GPE coupled with exciton rate equations, trained on both numerical and
experimental datasets. The proposed method predicts solutions almost three orders of magnitude
faster than CUDA-based solvers in numerical studies, maintaining the high degree of accuracy. Our
method not only accelerates simulations but also opens the door to faster, more scalable designs for
all-optical chips and devices, offering promising implications for quantum computing, neuromorphic

systems, and various photonic applications.

Over the decades a wide range of all-optical devices, from switches'” and
transistors" "’ to analogue quantum simulators"? and neuromorphic
computing*™**, have been reported. In particular, exciton-polariton-based
devices have emerged, capitalizing on the nonlinearities and unique pro-
pagation properties of these quasiparticles””. A notable example is the
optically activated transistor switch, initially designed for cryogenic condi-
tions using polariton condensates®, with recent advances enabling ambient
operation™'’. Further progress of all-optical devices necessitates the devel-
opment of precise and adaptable simulation tools. Just as Electronic Design
Automation (EDA) played a pivotal role in the evolution of chip design,
there is a pressing need for emulators that can capture the rich nonlinear
characteristics inherent in optical devices. However, accurately predicting
the behavior of systems with multiple coupled polariton condensates pre-
sents significant computational challenges. The complexity of solving the
driven-dissipative polariton equations, which couple the condensate
dynamics with reservoir evolution grows dramatically with the number of
condensates, making conventional numerical methods computationally
expensive for large-scale systems such as polariton chains, lattices, or graphs.
Moreover, conventional approaches face scalability limitations when
simulating extensive polariton networks, particularly for systems requiring

high spatial resolution (e.g., 1024 x 1024 grid size™). In this connection,
rapid development of machine learning (ML) techniques holds great
potential for overcoming these computational bottlenecks and offers a
chance to revolutionise polaritonics.

The microcavity exciton-polariton (hereafter polariton) system”
consists of two strongly coupled components: excitons confined in an
active material and photons trapped in a microcavity. Polaritons can
form condensates, i.e., a macroscopic coherent quantum state'’, and they
interact over large distances through ballistic propagation, forming
many-body systems such as dyad*>”, chain***, lattice'"** or graph'' (see
example in Fig. la). In non-resonant pumping schemes (Fig. 1b), con-
densation occurs through a multi-step process involving hot electron-
hole plasma cooling, excitons forming along the lower polariton branch,
parametric scattering, and ultimately condensate formation above
threshold”*. Unlike equilibrium condensates described by the con-
ventional Gross-Pitaevskii equation (GPE), polariton condensates are
intrinsically driven-dissipative systems, requiring a fundamentally dif-
ferent theoretical framework. In the polariton GPE”, the excitonic
reservoir acts as both a gain by feeding particles into the condensate
through stimulated scattering and a source of repulsive interactions that
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Fig. 1 | Comparison of pump profiles and wave- a
function density with scattering process illustra-
tion. a The upper layer shows the nonresonant
pump profile featuring three Gaussian spots, while
the lower one shows the wavefunction density of the
condensates at the final time. Three white dashed
lines indicate the central positions of the pump
regions and align with their corresponding locations
on the condensate density map. b Depiction of the
scattering process, tracing the transition from the
hot electron-hole plasma phase, through the reser-
voir cooling phase, to the scattering in the con-
densates. Only the lower polariton branch of the
polariton energy mode is shown here.
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shape the condensate’s spatial profile (see Methods for theoretical
details).

Advances in semiconductor microcavity fabrication and spatial light
modulators (SLMs) have enabled diverse nonlinear phenomena and pump
profile manipulation, revealing applications from condensate amplifiers”*’
and waveguides’™ to quantum computing”. Among these systems,
polariton graphs while showing potential in solving optimization problems
and simulating physical models such as Ising, XY, and Heisenberg
systems'"*, pose the most significant computational challenge due to their
complexity, diversity and irregularity. To this aim, robust solutions to the
polariton GPE” are essential. While parallel computing powered and GPU-
based GPE solvers exist for both uniform®*’ and non-uniform meshes*,
they struggle with the computational demands of large-scale polariton
networks. Even with GPU acceleration, the simulation time scales unfa-
vorably with system size. The Fourier Neural Operator (FNO)* offers a
promising alternative by learning mappings in Fourier space using a fixed
number of modes (see Methods for architecture details), making its learn-
able parameters independent of spatial discretization, enabling efficient
scaling to large systems. Various ML architectures have been proposed for
partial differential equation (PDE) solutions, including convolution-based
methods, like U-Net” and operator-learning methods such as Deep
Operator Networks*, Graph Neural Operators®, Multipole Graph Neural
Operators®, FNOs* and Physics-informed Neural Operators*’. Though
convolution-based methods achieve good accuracy, they fail to scale effi-
ciently to larger systems. Operator-learning methods overcome this by
learning mappings between infinite-dimensional spaces enabling predic-
tions at different discretisation at a similar speed.

The FNO architecture (see Methods) operates by learning integral
operators in Fourier space through spectral convolutions. This spectral
approach efficiently captures global dependencies, making it particularly
suitable for PDEs with long-range interactions like those in polariton sys-
tems. We specifically chose FNO, a specific variant of Neural Operator, over
other ML approaches, as their spectral formulation directly parallels the
split-step Fourier method (SSEM) used to solve the polariton GPE (see
SSEM-FNO correspondence in Methods). Additionally, the FNO learns the
solution operator mapping between function spaces rather than specific
numerical solutions tied to fixed PDE parameters, enabling generalization
across different pump configurations and system conditions. In this work,
we apply the FNO architecture to approximate polariton GPE solutions. To
develop this approach, we first generate comprehensive numerical datasets
comprising 11,220 simulations and 156 experimental measurements of
polariton condensate configurations under varying pump conditions. We
then train a 4-layer FNO architecture with 128 Fourier modes retained in
each spatial dimension to learn the mapping from pump profiles to steady-
state condensate densities (see Methods and Supplementary Notes 2-5 for
complete architecture and implementation details). The advantage of the

FNO method is a significant speedup of the result, which is especially useful
in the case of simulations with many parameters. While SSEM requires
iterative time-stepping with a small interval, in the FNO approach the
solution is obtained with a speedup of about three orders of magnitude.
Furthermore, the prediction process also supports parallel inference of
different cases simultaneously, potentially yielding additional speed
improvements. In terms of scalability, the FNO method allows training the
algorithm using relatively small grids and inference on larger ones, which is
not available in the SSFM approach.

Moreover, FNOs have shown widespread success in application to
many other areas of physics and engineering'*~'. We validate our approach
using a high-quality microcavity sample™, to verify the method using real
experimental results as input to train the FNO model, demonstrating, to the
best of our knowledge, the first direct application of Neural Operators to
coupled exciton-polariton condensate systems with experimental data. This
work not only addresses the computational challenges of large-scale
polariton simulations but also lays the groundwork for scalable workflows in
the design of reconfigurable, all-optical devices.

Results
Steady-state condensates
In Fig. 2, we present the predictions of the FNO model for 4 representative
test cases and their corresponding ground truths obtained from numerical
simulations of the driven-dissipative polariton equations (see Methods).
Note that we have carefully chosen four distinct pump profiles (see
Fig. 2a-d) to visualize the performance of the model with varying inputs. As
we see in Fig. 2e-h for predictions and in Fig. 2i-1 for numerical ground
truth, the model is highly accurate (see Fig. 2m-p) in predicting the steady-
state solution |P(t — o)| to the polariton GPE (see Methods). The FNO
predictions demonstrate excellent agreement with numerical ground truth,
capturing key features of the condensate density, including interference
patterns and fringe parity. Notably, the model accurately predicts the
direction of ballistic flow and scattering on below-threshold barriers,
aligning with similar experimental results observed in inorganic semi-
conductor materials, where clear interference patterns have been
reported”*°. We see that the predictions and the simulation ground truths
are almost the same for different pump configurations, including the parity
of fringes among spots. The parity of these fringes is responsive to the
distance between spots™, which also indicates that our model is capable of
capturing these details, such as the type of interaction between condensates.
The error panels in Fig. 2m-p reveal that the highest discrepancies
occur near pump locations. These deviations arise from multiple factors: (i)
the inherent nonlinearity of the system in these regions and the information
loss caused by fast Fourier transform cut-off modes in the FNO architecture
and (ii) the FNO approximates the first-order solution in the nonlinear
operator while the numerical ground truth uses the higher-order one (see
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Fig. 2 | Comparison of the prediction with different short-distanced-spots pump
configurations using theoretical datasets and the Fourier Neural Operator
approach. a-d From left to right, the different pump configurations are

P =0.85,0.9, 1.2, 1.4 Py, e-h Corresponding condensate solutions |¥,| with pump
profiles, each featuring a distinct spatial profile and intensity from the prediction

P=140 Py,

prediction

2

A\

AW
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datasets. i-1 Corresponding numerical steady-state solutions || from the ground
truth. m-p Corresponding absolute errors between prediction and ground truth
[['¥,] — ['¥g]|. The white bar on all panels is 10 um. The corresponding percentage
errors of the number of condensate particles, are 1.12%, 4.07%, 0.04%, 0.24%. Py, is
the threshold of the power density per single Gaussian spot.

Supplementary Note 1 for details), introducing systematic approximation
differences. However, errors outside the pump regions are minor, primarily
attributable to nonlinear interactions between condensates. Empirically, the
lower errors correspond to pump configurations where the distance
between the pumps is smaller, leading to better interference predictions.
Higher errors correspond to pump configurations where at least one pump
is far from the other two, leading to worse interference pattern predictions.
This is evident in the results where the pumps are very far apart (see Sup-
plementary Fig. S4), compared to Fig. 2 where pumps are closer together. It
is worth mentioning that due to extra interaction, despite for pump con-
figuration with power density being below the threshold for each Gaus-
sian spot denoted as Py, (see Methods for details), as shown in Fig. 2a, b, the
whole system is still above the threshold. Also, it is worthy noting that the

time to predict numerical solutions for 1122 cases (see Methods) using the
CUDA-based numerical method took 3.35 x 10*s, while the FNO model
took 8.78 s.

S-curve of condensate particles

As the system reaches the condensate threshold, the occupation of state will
increase non-linearly then, followed by a linear increase as the excitation
densities keep increasing'’, which is known as the S-curve of the condensate
system. Here, we demonstrate that the robustness of the FNO model is that it
works not only for the linear region when the pumping density is high but
also for the weakly pumped region. In Fig. 3a, we plot the logarithmic scale of
condensate particle numbers as a function of pump density for the ground
truth, while Fig. 3b presents the FNO predictions. Both curves align closely,
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Fig. 3 | S-curve of the condensate particles as a function of the pumping density.
The logarithmic scale of number of particles for a ground truths denoted as log(N,,),
b predictions denoted as log(N,,), and c the relative error of the condensate particles

in the prediction N, with respect to the ground truth N, as a function of pumping
density in the unit of Py,, where Py, is the threshold power of a single Gaussian spot.

capturing the transition from weak to strong excitation regimes. The
absolute relative errors of number of condensate particles from prediction
and numerical solutions with respect to the numerical ones are shown in
Fig. 3c. Most errors are less than 10%, which shows great robustness and
consistency for the FNO model. Large errors below condensation threshold
are expected because there are fewer training datasets with small numbers of
particles and therefore show more errors in predictions; therefore, it shows
more errors for the predictions. We can see that in Fig. 3a at P= 0.9 Py, there
are more test cases with much lower particle numbers.

Experimental realization

Figure 4 demonstrates the emission profile predictions obtained using
experimental data as a training data set compared to the emission pattern
obtained directly from the experiment. To obtain the desired spatial geo-
metry of the pump profile, we calculate a series of spatial phase maps
(kinoforms)™. A feature of this method is the creation of additional weak
spots aligned with the interaction axis of the main spots. They have a much
lower intensity than the desired pump spots and thus do not cause the
formation of unwanted condensates, and their interactions with the
investigated condensates are negligible. All pump spots of the inputs shown
in Fig. 4a—d are set to be equal at P = 3.6Py,. The number of fringes predicted
from the FNO model, as shown in Fig. 4e-h, is 3, 5, 6 and 8. Even and odd
parity indicates the antiferromagnetic and ferromagnetic order in the
polariton dyad, respectively. The FNO model reproduces the spatial profile
of emissions with high accuracy regardless of the type of interaction between
condensates, which is confirmed by Fig. 4i-1 presenting experimental
emission profiles. The effectiveness of the method was confirmed by an
accurate reconstruction of the emission pattern with the correct number of
interference fringes and propagation trajectories of polaritons compared to
the ground truth obtained from the experiment. Moreover, the comparison
of Fig. 4e-h and Fig. 4i-1 shows that even subtle details of the patterns such
as local intensity minima and maxima of the intensity profiles have been
reproduced correctly. The method of post-processing of the experimental
data is detailed in Supplementary Note 4. The details of the experimental
datasets and hyperparameters can be found in Methods and Supplementary

Table S1, respectively. More prediction results with different pump profiles
can be found in Supplementary Note 6.

Discussion

Various general ML methods have been proposed to incorporate the
underlying physics-based losses and information into the model to aid the
learning task, such as in refs. 54-57. In this work, we have taken a purely data-
driven approach to training; however, we believe that incorporating additional
physics-informed loss terms will improve the accuracy, though this may come
at the cost of slower convergence during training”. This is especially
appealing, given that we have a strong theoretical understanding of the
underlying system. In contrast to the theoretical steady-state datasets, the
time-integrated PL data can also achieve good agreement with experimental
features. A similar FNO-based real-world data-driven treatment has been
adopted for weather forecasts™. In contrast to theoretical datasets, pre-
processing of the experimental datasets is critical, as the input parameters
from the experimental devices usually come with different orders of magni-
tude of values. It is important to note that the prediction from the experi-
mental pump profile deviates slightly from the uniform values of the ground
truth. Since only the relative intensity of the PL matters, it is not an issue from
a physics perspective. Moreover, with the help of a streak camera, PL can be
captured at the picosecond level, making it possible to make predictions of a
time-resolved condensate formation on the basis of purely experimental data.

Beyond computational acceleration, the FNO method also provides
capabilities for analyzing polariton systems. The accurate prediction of
fringe parity enables the rapid determination of coupling types, such as
ferromagnetic and antiferromagnetic, between condensates™, as demon-
strated in Figs. 2 and 4. The method’s ability to identify local intensity
minima and maxima in the condensate density facilitates optimization of
pump configurations for desired quantum states. These capabilities, com-
bined with the computation speedup, enable applications such as real-time
device design optimization, where iterative exploration of pump config-
urations for specific XY Hamiltonian states'' can now be performed inter-
actively along with comprehensive parameter space exploration. While the
interference patterns contain information about the underlying interaction
parameters”, extracting these parameters would require further develop-
ment of inverse modeling techniques. This opens possibilities for future ML-
assisted inverse design problems, where desired condensate patterns could
be used to determine optimal pump configurations.

In summary, we explored the potential of the FNO in the context of
polariton condensates. Our findings demonstrate a notable alignment with
the simulation data, with an approximate three orders of magnitude speed
up in solution generation compared to CUDA-based GPU solvers. This
research not only paves the way for the conceptualization and development
of advanced large-scale all-optical devices from both theoretical and
experimental perspectives but also draws parallels with the principles of
EDA traditionally used in chip design. This approach represents a sig-
nificant step toward the development of scalable workflows for designing
reconfigurable optical devices.

Methods

Polariton Gross-Pitaevskii equation

The dynamics of polariton condensates are governed by the driven-
dissipative polariton GPE coupled with the rate equation of the exciton
reservoir N/**:

i =

o, 2 n h
Sv=|-1v +MW|+GQM+me)+zERN—yﬂW, 1)

%N:_H+RWHN+Hm @

where m is the polariton effective mass, & and G stand for, respectively,
polariton-polariton and polariton-reservoir interaction, R denotes the
scattering rate from the reservoir to the condensates, # refers to the ratio of
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Fig. 4 | Comparison of the prediction with different normalized pump config-
urations using the preprocessed experimental datasets and Fourier Neural
Operator approach. a-d From left to right, the different pump configurations.
e-h Corresponding predictions from the pump profiles. i-1 Corresponding post-

processed photoluminescence from the experiment. The number of fringes on (e-h)
is 3, 5, 6, 8, respectively, which is the same as those on (i-1). The white bar on all
panels is 10 pm. The pump density for the whole experiment is 3.6 times the
threshold value.

the dark excitons, and y (I') is the decay rate of the polariton (reservoir). The
detuning between the exciton and the photon mode can greatly alter the
interaction terms with the relationship o = gly|* and G = 2g|y|*, and g = go/N
where g is the exciton-exciton interaction, Ny is the number of QWs, and
|xI>, representing the percentage of exciton of which the polariton consists, is
the Hopfield coefficient™ of the excitonic branch. The FNO is trained to
predict the steady-state solutions |¥(t — oo)| obtained from numerically
solving (1) and (2) using the SSFM, which constitute our ground truth data
throughout this work.

In this work, the continuous-wave (CW) pump, denoted by P(r), is
used to replenish the reservoir, which is depleting due to the dissipative
character of the polaritonic system. The nonlinear term |y|* appearing in
both the pump-to-reservoir transition (see (2)) and the superfluid in the
condensates (see (1)), produce the rich nonlinear characteristic induced
from the pump to the condensate.

In the case of CW excitation under a weak pumping regime, the
approximate value of |y|* tends towards zero. In this situation, the rate of
reservoir with respect to time maintains a stationary state, or in mathe-
matical terms, IN /9t = 0. The determination of threshold power, denoted
at Py, is possible through an analysis of the right-hand side (r.h.s.) of (1)
where RN = y serves as a representative of the equilibrium state between
gain and loss. Therefore, the threshold power Py, = yI/R is obtained. This
suggests that when the population of polaritons exceeds the condensation
threshold Py,, a detectable density value manifests itself. The real potential of

(1) denoted V in the stationary state of the system, therefore, is

V(r) = aly)* + G( + ﬁ) P(r). 3)

T+Rly* T

The real potential is composed of two main components: one originating
from the pumping region (first term on the r.hss of (3)) and the other
stemming from the interactions among the polaritons outside this region
(second term on the r.h.s of (3)). When the pump power is below the
threshold, the direct contribution of the potential goes directly into the
pumping profile. This relationship is represented as V(r) = (1 + #)(G/I) P(r).
The spatial profile is chosen for the demonstration of N Gaussian spots.
That is

Ng
P(r) = Z P,G,(r), 4

where P; stands for strength of each spot and the normalized Gaussian
function G{(r), with full width at half maximum (FWHM) denoted g, is

defined as
1 —|r—r
G(r) = Tmg? eXp( 257 ) (5)
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Fig. 5 | Architecture of the Fourier Neural
Operator. The process begins with the input a(x)
which undergoes a lifting operation, denoted as P.
This is followed by 4 consecutive Fourier layers.
Subsequently, a projector Q transforms the data to
the desired target dimension, resulting in the output

Q—»@—» Fourier layer

- —»{ Fourier layer

u(x). The inset provides a detailed view of the
structure of a Fourier layer. Data initially flow to the
layer as v(x) and are bifurcated into two branches:
one undergoes a linear transformation W, and the
other first experiences a Fourier transformation,
from which the 128 lowest Fourier modes are kept,
and the other higher modes are filtered out by
undergoing a transformation R, and ends with an

@_0-®

Multiple

- 128 modes

inverse Fourier transformation with these left
modes. The two data streams then converge, fol-
lowed by the application of an activation function g.

Note that r; represents a different location of spots.

The FNO prediction shown in Results takes P(r) and |¥(t = 0)| as two
inputs. Here, | ¥(t = 0)| is fixed as a zero matrix with the same dimension as
the matrix of P(r). The number of condensate particles in Fig. 3 are calcu-
lated from

N=/|‘I’(r)|2d2r. (6)

Fourier neural operators

The numerical solution to (1) and (2) is derived using the SSEM, detailed in
Supplementary Note 1. A natural ML analog to this classical method is the
FNO architecture”. More generally, Neural Operators® are a class of models
which learn mappings between two infinite-dimensional spaces from a
finite set of input-output pairs. Many variants of the Neural Operator
architecture have been applied to approximate solutions to Partial Differ-
ential Equations, such as in refs. 48-51. The Neural Operator architecture
consists of a lifting operation P, followed by iterative updates using a Kernel
Integral Operator K, and a final projection operator Q, as defined in (7).

Gy :=Qoo;(Wp_1+Kp_y+bp_y)o...oo(Wy+ Ky +by) o P
@)

Here, o corresponds to a non-linearity and W and b correspond to
the weights and biases of the Kernel Integral Layer, respectively. P
and Q are point-wise fully local projection and lifting operators. The
choice of the Kernel Integral Operator K delineates the class of the
Neural Operator. Specifically, the FNO (see Fig. 5) uses the Kernel
Integral Operator defined by:

K@) = F 1Ry - Flvi_)x)  VxeR" ®)
Here F and F ! correspond to the Fourier and Inverse Fourier Transforms
and R4 corresponds to a learned, complex-valued multiplier applied mode-
wise to the top k modes pertaining to each layer, where k is a hyperparameter
in the model. See Supplementary Note 2 for further architectural details.
Here, the FNO implementation with k = 128 modes, along with 4 FNO
layers and 64 hidden channels, was determined through hyperparameter
optimization to minimize the trade-off between model expressiveness and
generalization performance for the polaritonic system. Note that while the
numerical ground truth is computed using the second-order Strang split-
ting, the FNO architecture approximates the simpler first-order solution
(see Supplementary Note 1 for details). This difference also contributes to

the systematic errors observed in Fig. 2, particularly in regions of strong
nonlinearity, such as near pump locations.

The natural choice of the FNO architecture for approximating the
solution to (1) and (2) is due to the inductive bias that arises from the SSFM-
FNO correspondence stated below.

Theorem 1. (SSFM-FNO Correspondence) Suppose that ¢ € (TW) is a
Tauber-Wiener function, X is a Banach Space, K C X is a compact set, Vis a
compact set in C(K), ¥, is a nonlinear continuous operator representing the
solution of the first-order Split-step Fourier Method at time ¢. Then for any
any € > 0, there are a positive integer #, m points x;, . . ., X, € K, and real
constants ¢;, 0, &; (fori=1,...,nandj=1,..., m) such that:

Ry = Z ;o <Z Eyulx;) + 9,-) , 9)
i=1 =1
¥ ypa- (YD) — FH(Ry - Flv))x)l <e (10)

holds for allu € V.
Proof. See SI.

Sample and experimental techniques

The sample used in the experiment is the 24 high-quality semiconductor
optical microcavity with quantum wells™. The structure consists of a GaAs-
based microcavity placed between two DBRs made of pairs of GaAs and
AlAsyoPo o> layers. In the microcavity region, the three pairs of 6 nm
Ing 0sGag 92As QWs placed in anti-nodes of the electric field. Two additional
QWs positioned at the extreme nodes of the cavity wells serve for carrier
collection. The sample was held in a cold finger, closed-cycle cryostat
operating at a temperature of T'= 7K.

The optical nonresonant excitation is provided by a continuous-wave
Ti:Sapphire laser modulated by an acousto-optic modulator to prevent
heating effects. In order to obtain the pump profile with multiple-spot
excitation, a reflecting liquid-crystal spatial light modulator (SLM) is used.
The screen of the SLM displays calculated phase holograms in the Fourier
plane modulating the Gaussian beam of the excitation laser beam. The phase
holograms are accomplished by imprinting an analytically generated phase
pattern on the SLM screen. The procedure results in generating the intended
configuration of the laser spots at the focal plane of the microscope
objective lens.
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Numerical simulation

To better emulate the experiment, o= 0.85 pum, the FWHM of each Gaussian
spot equalling to 2 pm, is chosen. The simulation is based on InGaAs QWs™
with slightly negatively detuned cavities. The parameters are the following:
m =0.28 meV ps’ um 7, [y|* = 0.4, Nqw = 6, g = 0.01 meV pm’, /R = 10g,
n=2,and y' =I'" =55 ps. All the numerical simulations were generated
using the SSFM on a 256 x 256 grid with 0.5 um/pixel resolution, corre-
sponding to 128 pum x 128 um physical size. The numerical ground truth
was obtained by solving the polariton GPE with Dirichlet boundary con-
ditions and adaptive time stepping with At = 0.01 ps until steady state.

Numerical dataset

The datasets are constructed based on varying pump profiles P(r), as
described in (4). This profile is characterized by four Gaussian spots taking
Ng = 4 with the spatial profile of each spot obtained by G{(r). Among these
four spots, three of them are equally powered and have their power set at
P, = 0.85,0.90, 0.95, 1.0, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 Py, while the fourth
spot is powered far below the threshold at P; = 0.5 Py,. Thus, in terms of the
power value, there are 11 different configurations. Note that Py, refers to the
threshold power for a single spot, which means that the entire system can
still trigger the condensate with three spots below the threshold with an
additional contribution from the interaction among them”. The reason why
the power varies is that we want the datasets to also cover the S-curve (see
Fig. 3a), the region where the power-intensity relationship' is taken into
account. These profiles are stochastically determined within a square region
that measures 64um x 64um out of the entire configuration with
128 um x 128 um. The region where Gaussian spots stay is smaller than the
full grid, to make sure that they are still far from the region where the
boundary condition is applied. Care has also been taken to ensure that the
Gaussian spots do not overlap under the same power density, so that
without losing generality the minimal distance between two spots is set at
4x FWHM of the Gaussian spot. Additionally, every pump profile is unique,
and among the spots with power exceeding the threshold, each one is
distinct from the others, thereby eliminating any potential redundancy.
Given 0.5 pm resolution per pixel per dimension, the total datasets for the
pump configuration is with size 256 x 256 x 11,220 where 256 represents
each square map size per dimension and 11,220 is the number of different
pump configurations (of which 1122 configurations are used for testing,
1122 configurations are used for validation, and 8976 for training respec-
tively). The datasets for the density map are of size 256 x 256 x 2 x 11,220
where 2 refers to the density at the initial and final time. It is worth men-
tioning that the systems of all the datasets are chosen with a system only at
stationary state with single energy mode, which means that the results with
multiple energy modes are excluded. In multimode cases, the wavefunction
density changes at different times, which can be found in experiments™®'.

Experimental dataset

The experimental pump profiles are normalized to unity. PL data are
enhanced using logarithmic function and contrast-limited adaptive histo-
gram equalization®, which is detailed in SI. The datasets are of size
256 x 256 x 1120 of which 1104 cases are used for training and 16 cases for
testing. The initial state is a zero-valued array of size 256 x 256 x 1120. Data
argumentation is applied for the training datasets by rotating the original
138 training datasets at 45° step around the image center, namely, 0°, 45°,
90°, ..., 315° at the center of the image, resulting in training datasets of
size 1104.

Implementation of FNO model

The FNO model was implemented using the Neural Operators in PyTorch
and trained on an Intel Core i9-13900KF CPU with 64 GB of RAM and an
NVIDIA GeForce RTX 4090 GPU (24 GB of global memory). The archi-
tecture employs a 2D FNO with 128 x 128 Fourier modes retained in each
spatial dimension, 4 Fourier layers, and 64 hidden channels. The input
consists of 2 channels (pump profile and initial zero state), which are lifted to
a 64-dimensional feature space before passing through the Fourier layers.

Domain padding of 12.5% with symmetric mode was applied to handle
boundary effects. Training used the Adam optimizer (learning rate: 3 x 107,
weight decay: 5 x 10~°) with cosine annealing scheduling. The oscillations
observed in the training curves (see Supplementary Figs. S2, S3) are a
direct consequence of this cosine annealing schedule where the
maximum number of epochs in a cycle is set to 30, which we found to
perform well with the polaritonic condensates datasets and effectively
prevent overfitting. The details of hyperparameter (see Supplementary
Table S1), and Training or validation losses versus epochs using numerical
and experimental datasets of the FNO model can be found, respectively, in
Supplementary Figs. S2, S3.

Data availability
All data supporting this study are openly available at https://doi.org/10.

5281/zenodo.15845086.

Code availability

All code supporting this study are openly available at https://doi.org/10.
5281/zenodo.15845086.
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