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Effective energy, interactions and out of
equilibrium nature of scalar active matter

Check for updates

Antonin Brossollet 1,5 , Etienne Lempereur2,5, Stéphane Mallat 3,4 & Giulio Biroli1

Estimating the effective energy, Eeff of a stationary probability distribution is a challenge for non-
equilibrium steady states. Its solution could offer a novel framework for describing and analyzing non-
equilibrium systems. In this work, we address this issue within the context of scalar active matter,
focusing on the continuum field theory of Active Model B+. We show that the Wavelet Conditional
RenormalizationGroup (WCRG)method allows us to estimate the effective energy of activemodel B+
from samples obtained by numerical simulations. We investigate the qualitative changes of Eeff as the
activity level increases. Our key finding is that in the regimes corresponding to low activity and to
standard phase separation the interactions in Eeff are short-ranged, whereas for strong activity, the
interactions become long-ranged and lead to micro-phase separation. By analyzing the violation of
Fluctuation-Dissipation theoremandentropy production patterns,which are directly accessiblewithin
the WCRG framework, we connect the emergence of these long-range interactions to the non-
equilibrium nature of the steady state. This connection highlights the interplay between activity, range
of the interactions and the fundamental properties of non-equilibrium systems.

Equilibrium statistical physics is a well-understood field with powerful tools
available to thoroughly describe any system in equilibrium1. Fundamentally,
equilibrium is associated with the time reversal symmetry of the dynamics
or in the language of Markov chains, with detailed balance (or micro-
reversibility)2. One of the most important consequences of this property is
the strong link between dynamics and statics. In fact, the forces driving the
dynamical behavior derive from an energy function E. The steady state
reached at long times is characterized by the Boltzmann-Gibbs distribution
with the same energy function E.

However, many, if not most, real-world systems operate away from
equilibrium: detailed balance is violated, and the link betweendynamics and
statics does not hold anymore.While small deviations fromequilibrium can
be effectively described using, for instance, linear response theory and
perturbation theory3, systems far from equilibrium pose significant chal-
lenges because traditional tools are not easily applicable. Themain difficulty
is that even though forces and dynamical equations are known, there are no
general principles allowing for the determination of the steady state prob-
ability distribution. One can define an effective energy function, Eeff, as
minus the logarithm of the steady state distribution, but except for very few
cases, e.g., ref. 4, this effective energy cannot be obtained analytically, and its
general properties are unknown. Contrary to equilibrium, there is no longer
a simple relationship between the forces driving the dynamics and Eeff. For
instance, even if the forces are short-ranged, there is no guarantee for Eeff to

be short-ranged. Indeed, Eeff has been shown to contain medium and long-
range interactions in the few cases in which an exact analysis was achieved4.
These interactions could play a major role in giving rise to the new and
striking phenomena observed in out-of-equilibrium systems, such as, e.g.,
flocking5, motility-induced macrophase6 and microphase separation7, and
turbulence8. In consequence, characterizing the energy function and its
interactions across scales is a major theoretical challenge.

This paper aims to address this challenge by employing the Wavelet
Conditional Renormalization Group (WCRG) method9–11, to construct Eeff
from realizations of the system. WCRG uses wavelet theory to decompose
samples at different scales, allowing for a well-conditioned inference of the
parameters of a parametric energy model. We apply this method to obtain
the effective energy description of Active Model B+ (AMB+), which is a
general continuum field theory describing isotropic bulk phases of self-
propelled particles12, such asmicroorganismsor syntheticmicro-swimmers.
This model is a generalization of model B, which was introduced to analyze
the dynamics of equilibrium critical phenomena13. It offers a suitable fra-
mework for our work, as its study is interesting on its own, and at the same
time, it offers a challenging but simple and general enough setting for the
application of WCRG to non-equilibrium systems. The outcome of the
WCRG analysis is a quantitatively accurate model of the effective energy,
which identifies interactions across scales in terms of multiscale long-range
scalar potentials. Our results establish a link between emergent
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medium-long-range interactions in Eeff and the non-equilibrium nature of
the steady states. In fact, we show that these interactions are responsible for
the micro-phase separation induced by activity, and that their range is
directly connected to the scale associated to entropy production patterns
and Fluctuation-Dissipation theorem (FDT) violations. The emergence of
long-range correlations, and possibly long-range interactions, is a central
feature of non-equilibrium systems, studied in refs. 6,14–23 for active sys-
tems. It is also amajor difficulty for inferring effective energies, as it leads to
singular estimation problems9. Our approach leverages wavelet decom-
position andmultiscale decomposition of the probability law to stabilize the
estimation problem, opening theway to a characterization of the long-range
interactions leading to large-scale phenomena associated to non-
equilibrium systems.

Results
Wavelet-conditional RG and effective energy models
As discussed in the introduction, here we are interested in using data to
estimate the steady state distribution and the effective energy ofmany-body
out-of-equilibrium systems. One of our aims is to show how this task can be
achieved by theWavelet Conditional Renormalization Group (WCRG)9–11.
WCRG is a data-driven method, which proceeds as an inverse renormali-
zationgroupprocedure: it goes from large scales down tomicroscopic scales,
and it gains information fromdata at each scale to eventually reconstruct the
microscopic effective energy.

The procedure is illustrated in Fig. 1, which shows the iterative wavelet
decomposition of an initial physical field φ0 into a coarse-grained field φJ
and wavelet fields φj. This decomposition allows us to rewrite the full
probability law, p0(φ0), in a multiscale way:

p0ðφ0Þ ¼ pJ ðφJ Þ
YJ
j¼1

pjðφjjφjÞ : ð1Þ

WCRG focuses directly on the conditional probability distribution for the
wavelet fields pjðφjjφjÞ at each scale. Their estimation is numerically stable,
and their sampling is fast because at each scale they only contain high
frequencies9. WCRG can then be used for systems exhibiting long-range
correlations, for which a direct estimation of the effective microscopic
energy would fail. The model for the conditional probabilities is low-
dimensional, in some cases nearly Gaussian10,11, and is physics-informed.

Once all the conditional probabilities are estimated, one has full
knowledge of the probability distribution p0(φ0). One can then sample new
data efficiently, as shown in ref. 9. Evenmore importantly, one has access to
the interactions between degrees of freedom across scales. In particular,
using themodel forpjðφjjφjÞ introduced in ref. 9, one canobtain the effective
energy for the microscopic field φ0 as

Eeff ðφÞ ¼ φT
0K0φ0 þ

XJ

j¼0

VjðφjÞ : ð2Þ

Thefirst term is a quadratic non-local interaction. In simple cases, it reduces
to the discrete versionof a short-range differential operator, e.g., a Laplacian.
The V0 term is a local potential contribution V0(φ0) =∑xV0(φ0(x)). The
other terms are analogous toV0 but act on the coarse-grained versions of the
field (and the sumover x runs on the coarse-grained lattice). They represent
progressively longer-range interactions, which, as we shall show, play an
important role out of equilibrium. By construction, they do not contain any
linear and quadratic terms to avoid redundancy with the two
previous terms.

The estimation of the conditional probabilities on each scale can be
performed in parallel. Rather than minimizing the Kullback-Leibler (KL)
divergence, which is computationally expensive, weminimize the score (the
gradient of the logarithm of the probability distribution), which is much
easier to do. Technical details are laid out in the “Methods” section and in

depth inAppendixCof 11.Anoteworthypoint is thatWCRGcanbeadapted
to the regularity of the field by choosing a suitable type of wavelet, as
discussed in more detail in the “Methods” section.

Active Model B+
Active matter has been one of the most studied research topic in non-
equilibriumphysics in recent years24–26. Activematter systems are studied in
biology, soft-matter physics, and animal behaviors. They are formed by
several interacting microscopic degrees of freedom (bacteria, cells, vibrated
particles, insects, birds,…) which use and dissipate energy tomove or exert
mechanical forces. In consequence, active systems violate microscopic
reversibility (local detailed balance) and are intrinsically out of thermal
equilibrium. They display a wide diversity of new behaviors compared to
their equilibrium counterparts. In order to study the change due to activity
on critical and collective behaviors, several works have studied active ver-
sions of equilibrium models introduced for critical dynamics2,13. In this
work, we focus on one of themost studied systems: ActiveModel B+ (AMB
+)27. As the name suggests, it is a generalization of the well-known Model
B2,13, describing the stochastic equilibrium dynamics of the conserved scalar
φ4

field theory. AMB+ is obtained by adding to it all terms allowed by
symmetries up to orderOð∇4φ2Þ

∂tφ ¼ �∇ � ðJ þ
ffiffiffiffiffiffiffiffiffiffi
2DM

p
ΛÞ

J=M ¼ �∇
δF
δφ

þ λj∇φj2
� �

þ ξð∇2φÞ∇φ

F ½φ� ¼
Z

�φ2

2
þ φ4

4
þ K

2
j∇φj2

� �
dx

hΛmðx; tÞΛnðx0; t0Þi ¼ δmnδðx � x0Þδðt � t0Þ ;

ð3Þ

whereΛ(x, t) is Gaussianwhite noisewith zeromean and unit variance, and
D is the strength of thermal fluctuations (proportional to the temperature).
This is the most general model for a conserved field at this order. In the
following, for simplicity, we set the coefficients K and M to constants
equal to one.

It has been shown that AMB+ can be obtained by coarse-graining the
microscopic dynamics of Active Ornstein-Uhlenbeck particles27. Note that
Eq. (3) is a multidimensional Langevin equation in which the force, −∇ ⋅ J,
is not conservative. This is due to the parameters λ and ξ, which control the
activityof themodel andbreak local detailed balance. The systemdoes reach

Fig. 1 |Wavelet decomposition of theAMB+.The iterative wavelet decomposition,
or fast wavelet transform, (in green) iteratively decomposes thefieldφj−1,with length
scale 2j−1, into a coarser approximation φj, and 3 wavelet coefficient images φj, with
sub-sampled low-pass filtering G and high-pass filtering, along different directions,
G. It can be inverted (in blue), and φj−1 can be recovered from ðφj;φjÞ, with the
transpose operators ðGTG

TÞ. Illustration is done over a realization of AMB+ at
parameters (λ, ξ) = (1, 4), which sets the amount of activity of the model.
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a steady state at long times, but it is a non-equilibrium one that does not
verify the time-reversal symmetry (TRS). In this work, all numerical results
are obtained from a discretized square lattice version of Eq. (3). The mean
value of the field is conserved by the dynamics; we chose it equal to 0.6 in
order to focus on phase separation regimes. Additional details on the
simulations are discussed in Methods.

The main advantage of AMB+ in the context of this paper is that the
amount of activity is tunable, via the two parameters λ and ξ. Moreover, the
model displays a phase transitionwhich, depending on the values of λ and ξ,
canbe equilibrium-like or shownew features related to the violationof time-
reversal symmetry28–30. Figure 2 display the state points on which we have
focused in the (λ, ξ) plane. In our study, we have fixed D = 0.45, which is
below the transition temperature Dc = 0.54 of the passive model, but still
retains a substantial amount of thermal fluctuations. We show in Fig. 2 the
zero-noise D = 0 separation line between the “effectively passive" and the
“effectively active" phases (P and A phase, respectively, on the figure), and
snapshots of the corresponding phases (adapted from ref. 27). For low level
of activity, the large-scale phase separation resembles what happens in
equilibrium (top right panels). When the amount of activity increases, the
system displays reversed Ostwald ripening and micro-phase separation
(bottom right panels). The transition between the two regimes can be traced
to the change of the sign of the pseudotension, which is a generalization of
the equilibrium surface tension. It determines the Laplace pressure jump at
interfaces. In the A phase, this pseudotension can be negative, leading to
reverse Ostwald ripening and, hence, microphase separation. For an in-
depth discussion, we refer the reader to ref. 27.

In the following,wewill apply theWCRGto theAMB+ in thedifferent
regions of the phase diagram.Our aimwill be to identify the effective energy
for each state point and relate its main features to the non-equilibrium
behavior of the system.

Emergence of long-range interactions
We now present our first main result: the effective energy inferred from
realizations of the system exhibits, when activity is strong, long-range
interactions that lead to micro-phase separation.

For each state point of Fig. 2, we have produced 5000 independent
steady state configurations for a lattice of linear size L = 128. Using these
configurations as input, we have estimated the conditional probabilities, the
quadratic kernels, and the multiscale potentials introduced in Eq. (2). For
details on simulations and WCRG procedures, see “Methods”. Figure 3
presents results for the quadratic kernel K0. On the left, we show K0 in real

space for the passive case, which is at thermal equilibrium; it agrees with the
discretized LaplacianΔijwe have used in the numerical simulations.We use
a nine-points stencil for the Laplacian: Δij = 0.5(δi−1,j−1+ δi−1,j+1+
δi+1,j−1+ δi+1,j+1)− 2(δi,j−1+ δi,j+1+ δi−1,j+ δi+1,j)+ 6δi,j. Kernels for
the other studied values of the activity parameters (λ, ξ) are available in the
Supplementary InformationFig. S6.On the right,we compare for all (λ, ξ) of
Fig. 2 the corresponding Fourier power spectra. They are numerically very
close to the one corresponding to the passive case, thus showing thatK0 is a
discretized Laplacian, or very close to it, for every state point. The increase in
activity, therefore, has no effect on this part of the effective energy.

The situation is very different for the local potentials Vj. Each Vj cor-
responds to a coarse-grained scale ℓj = 27−ja, where a is the lattice spacing,
which henceforthwe fix to one by adjusting the unit of length. As previously
discussed, eachmultiscale potential encodes information about interactions
on the scale ℓj. For instance, V3 corresponds to interactions on a range
corresponding to ℓ3 = 8 sites. Figure 4 showsVj for all different state points.

In the equilibrium case (black dashed line), we clearly see that the only
significantly non-zero term isV0 (the small non-zero values of Vj>0 are due
to estimation errors). This is exactly what is expected: the invariant prob-
ability distribution in equilibrium is expð�F=DÞ=ZD, and hence the
effective potential V0 coincides with the one present in the dynamical
equations throughF , as reported in the Supplementary InformationFig. S4,
whereas all other potentials are zero. In equilibrium, short-range interac-
tions in the dynamical equations imply short-range interactions in the
energy function. For the cases with non-zero activity, the situation is dif-
ferent. Two main behaviors arise. For a relatively low level of activity
(greener hues curves), which corresponds to systems behaving macro-
scopically similarly to the equilibrium case, as shown in Fig. 2, all the
potentials, from V1 and up, stay small, close to the zero baseline of the
equilibriumcase. Instead, for high activity (bluerhues curves), the potentials
develop significant contributions up to V3. V4 and higher potentials are
essentially zero except for atypical values of the field (for which the esti-
mation is poor and the error large).Note thatfinite-size effects are also likely
to play a role and can explain why V4 does not vanish more clearly.
Quantifying such effects would require studying and comparing larger and
smaller sizes of models, a problem which we leave for further works.

These potentials are crucial to stabilizemicro-phase separation. In fact,
an energy function with a Laplacian K0 and potentials as the V0 and V1 in
Fig. 4,which locally favor one value of thefield (the positive one),would lead
to macroscopic phase separation. The potentials V2 and V3 counteract the
effect of V0 and V1 by favoring the other (negative) value of the field at a

Fig. 2 | Macroscopic phase separation behavior of
the ActiveModel B+. a Phase diagram of AMB+ in
the mean-field regime D = 0 (where D is the noise
amplitude), adapted from ref. 27. The P, for passive,
phase is where the activity has no significant effect
on the large-scale phase separation; standard Ost-
wald ripening is observed. The A, for active, phase is
where activity affects the large-scale steady state
phase separation: reversedOstwald ripening leads to
the stabilization of smaller structures and drives the
system to microphase separation. Squares, triangles,
and disks correspond to the set of parameters we
used to generate the training dataset for the model.
The equilibrium case is indicated in black. Going
from greener to bluer hues corresponds to an
increase in activity. b For the three specific sets of
parameters (λ = 0, ξ = 0), (λ =−0.5, ξ = 1),
(λ = 1, ξ = 4), where (λ, ξ) tune the amount of noise
in the model, the field on the left is a representative
example from the dataset, the one on the right is a
sample generated from the learned WCRG model.
Blue indicates negative values of the field, while
green indicates positive values.
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coarser level. The net result is a blocking of macroscopic phase separation,
which is instead replaced by the formation of bubbles with length-scales up
to ℓ3, as shown in Fig. 2. The effective potentials are thus asymmetric, and
this asymmetry gets more pronounced when the activity level increases.
Notice that one does not expect the effective potentials or energy function to
be symmetric, because the dynamical equation defining AMB+ is not
symmetric with respect to a change of sign of φ. The proper symmetry is
instead (φ, λ, ξ)→− (φ, λ, ξ). Only in the strictly passive case, when
(λ, ξ) = (0, 0), one finds that Eeff ≈V0 is indeed symmetric.

Wefind, therefore, twomain results. First, a stabilizationmechanismof
micro-phase separation, which is different from the one found in many
equilibrium theories31. In the latter, theminimumofK0 at a non-zero wave-
vector leads through the quadratic term in the energy to micro-phase
separation. Inour case, instead, the formofK0 is standard (it has aminimum
at zero wave-vector), whereas they are the long-range coarse-grained
potentials (not containing any quadratic contribution by construction),
which play the crucial role. Second, once TRS is broken, even though forces
are local, the interactions in the effective energy describing the non-

equilibrium steady state become long-range for strong activity. Arguably,
this is a key ingredient that allows the system to display phenomena that
would be otherwise unexpected in equilibrium.

We have checked the quality of themodel estimated byWCRG, and its
correctness, testing that in the equilibrium passive case, the energy function
is directly linked to the forces in the dynamical equations. In the active case,
we have sampled scale by scale using the estimated conditional probabilities
(running a Metropolis Adjusted Langevin diffusion32), and checked the
quality of the image generated. Figure 2 shows side by side a true example of
AMB+ extracted from the training dataset (on the left of the right panel)
and a sample generated from the learned model for an increasing level of
activity. Clearly, in every case, the generated samples are qualitatively very
close to the dataset used to train on. This “visual correctness" is actually a
difficult test to pass, but it’s also important to show quantitative compar-
isons. In the Supplementary Information Fig. S5 we present more examples
of samples from the model and also compare the Fourier spectrum and the
probability distribution of the training and sampled datasets. All these show
very good agreement in every situation tested.
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The main result of the application of WCRG to AMB+ is that, in the
strongly active regime of the AMB+ model, the effective energy inferred
from system realizations develops long-range interactions that stabilize
micro-phase separation. While the quadratic kernel K0 remains essentially
identical to the passive case (a discrete Laplacian), the multiscale local
potentialsVj reveal a qualitative change: in equilibrium, onlyV0 is non-zero,
but under strong activity, higher-order terms up to V3 become significant.
These long-range, non-quadratic interactions counteract the tendency for
macroscopic phase separation and instead promote the formation of stable,
finite-sized bubbles. This mechanism differs from equilibrium theories,
where micro-phase separation typically arises from non-local quadratic
terms. The effective energy thus captures genuinely non-equilibrium
behavior. Time-reversal symmetry breaking induces emergent long-range
structure, despite the underlying dynamics being local. The validity of the
model learned by WCRG is supported by both visual and statistical agree-
ment between real and generated configurations.

Out of equilibrium probes, length-scales, and patterns
Wenowpresent the secondmain result of thiswork: long-range interactions
are directly associatedwith the out-of-equilibriumnature of the steady state.
To this end, we study twoways to probe in detail non-equilibriumbehavior.
The first is the local entropy production rate. The knowledge of the effective
energy enabledby theWRCGapproachallows for thedirect computationof
this quantity.The second is the violationof theFDTas a functionof thewave
number.

Obtaining the patterns of entropy production33,34 is, in general, a dif-
ficult task because it requires knowing the gradient of the effective energy, a
quantity which is unknown and difficult to obtain for a non-equilibrium
steady state. WCRG, by providing an estimation of Eeff[φ], offers a very
direct way to probe the local entropy production field. In fact, once the
score∇φ log p½φ� ¼ �∇φEeff ½φ� is known, using the force field F =−∇xJ
and the mobility matrix M (coming from the discretization of the spatial
differential operators), the local entropy production can be expressed as33,35

σðx; tÞ ¼ 1
D
MðF þ D∇Eeff Þ � ðF þ D∇Eeff Þ : ð4Þ

More details on the derivation of this expression and important remarks on
the computation of the different quantities can be found in “Methods”. In
Fig. 5, we show σ(x, t) (in red) superimposed on the field configuration (in
gray scale) for realizations associated with three different state points. The
first panel corresponds to the equilibrium case, the second one to an active
system in a regime in which no long-range interactions are present in the

effective energy. In both cases, the entropy production is absent orminimal.
Note that in the case (λ, ξ) = (−0.5, 1) even though the microscopic
dynamics contains terms breakingmicro-reversibility, the systemeffectively
behaves like if it was in equilibrium. The third and fourth panels correspond
to cases where activity leads to long-range interactions. In these cases,
entropy is instead produced locally in correspondence to the bubbles
generating the micro-phase separation, thus on the scale of the effective
long-range interactions. It ismostly localized on the boundaries between the
bubbles and the bulk, as found by several previous studies36,37. Note that
because the temperatures we are investigating are not as low as in other
studies, the localization at the boundary is less sharp. The typical scales on
which the entropy is produced are similar between the twomost active cases.
For the (λ, ξ) = (1, 4) case, the amount of entropy production is greater, and
the typical length-scale is slightly larger. This is consistent with the fact that
long-range potential V3 is greater in the most active case.

It is interesting to compare the method we propose to compute the
entropyproduction rate toother approaches thathavebeendeveloped in the
literature. In36, the authors start from a path integral representation and
obtain from it an exploitable form of the entropy production rate. This
approach is very direct and amenable to analytic studies, but it requires a
case-by-case field theory analysis. In contrast, the approachwe used ismore
direct, in the sense that it only requires the knowledge of the dynamical
equations of the system in order to connect the score function, i.e.
∇φ log p½φ�, (directly obtained from WCRG) to the entropy production.
Our method is therefore more prone to experimental applications. Indeed,
one future direction we would like to study is to apply the method we
developed to data fromexperimental systems. Themethod developed in ref.
37 defines a local entropy production by dividing the system into small
blocks, small enough to contain a single particle. Then, using the result from
information theory, it constructs an estimator of the entropy production
based on the cross-parsing complexity. This method requires time trajec-
tories of the system, which is not the case with our procedure, which only
relies on independent snapshots of the system. An advantage of the
approach37 is that it is directly applicable to experimental data. Finally35, used
deep neural networks to estimate the score and then used an equation
similar to (4) to estimate local entropyproduction.Thiswork ismore similar
to oursmethodologically.Themaindifference is thatweuse an interpretable
form of the score based onWCRG, whereas they use a more expressive but
not interpretable representation based on neural networks.

Analyzing the violation of the FDT has been a protocol used in several
physical situations to characterize out-of-equilibrium systems. In fact, FDT
is directly related to the time-reversal symmetry of the dynamics. Theway in
which FDT is violated informs on the out-of-equilibrium nature of the

( , ) = (0, 0) ( , ) = (-0.5, 1) ( , ) = (0.75, 3.5)( , ) = (0, 0) ( , ) = (-0.5, 1) ( , ) = (0.75, 3.5) ( , ) = (1, 4)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

40 20 0 20 40

(a) (b) (c) (d)

Fig. 5 | Entropy production rate. Examples of the entropy production rate for
different sets of model parameters (λ, ξ). Their value is displayed for each panel and
corresponds to differentmacroscopic behaviors: a equilibrium (λ, ξ) = (0, 0), b below
phase transition (λ, ξ) = (−0.5, 1), and c, d above phase transition (λ, ξ) = (0.75, 3.5)
and (λ, ξ) = (1, 4). The gray-scale images encode the field value at each point. The
superimposed color maps show the local entropy production rate, red for positive

values, blue for negative ones, and transparent close to zero. As expected, the entropy
rate is nearly everywhere positive or vanishing. The rate is significant only for a high
degree of activity and stays minimal in the effectively passive regime. The entropy is
produced mostly at the boundaries of the bubbles. This rate is obtained by com-
puting the instantaneous production rate σ and averaging it over a short time, short
enough not to modify significantly the spatial structures.
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system, as originally proven for spin-glasses38, and recently for active
systems39. One form of FDT is2,40

χðq; tÞ ¼ 1
D

Cðq; 0Þ � Cðq; tÞ	 

; ð5Þ

whereC(q, t) and χ(q, t) are respectively the autocorrelation function and the
integrated response function of the density field, at wave-vector q and lag
time t; D is the equilibrium temperature. The autocorrelation is computed
by standard methods, using trajectories of the field obtained by numerical
integration of the dynamics. To compute the response, we used a
perturbation-free approach, based on the Malliavin weight technique.
We detailed the procedure inMethods. Following38,39, we study in Fig. 6 the
parametric plot of χ(q, t) as a function ofC(q, t) for various values of q in the
case of strong activity. In equilibrium one should find a straight line with
slope −1/D.

This is actually close to what we find for high and low spatial wave-
vectors, i.e., small and large length-scales. Instead, when considering length-
scales and state points at which the effective potentials display long-range
interactions, we find that FDT is strongly violated. Concomitantly, the
behavior ofC(q, t) is also peculiar, displaying a very slow relaxation for those
modes q’s (see Fig. 7 in “Methods”). For state points corresponding to weak
activity (effectively passive regime of Fig. 2), we don’t find any substantial
violation of FDT for all wave-vectors, as illustrated in the Supplementary
Information Fig. S1.

In summary, local entropy production patterns and FDT violation
both highlight the connection between the effective out-of-equilibrium
behavior and the emergence of long-range interactions in Eeff. For state
points in which the system displays standard macroscopic phase
separation, both out-of-equilibrium markers are absent or minimal, and
concomitantly, the long-range interactions are not present. In this regime,
the system is in a steady state, which appears to be effectively in equili-
brium despite the presence of terms breaking micro-reversibility in the
equation of motion. A similar behavior is discussed in the case of active
mixtures in ref. 41. Instead, in the part of the phase diagram in which the
system displays micro-phase separation, entropy is produced and FDT is
violated. Both probes indicate that the scale over which out-of-

equilibrium effects are maximal corresponds to the long range over
which interactions identified in Eeff act, and to the size of bubbles char-
acterizing the micro-separated phase.

We conclude this section by clarifying the different types of input
required for the analyses discussed above. Inferring the effective energy
using the WCRG method requires only a dataset of representative steady-
state snapshots of the system. In our study, these snapshots were generated
by integrating the dynamics of AMB+, but access to the underlying
dynamics is not essential—such snapshots could just as well come from
experimental observations of a physical system. Computing the entropy
production requires prior knowledge of how the score function (i.e.,
∇φ log p) relates to entropy production, which depends on the system’s
dynamical equations. Once this relationship is known (as in our case via
Eq. (4)), the score—and thus the entropy production—can be directly
extracted from the effective energy, again using only snapshot data. On the
other hand, studying violations of the FDT through autocorrelation and
response functions requires access to time-series data, i.e., sufficiently long
trajectories of the system’s evolution.

Discussion
The interpretable model of the effective energy obtained by the WCRG
allows us to connect the emergence of medium-long-range interactions to
characteristic out-of-equilibrium behaviors of a general model of scalar
active matter, the AMB+. Moreover, the form of the local potentials across
scales offers a new perspective on the micro-phase separation out of equi-
librium shownby active systems.Another application ofWCRG,whichwas
not studied in this work, but that would be worth exploring, is a data-driven
renormalization group theory for non-equilibrium steady states. In fact, by
following the flow of Eeff across scales, one can characterize critical points
and the associated relevant operators. It was shown in ref. 9 that for the
standard equilibrium φ4

field theory, WCRG is indeed able to describe the
RG critical fixed point.

The key ingredient of WCRG is the ansatz for the form of the scale-
dependent effective energy. The analysis of more complex active systems
andofmultiscale out-of-equilibriumstates, suchas turbulence,will certainly
requiremore general ansatzes. The proposal in ref. 11 couldprovide a robust
low-dimensional description sufficient to describe two-dimensional tur-
bulence. Modern machine learning generative methods applied to non-
equilibrium physical systems, see e.g.42, are very powerful but lack inter-
pretability, which is a key challenge to gain physical insights. The method
presented in this paper is a step towards addressing this problem.

Fig. 6 | Parametric representation of the Fluctuation-Dissipation theorem at
different wave numbers q for activity parameters (λ, ξ)= (1, 4). The integrated
response function χ(q, t) at wave number q is plotted as a function of the auto-
correlation function C(q, t) at wave number q. The typical length scale corre-
sponding to wave number q is denoted ℓ = 2π/q. The dashed line corresponds to the
equilibrium FDT, where D is the noise amplitude. The deviation is the strongest at
intermediate q values, which correspond to the size at which the effective potentials
display long-range interactions and to the size of the bubbles in the micro-
separated phase.

Fig. 7 | Autocorrelation function. Spatial Fourier transform of the autocorrelation
function C(q, t) of the AMB+ as a function of the time lag, for several wave numbers
and for activity parameters (λ, ξ) = (1, 4). A logarithmic scale is used for time. Low
and high length scale modes show a familiar exponential decay. However, inter-
mediate scales have a logarithmic relaxation.
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Methods
Wavelet bases
Orthogonal wavelet filters. We use an orthogonal decomposition that
separates high from low frequencies, using two conjugate low and high-
pass discrete filters ðg; gÞ. We define the orthogonal operator ðG;GÞ, with
a convolution and a subsampling

GφðnÞ ¼ φ � gð2nÞ and GφðnÞ ¼ φ � gð2nÞ :

In dimension d, conjugatemirrorfilters are computed as separable products
of one-dimensional conjugatemirror filters ðg; gÞ43. For a signal φ of size Ld,
G computes a low frequency map of size (L/2)d whereasG computes 2d− 1
high frequency maps of size (L/2)d. For images, d = 2, G computes vertical,
horizontal, and diagonal details.

Fast Wavelet transform. We decompose the field φ0 into its wavelet

decomposition φj;φJ

� �
1≤ j≤ J

by iteratively applying orthogonal opera-

tors ðG;GÞ. The field φj−1, with length scale 2j−1, is decomposed into a
coarser approximation φj, and 2d− 1 wavelet coefficient φj such that

φj ¼ Gφj�1 and φj ¼ Gφj�1 :

The finer scale field φj−1 can be recovered from ðφj;φjÞ with the transposed
operators ðGT;G

TÞ with

φj�1 ¼ GTφj þ G
T
φj :

Asymptotic wavelet bases. When j goes to ∞, for appropriate filters g
and low-pass filters g, one can prove44 that the iterated wavelet
filters Gj =Gj and Gj ¼ Gj�1G, such that φj = Gjφ0 and φj ¼ Gjφ0,
converges to φ(x) and wavelets ψk(x), up to a dilation by 2j. These
limit functions are square integrable. One can prove43 that
f2�j=2ψkð2�jx � nÞgn2Zd ;j2Z;1≤ k≤ d is an orthonormal basis of L2ðRdÞ.
Wavelet fields φj can be rewritten as decomposition coefficients in this
wavelet orthonormal basis.

Choice of wavelet basis. The specific choice of wavelet ψmade for the
WCRG is important to optimize the performance of the method. Indeed,
with the development of wavelet theory, different kinds of bases have
been created to represent functions43. One of themost important families
of wavelets was invented by Daubechies44 and bears her name. They have
the property of having compact support and lead to an orthogonal
representation of L2ðRÞ functions. One important feature is that they can
be picked to have p vanishing moments, for any p 2 N, whichmeans the
wavelet is orthogonal to any polynomial of degree p− 1. There is a trade-
off between the size of the support and the number of vanishing
moments. Simplifying a bit, when trying to represent a fieldwhich is quite
smooth, it is useful to increase the number of vanishing moments,
because it will lead to a sparser wavelet representation43. In the case of
AMB+ presented in subsection “Active Model B+”, inspection of the
dynamical Eq. (3) shows terms up to order ∇4 of the field. These high-
order gradient terms put strong constraints on the smoothness of thefield
and require the use of a wavelet with enough vanishing moments. We
tested running WCRG using both Daubechies 4 symmlets (a more
symmetric version of standard Daubechies) and Daubechies 1 (also
known as Haar) wavelets, the order indicating the number of vanishing
moments. Using Daubechies 4 gave much better inference performances
for the model in the case of AMB+. But the situation was reversed when
looking at the simplerφ4model, which has lower-order gradient terms, so
not asmuch smoothness is imposed by the dynamics. Furthermore, using
awavelet with toomany vanishingmoments leads to conditional energies

much more complicated to model, with non-trivial interactions across
scales, and thus approximation error11.

Score matching, free-energy estimation, and MALA algorithms
for exponential families
We detail how we construct a parametric exponential model over p from
parametric exponential models over the conditional distributions. We
describe how to estimate, from data, the parameters and sample from this
model. We justify the specific choice of the parametric model used in
this paper.

Exponential families. We define an exponential parametric model
pθJ ðφJ Þ of the distribution pJ(φJ) of the coarse-grained field φJ. With an
ansatz ΦJ(φJ)

pθJ ðφJ Þ ¼ Z�1
J e�θTJ ΦJ ðφJ Þ : ð6Þ

Z�1
J is a normalizing constant that ensures that

R
pθJ ðφJ ÞdφJ ¼ 1. The

ansatz ΦJ ¼ ðΦk
J Þk is a set of real functions defined over φj.

For any j ≤ J, we define an exponential parametric model pθj ð�φjjφjÞ of
the conditional probabilities pjð�φjjφjÞ, with ansatz Ψj(ψj−1)

pθj ðφjjφjÞ ¼ eFjðφjÞ�θ
T

j Ψjðφj�1Þ ;

where Fj is a free energy that normalizes the conditional probability

Z
pθj ðφjjφjÞ dφj ¼ eFjðφjÞ

Z
e�θ

T

j Ψjðφj�1Þ dφj ¼ 1 :

Each free energy Fj is specified by θj, but, as detailed later, it does not need to
be computed to estimate θj or sample pθj . Fj is also approximated in a
parametric family, with as an ansatz Φj, and parameters αj such
that Fj � αTj Φj.

Similarly to Eq. (1), we define a parametric model pθ(φ) of p(φ) as the
product of the conditional parametric models defined above

pθðφÞ ¼ pθJ ðφJ Þ
YJ
j¼1

pθj ðφjjφjÞ ;

The model pθ ¼ Z�1
θ e�Eθ has a Gibbs energy

Eθ ¼ θTJ ΦJ þ
XJ

j¼1

θ
T
j Ψj � αTj Φj

� �
: ð7Þ

Score matching. The parameters ð�θj; θJ Þj are regressed from data, such
that the distributions ð�p�θj ; pθJ Þj are the closest possible to ð�pj; pJ Þj. Like-
lihood optimization minimizes the Kullback-Liebler divergence between
the distributions. The optimal parameters are the Lagrange multipliers.
This requires extensive numerical computations. Score matching pro-
vides a computationally scalable alternative to likelihood optimization of
a model, which is valid for distributions with a bounded log-Sobolev
constant, such as log-concave distributions. For conditional probabilities
of scalar field theory, this hypothesis has been experimentally shown to
hold9–11. Parameters θj are estimated by minimizing a relative Fisher
divergence

‘ðθjÞ ¼ Epj�1
k ∇φj

log pjðφjjφjÞ �∇φj
log pθj ðφjjφjÞk2

� �
:
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Following a derivation from45, for an exponential family,

‘ðθjÞ ¼ Epj�1

1
2
k θ

T
j ∇φj

Ψjðφj�1Þk2 � θ
T
j Δφj

Ψjðφj�1Þ
� �

;

from which we can derive the closed form

θj ¼M
�1
j Epj�1

Δφj
Ψjðφj�1Þ

� �
;

with Mj ¼Epj�1
∇φj

Ψjðφj�1Þ∇φj
Ψjðφj�1ÞT

� �
:

Mj is an ill-conditionedquadraticmatrix,which is regularizedby adding ϵId.
θJ, at the coarsest scale, is inferred similarly. Due to the finite size of the
datasets, empirical estimations replace the expectancies.

Free energy estimation. The parameters θj estimated from
score matching do not define probabilities pθj that are normalized.
Because we approximate∇φj

log pθj , our estimate is blind to any function
of φj in log pθj . Indeed, orthogonality implies ∇φj

φj. Fj remains to be
estimated.

By taking a derivative according to φj in Eq. (6), the free energy and its
parameterized approximation are shown11 to minimize the quadratic loss
function

‘ðαjÞ ¼ Ep
θj
pj

jjαTj ∇φj
ΦjðφjÞ � θ

T
j ∇φj

Ψjðφj�1Þjj2
� �

:

We also derive a closed form for αj

αj ¼ ~M
�1
j Epθj pj

∇φj
ΦjðφjÞ∇φj

Ψjðφj�1ÞT
� �

θj ;

with ~Mj ¼ Epθj pj
∇φj

ΦjðφjÞ∇φj
ΦjðφjÞT

� �
:

We also regularize ~Mj.

Sampling with MALA. We produce a sample φ of pθ from coarse to fine
■ Initialization: compute a sample φJ of pθJ .
■ For j from J to 1, given φj compute a sample φj of pθj ð�jφjÞ and
set φj�1 ¼ Gφj þ Gφj.

The sample φ = φ0 of pθ is obtained by iteratively sampling random
high frequencies conditionally on low frequencies. Both pθJ and pθj ð�jφjÞ are
sampled using the Metropolis Adjusted Langevin Algorithm (MALA)32,
which does not depend upon the normalization free energy Fj.

Scalar potential ansatz. We detail how the ansatze ðΦj;ψjÞj are defined.
In particular, they define an energy Eθ which is made of multiscale scalar
potentials.

At the coarsest scale,Φj includes a two-point interactionmatrixKJ and
a parametric scalar potential VγJ

,

θTJ ΦJ ðφJ Þ ¼
1
2
φT
J KJφJ þ VγJ

ðφJ Þ ;

with θJ = (KJ, γJ). This ansatz is inspired by the φ4 energy.
The interaction Gibbs energy of pθj ðφjjφjÞ includes two-point inter-

actions within the high frequencies φj, between high frequencies φj and the
lower frequencies φj, with convolution matrices Kj and K

0
j, plus a scalar

potential

θj
T
Ψjðφj�1Þ ¼ φT

j Kjφj þ φT
j K

0
jφj þ Vγj

ðφj�1Þ :
with θj ¼ ðKj;K

0
j; γjÞ.

Finally, for the free energy ansatz, like for the coarsest scale

αj
TΦjðφj�1Þ ¼ φT

j
~Kjφj þ V~γj

ðφjÞ :

with αj ¼ ð~Kj; ~γjÞ. Under such parametrization, one can derive the scalar
potential energy ansatz in Eq. (2) from Eq. (7).

Eeff ðφÞ ¼φT
0K0φ0 þ Vγ1

ðφ0Þ

þ
XJ�1

j¼1

Vγjþ1
ðφjÞ � V~γj

ðφjÞ
� �

þ VγJ
ðφJ Þ � V~γJ

ðφJ Þ :

where K0 is defined by recursively computing

Kj�1 ¼ GTðKj � ~KjÞGþ G
T
K

0
jGþ G

T
KjG.

We leverage the invariance to translations of the system. Scalar
potentials are averaged over sites, Vγ(φ) =∑ivγ(φ[i]), with scalar potential
vγ(t) = ∑kγk ρk(t) decomposed over a finite approximation family fρkðtÞgk
with coefficients γ ¼ ðγkÞk. We use translated sigmoids: ρkðtÞ ¼
1=ð1þ eðt�tkÞ=σk Þ. In numerical applications, there are 25 evenly spaced
translations tk, on the support of the distribution of each φj(n), and
σk ¼ 3

2 ðtkþ1 � tkÞ.Weparametrize the kernels to be local andonly consider
short-range interactions. This amounts to θ of approximate size 400.

Regression of linear part. Due to the fact that the dynamical evolution
we consider conserves the spatial mean of the field, there is a gauge
ambiguity in the scalar potentialVj. At each scale, they are defined up to a
linear part ajφj + bj. To remove this ambiguity, at each scale, we are
regressing and then subtracting away any linear part in the potentials
obtained after the training procedure. It is these potentials that are pre-
sented in the main text in Fig. 4.

The gauge ambiguity emerges from the fact that for a given sample of
thefield, the sumover all lattice sites is equal to the samequantity (due to the
conservation of the mean imposed by the dynamics). This property is also
true for the coarse-grained fields φj. This means that a linear term in the
effective energy would lead to a field-independent term. Indeed, a linear
term at scale j is of the form ajφj+ bj= aj∑xφj(x)+ bj= ajmj+ bjwheremj is
the average value of the field at the scale j, which is a fixed quantity for the
system we consider.

Active B+model simulation
To produce the different training datasets, the AMB+ was numerically
simulated for different sets of parameters. The equation of motions (3)
where discretized (with Δt = 0.01, Δx =Δy = 1.0), then integrated using a
simple temporal Euler scheme, where the white noise was discretized as a
normally distributed random vector. Following27, the different spatial
operators were represented as finite difference approximations of high
enough degree to properly capture the correct behavior. Periodic boundary
conditions have been used in both directions.

The datasets used for the inference of the WCRG model are con-
structed following a conservative procedure used for models with slow
dynamics. We proceeded as follows: we started from a uniform initial
condition, then let the system evolve to reach its steady state (the burn-in
time was monitored by looking at different observables, such as the
moments of the distribution, and waiting for them to reach a steady-state
value). Then we sample the system 50 times every 50000 time steps (with a
time discretization Δt = 10−2). This timescale corresponds to the relaxation
time of the slowest modes (defined as the time at which C(t) has decreased
by half of its value at t = 0). Moreover, to improve the statistics, we run in
parallel 100 independent runs—each of them is sampled as described above.
This procedure should decrease the variance due to the slowest mode and
enable a correct statistical estimation.
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Correlation of AMB+
We computed the autocorrelation of the AMB+ in the most active case
considered in this study (λ, ξ) = (1, 4) for several wave numbers and over
a wide range of time-lags, to see how the different modes decorrelate.
Figure 7 illustrates once again the importance of the intermediate length
scale modes. Indeed, contrary to the high and low length scale modes,
which show a standard exponential decay of their autocorrelation, these
intermediate modes have rather a logarithmic decay. This kind of
behavior can be amarker of awide range of out-of-equilibrium effects. In
this case, it is probably due to the strong long-range interactions acting
on these modes.

The autocorrelation for the effectively passive sector (λ, ξ) = (−0.5, 1),
is available in the Supplementary Information, Fig. S2 and illustrates that in
this case, all modes decay exponentially albeit with a large range of
timescales.

FDT, Malliavin weight for computing the response
To show a violation of the FDT, it is necessary to access the auto-
correlation and the linear response function of the system. The auto-
correlation is straightforward and can be estimated efficiently in the
steady state by slicing the system into independent sequences and
averaging over both these slices and several realizations of the system, to
reduce somewhat the overhead of letting the system equilibrate to the
steady state from the initial condition. The response is more difficult
because naively, it requires explicitly perturbing the system with an
external field and then computing an estimate of the derivative of the
average value in the limit of a vanishingly small perturbation field. This is
notoriously difficult. However, alternative methods exist, which do not
require to explicitly perturb the system. They rather introduce a sup-
plementary variable, called the Malliavin Weight (due to its link with
Malliavin calculus), which evolves alongside the system and allows to
compute response to change of parameters46,47. This approach was
already used to study active matter systems39. However, to exploit it in
the context of the present paper, working with fields, a generalization of
the method is necessary. Extended details about the use of these
approaches in the context of field theories will be made available in a
future technical note, but the main result is the following. To compute
the response function of AMB+, an auxiliary field is tracked during the
simulation of themodel. ThisMalliavin field qα(x, t) evolves according to
a Langevin equation

∂qαðx; tÞ
∂t

¼ 1ffiffiffiffiffiffi
2D

p
Z

dx0
δHαðx0; tÞ
δHαðx; tÞ

∇ � Λðx0; tÞ ;

where Hα is an external field added to the other forces in the dynamics for
thefieldφ, andΛ is the samenoise realization as the one used to simulate the
φ dynamics. Using the same realization is crucial, because otherwise the
Malliavin field would be uncorrelated to the field φ. Equipped with qα,
computing the response function simply amounts to taking the average of it
times the field

χðx; tÞ ¼ hφðx; tÞqαðx; tÞi :

It is straightforward to consider the Fourier transform of the Malliavin
weight to compute the response as a function of the wave number.

Entropy production
Computation from stochastic thermodynamics. To compute the
entropy production rate, we follow classic results from the field of
stochastic thermodynamics, presented for instance in ref. 33. We
start from a general vector Langevin equation for the stochastic
vector x

_x ¼ MF þ η ;

where F is the deterministic force,M is the mobility matrix, and η is a noise
vector with correlation

hηðtÞ : ηðt0Þi ¼ 2Dδðt � t0Þ :

D It is called the diffusion matrix. With these notations, the Fokker-Planck
equation for the probability distribution p associated with this Langevin
equation is

∂tp ¼ �∇j ¼ �∇ðMFp� D∇pÞ :

Generalizing slightly the result of 33 to vectorial equations, the overall
entropy production rate can be computed as

_S ¼
Z

dxjD�1 j
p

¼
Z

dxðMFp� D∇pÞD�1 ðMFp� D∇pÞ
p

:

We consider a system in a non-equilibrium steady state, and we write the
associated probability distribution using the effective energy
pssðxÞ ¼ Z�1e�Eeff ðxÞ, which means that ∇ pss =−pss ∇ Eeff, where ∇ Eeff
is the score. The entropy production becomes

_S ¼ R
dxðMF þ D∇Eeff ÞD�1ðMF þ D∇Eeff Þpss

¼ hðMF þ D∇Eeff ÞD�1ðMF þ D∇Eeff Þipss :

Weneed to recover equilibriumwhen the activity coefficients are set to zero.
This imposes the usual Einstein relation D ¼ DM, where D is the noise
amplitude, introduced in themain text. This simplifies the expression for the
entropy rate andmeans that it is not necessary to invert the diffusionmatrix
to compute it. We finally obtain the form discussed in the main text

_S ¼ 1
D
hMðF þ D∇Eeff ÞðF þ D∇Eeff Þipss

¼hσðx; tÞipss ;

where we introduced the local entropy production rate σ(x, t), which is the
quantity computed in the main text.

Discretization and mobility matrix. To adapt the results presented
above to the study of field theories, one simply needs to explicitly dis-
cretize space. This is, anyway, what has to be done to carry out any
numerical analysis. The values of the field at each discretization point are
then arranged in a vector, which was denoted x above. For the study of
AMB+, the mobility matrix M is taken to encode the finite difference
representation of the gradient operators. It is a largermatrix, but it is very
sparse, so it can be efficiently stored, and matrix vector products are also
fast to compute.

Numerical estimation. To plot the entropy production in Fig. 5, we
performed a short-time average of successive time points to reduce the
instantaneous noise in the entropy and have a more defined entropy
production rate structure. These successive time points span an interval
ofΔt = 0.1. Comparing this time to the autocorrelation given in Fig. 7, we
see that this time interval is small enough to have nearly no relaxation of
any of the modes. This means that the system stays basically the same,
apart from very high-frequency fluctuations coming from the stochastic
noise, which is exactly what we wish to filter out.

Data availability
The datasets used during this study are available from the corresponding
authors upon request.
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Code availability
The code used to compute energies is derived from the code of 11 and
available in the repository https://github.com/Elempereur/WCRG. The
code used to simulate AMB+ is adapted from27. The code used for FDT and
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