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Time-domain field correlation measurements enable tomography of highly

multimode quantum states of light

Emanuel Hubenschmid* and Guido Burkard?

Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

Abstract

Recent progress in ultrafast optics facilitates the investigation of the dynamics of highly multimode quantum states
of light. Yet, the complete tomographic reconstruction of optical quantum states with prior unknown statistics and
dynamics is still challenging, since state-of-the-art tomographic methods require the measurement of orthogonal
and distinguishable modes. Here, we propose a tomography scheme based on time-domain quadrature correlation
measurements and theoretically demonstrate its ability to reconstruct highly multimode Gaussian states. In contrast
to (eight-port) homodyne detection, the two local oscillator pulses are shorter in time and are (independently) time-
delayed against the pulsed quantum state. The distinguishable mode structure is obtained in post-processing from the
correlation measurement data by orthogonalization. We show that the number of reconstructable modes increases
with the number of time delays used and decreases with the temporal extent of the local oscillator. Additionally,
we compare dual-pulse homodyne detection and electro-optic sampling. By analysing the (quantum) correlations
present in the measurement data, we show how thermalisation of the quantum state during detection leads to the
requirement of correlation measurements. Furthermore, we open an avenue to extending our tomography scheme to

non-Gaussian states.
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INTRODUCTION

Pulsed quantum states of light [1-3] are vastly complex and rich objects with numerous degrees of freedom
— a property which makes these states desirable or even unavoidable for many applications spanning from fun-
damental investigation of the dynamics of quantum systems [4, 5] to the transmission of quantum information
over large distances [6—14] or through quantum networks [15-17]. Full quantum state tomography of the
radiation field, i.e., the complete characterization encompassing the statistics of pulsed (free space) quantum
states poses a challenge even for state-of-the-art experiments using fast detection [18-21] or mode selection
[22-27], since the information describing the state can be distributed among a high number of optical modes.

The complete dynamics of a pulsed quantum state (for some fixed polarization) can be described in a phase
space, spanned by the electric-field-related quadrature p, = %(;?)L — &,) and its conjugate X, = \%(QL +4y)
with (angular) frequency w and corresponding Bosonic annihilation operator 4, [28, 29]. Defining a quantum
state in the phase space of continuous frequency w can lead to divergences [30, 31], whereas discretizing the
(free space) phase space using a basis of orthogonal functions f;(w) allows one to describe the quantum state
by a multimode Wigner function [32, 33]. Since the Fourier transforms f;(t) of the mode functions allow a
description in the time domain, the corresponding modes are called temporal modes [34, 35]. To describe

low-frequency and broadband modes, we introduced the subcycle mode basis. The fundamental mode,

=[] (5) o (-52) R

of the subcycle mode basis is described by the frequency scaling o9 and cycle parameter kg. While the
frequency scaling relates to the bandwidth Awgy =~ /2 In(2)og of the fundamental mode, the cycle parameter
ko determines the number of optical cycles completed during the temporal extent of the pulse. Thus, for

. . . - - Awg 1 1
a given bandwidth, ky determines the central frequency, Wy ~ \/m,/ko + - of the pulse. The pulse is

subcycle for 0 < kg < 1, i.e., the duration of the pulse is to short to complete a single optical oscillation.

All higher order modes, f;(w), of the subcycle basis are obtained by multiplying the fundamental mode with
generalized Laguerre polynomials (see Methods for more details). The orthogonal functions define two sets of
orthogonal quadrature operators X; = [ fi(w)%,dw and p; = [;~ fi(w)p.dw, each pair (X;, §;) acting on the
same temporal mode. If we collect the eigenvalues of the operators (= (X0, K1, - -, Po, P1, - -)" in a vector
¢, the pulsed quantum state can be represented by the multimode Wigner function W(Z). For multi-mode

Gaussian states, the Wigner function,

W(g) = ﬁ exp| (¢~ W) cov (G~ )|, )

A

is completely characterized by the expectation value, p = (C), of the quadrature with respect to the quantum
state and the (symmetric) covariance matrix cov, with the determinant of the covariance matrix det(cov)
[32, 33]. Tomography of optical quantum states is usually accomplished by reconstructing the Wigner func-

tion (or a smoothed out, positive phase-space density like the Husimi function), from individual quadrature



measurements at different directions in phase space [36—41] (or simultaneous measurement of two noncom-
muting quadratures [42—48]). Quadrature measurements can be implemented using homodyne detection
where the quantum pulse to be measured is interfered at a beam splitter with a strong, coherent reference
pulse, called local oscillator (LO). The difference between the photon number detected at each output port
constitutes a quadrature measurement in the temporal mode defined by the local oscillator pulse [49]. Yet,
the reconstruction of the multimode Wigner function W({) would require the measurement of the complete
high-dimensional phase-space statistics and even in the Gaussian case of equation (2) would require the mea-
surement of all covariances between temporal modes. One approach is to measure in a quadrature basis for
which the covariance matrix cov is diagonal [22-25, 27]. Measuring in the eigenbasis of cov is optimal in the
number of measurements required for a complete reconstruction, i.e., for the determination of the variances
corresponding to the most significant modes. While being very efficient, this approach requires knowledge of

the most significant modes constituting the pulsed quantum state.

In contrast to matching the (temporal) mode of the local oscillator to the quantum state, as described
above, recent works have proposed a quantum state tomography in the time domain, accessing the (time
local) phase-space dynamics of free-space quantum states with a high temporal resolution [50-53]. Inspired by
the electro-optic sampling of vacuum fluctuations [54-60] and pulsed squeezed states [61-63], time-domain
quantum state tomography uses an ultrashort local oscillator pulse to sample the phase space statistics of
the quantum pulse. By repeating the reconstruction for different time delays between the local oscillator
and quantum pulse, the (time-local) dynamics of the quantum state can be scanned through. Electro-optic
sampling can be understood as homodyne detection with the local oscillator pulse in a higher frequency
range as the sampled state [64—71]. To enable the interference of the high-frequency local oscillator and the
lower-frequency state, the state is upconverted to the frequency range of the local oscillator with the aid of a
nonlinear interaction. We refer to the coherent pulse involved in the nonlinear interaction as probe and in the
subsequent homodyne detection as local oscillator. In our description the probe and local oscillator pulses can
differ. In general, the frequency conversion can involve sum-frequency (SF) and difference-frequency (DF)
processes [72]. In many cases, the DF processes are suppressed by a wave-vector mismatch between the
involved photons; however, they are matched in the subcycle regime and have to be accounted for in electro-
optic sampling. The simultaneous presence of both SF and DF processes affects the quadrature correlations
generated in the nonlinear interaction [50], similar to the effect of losses during the interaction [73]. In
the Supplementary Note 5, we present a approach that still allows the identification of the most significant
modes contributing to the nonlinear interaction, even in the non-perturbative regime, for which electro-optic
sampling is expected to operate shot-noise free [50]. The advantage of electro-optic sampling compared to
homodyne detection is the ability to sample low frequencies, usually in the mid-infrared to THz range, with
a broadband probe at optical frequencies, thus approaching a subcycle temporal resolution. In this frequency
range, the dynamics is too fast for electronics, but the photon energy is comparable to thermal energies

at room temperature, making efficient photo-detection challenging. Therefore, electro-optic sampling and



homodyne detection can be used complementarily, covering a frequency range from microwave to optical, with
electro-optic sampling accessing the mid-infrared to THz range [60], filling the gap between the microwave
[30, 74] and optical [75, 76] frequency ranges that homodyne detection is available for. Electro-optic sampling
has recently been extended to temporal quadrature correlation measurements and applied to the ground state
of the electromagnetic field [77-82]. A similar method based on the time-domain correlation measurement
method has been applied to investigate magnetic properties exploiting the magneto-optic instead of the
electro-optic effect [83]. However, the application of temporal quadrature correlation measurements to more
intricate, highly multimode (Gaussian) quantum states of the electromagnetic field is still missing. We fill
this gap with our proposal to reconstruct the orthogonal mode structure of pulsed Gaussian quantum states

from overlapping time-domain correlation measurements.

In this work, we propose a method, which we term correlation tomography, that only relies on time-domain
correlation measurements of two electromagnetic field quadratures. Each of the two quadrature measure-
ments determines the quantum state of the field at an individually controllable time instance. Since any
real experiment exhibits a finite bandwidth and thus a finite detection time, the two time windows of the
measurement may overlap. The key insight is that the covariances between distinguishable temporal modes of
quantum states can be recovered from temporally overlapping correlation measurements by orthogonalizing
the overlapping local oscillator states in post-processing. Thus, the proposed method is able to reconstruct
the temporal mode structure and the statistics of a pulsed quantum state of light. While the mode basis
is determined by the temporal resolution of the measurements, the statistics of the quadrature in this basis
is determined by the quantum state. We find that the number of reconstructable modes scales with the
bandwidth of the detection and the number of time delays used in the measurement. We compare two imple-
mentations of correlation tomography: One based on homodyne detection and one on electro-optic sampling.
By optimising the probe pulse used in electro-optic sampling, one can shift the reconstructed modes toward
lower frequencies, potentially resolving dynamics below a single optical oscillation and entering the subcycle
regime. We analyse signs of (quantum) correlations present in the measurement data obtained from dual-pulse
homodyne detection and argue how thermalisation due to entanglement breakage leads to the requirement
of correlation measurements even for pure states such as the squeezed vacuum. Furthermore, we open an
avenue to the extension to non-Gaussian states by providing the full joint statistics of time-domain quadrature
measurements and show how to obtain information about the dynamics of a Fock state occupying a single
temporal mode from correlation measurements. The ultrafast measurement of photon-number correlations of
two non-overlapping spatial-temporal modes using dual-pulse, phase-averaged homodyne detection has been
demonstrated by McAllister and Raymer [84, 85]. While this seminal method allows to obtain higher-order
correlation functions, it is restricted to non-overlapping modes. It is still an open question whether the or-
thogonalization procedure presented in this work combined with the phase-averaged homodyne detection of
[84, 85] could be used to obtain higher-order photon-number correlators between more than two temporal

modes. Parallel to our work, the reconstruction of Gaussian states has been explored using electro-optic



sampling in the perturbative regime [86]. This approach starts by deconvolving the measurement statistics
and then expands the result in the principle modes, while we propose to first expand the local oscillator states
in the mode basis and then invert the measurement statistics by a singular value decomposition, automatically
taking care of any numerical instability. The numerical stability is especially relevant for electro-optic sam-
pling, since for some frequency the phase mismatch may result in small contributions to the measurement and
thus singularities during the inversion. Overall, we present a numerically stable algorithm able to reconstruct
a highly multimode pulsed Gaussian quantum states from field correlation measurements. Furthermore, ex-
panding in the mode basis first allows us to perform a time-domain quantum correlation analysis of multimode
squeezed vacuum pulses which motivates the requirement of a correlation measurement. Lastly, we present a
possibility to extend the reconstruction to pulsed non-Gaussian states by considering the example of a Fock

state.

RESULTS AND DISCUSSION
Time-domain quadrature correlation measurements

The time-domain quadrature correlation measurement we propose is schematically depicted in Fig. 1. To
enable correlation measurements, the local oscillator and quantum pulse are subdivided using 50:50 beam
splitters and are directed towards two detection arms, which we will refer to as arm a and arm b. The
two local-oscillator pulses traverse a delay stage, which adds the time delays At, and At, relative to the
pulsed quantum state to the respective local oscillators. Subsequently, the local oscillator and quantum pulse
combine in a polarizing beam splitter (PBS) and enter the detection stage.

Each detection stage constitutes a homodyne measurement and can thus be related to a quadrature
measurement of the temporal mode defined by the local oscillator. One subtle difference to usual homodyne
detection is the orthogonal polarization of the local oscillator and the quantum pulse in the z- and s-
direction. This requires a wave plate which shifts the phase of the field polarized along the optical axis of
the wave plate by @. The optical axis of the wave plate is rotated by 6 away from the z-axis around the
propagation direction k, to produce interference between the quantum and classical pulse. For the balanced
photodetection, a polarizing beam splitter is required to separate the s- and z-polarisation direction. The
combined effect of the wave plate and polarizing beam splitter replaces the beam splitter and unrotated wave
plate in usual homodyne detection [41, 50]. The wave plate leads to an effective phase shift ¢ = ¢(®, 0) of
the local oscillator (see Methods). The use of a half-wave plate rotated by 22.5° results in an X-quadrature
measurement with ¢ = 0, while choosing a quarter-wave plate rotated by 45° results in a p-quadrature
measurement with ¢ = 7/2. Electro-optic sampling combines a frequency up-conversion in a nonlinear
crystal, called detection crystal (DX), with homodyne detection to enable quadrature measurements in the
terahertz (THz) frequency range. The nonlinear interaction is gated by a strong coherent pulse, with amplitude

apx for both arms, which we will call the probe pulse. While the probe is polarized along the z-direction,
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Fig. 1. Schematic of the proposed quadrature correlation measurement. The z-polarised, short local oscillator
(LO) pulse (blue) and s-polarised quantum pulse (orange) are subdivided by beam splitters (BS) and directed towards
the two detection arms referred to as a and b. Before combining in a polarising beam splitter (PBS) with the quantum
pulse, each local oscillator pulse traverses a delay stage, adding the time delays At, or At, between the quantum
state and LO. If the detection stage is implemented through electro-optic sampling, the quantum pulse is at lower
frequencies (usually THz to mid-infrared) than the LO (usually optical frequencies), which is called the probe pulse
in this context. The quantum pulse is upconverted to the probe's frequency range by interacting in a nonlinear
(detection) crystal (DX). To control the quadrature amplified by the nonlinear crystal, the two parts of the quantum
pulse need to pass through wave plates (WP) prior to the nonlinear crystal. Afterwards, the quadrature of the
(potentially upconverted) quantum pulse in the temporal mode of the LO is measured by homodyne detection.
Different from usual homodyne detection, the quantum and classical pulses are mixed in a wave plate with its optical
axis rotated by 6 away from the z-axis around the k-direction. A half-wave plate rotated by § = 22.5° results in
an x-quadrature measurement, while a quarter-wave plate rotated by § = 45° yields a p-quadrature measurement.
Subsequently, on each detection stage, the s- and z-polarised contributions are separated by a PBS. A balanced
photon detection results in a measurement signal that amounts to the difference between the photon numbers in the

s- and z-polarisation. If the detection stage is implemented as homodyne detection, the nonlinear crystal is removed.

the quantum pulse is polarized in the s-direction, which is why we introduced the homodyne detection with
orthogonal polarizations as inputs. After the nonlinear interaction, the probe pulse can be replaced by a new
local oscillator pulse to optimise the detection. Since the nonlinear crystal only amplifies one quadrature,
an additional (unrotated) wave plate acting on the quantum pulse between the beam splitter and nonlinear
crystals is required, to enable the rotation of the quantum state in phase space by 90°.

The initial state of the local oscillator pulse at detection arm £ = a, b directly after the first beam splitter,
can be represented by the vector ] in the high-dimensional phase space with respect to the mode basis
fi(w) (see Methods for definition). Since all components of the setup in Fig. 1 correspond to a quadratic
Hamiltonian, we can describe the time evolution of the initial quadratures 4 using a symplectic transformation,

2, = I\/If [32, 33]. With only expressions linear in the quadrature operators, CIOCA’, relevant to field quadrature



measurements, we can equivalently calculate the effective state of the local oscillator M7, 5. Thus, at the
arm £ = a, b the effective state of the local oscillator for the quadrature measurement is described by the
vector Clo(Ate, apx, o) = Myp(0f — ©e)Mpy (Ate) MY (apx) Mie(¢e)CLo, depending on the phase
@ — ¢ of the unrotated wave plate represented by M\,Tvp(go?t — ¢¢), the time delay At, added by the delay
stage, described through Mpy(At), the probe amplitude apx driving the nonlinear interaction, My, (cpx),
and phase ¢, added to the local oscillator by the wave plate, M{{p(¢¢). The quadrature measured by the
setup is determined by the total angle, <p2°t, which equals the sum of the phase added by each of the two
wave plate. In the case of homodyne detection the nonlinear crystal and unrotated wave plate are absent,
i.e., apx = 0 and > = ¢. For more details, see Methods.

As a final step to relate the quadrature of the quantum pulse at the input to the quadrature measured by
one of the balanced detections, the effect of the beam splitter has to be considered. While one input port of
the beam splitter is occupied by the pulsed quantum state (with quadrature operators 2) the other input port
couples to the vacuum (with quadrature operators évac). The vacuum at the empty port leads to additional
noise to the detected photon-count difference. This additional noise is fundamentally unavoidable in the
simultaneous detection since it ensures the positivity of the probability distribution over the photon-difference

counts [41, 50]. Thus, the detection arm & = a, b measures the quadrature,

Ge(Ate, apx, ¢F) = Ulo(Ate, apx, ) + Llo(Ate, apx, ¢ + Ape)ac. (3)

Here we have assumed a uniform 50:50 beam splitter over all frequencies. While this assumption might hold
for the broadband quantum state, the even broader local oscillator could violate this assumption. However,
by expanding the time-evolution of a non-uniform beam splitter in the mode basis f;(w), one can account for
this effect. The above equation can be understood as projecting the high-dimensional, s-polarized quadrature
operators ¢ and évac at the inputs of the beam splitter onto the transformed local oscillator state. The
additional phase Ap, = 7/2 for detection arm a and Ay, = —m/2 for arm b is due to the phase shift
acquired in the reflection at the beam splitter. The phase is on the vacuum port since ga?t is already adjusted
to the reflection phase shift (see Methods). Equation (3) is only valid for a large local oscillator amplitude.
We assume the amplitude of the two probes both equal apx # 0 in the case of electro-optic sampling and

apx = 0 for homodyne sampling.

Reconstruction of highly multimode Gaussian quantum states

To gain statistical information about the sampled quantum state and its dynamics, different combinations
of time delays in the two detection arms of the setup in Fig. 1 have to be measured. Yet, the statistical
information contained in the covariance matrix, cov, of the pulsed quantum state is encoded in orthogonal,
distinguishable modes, while the local oscillator pulses at different time delays can overlap and are thus

partially indistinguishable. We present an algorithm capable of extracting information about the orthogonal



mode structure of the pulsed quantum state from the correlation measurements. The algorithm contains the

following steps:

1. Perform a field quadrature correlation measurement, as described above, for all possible combinations,

tot

i,j € Nooy, of parameter settings (At,, apx, ) = [; at arm a and (Aty, apx, p*) = [ at arm b,

taken from the series

r= <(At1, apx, 0), (Ata, apx, 0), .. . (Aty, aox, 71/2), (Aty, apx, 71/2), .. ) (4)

of N time delays (At;)i<y = {At1, Aty, ..., Aty} and two possible wave plate settings > = 0, 7t/2.

Collect all the measurement results for the different time delays and wave plate settings in the correlation

matrix
coriy = 5 (181, 4(T7)}). )

where the quadrature operators §¢ are defined in equation (3) and {A é} — AB + BA denotes the

anticommutator.

2. The states of the local oscillators for the corresponding measurements in the first step are assembled

in the matrix
Zio = (Co(li) | 1 <2N). (6)

3. Use the definitions in equation (3)-(6) to relate the covariance matrix of the pulsed quantum state,
covy, as well as the covariance matrix of the vacuum at the empty input port of the beam splitter,

COVyae = %H (I being the identity matrix), to the covariance matrix of the measurement results,
ST T
corr = Z g covs Zo — Z o COVyac Z10. (7)

Orthogonalise the local oscillator states and transform the correlation matrix with the aid of the singular
value decomposition, Zio = UX VT, and the Moore-Penrose pseudoinverse [87, 88] of X, denoted by
X*. We define the diagonal projector P = XX and the transformed covariance matrix cov;y =
UT cov; U. After subtracting the vacuum contribution and transforming equation (7) with VX, we

get the (partially) reconstructed covariance matrix
1
Peovsu P = [VI*] corVET + SUPUT. (8)

To avoid numerical instability, we set all singular values of the matrix Z o to zero if they are smaller

than 1073 times the maximal singular value.

We provide an implementation of the algorithm in Python [89]. The matrix U used in the last step of the
algorithm needs to be symplectic to ensure that the reconstructed covariance matrix corresponds to a valid

quantum state. However, it is always possible to find such a symplectic U since the two wave plate settings
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Fig. 2. Temporal resolution and reconstructed mode basis. a, Number of (temporal) modes, given by rank(P),
reconstructed with the algorithm presented in the main text in dependence of the local oscillators bandwidth Aw o
and the number of time delays N used in the correlation measurements for homodyne detection and electro-optic
sampling respectively. The centre of the local oscillator pulse is fixed at @ o/(271) = 230 THz and the vertical dashed
lines indicate the transition from multicycle to single cycle (k.o = 3) and to subcycle pulses (k.o = 1). b, First four
(orthogonalized) mode functions in the frequency domain reconstructed by the correlation measurement. In the case
of homodyne detection, the bandwidth of the local oscillator is Awi o /(27r) = 59 THz and thus multicycle with kLo =
20.8. For electro-optic sampling, the probe involved in the nonlinear interaction is centred at wpx/(271) = 200 THz
with the bandwidth Awpx = 118 THz (k.o = 4), but is filtered after the nonlinear interaction to @ o/(27) = 230 THz
andAw o/(27m) = 59 THz.

exchange the role of the x- and p-quadrature, therefore the x- and p-quadrature blocks of Z o possess the
same singular value decomposition. In the case of electro-optic sampling, the phase (¢ is fixed by the choice
of quadrature amplified by the nonlinear interaction. Thus, the quantum pulse needs to pass an additional
(unrotated) (4™ — ¢¢)-wave plate prior to the beam splitter in order to amplify the other quadrate and
enable the decomposition using a symplectic matrix U. In general, the reconstructed covariance matrix in
equation (8) corresponds to the marginal distribution of a Gaussian state with covariance matrix covy. Thus,
the rank r = rank(P) of the projector determines the dimension of the phase space reconstructable from the
measurement data. The number of reconstructable phase space dimensions increases with the number of
time delays N and the bandwidth Aw) o of the local oscillators, as shown in Fig. 2 a for the case of homodyne
detection (apx = 0) and electro-optic sampling (apx = —1.95 - 10°, optimised according to Supplementary
Note 5). We assume an equal temporal distribution of the time delays (At;);<y over the time interval
Iar = [—12fs, 121s] in the case of homodyne detection and [5, = [—17fs, 17 fs] for electro-optic sampling.
The corresponding orthogonalized (local oscillator) mode functions, fy ;(w), are obtained from the rows of

U, introduced in step 3 of the algorithm, and are shown in Fig. 2 b. In the case of homodyne detection, the



number of reconstructable modes increases linearly with the number of time delays until reaching a plateau.
A behaviour explained by Fig. 3 a and c. As the time delay changes, the vector describing the state of the
local oscillator moves along spirals through the high-dimensional phase space, spanned by the rows of U. The
vectors describing the local oscillators at two different time delays are linearly independent and, in principle,
orthogonalizable. Yet, if the difference in time delay is small, then the vectors are almost linearly dependent,
as is the case in Fig. 3 a for At = 0fs and At = 0.12fs. The cutoff introduced at the end of the third
step of the algorithm will parallelise these vectors. The cutoff explains the plateau in Fig. 2 a and can only
be increased by increasing the bandwidth of the local oscillator. A local oscillator shorter in time can resolve
more features of the orthogonal mode basis, as evident from Fig. 3 b and d by considering the overlap from
the local oscillator and the orthogonal modes in the time domain. In electro-optic sampling, the modes are
centred at much lower frequencies reaching the mid-infrared (MIR) range due to the frequency conversion
in the nonlinear crystal, as evident from Fig. 2 b and thus can reach a few- up to subcycle resolution as
visible in Fig. 3 d. This frequency range is particularly interesting. While homodyne detection is available
for higher or lower frequencies, the lack of efficient photo detectors makes homodyne detection unsuitable
for this frequency range. Another striking feature of Fig. 2 a is the dependence of the reconstructed phase
space dimension on the bandwidth of the local oscillator in the case of electro-optic sampling. The nonlinear
interaction correlates a broad band of frequencies to the detected ones, making the signal resilient to losses
due to filtering [26, 50, 90]. This band only weakly depends on the bandwidth of the local oscillator. Thus,
the bandwidth of the detection can be much smaller than the sampled frequency range. In the Supplementary
Note 5 we show how to choose optimised parameters to correlate the lower frequency modes to the detected
ones. The time domain picture in Fig. 3 also shows the different time scales of the dynamics captured by

homodyne detection and electro-optic sampling.

As a final remark, we would like to mention that this approach is not limited to time-delayed pulses. In

principle, any set of linearly independent pulses, in the time or frequency domain, can be used.

Analysing correlations in the time domain

In the remainder of this article, we will only consider field correlation measurements based on homodyne
detection. However, all concepts presented in the following translate to electro-optic sampling. In this section
we argue that time local sampling, as done for classical, coherent pulses in time-domain spectroscopy, is not
sufficient for quantum states, since correlations prevent the reconstruction of the complete quantum pulse
from individual time-local measurements. We begin with the observation that time-local phase-sensitive
measurements are insufficient to reconstruct thermal states since they do not carry any phase information.
The same argument cannot be made for the squeezed vacuum, since the variance depends on the phase
and, in turn, on time. Yet, in the following, we show that squeezed states appear thermalised in a time-

domain measurement due to entanglement breaking between measured and unmeasured modes, leading to the
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Fig. 3. Dynamics of the local oscillator in phase space and in the time domain. a, State of the local oscillator
for different time delays, (At;)i=1.234 = (—11.76fs,0.00fs, 0.12fs, 11.76fs), in the phase space spanned by the first
two orthogonalized modes obtained from a homodyne measurement, apx = 0, with a quarter-wave plate. The black
(gray) line indicates the evolution for negative (positive) time delays. b, Waveform of the time-delayed local oscillator,
fLo(t), and first two orthogonalized modes. fy j(t), obtained from homodyne detection, in the time domain. The
symmetric function corresponds to the X quadrature, while the antisymmetric function relates to the p quadrature.
The dynamics in a can be obtained from the overlap of the time-delayed local oscillator and the orthogonal quadrature
basis. ¢, Phase space representation of the local oscillator with (At;)i=1234 = (—16.66fs,0.00fs, 0.17 fs, 16.66 fs),
in electro-optic sampling after the nonlinear interaction (see Supplementary Note 5.). d, Time-domain picture of the
effective time-delayed local oscillator and the first two corresponding orthogonalized modes, if electro-optic sampling,
apx = —1.95-10°, is used in place of homodyne detection. Due to the frequency conversion of the nonlinear crystal
the effective local oscillator, described by {; o(/7) in equation (3), is much broader in and centred at lower frequencies

as the actual detection. The parameters for the probe and local oscillator pulse are the same as in Fig. 2.



requirement of correlation measurements for the reconstruction of multimode squeezed states. We assume
that the pulsed squeezed state is generated by squeezing the vacuum using a nonlinear interaction equivalent to
the one used for electro-optic sampling (see Supplementary Note 6). The strength of the squeezing interaction

2 .
, with agx

is determined, among other parameters, by the photon-number content of the pump Ngx = |acx
being the coherent amplitude. The average xx-signal for a measurement with two half-wave plates, i.e.,
g(At,, Aty,,0,0) = (G.(At,, 0,0)4,(Atp, 0,0)), for a weakly squeezed state with agx = 2 - 103 is shown
in Fig. 4 a. The signal is dominated by alternating squeezing and antisqueezing along the time-local axis,
i.e., At, = Atp. The maxima of the signal are shifted along this axis, which originates from the frequency
oscillations of the phase matching function [50]. As the pump strength is increased from agx = 2 - 10® via
agx = 3-10* to agx = 7-10°, oscillations along the orthogonal axis, At, = —At,, appear. These oscillations
along the time-nonlocal axis are a sign of thermalisation, as a comparison with the signal of a thermal state
in Fig. 4 e illustrates (see Supplementary Note 9 for details).

The thermalisation of the detected state can be validated with the von Neumann entropy (VNE) shown

in Fig. 4 b. We define the detected state via the covariance matrix of the observable
1

1= 2012000, 0,0)]

the Wigner function of which corresponds to a valid quantum state. Since the initial state is assumed to be

(éa[Atax O. O]1 aa[Atav 0, 7-(/2]1 C/ib[Atbx 0, 0], db[Atbv O, 7T/2])T' (9)

pure and the evolution unitary, a finite von Neumann entropy can only originate from entanglement between
the detected and undetected parts of the quantum state. The presence of entanglement in the detected
state can be determined using the logarithmic negativity (see Methods), shown in Fig. 4 c. We chose the
bipartition of the detected state to be between the two detection arms & = a, b. The logarithmic negativity
results from an interplay between entanglement within and purity of the quantum state. For weak squeezing,
the entanglement and thermalisation (quantified by the von Neumann entropy in Fig. 4 b) are low, resulting
in a small logarithmic negativity. Increasing the squeezing, the entanglement will increase as well, which
in turn leads to more thermalisation, increasing the logarithmic negativity until thermalisation overshadows
the entanglement and the logarithmic negativity drops to zero. However, the quantum correlations of the
thermalised state can still be captured by the quantum discord (see Methods), even in the presence of
thermalisation, and shows a clear increase with the squeezing strength, as can be seen in Fig. 4 d. Since the
quantum correlations are low in the weak squeezing limit, the signal can be understood as a time-varying noise
pattern along the time local axis, At, = At, (see Supplementary Notes 7 and 8). For stronger squeezing
the quantum nature of the multimode squeezed state becomes relevant and correlation measurements are
necessary. Fig. 4 f shows the von Neumann entropy of the detected state at At, = At, = 0, at which point
the local oscillator is matched best to the quantum pulse, as a function of the parameters describing the mode
of the local oscillator, i.e., the centre frequency @ o and the bandwidth Aw, o. The minimum of the von
Neumann entropy in Fig. 4 f, corresponds to the local oscillator mode matched closest to the first principal
mode of the squeezed state (see Supplementary Note 6). Yet, in time-domain sampling, the modes of the

local oscillator and quantum state are never matched since the detection is faster than the dynamics of the
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Fig. 4. Correlations in the sampled state. a, Correlated signal, g(At,, Atp, 0,0) = (§a(Ata, 0,0)§p(Atp, 0,0)),
for a XX-quadrature measurement, based on homodyne detection, as a function of the time delays At, and Aty on
the two detection arms a and b, for a weakly squeezed state, agx = 2- 103, moderately squeezed, agx = 3-10*, and
strongly squeezed state, agx = 7 - 10°. The squeezing is implemented by the same free-space nonlinear interaction
used in Fig. 1 (see Supplementary Note 6). b, Von Neumann entropy (VNE) of the detected state defined by all 16
(co-)variances of the two possible wave-plate settings at the two arms, i.e., quarter- and half-wave plate, and given
time delays At, and Aty,. The input states are the same squeezed states as in a. ¢, Entanglement between the two
detection arms quantified by the logarithmic negativity of the detected state, described above, with the bipartition
between the two detection arms a and b. d, Quantum correlations, beyond the entanglement in ¢, quantified by the
quantum discord with the bipartition as above. e, Correlated signal for xX-quadrature measurement for a thermal
state with temperature T = 1000 K (see Supplementary Note 9). f, Von Neumann entropy of the strongly squeezed
state at fixed time delays At, = At, = 0 as a function of the two parameters of the local oscillator, i.e., the

bandwidth Aw o and centre frequency @) o.



state, leading to the breakage of entanglement and in turn to thermalisation of the detected state. Therefore,
the reconstruction of the (thermalised) multimode quantum state requires correlation measurements, at least

in the strong squeezing regime in which thermalisation becomes relevant.

Correlations measurements of non-Gaussian states

Since Gaussian states are completely described by their expectation values and covariance matrix, two-
point correlation measurements can fully characterize even highly multimode Gaussian states. Non-Gaussian
states such as Fock states, on the other hand, can exhibit higher-order correlations and require going beyond
the second moment. In the following, we will provide the joint probability distribution of the correlation
measurement and show how to obtain not only statistical, but also dynamical information about the quantum
state, even if they are rotationally symmetric in phase space, such as the Fock states. The joint probability

distribution,

Prob(x,, pp) = //_Oo K(Xa, pb| Q) W (&)d?m(, (10)

of the correlated quadrature measurement with outcomes x, for §,(At,, 0,0) and p, for G»(Atp, 0,7/2) is
given by convolving the 2i,.-dimensional, multimode Wigner function W(Z), describing the pulsed quantum
state with a multivariate Gaussian kernel K(xa, py|C) defined in equation (31), accounting for the effect of the
measurement (for details see the Supplementary Note 10). Generally, inverting equation (10) is a nontrivial
task. However, in the case of a Gaussian Wigner function, we can recover equation (7) from the convolution,
the inversion of which is demonstrated in equation (8). Another example for which equation (10) proves useful
is the reconstruction of n-photon Fock states. Figure 5 a shows the result of the convolution in equation (10)
for a single-mode, three-photon Fock state.

We can distinguish between two special cases of the joint probability distribution by scrutinising the
two singular values o4 with ¢ = x, p, quantifying the measurement and preparation uncertainty along two
orthogonal directions in the phase space of the Fock state (see Supplementary Note 10 for more details).
The singular values o, are shown in Fig. 5 b as a function of the time delay At,,.

In the first case, the two singular values, and thus the measurement uncertainties, are equal, o, = 0,. In
this case, the two quadrature measurements are maximally incompatible and the measurement statistics are
determined by a phase space distribution. If the mode functions of the local oscillator and the pulsed quantum
state are matched, the singular values approach 4, o4 — 4, and the phase space distribution converges to the
Husimi function of the quantum pulse. Equal measurement uncertainties can be observed along the time local
(tl) axis with At, = At,. The Fock state appears to the detection as an incoherent mixture of Fock states
with occupations 0 to n distributed binomially, with probability p = ¢,/4, reproducing the result obtained by
time-local quantum state tomography [50].

In the second case, one singular value tends to 2, while the other stays above 2. In this case, the

measurement uncertainty of one measurement is decreased at the expense of the other measurement, resulting
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Fig. 5. Joint probability distribution for correlation measurements of a Fock state. a, Joint probability
distribution for a X-quadrature measurement at detection arm a and a p-quadrature measurement at detection arm
b with fixed time delay At, = 0 and different At;, for each distribution. The joint probability distribution is taken
over the possible measurement outcomes, which are the eigenvalues x, and pp of the operators §,(At,, 0,0) and
Gp(Atp, 0,71/2). The input state used in this example is a three-photon Fock state in a temporal mode centred at
wWph = 200 THz with a bandwidth Awpy, = 59 THz. The local oscillator is characterized by wi o = 230 THz and
Awi o = 118 THz. b, The singular values o4 with g = x, p quantify the compatibility of the two measurements
compared to the waveform fy, o(t) and f, o(t) related to the X and p quadratures of the pulsed Fock state. For a
time local (tl) measurement, At, = Atp, or for a difference between the time delays equal to integer multiple of
half an optical cycle of the quantum states waveform, the singular values are equal o, ~ 0, and the measurement is
incompatible leading to a measurement of the Husimi function, e.g., for At, = 0fs or At, = 2.47fs. For a correlation
(corr) measurement with a difference between the time delays equal to odd multiples of a quarter optical cycle, one
of the singular values approaches 2. In this case, the same quadrature is measured by both detection arms and the
measurements are compatible. The compatibility of the measurement allows the extraction of phase information
about the, rotationally symmetric, Fock state. The effect of detectors with a quantum efficiency of = 0.5 is shown

as dashed coloured lines, labelled oy, corr, (noisy) and op, corr, (noisy).

in a smoothed-out quadrature distribution. An example of this special case can be observed at large differences
in time delay, one detection arm measures the vacuum and the other (partially) the Fock state. In this case,
the probability distribution disintegrates into the quadrature distribution of the vacuum and the Fock state,
given by a Hermite-Gauss polynomial, convolved with a Gaussian describing the vacuum contributions from

the empty beam splitter port.



Neither case reveals any phase information about the quantum state. However, the singular values o, for
correlation (corr) measurements oscillate with twice the carrier frequency of the quantum pulse, as shown in
Fig. 5 b. At a difference between the time delays corresponding to even multiples of a quarter optical cycle
of the quantum pulse, orthogonal quadratures of the quantum pulse are measured and the singular values are
equal. At a difference between the time delays corresponding to odd multiples of a quarter optical cycle, the
same quadrature is measured and one singular value tends to 2. As one of the time delays is varied while the
other one is fixed, the measurement statistics interpolates between the two cases and oscillates with twice
the carrier frequency of the quantum pulse, as can be seen in Fig. 5 b. The oscillation between compatible

and incompatible measurements allows the extraction of spectral information about the pulsed Fock states.

There are two effects which could negatively influence the reconstruction of the quantum state. First, a
finite quantum efficiency, 7, of the detectors used in the balanced detection. While for Gaussian states the
noise due to finite quantum efficiency can be subtracted from the variance of the measurement data, in the
case of non-Gaussian states we need to include the noise into the calculation. Following Leonhardt and Paul
[38], we can calculate the singular values o, and o, as shown in Fig. 5 b for n = 0.5 in dashed lines. Overall
the o, and o, with finite quantum efficiency are always below the ideal ones, thus the statistics in phase space
as well as the dynamics seen in o, are washed out. However, photo detectors in the optical frequency can
achieve quantum efficiencies well above 7 = 0.5 [19]. Second, the phase-space statistics also becomes washed
out if the mismatch between the mode of the local oscillator and the Fock state is increased. Additionally,
the dynamics of o, may deviate more strongly. Including the mode mismatch, quantum efficiencies above
50% are reachable [19] and sufficient to reconstruct Wigner negativity of single photons [91]. While the local
oscillator and Fock state mode are not matched in the example of Fig. 5, the oscillation of the incompatibility
clearly follow the Fock states temporal mode. Using the dynamical information extracted from Fig. 5 b, the
local oscillator mode can be matched to the Fock states mode adaptively, improving the reconstruction of
the quantum state and thus iteratively approaching the actual quantum state. This is a general feature of
any measurement: The more prior information ia available, the better the experiment can be tailored to the
measured system and one can thus obtain a more precise measurement result. We chose the example of three

photons here to clearly exemplify the shape of the Hermite-Gauss polynomials at At, = 1.15fs.

CONCLUSION

While time-domain quadrature correlation measurements have already been used to scrutinise the statistics
of the ground state of the electromagnetic field, the reconstruction of (unknown) pulsed quantum states
has not been addressed to this point. Here, we present a full quantum state tomography scheme able to
reconstruct highly multimode Gaussian quantum states. Different from existing tomography schemes, our
proposed reconstruction only relies on time-delayed pulses, which are orthogonalised in post-processing. We

compare two implementations of the correlation measurement, one based on homodyne detection suited for



multicycle modes in microwave or optical frequencies and another, based on electro-optic sampling suited
for subcycle modes in the THz to mid-infrared frequency range. Accompanying the latter, we develop a
non-perturbative description of electro-optic sampling which allows to optimise the probe strength in the
strong interaction regime. Furthermore, we show how thermalisation during the detection makes correlation
measurements necessary, by analysing the sign of quantum correlations in the measurement data obtained by
field correlation remeasurements based on homodyne detection. Whereas the above achievements are limited
to Gaussian states, we also present the joint measurement statistics for the correlation measurement of non-
Gaussian states and show how correlation measurements can improve the reconstruction of Fock states. Thus,

we are opening a avenue to the investigation of quantum phenomena of light on an ultrafast time scale.

METHODS
Discretization and the calculation (subcycle) mode basis

To discretise the continuous Hilbert space of the free-space electromagnetic field, we introduce the subcycle

mode basis,
fi(w) = fo(w)Li(w), (11)

with two parameters, 0g, kg > 0 based on the fundamental mode in equation (1), centred at wy =~
00/ ko + 1/7 with bandwidth Awg ~ /2In(2)co and the (scaled) generalized Laguerre polynomials

o <[ o (3)

We used oo /(271) = 100 THz and ko = 0.5. See Supplementary Note 1 for further details about the subcycle

Imax

mode basis. Using the relation d(w) ~ ) ™% f*(w)a;, we can discretize the quadrature operator,

40,0, ~ / " [ ao(@)E) + e afo(w)d ()] de, (13)

measured in a homodyne detection with a local oscillator described by a frequency-dependent coherent
amplitude oy o(w) given by the function defined in equation (1) with parameters 0o and ko and a phase

shift ' due to a ®-wave plate rotated by #. By choosing

1 1 —2cos?(®/2)
0 = Earccos(\/ 2sin2(d>/2) ) (14)

the effective phase can be calculated using

;o 2cos?(®/2)
@ ——arctan<\/1_2cos2(¢/2)>. (15)




A detailed derivation is given in Supplementary Note 2. We collect the coefficients resulting from the mode

expansion in the vector (o, with

Re foo ao(w)fi(w)dw 0 < i < imax
[Coli = o ) : (16)
Im [[5° ao(w)fisi (W)dw]  imax < 7 < 2imax
With
cos(¢’)I —sin(¢')I
Mup() = (<70 ) )
sin( ) cos(¢)I
describing the effect of the wave plate, the measured quadrature can be expressed as
A T2
G = (Mp(¥)o0) ¢ (18)

The vector of mode operators C is defined in the introduction. With the matrix elements &J; = I whi(w)fi(w)dw

of the free-field Hamiltonian and the definition

0 w
Gar = At (—d 0) (19)

we can describe the time delay using the symplectic matrix Mp,y(At) = exp(Ga;). The effect of the nonlinear
crystal can be described with a squeezing and beam-splitting interaction of photons at (angular) frequency

{2 and w, using the kernels derived in the Supplementary Notes 3 and 4,

b\ wt+n w2
(2m)%/ (m) mf&( + Q) WA[Ak( (20)

3/2 w
B(2,w) = %(27:)3/2 <$> |(w—|—Q|) [Fi(w— 2) + (2 — w)] 1/ A[Ak

with ¢, h, g¢ being the speed of light in vacuum, reduced Planck constant, and the vacuum permittivity.

(21)

Furthermore, A = 7t(3 pm)? is the beam waist area and X[Ak(_Q, w)] the Fourier transform of the transversal
profile of the x(® interaction at the wave-vector mismatch Ak(£2,w). In case of a zinc-telluride crystal
of length L = 20um in free space, we have A(k) = )\\/szﬂ sinc(kL/2) with A\ = Aeod/2, the interaction
parameter d = —n*({w))ry; and the electro-optic coefficient of zinc telluride [92], r;; = 4pmV~!. The
refractive index n(w) is modelled from experimental data [93]. The function f,(w) described the spectrum of
the coherent pump/probe pulse with amplitude « driving the nonlinear interaction. We assume the spectrum
to be described by equation (1) with parameters o, = 100 THz and k, = 4. Expanding the kernel again in

the subcycle mode basis leads to the matrix elements,

S, =2 / / 5(02,w)F*(2)F (0)d e, (22)
By =2 / /0 B(2, w)f(Q)F (w)dRdw, (23)



and by defining the matrix

G — (- Re(S — B) Im(S — B)) | (20)
Im(S+ B) Re(S+ B)

we can describe the effect of the nonlinear interaction using the symplectic matrix My () = exp[|a|GnL].

Applying the transformation of the beam splitter to the measured quadrature, we obtain equation (3).

Correlation analysis

Since the detection takes place at two outputs of a beam splitter, the detected modes commute and
the operators q = (4.[At., 0, 0], §.[At., 0,71/2], Go[Ats, 0,0], Go[Ats, 0, 7¢/2])T /(V/2]|CLo (0, 0,0)||) define a
covariance matrix,

1
[covialiy = 5 ({91 a7}) sepvac) vac (25)
corresponding to a valid quantum state, which we call the detected state. The von Neumann entropy [33]

of the sampled state can be calculated from the symplectic spectrum {v;}i—1 using S(covzq) = S22, s(v)

s(x) = <X;1> log, <X;1> - (Xgl) log, (X;1> | (26)

Correlation measures can be calculated using the bipartition between the mode measured at arm a and b.

with

Thus, the subsystem A is spanned by the mode operators in g4 = (§.[At., 0,0], §.[At,, 0,7/2])T, and the
subsystem B by qg = (G5[Ats, 0, 0], Gu[Ats, 0, 7t/2])T. Moreover, by defining the time-reversal operator for
the subsystem B, A = diag(1,1, 1, —1), the logarithmic negativity,

L(covs4) = max{0, — log,(min{&;}i=12)}, (27)

can be calculated from the symplectic spectrum {;};—1» of the covariance matrix Acov;q A [33, 94]. The
same bipartitian is used to calculate the quantum discord [95].

While not being independent of the local oscillator mode, analysing correlations in the time domain could
offer insights to the entanglement of Gaussian states beyond correlations in the orthogonal mode basis and

could be used to define a mode independent notion of entanglement present in Gaussian quantum states [96].

The joint probability distribution

A detailed derivation of the full joint measurement statistics of correlation homodyne detection (i.e.,

apx = 0) is given in the Supplementary Note 10. With the definitions

PLo = Co(Ata, 7/2)[CLo(At., 7/2)]T + Lio(Ats, 0)[CLo(Ats, 0)]T, (28)

and
PLo[xaCLo(Ats, 1/2) — pplio(Ats, 0)]
1GLo(At,, 71/2) — LLo(Ats, )|

Ca(Xa pp) = 4 , (29)



as well as the covariance matrix ({2 defining the symplectic matrices)

covy! = 2 Plol2 y (30)
HCLO(Atav 71/2) — CLo(Aty, 0)]|

we can express the integration kernel in equation (10) as

lIxaCLo(Ata,mt/2)—pplLo(Ats, o)||
2\/§exp[ 2 6o (Ats,71/2)—CLo(Ats,0)]° ] exp CT(X ool — ECT ovtz]. o
||CLO(At3'T[/2)_CLO(Atb, )H d ar Mb 2 d

We assume the quantum pulse is an np,-photon Fock state in a single temporal mode with mode function

K(Xav Pb|C) =

according to equation (1) parametrized by Awy, = 59 THz and @y /(271) = 202 THz (kon = 16). By defining

the projector Py, of the Fock states phase space, we can calculate the Schur complement

covschur = Pph(covvac + covy )Ppl1 — Pph covy lp [P, (covvac + covy )Pr]_lPr cov;:l Pon, (32)

with singular values o, o, and define
Caph(Xa, Pp) = Pon[l — cov;l P{P,(cov, .}t + cov;l)Pr}_lPr]Cd (Xa, Pp)- (33)

as well as the normalization envelope

IxaCLo (Ata,7t/2)—ppCLo(Aty, O)H
QﬁeXp[ 2 o (@trm/2)—Lio( At 0) }

N(xa, pa) =

b pi) |CLo(Ats, 7t/2) — CLo(Ats, O)

X (2re)2tinec [ Ci (X pp) 2P A{P.(covs + covy )P} P2 u(xa, p )} (34)
det(P[covvac+covd1]P) dVR7 vac d d(Xa, Pb

to express the probability distribution of the joint quadrature measurement of the Fock state as

27-( 27-[ ] o 2Xa Ppex]? [cd,ph(:jpb)epl2

\/ O'p )

o zn: 1_ 4 ' 1_ i L. -1 {Cd ph(Xal Po)ex}? 2 {Cd ph(Xal Pb)es}’ . (35)
: Oy Op ! — 40, n=i O’ — 4o,

If a finite quantum efficiency, 7, of the detectors [43] is assumed, we have to replace the detection covariance

PrOb(Xav Pb) Xav Pb

matrix covg1 by 52 covg1 before calculating the singular values o4.
-

DATA AVAILABILITY

All data presented here is available online [89].

CODE AVAILABILITY

The Python code supporting the results can be obtained from the GitLab repository: https://gitlab.
inf.uni-konstanz.de/emanuel . hubenschmid/subcycleq . A archived version of the specific code used

here is available online [89].
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