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Emergence of temporal higher-order
interactions from pairwise collaboration
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Temporal higher-order networks capture the evolving multi-body interactions in complex systems.
Conventional generativemodels typically prescribe birth-death rules for eachhigher-order interaction,
but the intrinsic mechanism leading to the emergence of higher-order interactions remains to be
investigated. In this paper, we introduce a Pairwise-Induced Temporal Higher-Order Network model
(PITHON), inwhich the spontaneous emergence of higher-order interactions can be traced back to the
microscopic pairwise collaboration. In combination with empirical data, it is demonstrated that
PITHON is able to reproduce primary characters of real-world systems, including activity levels,
interaction durations, temporal-topological correlations, and cross-order evolution patterns. PITHON
offers a plausible explanation to the origin of temporal higher-order interactions in certain real systems
such as face-to-face interaction. Additionally, it can produce high-quality data of temporal higher-
order networks with flexibility and efficiency, which supports further studies on dynamical processes
as well as deep learning approaches.

Temporal networks serve as fundamentalmodels fordescribingassociations
and interactions in dynamic complex systems1–6, with applications across
biology7, society8, and engineering9. In a typical temporal network, nodes
represent elements, and links represent pairwise associations or interactions.
Unlike static networks, links in temporal networks are intermittently active
and display rich temporal features10–14. Topological structure15–18 and tem-
poral properties19–23 jointly shape the dynamic characteristics on temporal
networks. Empirical studies confirm that interactions frequently involve
groups rather than only pairs24–27. Such higher-order interactions are not
reducible to a linear superposition of pairwise links. Instead, they are more
faithfully represented by simplicial complexes or hypergraphs28–33. More-
over, the presence of higher-order interactions often gives rise to nonlinear
phenomena. Examples include discontinuous transitions, multistability,
and intermittency, which exhibit significant difference from those on
pairwise networks34–37. Consequently, complex systems with temporal
higher-order interactions are likely to exhibit richer dynamical behaviors.
Although still underexplored, some early studies have shown that temporal
features in higher-order interaction networks can significantly affect
dynamical behavior, including altering convergence speed and the steady
states38,39.

Based on empirical data, studies of temporal higher-order interaction
have revealed numerous nontrivial phenomena. Interactions of different
orders exhibit heterogeneous activity levels and durations40,41. All orders
display temporal burstiness40, and both intra- and cross-order interactions

show complex correlations42. In various contexts, higher-order interactions
follow distinct growth and decay dynamics40,41 and exhibit pronounced
temporal-topological correlations43. In order to capture these features,
several generative frameworks based on temporal simplicial complexes and
hypergraphs have been proposed to capture these features41,42,44–47. Inspired
by activity-driven models48, simplicial activity-drivenmodel44 extends links
to simplices, providing an analytically tractable model of temporal higher-
order networks driven by node activity. Higher-order activity-driven
model45 generalizes this framework to temporal hypergraphs. Emerging
activity temporal hypergraphmodel47 further incorporates short- and long-
term memory to reproduce realistic topological and temporal features.
Another perspective focuses on individual behavior. Iacopini et al.41

reproduce empirical growth and decay dynamics by allowing individuals to
switch between groups. Group attractivenessmodel46 embeds individuals in
Euclidean space and uses spatial proximity to generate higher-order inter-
actions. Discrete auto regressive hypergraph model42 directly formulates
evolution among different orders of interactions and introduces memory
effects to capture cross-order evolutions.

Most existing models treat higher-order interactions as fundamental
modeling components. They specify either the probability distribution of
higher-order interactions evolving or the transitions of each individual
among different interactions. With the assumption that higher-order
interactions already exist, most approaches focus on fitting real-world data,
while few investigate the microscopic mechanisms underlying their
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emergence. In contexts such as face-to-face contact, high-resolution tem-
poral data usually record only pairwise interactions49–51. Higher-order
interactions are then inferredby identifying cliques of links that are activated
within the same short time window41,42,44–47. However, empirical studies
show that pairwise links usually exhibit low activity, whichmakes it unlikely
for the independent co-occurrence of multiple links52. Recent work also
indicates that link activations often depend on the states of other links23,53,
and this dependencyhas been leveraged to predict the dynamics of temporal
pairwise54 and higher-order55 networks. Therefore, it is crucial to reveal the
emergence and evolution of higher-order interactions from microscopic
pairwise link activity.

In this paper, we introduce a Pairwise-Induced Temporal Higher-
Order Network model (PITHON) based on a simple collaborative
mechanism among links. In PITHON, higher-order interactions are
modeled as simplices, where an active k-simplex represents a temporal
interaction among k + 1 individuals. Collaboration between pairwise
interactions can lead to the spontaneous emergence of higher-order inter-
actions, offering a potential explanation for the formation of temporal
higher-order interactions observed in certain real systems. PITHON cap-
tures key empirical patterns including overall activity levels, interaction
durations, cross-order dynamics, and temporal-topological correlations.
PITHON offers flexible tuning capabilities to generate temporal higher-
order networks, including underlying topology, activity rates, and evolu-
tionary timescales. By mitigating the scarcity of high-quality temporal
higher-order network data, PITHON helps researchers to derive the
influence of temporal higher-order features on dynamical processes. It also
provides a data foundation for deep learning approaches in the field of
complex systems.

Results
From pairwise event stream to temporal simplicial complexes
Real-world interactions are complex, but the recorded datasets are simple.
In many empirical studies of the population V ¼ fv1; v2; . . . ; vng, only
pairwise interactions are recorded: if two individuals vi and vj interact at least
once during the interval [t, t+Δt), the event (vi, vj, t, t+Δt) is logged. In this
way, the sequence of interactions is abstracted as an event stream
I ¼ fðl; t; t þ ΔtÞjl ¼ fv1; v2g; v1; v2 2 Vg49–51. At each time t, we define
the active link set Lt ¼ f ljðl; t; t þ ΔtÞ 2 Ig, and thus obtain the instan-
taneous graph Gt ¼ ðV;LtÞ. Any clique of size greater than two in Gt
indicates a simultaneous group interaction at time t. We therefore regard
each such clique as a higher-order interaction. This construction yields a
simplicial complex because every face of a clique is again a clique. Formally,
we define the simplicial complexHt so that its 0-simplices are the nodes in
V, its 1-simplices are the links in Gt , and its higher-order simplices corre-
spond to all cliques in Gt . The graph Gt thus corresponds exactly to the
1-skeletonofHt . Since every clique isfilled (e.g., the presenceof links {v1, v2},
{v1, v3}, and {v2, v3} necessarily implies the simplex {v1, v2, v3}), there is a one-
to-one correspondence between Gt and Ht . As time progresses, the
sequence fHtgTt¼1 forms a temporal simplicial complex that captures the
dynamics of higher-order interactions.

Pairwise-induced temporal higher-order network
Most existing temporal higher-order network models directly prescribe
rules for forming and dissolving higher-order interactions. We aim to
develop a generative model that regulates only the evolution of pairwise
interactions. In this model, higher-order interactions emerge sponta-
neously, which matches the dynamics and correlations seen in empirical
data.Motivated by this goal, we propose the PITHONmodel. The behavior
of PITHONsuggests that higher-order structures in real-world systemsmay
emerge spontaneously from the coordinated evolution of pairwise
interactions.

In PITHON, each individual corresponds to a node in an underlying
network G ¼ ðV;LÞ. Its simplicial complex is denoted byH.HðkÞ ¼ f h 2
Hjjhj ¼ kþ 1g represents the set of all k-simplices. Each link l 2 Hð1Þ ¼ L
has a binary state processXl(t)∈ {0, 1} for t 2 Rþ. State 1 indicates that the

two individuals of l interact at time t.Weposit that higher-order interactions
emerge from the simultaneous activation of adjacent links. Specifically, each
link’s state is determined by its intrinsic activationmechanism, aswell as the
states of its neighboring links. The likelihood of forming a higher-order
interaction increases as more neighboring links become active simulta-
neously. Thus, the instantaneous transition rate for link l switching from
state s to 1−s at time t is

qlsðtÞ ¼ ð1� σÞ τ�1
s þ σ τ�1

0 þ τ�1
1

� � P
m2∂lδ XmðtÞ; 1� s

� �
j∂lj

: ð1Þ

Here ∂l is the set of links adjacent to l, and δ XmðtÞ; 1� s
� �

is a Kronecker
delta function, equal to 1 iff Xm(t) = 1−s, and 0 otherwise. The first term
ð1� σÞ τ�1

s represents the intrinsic transitionmechanism of link l, where τs
is the mean sojourn time in state s. The second term captures the colla-
borative effect: asmoreneighbors occupy the target state 1− s, the transition
rate increases. The parameter σ ∈ [0, 1) balances intrinsic dynamics and
neighbor collaboration (σ = 0 yields independent links). The specific deri-
vation process can be found in the “Methods” section. For a fixed topology
G, PITHON is fully specified by three parameters (τ0, τ1, σ). To clarify
interpretation, we set α = τ1/(τ0 + τ1) and τ = τ1. The tunable parameters
(α, τ, σ) then control: (i) α ∈ (0, 1), the expected link activity rate; (ii)
τ 2 Rþ, the global time scale; and (iii) σ∈ [0, 1), the collaborative strength.

The transition rates govern the activation of links l 2 Hð1Þ. For any
higher-order simplex h 2 HðkÞ with k > 1, let Hð1Þ

h ¼ l 2 Hð1Þjl � h
� �

denote the set of its 1-dimensional faces. We define the state of h by

XhðtÞ ¼
Y
l2Hð1Þ

h

XlðtÞ; ð2Þ

i.e., h is active iff all its constitutive links are active. As shown in Fig. 1, the
2-simplex is activewheneverall its constituent links are in state 1.Otherwise,
if any linkflips to state 0, the 2-simplexbecomes inactive. Basedon the above
stochastic process, we can efficiently generate temporal simplicial complex
using the Gillespie algorithm56,57 (see “Methods” for the specific algorithm).

The state of a higher-order simplex is a nonlinear function of multiple
link states. Analyzing the emergence of higher-order interactions requires
the joint distribution of all link states. Since adjacent links interact, their
states within a connected component are dependent, forcing us to consider
the full joint state space. In this representation, the explicit time dependence
of individual transition rates disappears, and the system becomes a time-
homogeneous Markov process. We can then assemble the corresponding
microstate transition-rate matrix Q. In this case, the system’s long-term
behavior can be characterized by the stationary distribution π of its
microstates (see “Methods” for the detailed description). For each simplexh,
define the active-state set Sh ¼ fXjXl ¼ 1 8 l 2 Hð1Þ

h g. Its expected activity
rate is

hahi ¼
X
X2Sh

πX: ð3Þ

When σ = 0, the activity rate of any k-simplex is αðkþ1Þk=2, which is equal to
the probability that all ðkþ 1Þk=2 links activate simultaneously under
independent link dynamics. As σ increases, the marginal link activity rate
remains α, but higher-order simplices become more active. In the limit
σ→ 1, the activity rate of any k-simplex converges to α, corresponding to
fully synchronized link activity. A simplex cannot be more active than its
constituent links. Analytic results and simulations in Fig. 2 both show that,
as σ increases from 0 toward 1, the activity rate of k-simplices rises
monotonically from αðkþ1Þk=2 toα. This range demonstrates the flexibility of
PITHON in generating any desired level of higher-order activity.

We also consider the expected duration of higher-order interactions.
Let the set Ihdenote all intervals [t

+, t−) duringwhich simplexh is active. The
expected duration of h is then defined as th

� � ¼ Eft� � tþj½tþ; t�Þ 2 Ihg.
This quantity can also be analytically computed using the transition-rate
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matrix Q, i.e.,

th
� � ¼ ϕ�1

h : ð4Þ

Where ϕh denotes the average deactivation rate of h (see “Methods” for the
detailed description). In addition to τ directly influencing interaction
duration, Fig. 2 also demonstrates that the parameter σ affects interaction
duration as a byproduct of facilitating collaboration. When σ = 0, links
deactivate independently. In this case, the expected duration satisfies
th
� � ¼ τ½ðkþ 1Þk=2��1, which corresponds to the average overlap of ðkþ
1Þk=2 independent intervals of mean length τ. Increasing σ enhances col-
laboration among adjacent links, which suppresses state flips and thus
prolongs th

� �
. As σ → 1, the system becomes trapped in fully active or

inactive configurations, and th
� � ! 1. Therefore, collaboration not only

boosts higher-order activity but also extends its persistence. This
demonstrates that rich, long-lived higher-order interactions can emerge
solely from pairwise collaboration.

In addition to model parameters, we investigate the influence of
underlying topology on higher-order interactions. To ensure a sufficient
number of triadic closures and to control network density, we generate
underlying networks using the Watts–Strogatz model at varying mean
degrees. We then measure the activity rate of simplices of different orders.
As shown in Fig. 3, pairwise activity remains constant across mean degree,
whereas higher-order activity rate decreases in denser networks when all
parameters are fixed. Equivalently, achieving a given level of higher-order
activity in a denser network requires a higher collaborative strength. This
behavior arises because each link aggregates the states of all neighbors
equally. As the number of neighbors increases, the influence of any single
neighbor diminishes, hindering spontaneous higher-order interaction
formation.

Empirical studies reveal a correlation between temporal and topolo-
gical proximity: interactions that are close in time tend to involve nodes that
are close in the underlying network43. Such correlations may arise from
time-dependent activity patterns tied to network structure or from external
factors influencing both topology and timing. For example, in face-to-face
networks, physical proximity implies that geographically nearby individuals
are network-close and their interactions are close in time. In online or
collaborative networks,members with similar interests form links and often

interact within the same time window. Although PITHON relies solely on
local collaboration, where each link updates based on its own state and the
states of its neighbors, it indirectly reproduces the long-range correlation.
For k-order interactions, we quantify this correlation by defining the nor-
malized expected topological distance under a temporal threshold Δt,
denotedμ(k)(Δt) (see “Methods” for the detailed description). Figure 4 shows
μ(k)(Δt) as a function of Δt for various simplex orders and collaborative
strengths σ. Whenever σ > 0, the mean topological distance grows with
temporal threshold. This behavior indicates a significant positive correlation
between time and topology, consistent with empirical data. Additionally,
this correlation becomes stronger as σ increases and ismore pronounced for
higher-order interactions than for pairwise interactions. It should be noted
that temporal-topological correlations may not be solely related to colla-
boration. Other factors such as the network topology and activity rate may
also exert complex influences. In this work, we focus only on the qualitative
impact of collaboration on these correlations.

Reproducing the characters of empirical data
To validate PITHON in reproducing real-world interaction patterns, we
analyze three face-to-facecontact event streamscollected viawearableRadio
Frequency IDentification (RFID) devices:
• Workplace49: contacts among employees in an office building in

France.
• Malawi50: contacts among residents of a rural village in Malawi.
• Baboons51: contacts among Guinea baboons within an enclosure at a

primate research center in France.

These datasets span a wide variety of settings, from workplace to daily
life, and from human societies to animal groups. They reveal diverse and
rich patterns of collective contact. Each participant wore an RFID tag that
exchanged packets with any other tag within 1–1.5 m, at least once per
second. If two tags exchanged packets during a 20 s window, a single pair-
wise contact event is recorded for that interval50. These spatial and temporal
scales capture dynamics relevant to information diffusion and pathogen
transmission.

We infer the optimal parameters (α*, τ*, σ*) by matching the model’s
higher-order dynamics to those observed empirically in the temporal sim-
plicial complex. PITHONoperates in continuous time,whereas the datasets
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q0
{u,v}

q1{u,v}

X{u,v}

X{v,w}

X{u,w}

X{u,v,w}

t

Fig. 1 | Evolution of simplex states over time. a A local region of the underlying
simplicial complexH, consisting of three nodes u, v, and w along with their three
links, which together form a single 2-simplex. bThe time evolution of each simplex’s
state: coloured intervals denote active state 1, while white intervals represent inactive

state 0 (blue intervals indicate link activity, orange intervals denote 2-simplex
activity). The snapshots above illustrate the active simplicial complex at several time
points. cHow the time-dependent transition rates qfu;vg0 and qfu;vg1 for link {u, v} vary
over time.
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have a minimum resolution of Δt = 20 s. Therefore, simulated contacts are
discretized for comparison. If a simulated link is active at least once within a
time window, it is considered continuously active throughout that window.
If it remains active for n consecutive windows, a single contact of duration
Δtn is recorded. This discretization necessarily overestimates both activity
rates and durations. As Table 1 shows, empirical link activity rates are
uniformly low. In the limit α → 0, the discretized mean link activity rate
admits the approximation â ’ ð1þ Δt=τÞ α, which yields the estimator
α�ðτÞ ¼ â=ð1þ Δt=τÞ (see “Methods” for the detailed description). Since
no closed-form solution exists for σ and τ, σ* and τ* are determined via grid
search. With α*

fixed to match the empirical mean 1-simplex activity rate,
we choose σ* to match the empirical mean 2-simplex activity rate

�að2Þ ¼ 1

jHð2Þj
X
h2Hð2Þ

ah; ð5Þ

and choose τ* to match the empirical mean 1-order interactions duration

�tð1Þ ¼
P

h2Hð1Þ
P

½tþ ;t�Þ2Ih ðt� � tþÞP
h2Hð1Þ jIhj

: ð6Þ

Because σ also influencesdurations and τ affectsα* via discretization, σ and τ
are optimized jointly. For each candidate τ, σ*(τ) is found by setting the

2-simplex activity rate error to zero. For each candidate σ, τ*(σ) is found by
setting the 1-order interactions duration error to zero. The intersection of
these two curves yields the optimal pair (σ*, τ*). This procedure is illustrated
in Fig. 5, and the optimal parameters are listed in Table 1.

As shown in Fig. 6, simulations with the fitted parameters reproduce
the observed 1-simplex and 2-simplex mean activity rates and 1-order
interactions mean durations. They also reproduce the decay of activity rate
and duration across higher orders. Empirically, bothmetrics are observed to
decay approximately exponentially with simplex order, which reflects the
increasing difficulty of coordinating larger groups. This agreement supports
that PITHONcan capture the intrinsicmechanismsunderlyinghierarchical
interaction patterns.

Beyond aggregate activity levels and durations, the fine-grained evo-
lution of each higher-order interaction is examined40–42. Specifically, we test
how a higher-order interaction forms. It may arise from scratch, where
isolated nodes directly coalesce. Alternatively, it may form progressively
through the accumulation of lower-order interactions. We also examine
how such interactions dissolve. Theymay break down directly into isolated
nodes or gradually through the successive loss of lower-order links. For each
k-order interaction, the highest order k0 2 f0; 1; . . . ; k� 1g of the inter-
actions among its k+ 1 individuals is identified in the interval before acti-
vation, and similarly after deactivation. If states were independent across
time, this distribution over k0 would match the normalized simplex activity

Fig. 2 | Collaborative promotes the emergence of
higher-order interactions. This figure shows how
the expected activity rate 〈ak〉 and expected duration
〈tk〉 vary with the collaborative strength σ. Both
analytical predictions and Monte Carlo simulation
results are displayed for comparison, based on a fully
connected underlying network of 5 nodes. a The
curves computed from Eq. (3) and the scatter points
from simulation for the mean activity rate of each
order. b The curves computed from Eq. (4) and the
scatter points from simulation for the mean dura-
tions. Model parameters are α = 0.3, τ = 60, and the
maximum simulation time is 108.
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levels (as shown in Fig. 6). But empirical and simulated results in Fig. 7
exhibit a bias: activations and deactivations often occur via k0-faces close to
k, and thepre- andpost-distributions arenearly symmetric. Inparticular, for
3-order interactions, it is almost impossible for them to appear or disappear
directly from isolated individuals. These observations reveal strong cross-
order correlations in higher-order interactions. Accurate reproduction of
this pattern by PITHON indicates that pairwise collaboration is a plausible
microscopicmechanism underlying cross-order dynamics. In somemetrics
(e.g., panels g and h), the data generated by PITHON show notable dif-
ferences from the real data. This discrepancy may be due to the sparsity of
higher-order interactions in the empirical dataset, where the distribution
derived from a limited number of samples is likely to deviate from the true
distribution.

Lastly, the temporal-topological correlations in the empirical datasets
are validated. Figure 8 shows significant positive correlations between
temporal and topological distances for interactions of all orders. These
correlations are reproducedby PITHON. In large datasets, the computation
of all same-order interactionpairs is computationally intensive. Eachdataset
is partitioned into 5 equal time segments. Within each segment, μ(k)(Δt) is
computed and then averaged across segments. To eliminate biases from
nested overlaps among higher-order interactions, pairs of interactions
sharing any common link are excluded from the correlation analysis.
Although PITHON’s collaborative mechanism is confined to local

neighborhoods and producesMarkovian dynamics, it nevertheless captures
the global temporal-topological correlations observed in empirical net-
works, thereby validating its effectiveness.

Discussion
The emergence and evolution of higher-order interactions is one of the
central questions in temporal higher-order network research. In this work,
we propose a minimal model, PITHON, which regulates only the colla-
borative mechanism among adjacent links. The evolution of higher-order
interactions then follows solely from these link dynamics. Analytical results
show that the collaborative strength σ controls the activity of higher-order
interactions across their theoretical range. We also find that collaboration
not only affects higher-order activity levels but also prolongs interaction
durations. This effect promotes the emergence of more persistent interac-
tions. PITHON’s local collaboration mechanism among neighboring links
generates pronounced global temporal-topological correlations at every
simplex order, and these correlations become stronger as σ increases. To test
PITHON’s empirical fit, we take advantage of several face-to-face contact
datasets spanning humans and animals, live and workplace environments.
We fit the model’s parameters (α*, τ*, σ*) by matching three metrics: mean
1-simplex activity rate, mean 2-simplex activity rate, and mean 1-order
interaction duration.Without further tuning, PITHON reproduces higher-
order activity rates and durations, as well as temporal-topological
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Fig. 4 | Temporal-topological correlation of interactions. The figure shows the
variation of the average relative topological distance μ(k) for k-order interactions as a
function of the temporal threshold Δt, for different collaborative strengths σ. a The
temporal-topological correlation for 1-order interactions. b The temporal-

topological correlation for 2-order interactions. The simulated underlying network
is a Watts–Strogatz network with 50 nodes, an average degree of 4, and a rewiring
probability of 0.2. The parameters used are α = 0.2, τ = 60, and the maximum
simulation time is 104, repeated 103 times.

Fig. 3 | The effect of underlying network structure
on simplex activity. The figure shows the average
activity rate of simplices of different orders, as
obtained from Monte Carlo simulations, for
underlying networks with varying average degree.
The dashed lines represent the mean activity rate of
each simplex order, and the error bars indicate one
standard deviation. The simulated underlying net-
work is a Watts–Strogatz network with 100 nodes
and a rewiring probability of 0.2, with α = 0.1. The
maximum simulation time is 104, and the simulation
was repeated 104 times.
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correlations and cross-order evolution patterns. As a simple yet powerful
framework, PITHON captures multiple features of real temporal higher-
order systems, suggesting that pairwise collaboration is a plausible
mechanism underlying higher-order emergence. Moreover, given the
scarcity of high-quality temporal higher-order data, PITHON provides an
efficient and flexible method to generate realistic synthetic datasets, which
supports deeper studies of dynamical processes on temporal higher-order
networks and enables data-driven advances in generative artificial intelli-
gence for complex systems58,59.

As an early attempt to generate temporal higher-order networks from
pairwise dynamics, PITHON still needs further improvements. First, it
assumes homogeneous dynamics for simplicity, while real systems exhibit
rich heterogeneity in activity levels, timescales, and attention to different
neighbors. Extending the framework to heterogeneous parameters and fit-
ting real systems within an expanding parameter space remains a problem.
Deep learning techniquesmay offer a potential solution to this problem60–62.
Second, PITHON’s evolution is Markovian and cannot capture temporal
burstiness and rhythmic behavior over long time scales arising from
memory effects or external drivers. However, balancing the intrinsic bur-
stiness of link dynamics and the correlations among links may present
fundamental challenges46. Some recent studies have introduced time-

dependent parameters to reproduce temporal heterogeneity in link
dynamics through external modulation47,52. How such heterogeneous
temporal patterns across different timescales can be regulated and repro-
duced through a unified mechanism remains an open question. Finally,
PITHON demonstrates that simple pairwise collaboration suffices to
reproduce empirical higher-order dynamics in face-to-face interaction
scenarios. We also expect it to be applicable in other systems, including but
not limited to the brain and ecosystems. Nevertheless, different real-world
systems may rely on diverse microscopic mechanisms, and the intrinsic
mechanisms of non-clique higher-order interactions cannot be simply
attributed to collaborative effects. In summary, we hope this work inspires
further investigation into microscopic mechanisms of temporal higher-
order interaction formation and stimulates the development of more rea-
listic generative models for temporal higher-order networks.

Methods
The generative model and its properties
In PITHON, each individual corresponds to a node in an underlying net-
workG ¼ ðV;LÞ. Its simplicial complex is denoted byH. Each link l 2 Hð1Þ

has a binary state process Xl(t) ∈ {0, 1} for t 2 Rþ. The instantaneous
transition rate for link l switching from state s to 1 − s at time t is

∂

∂ϵ
Pr Xlðt þ ϵÞ ¼ 1� s

����XlðtÞ ¼ s

	 
����
ϵ!0þ

¼ qlsðtÞ; ð7Þ

where

qlsðtÞ ¼ ð1� σÞ τ�1
s þ σ λs

P
m2∂lδ XmðtÞ; ð1� sÞ� �

j∂lj
: ð8Þ
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Fig. 5 | Optimal parameters search for model fitting to empirical data. The figure
illustrates how the model parameters σ and τ are tuned to match the empirical mean
2-simplex activity rate �að2Þ and themean 1-order interactions duration�tð1Þ . Columns
from left to right correspond to the Workplace (a, d), Malawi (b, e), and Baboons
(c, f) datasets. The first row (a–c) shows heatmaps of themean 2-simplex activity rate
relative error for different (σ, τ), with the dashed curve indicating, for each τ, the

collaborative strength σ*(τ) that minimizes the absolute value of error. The second
row (d–f) shows heatmaps of the mean 1-order interactions duration relative error
for different (σ, τ), with the dashed curve indicating, for each σ, the time scale τ*(σ)
that minimizes the absolute value of error. The intersection point of σ*(τ) and τ*(σ),
marked by a dot in each panel, denotes the optimal parameter pair (σ*, τ*). Each (σ, τ)
combination was simulated 100-times and averaged.

Table 1 | Overview of each dataset and the model’s optimal
fitting parameters

dataset jVj jLj Tmax α* τ* σ*

Workplace 92 755 49,381 1.38 × 10−4 21.9 0.72

Malawi 86 347 57,790 3.29 × 10−3 36.3 0.58

Baboons 13 78 119,602 3.22 × 10−3 18.2 0.49
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Here, ∂l is the set of links adjacent to l, δ XmðtÞ; 1� s
� �

is a Kronecker delta
function, equal to 1 iffXm(t) = 1− s, and 0 otherwise. τs is themean sojourn
time in state s, σ ∈ [0, 1) balances intrinsic dynamics and neighbor colla-
boration, and λs scales the collaborative strength.

Although states 0 and 1 are symmetric, attention is typically given to
the activity rate of links. Intrinsic dynamics produce an activity rate τ1/
(τ0+ τ1). To prevent collaboration from changing this baseline, we assume
that when neighbors occupy state 1− s with probability τ1−s/(τ0+ τ1), the
transition rate is independent of σ. Setting

∂

∂σ
ð1� σÞτ�1

s þ σ λs
τ1�s

τ0 þ τ1

� �
¼ 0 ð9Þ

yields λs ¼ τ�1
0 þ τ�1

1 . Substituting it into the rate in Eq. (8) gives

qlsðtÞ ¼ ð1� σÞ τ�1
s þ σ τ�1

0 þ τ�1
1

� � P
m2∂lδ XmðtÞ; 1� s

� �
j∂lj

: ð10Þ

This choice makes the average transition rates identical to the non-
collaborative case when neighbors occupy the opposite state with their
stationary probabilities.

For any higher-order simplex h 2 HðkÞ with k > 1, the state of h is fully
determined by the states of its 1-dimensional faces, then
XhðtÞ ¼ Q

l2Hð1Þ
h
XlðtÞ.We denote the joint state vector byX ¼ Xl


 �
l2Hð1Þ ,

so that the state space has size 2jH
ð1Þ j. The continuous-time transition-rate

matrix Q ¼ ½ qX;X0 � of size 2jHð1Þ j × 2jH
ð1Þ j is specified by

qX;X0 ¼
qlsðtÞ if X0 differs fromX only atXl ¼ s; X0 ¼ 1� s;

�P
X00≠XqX;X00 if X0 ¼ X;

0 otherwise:

8><
>:

ð11Þ

The transition rates of joint states are time-homogeneous anddefineafinite-
dimensional Markov process. Under irreducibility and aperiodicity, a
unique stationary distribution π exists which satisfies

πQ ¼ 0; π 1 ¼ 1: ð12Þ

For each simplex h, define the active-state set Sh ¼ fXjXl ¼ 1 8 l 2 Hð1Þ
h g.

Its expected activity rate is

hahi ¼
X
X2Sh

πX: ð13Þ

Consider the expected duration of higher-order interactions. In
PITHON, a higher-order simplex h’s interaction deactivates iff one of its
constituent links flips from 1 to 0. For each X ∈ Sh, let X�

l denote the state
obtained by setting the state of link l⊆ h to 0. Then the average deactivation
rate of h is

ϕh ¼
P

X2Sh πX
P

l2Hð1Þ
h
qX;X�

lP
X2Sh πX

: ð14Þ
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Fig. 6 | Empirical interaction dynamics and model fit. Columns from left to right
correspond to the Workplace (a, d), Malawi (b, e), and Baboons (c, f) datasets. The
first row (a–c) shows the mean activity rate �a of simplices of each order in the real
data and in the model simulations. The second row (d–f) shows the mean duration�t

of interactions of each order for both empirical and simulated data. Error bars denote
one standard deviation, and each model estimate is averaged over 103 Monte
Carlo runs.
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Hence,

th
� � ¼ ϕ�1

h : ð15Þ

For example, consider a triangular underlying network with three
nodes and three links. The joint state of its three links can be encoded as
{000, 001, 010, 011, 100, 101, 110, 111},where eachpositiondenotes the state
of one link. Substituting this encoding into Eq. (11) yields the transition-rate
matrixQ. By solving Eq. (12) for the stationary distribution, we obtain the
steady-state vector π, where

π000 ¼ ð1�αÞ3ð1�ασÞð2�σ�ασÞ
1�2ασþα2σð Þ 2�σ�2ασþα2σð Þ ;

π001 ¼ π010 ¼ π100 ¼ ð1�αÞ2αð1�σÞð2�σ�ασÞ
1�2ασþα2σð Þ 2�σ�2ασþα2σð Þ ;

π011 ¼ π101 ¼ π110 ¼ ð1�αÞαð1�σÞ 2αþσ�4ασþα2σð Þ
1�2ασþα2σð Þ 2�σ�2ασþα2σð Þ ;

π111 ¼ α 2αþσ�4ασþα2σð Þ αþσ�3ασþα2σð Þ
1�2ασþα2σð Þ 2�σ�2ασþα2σð Þ :

8>>>>>>><
>>>>>>>:

ð16Þ

Here, πΔ = π111 is the expected activity rate of the 2-simplex in this network.
ϕΔ= ∣q111,111∣denotes the deactivation rate of the 2-order interaction, and its
reciprocal-τ/[3(1 − σ)]-is the expected active duration.

PITHON-based algorithm for generating temporal simplicial
complex
Based on PITHON, we can use the Gillespie algorithm56,57 to generate
temporal simplicial complex. The inputs are the underlying network G, the
model parameters (α, τ, σ), and the maximum simulation time Tmax. The
basic procedure is outlined in the pseudocode Algorithm 1.

Algorithm 1. Pairwise-induced temporal higher-order network
Require: Underlying network G, model parameters (α, τ, σ), and final
time Tmax
Ensure: Time series of simplex states fXhðtÞgh2H
1: build simplicial complexH from G
2: t⇐ 0
3: for link l 2 Hð1Þ do
4: Xl(t)⇐ 1 with probability α, and 0 with probability 1− α
5: ql ( ð1� σÞ τ�1

XlðtÞ þ σ τ�1
0 þ τ�1

1

� � P
m2∂lδ XmðtÞ; 1� Xl

�
ðtÞÞ=j∂lj.

6: end for
7: for simplex h 2 HðkÞ; k > 1 do
8: XhðtÞ (

Q
l2Hð1Þ

h
XlðtÞ

9: end for
10: Qtotal (

P
l2Hð1Þql

11: while t <Tmax and Qtotal > 0 do
12: draw Δt � ExpðQtotalÞ
13: t⇐ t+ Δt
14: choose link l* with probability ql

�
=Qtotal

15: Xl� ðtÞ ( 1� Xl� ðtÞ
16: for simplex h with l� � Hð1Þ

h do
17: XhðtÞ (

Q
l�Hð1Þ

h
XlðtÞ

18: end for
19: for link l ∈ {l*} ∪ ∂l* do
20: update ql ( ð1� σÞ τ�1

Xl ðtÞ þ σ τ�1
0 þ τ�1

1

� � P
m2∂lδ

XmðtÞ; 1� XlðtÞ
� �

=j∂lj.
21: end for
22: update Qtotal (

P
l2Hð1Þql

23: end while
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Fig. 7 | Empirical cross-order evolution of interactions and model fit. The figure
shows, from top to bottom, the Workplace (a–d), Malawi (e–h), and Baboons (i–l)
datasets, comparing empirical data and model simulations. For each k-order
interaction, we examine the distribution of the highest-order interaction k0 2
f0; 1; . . . ; k� 1g among its k + 1 nodes in the time window immediately before
activation (after deactivation). The first column (a, e, i) and second column

(b, f, j) correspond to pre-distributions and post-distributions for 2-order interac-
tions respectively. The third column (c, g, k) and fourth column (d, h, l) correspond
to pre-distributions and post-distributions for 3-order interactions respectively. To
mitigate the sparsity of the data, we set the total simulation time to 103 times the total
duration of the empirical data.
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Temporal-topological correlations
In empirical datasets, interactions that occur close in time tend to involve
nodes that are close in the underlying network43. To quantify this temporal-
topology correlation, for two interaction events i1 ¼ ðh1; tþ1 ; t�1 Þ and
i2 ¼ ðh2; tþ2 ; t�2 Þ, we define the temporal distance

dtempði1; i2Þ ¼
tþ1 þ t�1

2
� tþ2 þ t�2

2

����
���� ð17Þ

and the topological distance

dtopoði1; i2Þ ¼
1

jh1j jh2j
X
v12h1

X
v22h2

dðv1; v2Þ; ð18Þ

whered(v1, v2) is the shortest-pathdistance in theunderlyingnetwork.Here,
we adapt a definition that differs from the traditional one43 in order to
distinguish the distances between higher-order interactions with varying
degrees of overlap. For k-simplices, the normalized mean topological
distance with temporal threshold Δt is defined as

μðkÞðΔtÞ ¼ Efdtopoði1; i2Þjh1; h2 2 HðkÞ ^ dtempði1; i2Þ <Δtg
Efdtopoði1; i2Þjh1; h2 2 HðkÞg : ð19Þ

It is straightforward to see that limΔt!þ1μðkÞðΔtÞ ¼ 1.

Fitting the optimal α in empirical data
In a simplified setting, the relationship between continuous-time activity
rate and observed discretized activity rate is approximated. Consider a two-
state continuous-time Markov process, where the system transitions from
state 0 to 1 at rate τ�1

0 and from state 1 to 0 at rate τ�1
1 . The probability â that

the process is in state 1 at least once during an interval of length Δt (and
hence the discretized activity rate) is

â ¼ 1� τ0
τ0 þ τ1

e�Δt=τ0 ¼ 1� ð1� αÞe�Δtα=½τð1�αÞ�: ð20Þ

In the limit α→ 0, the approximation â ’ ð1þ Δt=τÞ α is obtained. Thus,
the optimal parameter is approximated by α�ðτÞ ¼ â=ð1þ Δt=τÞ.

Data availability
The datasets analysed during the current study are available in the Socio-
Patterns repository, http://www.sociopatterns.org.

Code availability
The code used in the current study is available from the corresponding
author upon request.
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