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The dismantling of complex networks due to targeted attacks has
been extensively studied in network science'. A method to assess the
centrality of nodes to prioritize the targets of a network attack,
namely Network Entanglement (NE), has been introduced in 20212,
and a variation accounting for functional effects has been later
introduced’. The method is based on the concept of network density
matrix, inspired by quantum information theory4, which has been
further developed in the last years®”.

Huang et al.” introduce another variation of NE and apply it to
a range of empirical networks for the same purpose (as them, we
name it VE, in the following). In their article,’ adopt a different
nomenclature to refer to the original implementation of NE, erro-
neously referring to it as Collective Network Entanglement, hence
creating confusion when putting the main contribution of Vertex
Entanglement in the context of recent literature. In fact, the core
implementation of VE (Vertex Entanglement) can be seen as a
direct variation of Network Entanglement, as discussed in this
Matter Arising and shown in a direct comparison between NE
and VE.

Huang et al.” report that such a variation is extensively superior
to other computational methods for network dismantling, as well as
to NE. We discuss here that most of the performance improvement
reported by’ is due to one/two sources that are independent of the
merits of the core methodology: Firstly,” choose the wrong model
parameters— instead of those recommended— for the methods
considered as competitors used to compare the performance of VE.
Secondly,” adopt reinsertion that boosted the performance of VE and
the other methods in the comparison. Reinsertion is a supplemental
algorithm that can work on top of any centrality measure, a pos-
teriori. While the adoption of reinsertion is presented by’ as integral
part of the VE entanglement method, we discuss here that the per-
formance improvement that VE presents over NE and other com-
petitors is mostly due to reinsertion only, rather than a major
differences between NE and VE.

Theoretical assessment
Like the original and second framing of NE,” quantify the effect of structural
perturbations on the network’s Von Neumann entropy”.

Let the network be indicated by G. The structurally perturbed network
would undergo a transformation: G — G’ + 8G where G’ is the remainder
of the network that remains unchanged and 6G encodes the perturbed node
and its locality.

In the original NE, the structural perturbation &G is removing a
node with its emanating links, like a star graph. In the second variation’,
the emanating links are also removed. In’, the structural
perturbation is through the formation of a weight-distributed clique
around the node.

Indicating the network entropy by S and the network entropy after
perturbing node i as S, the network entanglement for node i is given by
S, — S, for all three variations. Accordingly, the background theory is
exactly the same.

Huang et al.’ do not refer to “Network Entanglement (NE)”, in
accordance with the existing literature, and they relabeled the original
method as “Collective Network Entanglement.” Note that NE, in general,
quantifies the node importance for information flow, while collective
entanglement has been used in the original article to refer to the average
NE over all nodes.

Overall, VE has a similar definition and purpose of NE: it cannot be
considered an independent measure from a theoretical perspective, but a
variation of the original NE.

Technical assessment
Based on an analysis of four empirical networks,’ claim the superiority of VE
over a range of other methods.

In Fig. 4,” claim that the original NE’s performance is incredibly poor,
leveraging this result to motivate the need for developing another
variation of NE.

However, using the methodology described in ref. 9, the same data they
have made available after the publication of their work, their and our own
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Fig. 1 | Comparison in log scale. The original NE’ for three choices of the temporal
scale parameter (small, middle, and large) is depicted in different shades of blue.”s
method (VE) is depicted in red, to facilitate its identification. Other methods (GDM,
CoreHD, CI, and EJ, see' for a thorough review) are also shown with thinner solid
lines. The comparison between the methods applied (a) without and b with

reinsertion is shown. Apparently, in their paper,” have reported only the worst
performing curve for NE, among the three available, thus contradicting the claim
that optimal hyper-parameters have been selected for each competitor of VE.
Accordingly, VE is far from being the best performing method, while it is perfectly
aligned with existing and state-of-the art dismantling techniques.

implementation of VE, we were unable to reproduce their analysis of the
four empirical networks.

For our numerical experiments, we use the original implementation
of NE’ and the methods used by ref. 9, while adding a few more methods
publicly available from the library accompanying the recent extensive
review by Artime et al.'— overall including CoreHD, Generalized Net-
work Dismantling (GND), Explosive Immunization (EI), Collective
Influence (CI) and Graph Dismantling with Machine Learning (GDM).
To show that the performance improvement of VE is due to reinsertion'’,
we have considered two sets of experiments: (i) where reinsertion is
not applied to any method; (ii) where reinsertion'” is applied to all
methods.

The result of our analysis is shown in Fig. la (without reinsertion)
and Fig. 1b (with reinsertion). Our analysis shows that the original NE
performs as well as’, as per the aforementioned theoretical expectation, or
it is even outperforming’ in some scenarios. The results confirm that the
original NE* and”s variation exhibit negligible differences in their

assessment of node centrality for network dismantling, in both the
experiments (i) and (ii).

To better clarify the points raised above, we add three figures in log-
normal scale where the distinction between the methods is more visible
(See Fig. 2): (i) all methods without reinsertion, (ii) all methods with
reinsertion, and (ii) all methods without reinsertion except for VE that
benefits from reinsertion. Here, in addition to the largest connected
component, we show the evolution of the second largest connected
component. Controlling for the reinsertion algorithm, the minimum of
the largest connected component and the maximum of the second largest
connected component show no significant difference between VE and
NE_small, over the datasets.

Finally, our analysis also show that”s results under-evaluate the per-
formance of other methods, such as GND' (Fig. 1b). Overall, the results
obtained by the method proposed by’ are perfectly compatible with state-of-
the-art methods, while providing no practical or significant advantage with
respect to methods based on network density matrix, such as NE.
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Fig. 2 | Log-normal comparisons of centrality measures. The original NE’ for three
choices of the temporal scale parameter (small, middle, and large),”s method (VE) an
other methods (GDM, CoreHD, CI, and EI, see ref. 1 for a thorough review) are shown.
The solid lines show the largest connected component while the dashed lines indicate
the second largest connected component. a When all centrality measures are used
without the reinsertion, the minimum of the largest connected component and the
maximum of the second largest connected component show no significant difference

between VE and NE_small, as previously shown, over the datasets and, interestingly,
methods like EI show a better performance than both. b Similarly, when all methods
benefit from reinsertion, no significant difference between VE and NE_small is
observed over the datasets. ¢ Considers a special case where only VE benefits from
reinsertion and the rest do not, demonstrating that the reinsertion algorithm is the
reason why VE slightly outperforms NE_small. Yet, it is interesting to note again that,
even in this case, it does not outperform all other methods, especially EI

Data availability

Datasets analyzed in this matter arising are provided by’.

Code availability
The code necessary to reproduce our results can be found at: https://github.
com/manlius/NE_matter_arising.
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