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Temporal higher-order networks capture the evolving multi-body interactions in complex systems.
Conventional generative models typically prescribe birth-death rules for each higher-order interaction,
but the intrinsic mechanism leading to the emergence of higher-order interactions remains to be
investigated. In this paper, we introduce a Pairwise-Induced Temporal Higher-Order Network model
(PITHON), in which the spontaneous emergence of higher-order interactions can be traced back to the
microscopic pairwise collaboration. In combination with empirical data, it is demonstrated that
PITHON is able to reproduce primary characters of real-world systems, including activity levels,
interaction durations, temporal-topological correlations, and cross-order evolution patterns. PITHON
offers a plausible explanation to the origin of temporal higher-order interactions in certain real systems
such as face-to-face interaction. Additionally, it can produce high-quality data of temporal higher-
order networks with flexibility and efficiency, which supports further studies on dynamical processes

as well as deep learning approaches.

Temporal networks serve as fundamental models for describing associations
and interactions in dynamic complex systems' ™, with applications across
biology’, society”, and engineering’. In a typical temporal network, nodes
represent elements, and links represent pairwise associations or interactions.
Unlike static networks, links in temporal networks are intermittently active
and display rich temporal features'*""*. Topological structure'>"* and tem-
poral properties'™ jointly shape the dynamic characteristics on temporal
networks. Empirical studies confirm that interactions frequently involve
groups rather than only pairs™ . Such higher-order interactions are not
reducible to a linear superposition of pairwise links. Instead, they are more
faithfully represented by simplicial complexes or hypergraphs™ ™. More-
over, the presence of higher-order interactions often gives rise to nonlinear
phenomena. Examples include discontinuous transitions, multistability,
and intermittency, which exhibit significant difference from those on
pairwise networks™ . Consequently, complex systems with temporal
higher-order interactions are likely to exhibit richer dynamical behaviors.
Although still underexplored, some early studies have shown that temporal
features in higher-order interaction networks can significantly affect
dynamical behavior, including altering convergence speed and the steady
states™”.

Based on empirical data, studies of temporal higher-order interaction
have revealed numerous nontrivial phenomena. Interactions of different
orders exhibit heterogeneous activity levels and durations***". All orders
display temporal burstiness”, and both intra- and cross-order interactions

show complex correlations™. In various contexts, higher-order interactions
follow distinct growth and decay dynamics'" and exhibit pronounced
temporal-topological correlations®. In order to capture these features,
several generative frameworks based on temporal simplicial complexes and
hypergraphs have been proposed to capture these features*"*>****". Inspired
by activity-driven models*, simplicial activity-driven model* extends links
to simplices, providing an analytically tractable model of temporal higher-
order networks driven by node activity. Higher-order activity-driven
model®” generalizes this framework to temporal hypergraphs. Emerging
activity temporal hypergraph model" further incorporates short- and long-
term memory to reproduce realistic topological and temporal features.
Another perspective focuses on individual behavior. Tacopini et al.*'
reproduce empirical growth and decay dynamics by allowing individuals to
switch between groups. Group attractiveness model* embeds individuals in
Euclidean space and uses spatial proximity to generate higher-order inter-
actions. Discrete auto regressive hypergraph model® directly formulates
evolution among different orders of interactions and introduces memory
effects to capture cross-order evolutions.

Most existing models treat higher-order interactions as fundamental
modeling components. They specify either the probability distribution of
higher-order interactions evolving or the transitions of each individual
among different interactions. With the assumption that higher-order
interactions already exist, most approaches focus on fitting real-world data,
while few investigate the microscopic mechanisms underlying their
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emergence. In contexts such as face-to-face contact, high-resolution tem-
poral data usually record only pairwise interactions'. Higher-order
interactions are then inferred by identifying cliques of links that are activated
within the same short time window'"***"". However, empirical studies
show that pairwise links usually exhibit low activity, which makes it unlikely
for the independent co-occurrence of multiple links™. Recent work also
indicates that link activations often depend on the states of other links**,
and this dependency has been leveraged to predict the dynamics of temporal
pairwise® and higher-order™ networks. Therefore, it is crucial to reveal the
emergence and evolution of higher-order interactions from microscopic
pairwise link activity.

In this paper, we introduce a Pairwise-Induced Temporal Higher-
Order Network model (PITHON) based on a simple collaborative
mechanism among links. In PITHON, higher-order interactions are
modeled as simplices, where an active k-simplex represents a temporal
interaction among k + 1 individuals. Collaboration between pairwise
interactions can lead to the spontaneous emergence of higher-order inter-
actions, offering a potential explanation for the formation of temporal
higher-order interactions observed in certain real systems. PITHON cap-
tures key empirical patterns including overall activity levels, interaction
durations, cross-order dynamics, and temporal-topological correlations.
PITHON offers flexible tuning capabilities to generate temporal higher-
order networks, including underlying topology, activity rates, and evolu-
tionary timescales. By mitigating the scarcity of high-quality temporal
higher-order network data, PITHON helps researchers to derive the
influence of temporal higher-order features on dynamical processes. It also
provides a data foundation for deep learning approaches in the field of
complex systems.

Results

From pairwise event stream to temporal simplicial complexes
Real-world interactions are complex, but the recorded datasets are simple.
In many empirical studies of the population V = {v,,v,,...,v,}, only
pairwise interactions are recorded: if two individuals v;and v; interact at least
once during the interval [t, t + At), the event (v;, Vit t+ At) islogged. In this
way, the sequence of interactions is abstracted as an event stream
I={(t,t+ At)|l = {v,,v,},v,,v, € V}*7". At each time t, we define
the active link set £, = {I|(l, t,t + At) € I}, and thus obtain the instan-
taneous graph G, = (V, £,). Any clique of size greater than two in G,
indicates a simultaneous group interaction at time t. We therefore regard
each such clique as a higher-order interaction. This construction yields a
simplicial complex because every face of a clique is again a clique. Formally,
we define the simplicial complex H, so that its 0-simplices are the nodes in
V, its 1-simplices are the links in G,, and its higher-order simplices corre-
spond to all cliques in G,. The graph G, thus corresponds exactly to the
1-skeleton of H,. Since every clique is filled (e.g., the presence of links {v;, v,},
{v1, v3}, and {v,, v3} necessarily implies the simplex {vy, v», 3}), there is a one-
to-one correspondence between G, and H,. As time progresses, the
sequence {Ht}tT:1 forms a temporal simplicial complex that captures the
dynamics of higher-order interactions.

Pairwise-induced temporal higher-order network

Most existing temporal higher-order network models directly prescribe
rules for forming and dissolving higher-order interactions. We aim to
develop a generative model that regulates only the evolution of pairwise
interactions. In this model, higher-order interactions emerge sponta-
neously, which matches the dynamics and correlations seen in empirical
data. Motivated by this goal, we propose the PITHON model. The behavior
of PITHON suggests that higher-order structures in real-world systems may
emerge spontaneously from the coordinated evolution of pairwise
interactions.

In PITHON, each individual corresponds to a node in an underlying
network G = (V, £). Its simplicial complex is denoted by H. H® = {h €
‘H||h| = k + 1} represents the set of all k-simplices. Each link ] € HD =
has a binary state process X;(t) € {0, 1} for t € R ™. State 1 indicates that the

two individuals of /interact at time £. We posit that higher-order interactions
emerge from the simultaneous activation of adjacent links. Specifically, each
link’s state is determined by its intrinsic activation mechanism, as well as the
states of its neighboring links. The likelihood of forming a higher-order
interaction increases as more neighboring links become active simulta-
neously. Thus, the instantaneous transition rate for link [ switching from
state s to 1—s at time £ is

Zmea,a(Xm(t)v 1- S)

1
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Here 9, is the set of links adjacent to [, and § (Xm(l‘)7 1— s) is a Kronecker
delta function, equal to 1 iff X,,,(f) = 1—s, and 0 otherwise. The first term
(1—o0) Ts_l represents the intrinsic transition mechanism of link /, where 7,
is the mean sojourn time in state s. The second term captures the colla-
borative effect: as more neighbors occupy the target state 1 — s, the transition
rate increases. The parameter o € [0, 1) balances intrinsic dynamics and
neighbor collaboration (o =0 yields independent links). The specific deri-
vation process can be found in the “Methods” section. For a fixed topology
G, PITHON is fully specified by three parameters (o, 7;, 0). To clarify
interpretation, we set « = 7,/(7y + 71) and 7 = 7;. The tunable parameters
(o, 7, 0) then control: (i) « € (0, 1), the expected link activity rate; (ii)
7€ R", the global time scale; and (iii) o € [0, 1), the collaborative strength.
The transition rates govern the activation of links / € H"). For any
higher-order simplex h € H® with k > 1, let ’Hgll) ={leHVjich}
denote the set of its 1-dimensional faces. We define the state of / by

x,0 = [[ x, ?
lerx”
ie, his active iff all its constitutive links are active. As shown in Fig. 1, the
2-simplex is active whenever all its constituent links are in state 1. Otherwise,
ifany link flips to state 0, the 2-simplex becomes inactive. Based on the above
stochastic process, we can efficiently generate temporal simplicial complex
using the Gillespie algorithm™*” (see “Methods” for the specific algorithm).
The state of a higher-order simplex is a nonlinear function of multiple
link states. Analyzing the emergence of higher-order interactions requires
the joint distribution of all link states. Since adjacent links interact, their
states within a connected component are dependent, forcing us to consider
the full joint state space. In this representation, the explicit time dependence
of individual transition rates disappears, and the system becomes a time-
homogeneous Markov process. We can then assemble the corresponding
microstate transition-rate matrix Q. In this case, the system’s long-term
behavior can be characterized by the stationary distribution 7 of its
microstates (see “Methods” for the detailed description). For each simplex h,
define the active-state set S, = {X|X; =1Vl e 'Hzl)}. Its expected activity
rate is

@) = > mx. )

XeS,

When o= 0, the activity rate of any k-simplex is a*+ %/, which is equal to
the probability that all (k + 1)k/2 links activate simultaneously under
independent link dynamics. As ¢ increases, the marginal link activity rate
remains &, but higher-order simplices become more active. In the limit
0 — 1, the activity rate of any k-simplex converges to a, corresponding to
fully synchronized link activity. A simplex cannot be more active than its
constituent links. Analytic results and simulations in Fig. 2 both show that,
as o increases from 0 toward 1, the activity rate of k-simplices rises
monotonically from a*+D¥/2 to . This range demonstrates the flexibility of
PITHON in generating any desired level of higher-order activity.

We also consider the expected duration of higher-order interactions.
Let the set I denote all intervals [, ) during which simplex h is active. The
expected duration of / is then defined as (1,,) = E{t~ — t7|[t*,17) € I,,}.
This quantity can also be analytically computed using the transition-rate
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Fig. 1 | Evolution of simplex states over time. a A local region of the underlying
simplicial complex H, consisting of three nodes u, v, and w along with their three
links, which together form a single 2-simplex. b The time evolution of each simplex’s
state: coloured intervals denote active state 1, while white intervals represent inactive

state 0 (blue intervals indicate link activity, orange intervals denote 2-simplex
activity). The snapshots above illustrate the active simplicial complex at several time
points. ¢ How the time-dependent transition rates g and g**! for link {, v} vary
over time.

matrix Q, i.e.,

(t)=¢u"- )

Where ¢, denotes the average deactivation rate of h (see “Methods” for the
detailed description). In addition to 7 directly influencing interaction
duration, Fig. 2 also demonstrates that the parameter ¢ affects interaction
duration as a byproduct of facilitating collaboration. When ¢ =0, links
deactivate independently. In this case, the expected duration satisfies
(ty) = 7l(k + 1)k/2]~", which corresponds to the average overlap of (k +
1)k/2 independent intervals of mean length 7. Increasing o enhances col-
laboration among adjacent links, which suppresses state flips and thus
prolongs (t,). As o0 — 1, the system becomes trapped in fully active or
inactive configurations, and (t,,) — oc. Therefore, collaboration not only
boosts higher-order activity but also extends its persistence. This
demonstrates that rich, long-lived higher-order interactions can emerge
solely from pairwise collaboration.

In addition to model parameters, we investigate the influence of
underlying topology on higher-order interactions. To ensure a sufficient
number of triadic closures and to control network density, we generate
underlying networks using the Watts-Strogatz model at varying mean
degrees. We then measure the activity rate of simplices of different orders.
As shown in Fig. 3, pairwise activity remains constant across mean degree,
whereas higher-order activity rate decreases in denser networks when all
parameters are fixed. Equivalently, achieving a given level of higher-order
activity in a denser network requires a higher collaborative strength. This
behavior arises because each link aggregates the states of all neighbors
equally. As the number of neighbors increases, the influence of any single
neighbor diminishes, hindering spontaneous higher-order interaction
formation.

Empirical studies reveal a correlation between temporal and topolo-
gical proximity: interactions that are close in time tend to involve nodes that
are close in the underlying network®. Such correlations may arise from
time-dependent activity patterns tied to network structure or from external
factors influencing both topology and timing. For example, in face-to-face
networks, physical proximity implies that geographically nearby individuals
are network-close and their interactions are close in time. In online or
collaborative networks, members with similar interests form links and often

interact within the same time window. Although PITHON relies solely on
local collaboration, where each link updates based on its own state and the
states of its neighbors, it indirectly reproduces the long-range correlation.
For k-order interactions, we quantify this correlation by defining the nor-
malized expected topological distance under a temporal threshold At
denoted ™ (A (see “Methods” for the detailed description). Figure 4 shows
y(k)(At) as a function of At for various simplex orders and collaborative
strengths 0. Whenever o> 0, the mean topological distance grows with
temporal threshold. This behavior indicates a significant positive correlation
between time and topology, consistent with empirical data. Additionally,
this correlation becomes stronger as o increases and is more pronounced for
higher-order interactions than for pairwise interactions. It should be noted
that temporal-topological correlations may not be solely related to colla-
boration. Other factors such as the network topology and activity rate may
also exert complex influences. In this work, we focus only on the qualitative
impact of collaboration on these correlations.

Reproducing the characters of empirical data
To validate PITHON in reproducing real-world interaction patterns, we
analyze three face-to-face contact event streams collected via wearable Radio
Frequency IDentification (RFID) devices:
+ Workplace®: contacts among employees in an office building in
France.
+ Malawi™: contacts among residents of a rural village in Malawi.
* Baboons™: contacts among Guinea baboons within an enclosure at a
primate research center in France.

These datasets span a wide variety of settings, from workplace to daily
life, and from human societies to animal groups. They reveal diverse and
rich patterns of collective contact. Each participant wore an RFID tag that
exchanged packets with any other tag within 1-1.5 m, at least once per
second. If two tags exchanged packets during a 20 s window, a single pair-
wise contact event is recorded for that interval™. These spatial and temporal
scales capture dynamics relevant to information diffusion and pathogen
transmission.

We infer the optimal parameters (a', 7, 0') by matching the model’s
higher-order dynamics to those observed empirically in the temporal sim-
plicial complex. PITHON operates in continuous time, whereas the datasets
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Fig. 2 | Collaborative promotes the emergence of a
higher-order interactions. This figure shows how 10°
the expected activity rate (a,) and expected duration
(t) vary with the collaborative strength o. Both

analytical predictions and Monte Carlo simulation 10 3
results are displayed for comparison, based on a fully E
connected underlying network of 5 nodes. a The 1072 -
curves computed from Eq. (3) and the scatter points 3
from simulation for the mean activity rate of each - " ]
order. b The curves computed from Eq. (4) and the S 107 o
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have a minimum resolution of At =20 s. Therefore, simulated contacts are
discretized for comparison. If a simulated link is active at least once within a
time window, it is considered continuously active throughout that window.
If it remains active for n consecutive windows, a single contact of duration
Atn is recorded. This discretization necessarily overestimates both activity
rates and durations. As Table 1 shows, empirical link activity rates are
uniformly low. In the limit @ — 0, the discretized mean link activity rate
admits the approximation a >~ (1 4+ At/7) a, which yields the estimator
a*(1) = a/(1 + At/7) (see “Methods” for the detailed description). Since
no closed-form solution exists for cand 7, ¢ and 7~ are determined via grid
search. With «” fixed to match the empirical mean 1-simplex activity rate,
we choose ¢ to match the empirical mean 2-simplex activity rate

1
a2 —
@ = [H®)| Z > )
and choose 7 to match the empirical mean 1-order interactions duration

A0 _ Doher 2pp e, — 1)
ZheH‘” 1y

Because o also influences durations and 7 affects «” via discretization, cand T
are optimized jointly. For each candidate 7, ¢'(7) is found by setting the

(6)

2-simplex activity rate error to zero. For each candidate o, 7' (0) is found by
setting the 1-order interactions duration error to zero. The intersection of
these two curves yields the optimal pair (¢', 7). This procedure is illustrated
in Fig. 5, and the optimal parameters are listed in Table 1.

As shown in Fig. 6, simulations with the fitted parameters reproduce
the observed 1-simplex and 2-simplex mean activity rates and 1-order
interactions mean durations. They also reproduce the decay of activity rate
and duration across higher orders. Empirically, both metrics are observed to
decay approximately exponentially with simplex order, which reflects the
increasing difficulty of coordinating larger groups. This agreement supports
that PITHON can capture the intrinsic mechanisms underlying hierarchical
interaction patterns.

Beyond aggregate activity levels and durations, the fine-grained evo-
lution of each higher-order interaction is examined***". Specifically, we test
how a higher-order interaction forms. It may arise from scratch, where
isolated nodes directly coalesce. Alternatively, it may form progressively
through the accumulation of lower-order interactions. We also examine
how such interactions dissolve. They may break down directly into isolated
nodes or gradually through the successive loss of lower-order links. For each
k-order interaction, the highest order k' € {0,1,...,k — 1} of the inter-
actions among its k + 1 individuals is identified in the interval before acti-
vation, and similarly after deactivation. If states were independent across
time, this distribution over k" would match the normalized simplex activity
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Fig. 3 | The effect of underlying network structure
on simplex activity. The figure shows the average
activity rate of simplices of different orders, as
obtained from Monte Carlo simulations, for
underlying networks with varying average degree. 10~
The dashed lines represent the mean activity rate of
each simplex order, and the error bars indicate one
standard deviation. The simulated underlying net-
work is a Watts-Strogatz network with 100 nodes
and a rewiring probability of 0.2, with & = 0.1. The
maximum simulation time is 10*, and the simulation
was repeated 10* times. 10
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Fig. 4 | Temporal-topological correlation of interactions. The figure shows the
variation of the average relative topological distance u® for k-order interactions as a
function of the temporal threshold At, for different collaborative strengths 0. a The
temporal-topological correlation for 1-order interactions. b The temporal-
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topological correlation for 2-order interactions. The simulated underlying network
is a Watts—Strogatz network with 50 nodes, an average degree of 4, and a rewiring
probability of 0.2. The parameters used are a = 0.2, 7= 60, and the maximum
simulation time is 10%, repeated 10° times.

levels (as shown in Fig. 6). But empirical and simulated results in Fig. 7
exhibit a bias: activations and deactivations often occur via k’-faces close to
k, and the pre- and post-distributions are nearly symmetric. In particular, for
3-order interactions, it is almost impossible for them to appear or disappear
directly from isolated individuals. These observations reveal strong cross-
order correlations in higher-order interactions. Accurate reproduction of
this pattern by PITHON indicates that pairwise collaboration is a plausible
microscopic mechanism underlying cross-order dynamics. In some metrics
(e.g., panels g and h), the data generated by PITHON show notable dif-
ferences from the real data. This discrepancy may be due to the sparsity of
higher-order interactions in the empirical dataset, where the distribution
derived from a limited number of samples is likely to deviate from the true
distribution.

Lastly, the temporal-topological correlations in the empirical datasets
are validated. Figure 8 shows significant positive correlations between
temporal and topological distances for interactions of all orders. These
correlations are reproduced by PITHON. In large datasets, the computation
of all same-order interaction pairs is computationally intensive. Each dataset
is partitioned into 5 equal time segments. Within each segment, u®(At) is
computed and then averaged across segments. To eliminate biases from
nested overlaps among higher-order interactions, pairs of interactions
sharing any common link are excluded from the correlation analysis.
Although PITHON’s collaborative mechanism is confined to local

neighborhoods and produces Markovian dynamics, it nevertheless captures
the global temporal-topological correlations observed in empirical net-
works, thereby validating its effectiveness.

Discussion

The emergence and evolution of higher-order interactions is one of the
central questions in temporal higher-order network research. In this work,
we propose a minimal model, PITHON, which regulates only the colla-
borative mechanism among adjacent links. The evolution of higher-order
interactions then follows solely from these link dynamics. Analytical results
show that the collaborative strength o controls the activity of higher-order
interactions across their theoretical range. We also find that collaboration
not only affects higher-order activity levels but also prolongs interaction
durations. This effect promotes the emergence of more persistent interac-
tions. PITTHON’s local collaboration mechanism among neighboring links
generates pronounced global temporal-topological correlations at every
simplex order, and these correlations become stronger as o increases. To test
PITHON’s empirical fit, we take advantage of several face-to-face contact
datasets spanning humans and animals, live and workplace environments.
We fit the model’s parameters (', 7, ¢’) by matching three metrics: mean
1-simplex activity rate, mean 2-simplex activity rate, and mean 1-order
interaction duration. Without further tuning, PITHON reproduces higher-
order activity rates and durations, as well as temporal-topological
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correlations and cross-order evolution patterns. As a simple yet powerful
framework, PITHON captures multiple features of real temporal higher-
order systems, suggesting that pairwise collaboration is a plausible
mechanism underlying higher-order emergence. Moreover, given the
scarcity of high-quality temporal higher-order data, PITHON provides an
efficient and flexible method to generate realistic synthetic datasets, which
supports deeper studies of dynamical processes on temporal higher-order
networks and enables data-driven advances in generative artificial intelli-
gence for complex systems™”.

As an early attempt to generate temporal higher-order networks from
pairwise dynamics, PITHON still needs further improvements. First, it
assumes homogeneous dynamics for simplicity, while real systems exhibit
rich heterogeneity in activity levels, timescales, and attention to different
neighbors. Extending the framework to heterogeneous parameters and fit-
ting real systems within an expanding parameter space remains a problem.
Deep learning techniques may offer a potential solution to this problem®**.
Second, PITHON’s evolution is Markovian and cannot capture temporal
burstiness and rhythmic behavior over long time scales arising from
memory effects or external drivers. However, balancing the intrinsic bur-
stiness of link dynamics and the correlations among links may present
fundamental challenges*. Some recent studies have introduced time-

dependent parameters to reproduce temporal heterogeneity in link
dynamics through external modulation”””. How such heterogeneous
temporal patterns across different timescales can be regulated and repro-
duced through a unified mechanism remains an open question. Finally,
PITHON demonstrates that simple pairwise collaboration suffices to
reproduce empirical higher-order dynamics in face-to-face interaction
scenarios. We also expect it to be applicable in other systems, including but
not limited to the brain and ecosystems. Nevertheless, different real-world
systems may rely on diverse microscopic mechanisms, and the intrinsic
mechanisms of non-clique higher-order interactions cannot be simply
attributed to collaborative effects. In summary, we hope this work inspires
further investigation into microscopic mechanisms of temporal higher-
order interaction formation and stimulates the development of more rea-
listic generative models for temporal higher-order networks.

Methods

The generative model and its properties

In PITHON, each individual corresponds to a node in an underlying net-
work G = (V, £). Its simplicial complex is denoted by . Each link ! € H"
has a binary state process X\(f) € {0, 1} for t € R™. The instantaneous
transition rate for link / switching from state s to 1 — s at time ¢ is

Table 1 | Overview of each dataset and the model’s optimal 0
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Fig. 5 | Optimal parameters search for model fitting to empirical data. The figure
illustrates how the model parameters o and 7 are tuned to match the empirical mean
2-simplex activity rate @® and the mean 1-order interactions duration 1. Columns
from left to right correspond to the Workplace (a, d), Malawi (b, e), and Baboons
(c, f) datasets. The first row (a—c) shows heatmaps of the mean 2-simplex activity rate
relative error for different (o, 7), with the dashed curve indicating, for each 7, the

collaborative strength o (7) that minimizes the absolute value of error. The second
row (d-f) shows heatmaps of the mean 1-order interactions duration relative error
for different (o, 7), with the dashed curve indicating, for each o, the time scale 7'(0)
that minimizes the absolute value of error. The intersection point of o' (1) and 7 (0),
marked by a dot in each panel, denotes the optimal parameter pair (o', 7). Each (0, 7)
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one standard deviation, and each model estimate is averaged over 10° Monte
Carlo runs.

Here, 0, is the set of links adjacent to [, § (X w1 — s) is a Kronecker delta
function, equal to 1 iff X,,,(f) = 1 — s, and 0 otherwise. 7, is the mean sojourn
time in state s, o € [0, 1) balances intrinsic dynamics and neighbor colla-
boration, and A, scales the collaborative strength.

Although states 0 and 1 are symmetric, attention is typically given to
the activity rate of links. Intrinsic dynamics produce an activity rate 7,/
(1o + 7). To prevent collaboration from changing this baseline, we assume
that when neighbors occupy state 1 — s with probability 7; /(7o + 71), the
transition rate is independent of 0. Setting

i (l—a)r +0A,———| =0 9)
do

0+T1

yields A, = 7,1 + 77!. Substituting it into the rate in Eq. (8) gives

Zmeals(xm(t)7 1- S)
(9] '

qi(t) =(1-o0) TS_I + 0(10_1 + Tl_l) (10)

This choice makes the average transition rates identical to the non-
collaborative case when neighbors occupy the opposite state with their
stationary probabilities.

For any higher-order simplex h € H® with k > 1, the state of h is fully

matrix Q = [ gy /] of size 215 oM g specified by
g if X' differs fromXonly atX; =s, X' =1 —35,
dxx = § —Xxxdxx ifX' =
0 otherwise.

(11)

The transition rates of joint states are time-homogeneous and define a finite-
dimensional Markov process. Under irreducibility and aperiodicity, a
unique stationary distribution 7 exists which satisfies

7Q=0,

ml=1. (12)

For each simplex h, define the active-state set S, = {X|X; =1Vl e 'H(l)}
Its expected activity rate is

Sy

XeS, (13)

Consider the expected duration of higher-order interactions. In

PITHON, a higher-order simplex /s interaction deactivates iff one of its

constituent links flips from 1 to 0. For each X € S, let X~ denote the state

obtained by setting the state of link  C /1 to 0. Then the average deactivation
rate of h is

ZXES,, X ZleHﬁj’ ax.x;

= 14
determined by the states of its 1-dimensional faces, then h > xes Tx (14)
X, = Tl H‘”X 1(1). We denote the joint state vector by X = [X] leHD> '
so that the state Space has size 2"l The continuous-time transition-rate
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Fig. 7 | Empirical cross-order evolution of interactions and model fit. The figure
shows, from top to bottom, the Workplace (a-d), Malawi (e-h), and Baboons (i-1)
datasets, comparing empirical data and model simulations. For each k-order
interaction, we examine the distribution of the highest-order interaction k" €
{0,1,...,k— 1} among its k + 1 nodes in the time window immediately before
activation (after deactivation). The first column (a, e, i) and second column

Interaction Order Interaction Order

(b, f, j) correspond to pre-distributions and post-distributions for 2-order interac-
tions respectively. The third column (c, g, k) and fourth column (d, h, 1) correspond
to pre-distributions and post-distributions for 3-order interactions respectively. To
mitigate the sparsity of the data, we set the total simulation time to 10’ times the total
duration of the empirical data.

Hence,

(tn) = &0 (15)

For example, consider a triangular underlying network with three
nodes and three links. The joint state of its three links can be encoded as
{000,001,010,011,100, 101, 110, 111}, where each position denotes the state
of one link. Substituting this encoding into Eq. (11) yields the transition-rate
matrix Q. By solving Eq. (12) for the stationary distribution, we obtain the
steady-state vector 7, where

(1—a)*(1—a0)2—0—a0)
(1—2a0+a?0)(2—0—2a0+a?0) ?

(1—a)*a(1—0)2—0—a0)
(1—2a0+a20)(2—0—2a0+a%0) ’
(1—a)a(1 70)(2a+074om+oc20)
(1—2a0+a20)(2—0—2a0+a%a) *

0{(206+0'74050'+th cr)(ochaf 3ao+a? a)

(1—2a0+a?0)(2—0—2a0+a%0)

000

Too1 = 10 = 100 =

(16)

Tor = 01 = 10

T =

Here, 75 = 11, is the expected activity rate of the 2-simplex in this network.
¢a=|g111,111| denotes the deactivation rate of the 2-order interaction, and its
reciprocal-7/[3(1 — 0)]-is the expected active duration.

PITHON-based algorithm for generating temporal simplicial
complex

Based on PITHON, we can use the Gillespie algorithm™’ to generate
temporal simplicial complex. The inputs are the underlying network G, the
model parameters («, 7, 0), and the maximum simulation time T, .. The
basic procedure is outlined in the pseudocode Algorithm 1.

Algorithm 1. Pairwise-induced temporal higher-order network
Require: Underlying network G, model parameters («, 7, 0), and final
time T
Ensure: Time series of simplex states {X,(¢)},,c

build simplicial complex H from G

t<0

for link [ € H" do

X|(t) < 1 with probability «, and 0 with probability 1 — «
qd<(1-0) T)?,l(t) + (7(‘[0_1 + Tl_l) Zmea,a(xm(t)'/ 1-X
(1)/13)]

end for

for simplex h € H*® k>1 do

X,(8) <= [T Xi(0)

end for '

10: Q& Poyepnd’

11: while t < T, and Qoo > 0 do

12:  draw At ~ Exp(Qora)

13: t&<t+ At

14:  choose link " with probability " / Q.

150 Xp(H) < 1 —Xp(b)

16: for simplex h with I C H;l) do

17: X, < ngH(hnX](t)

18: end for

19: forlink /e {ITuol do

20:  update ¢ & (1—0) Tyt T o(rg" +171) X8

(XD, 1 = X,(D) /19

o XN

21: end for
22: update Qi < > i q
23: end while
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Fig. 8 | Empirical temporal-topological correlations of higher-order interactions
and model fit. The figure plots, for each k-order interaction, the mean relative
topological distance 4 as a function of the temporal distance threshold At. Columns
from left to right correspond to the Workplace (a, d), Malawi (b, e), and Baboons
(¢, f) datasets, comparing empirical measurements and model simulations. The first
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row (a—c) shows the temporal-topological correlation for pairwise interactions,
while the second row (d-f) shows the correlation for 2-order interactions. Error bars
denote one standard deviation, and each model curve is averaged over 100 Monte
Carlo runs.

Temporal-topological correlations

In empirical datasets, interactions that occur close in time tend to involve
nodes that are close in the underlying network®. To quantify this temporal-
topology correlation, for two interaction events i, = (h;,t},#) and
i, = (hy, t5, ;7 ), we define the temporal distance

N L L SO o Y
dtemp(lhzz) == 2 ! _% (17)
and the topological distance
. 1
dtopo(lu i) = m Z Z d(vy, ), (18)

v €h, v,€h,

where d(vy, v,) is the shortest-path distance in the underlying network. Here,
we adapt a definition that differs from the traditional one® in order to
distinguish the distances between higher-order interactions with varying
degrees of overlap. For k-simplices, the normalized mean topological
distance with temporal threshold At is defined as

E{diopo iy, i)y By € HO A digrny iy, 1) < At}

®(ar =
KA Eldipois, i)y, by € HO)

(19)

topo

It is straightforward to see that lim,,_, , . u®(Af) = 1.

Fitting the optimal a in empirical data

In a simplified setting, the relationship between continuous-time activity
rate and observed discretized activity rate is approximated. Consider a two-
state continuous-time Markov process, where the system transitions from
state 0 to 1 atrate 7; ! and from state 1 to 0 at rate 77 *. The probability 4 that

the process is in state 1 at least once during an interval of length At (and
hence the discretized activity rate) is

To

_ e*At/T0 —-1— (1 _ ‘x)efAtrx/[T(lfoc)].
Ty + T4

a=1 (20)

In the limit & — 0, the approximation a ~ (1 + At/7) « is obtained. Thus,
the optimal parameter is approximated by a*(7) = a/(1 + At/7).
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