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Understanding strongly interacting quantum field theories is a central challenge in theoretical
physics, with direct relevance to nuclear, high-energy and condensed matter systems. Here we
present a quantum algorithm for compact lattice Quantum Electrodynamics in 2+1 dimensions
with dynamical fermionic matter. Using a variational quantum approach, we extract the static
potential between charges across Coulomb, confinement, and string-breaking regimes. Our method
employs a symmetry-preserving, resource-efficient circuit to prepare ground states, enabling accurate
calculations on the Quantinuum H1-1 trapped-ion device and emulator, in agreement with noiseless
simulations. Moreover, we visualize the electric field flux configurations that mainly contribute to
the wave function of the quantum ground state, giving insights into the mechanisms of confinement
and string-breaking. These results are a promising step forward in the grand challenge of solving
higher dimensional lattice gauge theory problems with quantum computing algorithms.

I. INTRODUCTION

One of the most prominent examples of non-
perturbative physics is the confinement of constituent
particles in gauge theories. In fact, this has been one
of the main motivations for Wilson to introduce lat-
tice gauge theories (LGTs) [1–3]. In Quantum Chro-
modynamics (QCD) [4] the confinement phenomenon is
responsible for the binding of quarks and gluons into
hadrons at low energies (large distances). Confinement
between static charges also plays a vital role in Quantum
Electrodynamics (QED) in (2 + 1) dimensions, where it
is related to the physics of instantons [5, 6].

A very interesting situation arises when a confining
gauge theory is coupled to matter fields. When the en-
ergy of the confining string becomes too large, it is en-
ergetically more favourable to form heavy-light meson
states between a static charge and a particle excitation
from the dynamical matter field. This is the celebrated
phenomenon of string breaking and it has been studied in
LGT with Monte Carlo (MC) from the pioneering work
of Refs. [7, 8]. See the review Ref. [9] of LGT studies of
string breaking in the action formulation.

To be more concrete, in (2 + 1) dimensions the QED

∗ arianna.crippa@desy.de
† karl.jansen@desy.de
‡ enrico.rinaldi@quantinuum.com

static potential between two static charges at distance r
has a Coulomb logarithmic term, a confining linear part
and a string breaking regime [10, 11]:

V (r) = V0 + α log r + σr, (1)

where α is the coupling, σ the string tension and V0 refers
to a constant term. The form of the static potential is
illustrated in Fig. 1a. At small r, V (r) is a logarith-
mic function representing the Coulomb potential in two
space dimensions. The coupling which determines the
strength of the Coulomb potential becomes perturbative
with decreasing distance, due to asymptotic freedom. At
intermediate distances, the electric field between a pair of
static charges forms a flux tube (or string) between them,
leading to a linear behavior of the potential as a function
of the distance and hence to confinement of the static
charges. However, when dynamical matter fields are in-
cluded, the linear potential does not extend to indefi-
nitely large distances. For sufficiently large separations it
is energetically favourable to pair-produce a particle and
antiparticle with opposite charges, thereby breaking the
string. The static charges are screened by the dynamical
matter fields and now bound in heavy-light mesons.
With the advent of quantum technologies, and quan-

tum computing in particular, the study of confinement,
and in general lattice gauge theories, has become one
of the exciting areas of discovery and development. In
recent years, lower dimensional LGTs are helping to ex-
plore the potential of applying quantum computing to
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FIG. 1.

high energy physics, to develop quantum algorithms and
are opening new ways of computations to tackle physi-
cal problems, see the reviews [12–15]. For example, the
phenomenon of string breaking has been considered in
the context of quantum simulators [16–18], using ten-
sor networks [19–21] and, more recently using quantum
hardware [21–23].

While the focus in these latter papers is more on the
dynamics of the string in some specific LGTs, in our work
we will study static flux configurations in the different
regimes of the static potential as well as the probability
of the states contributing at different bare gauge cou-
plings. Moreover, to the best of our knowledge, our work
is the first one addressing the static potential of QED in
(2 + 1) dimensions by preparing the ground state of the
QED Hamiltonian at multiple couplings across a variety
of distances.

In this work, we perform a qualitative analysis of the
static potential, in the regimes described above, by con-
sidering QED in (2+1) dimensions and a quantum com-
puting approach with ion-trap devices. In Fig. 1a we
define the static potential as a function of the distance
r = a · rlat, i.e. is the product of the lattice spacing a
and the lattice Euclidean distance rlat between the two
sites on the lattice where static charges are placed. In-
creasing the physical distance at a fixed lattice spacing
requires placing the static charges at lattice sites that
are farther apart: this is possible only with a very large
number of lattice sites, which is too costly to simulate
or implement on a quantum computer. We consider two
static charges at a fixed distance rlat in lattice units and
vary the lattice spacing, therefore changing r. Due to the

non-perturbative nature of the quantum field theory, the
lattice spacing is controlled by the coupling constant g,
introduced in the Hamiltonian, Eq. (2). In other words,
the lattice spacing is an implicit function of the coupling,
varying g will then change the lattice spacing, and hence
the physical distance r. This enables us to conduct an
analysis and study confinement and string-breaking phe-
nomena with limited resources. The implicit function
a(g) is not known a priori, and its precise form is not
relevant to our study. The three regimes of interest can
be distinguished by examining the potential energy as a
function of g.

One advantage we want to point out is our ability
to visualize the electric fluxes appearing in the ground
state and thus obtain direct information about the flux
configurations in the different regimes of the static po-
tential. We observe this phenomenon experimentally on
the quantum computer H-series System Model H1-1 at
Quantinuum [24]. This not only allows to achieve new
insights in the physics of the considered model but also
sets the basis for future quantum analyses on this inter-
esting topic and also shows the precision of the results
with ion-trapped devices. Another advantage we see in
our application is the possibility to place static charges
on the lattice by hand and only need to compute the
ground state to determine the static potential.
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II. RESULTS

A. QED Hamiltonian

In this work, we consider a lattice discretization of (2+
1)-d QED using Kogut-Susskind staggered fermions [25–
27]. This formulation has been introduced in order to
deal with the so-called doubling problem [2, 28, 29], i.e.
an incorrect continuum limit of the theory, that arises
with a naive lattice discretization of the fermionic degrees
of freedom.

The spinor components are distributed on different
lattice sites, thus excluding the additional (unphysical)
degrees of freedom. In Fig. 1b we depict the basic
components that build the lattice structure for (2 + 1)-
dimensional QED. In particular, we describe how the
gauge and fermionic degrees of freedom are represented
on the lattice. The fermions put onto the sites (dashed
circles describe matter fields, solid circles antimatter
fields), while gauge fields are the links connecting the
sites (arrows). The Hamiltonian can be written as,

ĤQED =
g2

2

∑
n

(
Ê2

n,x + Ê2
n,y

)
(2a)

− 1

2a2g2

∑
n

(
P̂n + P̂ †

n

)
(2b)

+m
∑
n

(−1)nx+ny ϕ̂†nϕ̂n (2c)

+
i

2a

∑
n

(ϕ̂†nÛ
†
n,xϕ̂n+x − h.c.)

− 1

2a

∑
n

(−1)nx+ny (ϕ̂†nÛ
†
n,yϕ̂n+y + h.c.). (2d)

The electric energy in Eq. (2a), is built with Ên,µ, the
dimensionless electric field operator that acts on the
link with initial coordinates n = (nx, ny) and direc-
tion µ ∈ {x, y}. The bare coupling g, is also present
in the magnetic term, Eq. (2b). Here, the plaque-

tte operator P̂n = Ûn,yÛn+y,xÛ
†
n+x,yÛ

†
n,x, Fig. 1c, de-

fines the strength of the interaction (with the notation
n + x ≡ (nx + 1, ny) or n + y ≡ (nx, ny + 1)). The

unitary link operators Ûn,µ represent the gauge connec-
tion between the fermionic fields and are related to the
discretized vector field Ân,µ as

Ûn,µ = eiagÂn,µ , (3)

where agÂn,µ is restricted to [0, 2π), thus the group of
gauge transformations is the compact U(1) group. In
the following, the coupling g will be defined as a function
of the lattice spacing a, g 7→ g(a). We then set a = 1
without loss of generality.

The electric field Ên,ν and the link operator Ûn′,µ are

connected through the commutation relations,

[Ên,ν , Ûn′,µ] = δn,n′δν,µÛn,ν , (4)

[Ên,ν , Û
†
n′,µ] = −δn,n′δν,µÛ

†
n′,ν . (5)

The last two terms in the Hamiltonian describe the
fermionic degrees of freedom. Starting from a contin-
uum formulation with two-component Dirac spinors, we
discretize the Hamiltonian with the staggered formula-
tion. The fermionic mass term, involving the bare lat-
tice fermion mass m, Eq. (2c), has a single-component

fermionic field (ϕ̂n) residing on the site n. We have car-
ried out an analysis with different masses and selected a
value (m = 2) that clearly shows the different regimes of
the static potential, as illustrated in Fig. 1a. The kinetic
term, in Eq. (2d), describes a process in which a fermion
moves between two neighboring lattice sites, causing an
associated alteration of the electric field along the link
connecting these sites.

The states that fulfill Gauss’s law at each site n,
Fig. 1d,[ ∑

µ=x,y

(
Ên−µ,µ − Ên,µ

)
− q̂n −Qn

]
|Φ⟩ = 0

⇐⇒ |Φ⟩ ∈ Hph,

(6)

belong to a gauge invariant subspace Hph. In this equa-
tion,

q̂n = ϕ̂†nϕ̂n − 1

2

[
1 + (−1)nx+ny+1

]
(7)

are dynamical charges, and Qn represent static charges.
In this work, we impose Gauss’s law and study only the

physically relevant subspace. By applying this method,
we reduce the number of links to a subset of dynamical
ones, i.e. we can rewrite some of them in terms of a
reduced set of independent variables, by solving Eq. (6).
In “Supplementary Note 3: Truncation and Gauss’s

law dependence” we analyze how the difference is strictly
connected to the truncation used, becoming negligible
when considering large l. This effect is more pronounced
also for small values of the bare coupling g. At larger
g ≳ 1.0, the electric flux and string breaking results with
l = 1 are compatible with larger truncations. Since the
choice of dynamical links does not affect the electric flux
configurations and the string breaking phenomenon, they
can be studied qualitatively at small truncations.
In general, the number of dynamical links, before

Gauss’s law has been applied follows the rule ℓ =

n
∑d

i=1
(ni−1)

ni
(ℓ = nd) total number of links in OBC

(PBC) system, with n = n1 × n2... × nd number of
sites, d = spatial dimensions. With n − 1 constraint
from Gauss’s law, we have a total of ℓ̃ = ℓ − (n − 1)
dynamical links, e.g. a 3 × 2 OBC system has a sub-
set of ℓ̃ = 6[(3 − 1)/3 + (2 − 1)/2] − (6 − 1) = 2

dynamical links, while a 4 × 3 OBC system has ℓ̃ =
12[(4−1)/4+(3−1)/3]− (12−1) = 6. After the Gauss’s
law has been applied, there is no residual constraint left.
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1. Numerical implementation of gauge fields

We have seen that the compact U(1) group describes
QED. However, for a numerical implementation of the
Hamiltonian on finite computational resources, we need
to consider a correspondingly finite set of possible solu-
tions: this is achieved with a truncation of the infinite-
dimensional gauge Hilbert space. Here, we follow the
truncation of U(1), in the electric basis, to Z2l+1, where
l defines the truncation and sets the Hilbert space di-
mension [30]. With this method, the unbounded gauge
degrees of freedom are truncated to a finite dimension
within the range [−l, l], resulting in a total Hilbert space
dimension of (2l + 1)N , where N denotes the number
of gauge fields in the system. After the truncation, the
eigenstates of the electric field operator, Ên,µ, form a ba-
sis for the link degrees of freedom. From Eqs. (4), (5),

the link operators Ûn,µ (Û†
n,µ) act as a raising (lowering)

operator on the electric field eigenstates,

Ên,µ |en,µ⟩ = en,µ |en,µ⟩ , with en,µ ∈ [−l, l] , (8)

Ûn,µ |en,µ⟩ = |en,µ + 1⟩ , Û†
n,µ |en,µ⟩ = |en,µ − 1⟩ . (9)

Alternative ways to provide a suitable formulation for
a numerical analysis can be done with quantum link mod-
els, with a cyclic group, or also encoding the gauge fields
with qudits [17, 31–35].

B. 3× 2 lattice

In this work, we fix the position of two static charges
on the lattice, at a fixed distance of r =

√
5, and vary

the bare coupling g. The first lattice system studied is
depicted in Fig. 2a. The total number of qubits for the
quantum circuit is 10 (4 for the gauge fields with trun-
cation l = 1 and 6 for the fermions) and we employed
the mutual information to construct the entanglement
structure between the qubits, “Supplementary Note 1:
Quantum circuit definition”. Table I shows the resource
estimation for this system size and three values of the
truncation, l = 1, 3, 7. In particular, we show the total
number of qubits used, the number of variational param-
eters, CNOT gates and their depth, which refers to the
amount of CNOT layers. Every layer is represented by
parallel CNOTs in the quantum circuit, e.g. if a first
CNOT acts on qubit q1 and q2 and a second CNOT gate
on q3 and q4, they belong to the same layer. Two differ-
ent layers are counted if the second gate acts also on q1
or q2.

We first consider a noiseless analysis with the Varia-
tional Quantum Eigensolver (VQE) [36]. The top panel
of Fig. 2b shows the comparison between the static poten-
tial V (r) with exact diagonalization (ED) (solid line) and
the quantum variational results (triangles), performed
with the Nakanishi-Fujii-Todo (NFT) optimizer [37, 38]
and 104 shots. This optimizer constructs an analytical

20

15

10

5

V(r
=

5)
ED VQE

0.5 1.0 1.5 2.0 2.5 3.0
g

0.00

0.05

F

FIG. 2.

expression for the energy expectation given that the en-
ergy expectation as a function of a single parameter can
be expressed using a sine function. Requiring three in-
dependent energy evaluations, it eliminates the need for
computing gradients. In the bottom panel, we show the
infidelity of the results,

F̃ ≡ 1− F = 1− | ⟨ψVQE|ψED⟩ |2, (10)

where F is the fidelity. We see that the infidelity F̃ is
< 5% at almost every coupling g considered, and we are
able to reproduce the expected behavior of the static po-
tential with our variational ground state Ansatz. For the
analysis, we consider optimization results coming from
two different and independent initial points in parameter
space:

1. We consider a set of initial parameters that corre-
spond to the preparation of the vacuum state and
the electric strings. Then we perturb them with
additive Gaussian noise before starting the opti-
mization. This ensures that we have a large prob-
ability of reaching configurations corresponding to
the vacuum and an electric flux tube.

2. Alternatively, we consider parameters correspond-
ing to the preparation of the string breaking config-
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uration. We add an additive Gaussian noise pertur-
bation and then start the optimization procedure.

It is possible to define both the initial states above by
directly inspecting the lattice structure and the encod-
ing utilized in this project. The results from both initial
points are compared and we select the set of optimized
parameters that gives the state with the highest fidelity,
which usually depends on the value of the coupling con-
stant g. If the fidelity cannot be computed, there are
protocols to test for convergence of the variational opti-
mization and to decide which variational parameters to
use [30].

The uncertainties (standard deviation) are computed
with the combination of the variances of the Pauli terms
Pi in the Hamiltonian, which is a sum of Pauli strings,
Ĥ =

∑
i ciPi, (with ci coefficients) [39]. The expectation

value of Ĥ can be written as

⟨ψ| Ĥ |ψ⟩ =
∑
i

ci ⟨ψ|Pi |ψ⟩ . (11)

If we perform n times of measurements (shots) for each
Pauli string Pi, the variance of the estimated ⟨ψ|Pi |ψ⟩
due to a finite n is

σ2
Pi

= ⟨ψ|P 2
i |ψ⟩ − ⟨ψ|Pi |ψ⟩2 = 1− ⟨ψ|Pi |ψ⟩2 . (12)

Then, the final standard deviation error is

σ =

√√√√∑
i

|ci|2
1− ⟨ψ|Pi |ψ⟩2

n
. (13)

1. Sampling in the computational basis

We select three values of the coupling representing the
main regimes in the static potential: Coulomb, linear
electric strings and string breaking with g = 0.3, 1.1, 1.9
respectively. With the optimal parameters obtained from
the solutions of the quantum variational approach, we
build the quantum circuit to prepare the ground state
and we run it on the emulator H1-1E and on the real
quantum hardware H1-1, see Section “Methods” for de-
tails on the hardware. Note that before running on these
devices, the circuits are rebased to the native operations
of the H-series machines and are optimized using the
pytket default optimization. This results in a two-qubit
gate count of approximately 80 Rzz arbitrary angle oper-
ations, a significant reduction compared to the resources
of Table I.

We sample the final state of the circuit and show
the configurations with the highest probability in
Figs. 3a, 3b, 5. On the x-axis, the states |ψf ⟩ ⊗ |ψg⟩
assume numerical values corresponding to the sampled
bitstrings from measuring the quantum state in the com-
putational basis. In all the figures, the error bars on the
probability are obtained by considering the shots to be
drawn from a Bernoulli distribution.

In the weak coupling regime, there are many basis
states with non-negligible amplitudes, as depicted in
Fig. 3a, thus the ground state is represented by a super-
position of a lot of different possible configurations. The
basis state with the highest probability corresponds to a
vacuum configuration for both gauge fields and fermionic
sites, |v⟩ = |101010⟩ ⊗ |0101⟩, Section “Methods”. This
result corresponds to Fig. 3c and depends on the choice
of dynamical links during the application of Gauss’s law
with small gauge field truncation. The interpretation is
discussed extensively in “Supplementary Note 3: Trun-
cation and Gauss’s law dependence”. From the left, the
bars define the noiseless results, computed with a state
vector calculation with the optimal parameters from the
variational quantum analysis. The bars in the center and
right are the probabilities of the states obtained with the
H1-1E emulator and on the real quantum hardware H1-
1, respectively. The runs on Quantinuum devices were
performed with a fixed number of shots of 29.

For increasing g, the probabilities and the correspond-
ing configurations are depicted in Fig. 3b. Here we trans-
late the results in the plot, by applying Gauss’ law, into
the configurations on the lattice. If we consider, e.g.
the configuration (b) |101010⟩ ⊗ |0111⟩, we can see that
corresponds to the case where no dynamical charges are
forming onto the sites and the eigenvalues for the links
{U10y, U20y} are {1, 0} respectively. If we apply these nu-
merical values into Eq. (6), we get the lattice of Fig. 3d,
with an electric flux flowing through the center of the sys-
tem, thus consistent with the confinement regime iden-
tified in Fig. 2b. We also test the coupling g = 1.1 on
H1-1E with the application of the SPAM mitigation tech-
nique, see Section “Methods” for more details. In Fig. 4,
we plot the noisy results and their corresponding miti-
gated values from left to right by excluding the unphys-
ical bitstrings. Then we consider a run with the SPAM
method and apply the same mitigation. We can see that
the results are not highly affected by the SPAM miti-
gation and for every case they could reach the desired
noiseless configurations of Fig. 3b.

At strong g we have a shift to a different regime with
basically a single configuration, Fig. 5. In this case, we
do not have electric strings between the static charges (as
in Fig. 3b-e), but we see the formation of two dynamical
charges, representing string breaking and the creation of
a particle/antiparticle pair, consistent with Fig. 2b. We
also compute the coupling where we see the transition be-
tween linear and string breaking regime, g ∼ 1.7. Fig. 6a
illustrates again accurate results both with H1-1E and
H1-1, with the most probable states as in Fig. 3c, 3d, 3e.
This data point corresponds to a region where the energy
gap, i.e. between the ground state and the first excited
state, becomes small, as depicted in Fig. 6b.
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2. Static potential results

We now consider the calculation of the static poten-
tial for five values of the bare coupling. Fig. 7 shows
a comparison between the data with H1-1E (emula-
tor) and H1-1 (quantum hardware). For the couplings
g = 0.3, 0.7, 1.1, 1.5 we used a combination of PMSV and
SPAM error mitigation methods, included in the soft-
ware InQuanto [40]. For the last coupling g = 1.9 we
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considered a different algorithm based on sampling in
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the computational basis [39], where only the R = 4 most
probable states are used, and we applied an error miti-
gation technique consisting in the post-processing of the
sampled bitstrings to remove the ones with unphysical
constraints. The emulator results (triangles) have been
computed with 210 shots, while for the hardware runs
(circles), we used 29 shots for each g using only a sin-
gle run. The inserted plot highlights the relative error ε
between the data points computed with H1-1E or H1-1
and the noiseless results at g = 0.7, 1.1, 1.5. The uncer-
tainties are computed with Eq. (13). From Fig. 7, we
can see that, generally, both the emulator and hardware
results can reproduce the expected behavior. In the case
of the smallest coupling, g = 0.3, we have a good agree-
ment between the noiseless result and the result from
H1-1E, and expect to reach a better understanding of
the systematic errors if we consider multiple runs of the
hardware experiment. For other couplings, we have good
agreement on both the emulator and the hardware (blue
circles). Lastly, we note that the last point g = 1.9 is
only a variational bound on the expectation value, since
it is obtained by sampling in the computational basis and
considering only a subset of states for the calculation of
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the energy [39]. For this reason we do not report the
statistical error due to the shots.

C. 4× 3 lattice

This section studies the static potential for a larger 4×
3 lattice, as depicted in Fig. 8a, where the static charges
are placed at a distance r = 3 onto the two fermionic
sites (nx, ny): Q = 1 7→ (0, 1), Q = −1 7→ (3, 1).
For this system we used a total of 24 qubits: 12 for the

fermionic sites and 2 · 6 for the six dynamical gauge links
(with truncation l = 1). We built the quantum circuit,
with a similar structure of the smaller lattice 3× 2, that
is, by using the knowledge of the mutual information for
the smaller system, we applied the entangling gates ac-
cordingly (“Supplementary Note 4: Variational quantum
circuit for 4 × 3 lattice”). Table II shows the resources
needed for this quantum circuit. Note that the CNOT
depth for this system is more than doubled compared to
the 3×2 lattice, and the raw number of CNOT operations
is three times the one on the small system.
In Fig. 8b we illustrate the first attempt to compute the

static potential with this larger system and a quantum
variational approach. The uncertainties are computed
with Eq. (13). The quantum variational results (trian-
gles), performed with 104 shots and the NFT optimizer,
are able to qualitatively reproduce the static potential
curve (solid line and dots), when simulated without the
presence of noise. We also measure the fidelity to be
65 − 95% for the couplings g = 0.7, 1.1, 1.9 respectively,
suggesting that we have not reached convergence for some
of them. In order to run a circuit with 24 qubits also
on the H1-1E emulator and the H1-1 quantum computer
(with up to 20 physical qubits), we employ the automatic
qubit reuse compilation [41] made possible by the mid-
circuit measurement and reset capabilities of Quantin-
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uum H-series devices and implemented in the TKET quan-
tum compiler [42]. By measuring 9 qubits in the middle
of the circuit executions and resetting them to be reused
in the same circuit, we obtain an equivalent circuit that
requires only 15 physical qubits and can therefore be used
for our experiments on H1-1. The circuit with 15 qubits
is rebased on the native gates of H-series and optimized:
the total number of two-qubit Rzz gate operations is ap-
proximately 270 at all couplings, a major reduction com-
pared to the resource in Table II. Thus, by implementing
this technique, we can sample from the state prepared
by a larger circuit, but using only the limited resources
available.

We study some of the interesting lattice configurations
that arise in this larger 4 × 3 system. For example, at
coupling g = 0.7, the most probable computational ba-
sis state is |ψf ⟩ ⊗ |ψg⟩ = |v⟩ ⊗ |v⟩, shown in panel (a)
of Fig. 9, see also Section “Methods”. Here |v⟩ is the
vacuum, i.e. no dynamical charges on the sites and zero
values for dynamical links. The second most probable
state is |ψf ⟩ ⊗ |ψg⟩ = |v⟩ ⊗ |000101010101⟩ and it corre-
sponds to the configuration illustrated in panel (b). The

probability associated with these additional states having
a snake-like pattern of the flux tube vanishes when going
to stronger couplings and the straight flux tube (Fig. 9a)
dominates. We see this at the stronger coupling g = 1.1
in Fig. 9e. At g = 1.9, on the other hand, we have
the breaking of the electric string and the formation of
mesons pairs, shown in Figs. 9c,9f.

III. DISCUSSION

In this paper we have performed a qualitative anal-
ysis of the static potential between two static charges,
exploring the Coulomb, confinement and string breaking
regimes where, by sampling over the states in the ground
state energy, we determined the electric flux configura-
tions and the probabilities of the contributing states. To
this end, we developed a symmetry-preserving variational
quantum circuit and employed a variational quantum al-
gorithm to create the ground state of the Hamiltonian,
corresponding to the static potential. Additionally, in
the design of the Ansatz, we employed the mutual infor-
mation between qubits, which led to a reduction of the
depth of the quantum circuit. In order to explore the
different regimes of the potential we used selected val-
ues of the coupling constant, corresponding to different
physical distances.
We have focused our studies on a 3 × 2 lattice with

open boundary conditions and demonstrated that results
from quantum experiments on a trapped-ion emulator,
H1-1E, and a real quantum device, H1-1, agreed with
classical noiseless simulations for the static potential, ob-
tained with the application of the mentioned quantum
variational approach. The relevant electric flux configu-
rations, which contribute to the quantum ground state in
the different distance regimes of the static potential, were
visualized by applying Gauss’s law to sampled bitstrings.
These results are qualitatively consistent with confine-
ment and string-breaking behavior, gaining insights on
the flux tube structure of the ground state.
We also considered experiments on a larger system, of

4× 3 fermionic sites, with a 24 qubit variational circuit.
An implementation on the 20 qubits of the H1-1 quan-
tum device becomes possible with the reduction of the
number of qubits from 24 to 15. In the current mutual-
information adapted Ansatz, this was achieved by using
mid-circuit measurements, resetting selected qubits and
reusing them in the quantum computation.
Considering further hardware results with the largest

Quantinuum ion-trap devices, a possibility is to study a
6 × 4 lattice, which requires up to a total of 54 qubits
for the quantum computation, thus suitable for the H2
device [43]. This exciting outlook to go to larger sys-
tem sizes in the future offers new possibilities. First, it
will allow to study the static potential as a function of
the distance in lattice units, which provides the opportu-
nity to fit the anticipated analytical form of the potential
and extract the values of the coupling, the string ten-
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sion and the distance, where string breaking occurs, on a
quantitative level. Second, it will become possible to de-
termine the properties of the confining string, such as its
width and the fluctuations, quantitatively. By combining
these Hamiltonian calculations with Monte Carlo simu-
lations, which will provide a physical value of the lattice
spacing [44], we can eventually give results in physical
units, which could be relevant for experiments described
by (2+1) dimensional QED. However, we believe that to
achieve this goal, further improvements of quantum cir-
cuit design as well as advances in quantum hardware are
needed. For example, with the here used standard im-

plementation of VQE, it would become infeasible to train
the variational parameters of the Ansatz, whose number
will also scale with the size of the system: this may be
circumvented by other scalable variational approaches,
such as SC-ADAPT-VQE [45], or by adiabatic evolution
based on a Trotterized Hamiltonian with reduced Trotter
errors [46]. However, these methods need to be further
tested in the future. We also mention that there are
corrections to the linear potential, originating from fluc-
tuations of the electric flux string, see Refs. [47–50] and
a recent work Ref. [51]. It would be very interesting to
determine this correction within our setup by considering
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different lattices geometries allowing larger separations of
the static charges. We remark that recently also a Hamil-
tonian formulation of Maxwell-Chern-Simons theory has
been developed for compact U(1) gauge theory on the lat-
tice [52], which combines confinement and topology and
opens new avenues to look at confinement properties in
a non-perturbative fashion.

IV. METHODS

FIG. 10.

This work will consider a variational quantum ap-
proach to study the static potential. A parameterized
quantum circuit is used to efficiently prepare the ground
state of the Hamiltonian at various values of the coupling
g and the expectation value of the Hamiltonian itself will
allow us to map out the static potential function V (r). To
employ this method we prepare a quantum circuit with
parameterized gates as our ground state Ansatz. The
main property we endow on our Ansatz is the ability to
explore only the physical Hilbert space, thus being more
efficient in representing the allowed quantum states of the
theory. In particular, we restrict the space of states to the
truncated Hilbert space for the gauge fields and to the
fermionic sector with zero total charge. This section de-
scribes how we encode the gauge and fermionic degrees of
freedom on the lattice into qubits and the set of quantum
gates utilized in the variational algorithm. The python
code used in this paper to build the (2+1)-d QED lattice
Hamiltonian and the parameterized quantum circuit are
available [53].

A. Encoding of gauge fields

For the implementation on a quantum circuit it is ad-
vantageous to employ a suitable encoding that accurately
represents the physical values of gauge fields. Examples
can be the linear encoding [54], where gauge physical
states are mapped onto 2l + 1 qubits, or the logarithm
encoding [31]. With the latter formulation, the mini-
mum number of qubits required for each gauge variable
is qmin = ⌈log2(2l+1)⌉. In this work we consider the Gray
encoding [55] to represent the physical values of the gauge
fields in a quantum simulation. With this approach, the
encoded gauge fields are chosen in such a way that the
difference in the bit string representation of the states,
when applying lowering and raising operators, is just a
single bit. In addition, since our objective is to do a qual-
itative analysis, in this project we will mainly consider
the truncation l = 1, with additional details about other
truncation values in “Supplementary Note 3: Truncation
and Gauss’s law dependence”. With l = 1 we have the
following states,

|−1⟩ph 7→ |00⟩ , (14a)

|0⟩ph 7→ |01⟩ , (14b)

|1⟩ph 7→ |11⟩ . (14c)

Here, and in the rest of the paper, we follow the right-left
(|..q2q1q0⟩), top-bottom ordering of the qubits.
The circuit, depicted in Fig. 10a, can be understood as

follows:

➤ Beginning with the state |00⟩, setting both param-
eters θ1 and θ2 to zero enables the representation
of the physical state |−1⟩ph, Eq. (14a).

➤ When a non-zero value is assigned to θ1, the state
transitions to |01⟩, representing the vacuum state
(Eq. (14b)), with a certain probability.

➤ A full rotation occurs when θ1 = π, ensuring that
the second state is achieved with a probability of
1.0.

➤ After this, the second controlled gate is activated
only if the first qubit is |1⟩, allowing the exploration
of |11⟩ (Eq. (14c)) and excluding |10⟩.

B. Encoding of fermionic fields

The fermionic degrees of freedom at site n can be
mapped to spins using a Jordan-Wigner transforma-
tion [56],

ϕ̂n =
[ ∏
k<n

(−iσz
k)
]
σ+
n , (15a)

ϕ̂†n =
[ ∏
k<n

(iσz
k)
]
σ−
n , (15b)
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where σ±
n =

σx
n±iσy

n

2 (σx
n, σ

y
n, σ

z
n are Pauli matrices, and

In is the identity matrix, acting on the spin at site n).
The relation between site coordinates k < n is defined
to satisfy the fermionic anticommutation relations. For
example, in the 3 × 2 OBC system, we use the chain
(0, 0) → (1, 0) → (2, 0) → (2, 1) → (1, 1) → (0, 1). The
dynamical charges, Eq. (7), can be written as

q̂n 7→

{
In−σz

n

2 if n even,

− In+σz
n

2 if n odd.
(16)

The mass term Eq. (2c) in the Hamiltonian identifies the
Dirac vacuum with the state where the odd fermionic
sites are occupied, and creating a particle at an even site
is equivalent to creating a charged q = 1 fermion in the
Dirac vacuum. Destroying a particle at odd sites is thus
equivalent to creating an antifermion with charge q =
−1. With the vacuum state on the fermionic sites repre-
sented as |..1010⟩, we can summarize the configurations
in Table III (the first site is even n = (nx, ny) = (0, 0)).

These configurations are visualized also in
Figs. 10b, 10c, where we have in panel (b) the case with
a particle, e−, on the even site and an antiparticle, e+,
on the odd site, corresponding to charges q = 1,−1
respectively. Panel (c) shows the situation with vacuum
states, v, both on even/odd sites.

We now define a quantum circuit that excludes the
states with non-zero total charge, i.e. that do not have
the same number of ‘0’ and ‘1’. This can be achieved with
a set of parameterized iSWAPj,k(θ) = e−i θ

4 (σ
x
j σ

x
k+σy

j σ
y
k)

gates, where j and k are the qubits on which the gate
acts and θ an angle parameter [54]. They can be re-
alized with a combination of parameterized rotational

gates Rxx(θ) = e−i θ
2σxσx and Ryy(θ) = e−i θ

2σyσy on two
qubits. The action of the iSWAP gate is swapping the
values of two qubits, i.e. if we start from a state |10⟩,
Rxx(θ/2)Ryy(θ/2) |10⟩ with θ = π

2 will give us |01⟩. With
these gates, we can explore the fermionic states in the
Hilbert space with zero total charge. If we choose the
NFT optimizer [37], we need to satisfy a set of require-
ments, one being that the gates in the variational circuits

must be of the form R(θ) = e−i θ
2A with A2 = I. How-

ever, [ 12 (σ
x
j σ

x
k + σy

j σ
y
k)]

2 ̸= I. To solve this issue, we

can extend the gate to 1
2 (σ

x
j σ

x
k + σy

j σ
y
k + σz

jσ
z
k + IjIk),

which satisfies the condition. Note that we can dis-
card the identity and we only need to implement the

Rzz(θ/2) = e−i θ
4σzσz .

The states of a generic system will be written as the
tensor product of gauge fields states and fermionic states:
|Ψ⟩ = |ψf ⟩ ⊗ |ψg⟩. With this ordering we can read
the quantum variational solutions and identify the corre-
sponding configuration of gauge and fermionic degrees of
freedom. For example, the vacuum state for a 3× 2 sys-
tem, will correspond to |01⟩ states for each gauge field
(truncation l = 1) and |101010⟩ for the six fermionic
sites. Combining them, we get that the vacuum state is
|v⟩ = |101010⟩ ⊗ |0101⟩.

C. Quantinuum Hardware

The optimal quantum circuits, resulting from the vari-
ational quantum parameters, that prepare the ground
state at various couplings are run on Quantinuum H-
series System Model H1-1, both in emulation and in real
hardware [24]. The quantum job submission workflow is
supported by the Quantinuum Nexus cloud platform [57].

The quantum device we utilize is based on the QCCD
architecture [58] and it shuttles Ytterbium-171 ions along
a linear trap, with the qubit information stored in the
ion’s atomic hyperfine states. Each Ytterbium ion is
paired in a crystal with a Barium ion used for sympa-
thetic laser cooling. A total of up to 20 qubits can be
manipulated across 5 parallel gate zones, realizing an ef-
fective all-to-all connectivity between qubits that is ad-
vantageous for the circuits representing our Ansatz. The
H1-1 device can be emulated with an accurate physical
noise model using the H1-1E emulator [59, 60]. We use
the emulator in its statevector configuration.

D. Noise mitigation

In the present paper we employ two types of noise
mitigation techniques to post-process the resulting shot
counts and expectation values. The first one is the Par-
tition Measurement Symmetry Verification (PMSV) [61]
method, which uses global symmetries of the Hamilto-
nian to validate measurements, before combining shots
to compute expectation values across multiple circuits.
Another approach involves mitigating state preparation
and measurement (SPAM) noise [62]. With SPAM, the
noise-induced errors are considered only to occur dur-
ing the state preparation and measurement steps. This
method uses the density matrix to first get the noise pro-
file of the device when it comes to readout operations:
this is achieved with the submission of a calibration cir-
cuit. Then, it computes the inverse of this matrix, sup-
pressing the errors caused by the noise channels in the
readout. Both PMSV and SPAM are implemented in the
quantum computational software InQuanto [40].

Moreover, since we are only interested in the zero-
charge sector for the fermionic sites and the truncated
Hilbert space for the gauge fields, we apply a sim-
ple symmetry-based error detection post-processing step
during the sampling in the computational basis. We
exclude the shots whose bitstrings do not satisfy the
fermionic symmetry constraints and that fall outside of
the physical Hilbert space of the gauge links. After the
selection of the physical bitstrings, the probability dis-
tribution is computed on the renormalized counts. We
will consider this post-selection for the sampling analy-
sis, while we will use PMSV and SPAM to compute the
Hamiltonian expectation values.
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J. Tura, C. Tüysüz, S. Vallecorsa, U.-J. Wiese, S. Yoo,
and J. Zhang, Quantum computing for high-energy
physics: State of the art and challenges, PRX Quantum
5, 037001 (2024).



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

[15] L. Funcke, T. Hartung, K. Jansen, and S. Kühn, Review
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FIGURE CAPTIONS

Figure 1:Static potential of two charges and lat-
tice structure for (2 + 1)-dimensional QED: (panel
(a)) The expected behavior of the static potential V (r)
for this model as a function of the distance of two static
charges, r. For small r (blue section) there is a Coulomb
potential. Then, an electric flux tube forms between the
charges when the distance increases (green section) dom-
inating the potential in this regime. At a certain r the
flux tube breaks and a new pair of charge/anticharge
forms (orange section), and hence the linear part of the
potential is not continuing. This is the qualitative non-
perturbative picture of the transition between confine-
ment and charge screening in QED with light matter
fields, and it is similar to the one in QCD in (3 + 1)
dimensions. (panel (b)) The gauge fields live on the links
which connect the fermionic sites on the lattice. (panel
(c)) The plaquette operator is the product of four link op-

erators P̂n = Ûn,yÛn+y,xÛ
†
n+x,yÛ

†
n,x. (panel (d)) Gauss’s

law for the fermionic site n controls the balance between
ingoing/outgoing electric field and dynamical charge q̂n
(and eventual static charge Qn), Eq. (6).

Figure 2:Lattice system 3 × 2 and variational
quantum results (noiseless simulator): (panel (a))
Two static charges with values Q±1 are placed onto two
sites n = (nx, ny): Q = −1 7→ (0, 0), Q = 1 7→ (2, 1).
The symbols qn are the values of the dynamical charges
onto the sites with coordinates n = nxny. The dashed
arrows are the inactive gauge links after Gauss’s law is
applied, solid arrows represent the link operators that
remain dynamical, U10y, U20y. The quantum circuit
(“Supplementary Note 1: Quantum circuit definition”)
describes these links and the fermionic charges qn (top
panel (b)) Static potential at different coupling g with ED
(solid line) and quantum variational results (triangles),
performed with Nakanishi-Fujii-Todo (NFT) optimizer
and 104 shots. (bottom panel (b)) Infidelity (1−fidelity)
between variational quantum data and Exact Diagonal-
ization (ED). A finite number of shots defines the error
bars, which are smaller than the markers.

Figure 3:Ground state probabilities and lattice
configurations at coupling g = 0.3,1.1: (panel (a),
bars from left to right) Noiseless results (state vector cal-
culation with the optimal parameter from VQE), emula-
tor H1-1E and real quantum hardware H1-1. The emula-
tor and hardware results were performed in a single run
with 512 shots. The data mitigated by excluding the un-
physical bitstrings are indicated by (∗). (panel (b), bars
from left to right) Noiseless results (state vector calcu-
lation with the optimal parameter from VQE), emulator
H1-1E and real quantum hardware H1-1. The emulator
and hardware results were performed in a single run with
512 shots. The data mitigated by excluding the unphys-
ical bitstrings are indicated by (∗). For this intermediate
value of g we observe that the states with the highest
probability form three configurations with electric strings
between the static charges. In both panels, the error bars

on the probability are obtained by considering the shots
to be drawn from a Bernoulli distribution. (panel (c))
Represents the configuration |101010⟩ ⊗ |0101⟩, i.e. zero
eigenvalues for the two dynamical gauge fields (solid ar-
rows) and no dynamical charges on the sites, see Section
“Methods” for translation rules. Static charges corre-
spond to ‘±’ symbols on the sites. The electric flux is
depicted with red arrows with a value of ‘1’. (panel (d))
The configuration |101010⟩ ⊗ |0111⟩ is the case where
no dynamical charges are forming onto the sites and the
eigenvalues for the links {U10y, U20y} are {1, 0} respec-
tively. An electric flux flowing through the center of the
system can be seen. (panel (e)) Represents the config-
uration |101010⟩ ⊗ |1101⟩, the electric flux runs through
the rightmost sites. The links and sites (values of the
dynamical charges) without a number are equal to zero.
Note that the difference in the probabilities of panels (c)
and (e) is mainly attributed to the small truncation used
in the analysis. We have tested this with exact diago-
nalization and a higher truncation l = 7 and found that
panels (c) and (e) have the same probabilities.

Figure 4:Ground state probabilities at coupling
g = 1.1 with emulator H1-1E: (bars from left to right)
Comparison between noisy results (‘Noisy ’) and miti-
gated via the exclusion of unphysical bitstrings (‘Miti-
gated ’). SPAM error mitigation (‘SPAM ’) and subse-
quent bitstrings exclusion are also considered (‘Mitigated
(SPAM)’). The error bars on the probability are obtained
by considering the shots to be drawn from a Bernoulli
distribution.

Figure 5:Ground state probabilities and lattice
configuration at coupling g = 1.9: (panel (a), bars
from left to right) Noiseless results (state vector calcu-
lation with the optimal parameter from VQE), emula-
tor H1-1E and real quantum hardware H1-1. The em-
ulator and hardware results were performed in a single
run with 512 shots. The data mitigated by excluding
the unphysical bitstrings are indicated by (∗). The error
bars on the probability are obtained by considering the
shots to be drawn from a Bernoulli distribution. (panel
(b)) The most favorable configuration corresponds to the
electric strings breaking with the formation of two par-
ticle/antiparticle pairs. This state refers to the lattice
where links and sites without a number are equal to zero,
while the values ±1 that appear on the sites correspond
to two non-zero dynamical charges q̂.

Figure 6:Ground state probabilities at coupling
g = 1.7 and results of energy gap: (panel (a) bars
from left to right) Noiseless results (state vector calcu-
lation with the optimal parameter from VQE), emulator
H1-1E and real quantum hardware H1-1. The emulator
and hardware results were performed in a single run with
512 shots. The data mitigated by excluding the unphys-
ical bitstrings are indicated by (∗). The error bars on
the probability are obtained by considering the shots to
be drawn from a Bernoulli distribution. (panel (b)) Data
with exact diagonalization for the ground state (E0 solid
line) and first excited state (E1 dashed line) at different
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couplings g. The gap E1 − E0 closes when approaching
g ∼ 1.7.

Figure 7:Static potential results with emulator
H1-1E and quantum hardware H1-1: The orange
curve represents the noiseless results (error bars smaller
than the markers). For the results of the emulator (tri-
angles) we used 1024 shots for each coupling, while for
runs on H1-1 (circles and square) we used 512 shots.
PMSV and SPAM mitigations are considered for the first
four couplings g = 0.3, 0.7, 1.1, 1.5, (data indicated by
(∗)). The uncertainties refer to the standard deviation,
Eq. (13). The last data point, at g = 1.9 has been found
via the basis sampling approach, selecting R = 4 dom-
inant states, (data indicated by (∗R)) and it is a vari-
ational bound on the energy. The inserted plot high-
lights the relative error ε between the data points com-
puted with H1-1E or H1-1 and the noiseless results at
g = 0.7, 1.1, 1.5.

Figure 8:Lattice system 4 × 3 and variational
quantum results (noiseless simulator): (panel (a))
Two static charges with values Q±1 are placed onto two
sites (nx, ny): Q = 1 7→ (0, 1), Q = −1 7→ (3, 1). The
dashed arrows are the inactive gauge links after Gauss’s
law is applied, solid arrows represent the link operators
that remain dynamical. (panel (b)) Static potential at
different coupling g at truncation l = 1 with Exact Di-
agonalization (ED) (solid line) and quantum variational
results (triangles), performed with Nakanishi-Fujii-Todo
(NFT) optimizer and 104 shots. A finite number of shots
defines the error bars, which are smaller than the mark-
ers.

Figure 9:Ground state probabilities with re-
duced circuit at coupling g = 0.7,1.1,1.9: At small
couplings, the electric string can propagate through the
lattice. At stronger g, the dominant configuration be-
comes the straight string between the static charges, un-
til it breaks and two dynamical charges form. On the
x-axis of the plots (panel (d)-(f)), the bit strings are
written as |Ψ⟩ = |ψf ⟩ ⊗ |ψg⟩. (panel (a)) Represents
the leftmost configuration |v⟩ ⊗ |v⟩ in panels (d), (e),
i.e. zero eigenvalues for the six dynamical gauge fields
(solid arrows) and no dynamical charges on the sites.
By applying Gauss’ law, this translates into the lattice
with a straight electric flux between the static charges.
Static charges correspond to ‘±’ symbols on the sites.
The electric flux is depicted with blue/red arrows with
a value of ‘−/ + 1’. The inactive gauge links are de-
picted with dashed arrows. (panel (b)) Illustrates an ex-
ample of a configuration which extends through external
sites and corresponds to the second configuration from
the left (panel (d)). (panel (c)) Illustrates the configura-
tion at coupling g = 1.9 where the electric string is bro-
ken, and two dynamical charges are formed, represented
with numerical values ±1 on the sites, and forming pairs
with the already existing static charges on the same sites
(‘+’ charge with ‘−1’ dynamical one and ‘−’ charge with
‘1’). In this figure we only write the values of the dy-
namical charges, keeping the colors on the sites for the

static charges. (panel (d)) Noiseless results at coupling
g = 0.7 (state vector calculation with the optimal pa-
rameter from VQE), emulator H1-1E and real quantum
hardware H1-1. (panel (e)) Noiseless results at coupling
g = 1.1 (state vector calculation with the optimal pa-
rameter from VQE), emulator H1-1E and real quantum
hardware H1-1. The configuration with a larger proba-
bility corresponds to the lattice in panel (a). (panel (f))
Noiseless results at coupling g = 1.9 (state vector calcu-
lation with the optimal parameter from VQE), emulator
H1-1E and real quantum hardware H1-1. The configu-
ration with a larger probability corresponds to the lat-
tice (panel (c)). In all the data, the emulator and hard-
ware results were performed in a single run with 4096
shots. The data mitigated by excluding the unphysical
bitstrings are indicated by (∗). In all plots, the error bars
on the probability are obtained by considering the shots
to be drawn from a Bernoulli distribution.
Figure 10:Variational circuit for Gray encod-

ing with l = 1 and fermionic sites configurations:
(panel (a)) Vacuum state is |01⟩, and state |10⟩ is ex-
cluded. If the state on even sites (dotted circles) is |1⟩
(panel (b)) (|0⟩, panel (c)), there is a particle, e−, (vac-
uum, v) on that site. In the case of odd sites (solid
circles) if |0⟩ (panel (b)) (|1⟩, panel (c)), we have an an-
tiparticle, e+, (vacuum, v).
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TABLES

Resource Estimation 3× 2 OBC system
l # Qubits # CNOTs CNOT Depth # Parameters
1 10 152 60 30
3 12 200 88 41
7 14 252 122 54

TABLE I.Resources required for the variational circuit
for Gray encoding at different gauge fields truncation
l: In a 3× 2 Open Boundary Conditions (OBC) system with
fermions, the two dynamical gauge fields and fermionic sites
can be simulated with the specified total number of qubits. In
particular, the number of qubits for the fermions is fixed to 6.
Additionally, we quantify the total count of CNOT gates and
the CNOT depth, representing the layers of CNOT gates in
the circuit. The rightmost column displays the total number
of parameters in the variational Ansatz.

Resource Estimation 4× 3 OBC system
l # Qubits # CNOTs CNOT Depth # Parameters
1 24 450 136 81
3 30 582 186 123
7 36 738 238 177

TABLE II. Resources required for the variational cir-
cuit for Gray encoding at different gauge fields trun-
cation l: In a 4×3 Open Boundary Conditions (OBC) system
with fermions, the six dynamical gauge fields and fermionic
sites can be simulated with the specified total number of
qubits. In particular, the number of qubits for the fermions
is fixed to 12. Additionally, we quantify the total count of
CNOT gates and the CNOT depth, representing the layers of
CNOT gates in the circuit. The rightmost column displays
the total number of parameters in the variational Ansatz.

|0⟩ |1⟩
nx + ny =even q = 0 vacuum q = 1 fermion
nx + ny =odd q = −1 antifermion q = 0 vacuum

TABLE III.Particle configurations on a 2D lattice: Sites
n = (nx, ny) are considered even/odd from the sum of the
two coordinates nx, ny on the lattice. The vacuum state is
|..1010⟩ and the configuration with particles/antiparticles at
every site is |..0101⟩. (Note that these configurations depend
on the choice of the Jordan-Wigner transformation).
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