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multimode quantum states of light
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Abstract

Recent progress in ultrafast optics facilitates the investigation of the dynamics of highly multimode quantum states

of light. Yet, the complete tomographic reconstruction of optical quantum states with prior unknown statistics and

dynamics is still challenging, since state-of-the-art tomographic methods require the measurement of orthogonal

and distinguishable modes. Here, we propose a tomography scheme based on time-domain quadrature correlation

measurements and theoretically demonstrate its ability to reconstruct highly multimode Gaussian states. In contrast

to (eight-port) homodyne detection, the two local oscillator pulses are shorter in time and are (independently) time-

delayed against the pulsed quantum state. The distinguishable mode structure is obtained in post-processing from the

correlation measurement data by orthogonalization. We show that the number of reconstructable modes increases

with the number of time delays used and decreases with the temporal extent of the local oscillator. Additionally,

we compare dual-pulse homodyne detection and electro-optic sampling. By analysing the (quantum) correlations

present in the measurement data, we show how thermalisation of the quantum state during detection leads to the

requirement of correlation measurements. Furthermore, we open an avenue to extending our tomography scheme to

non-Gaussian states.
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† guido.burkard@uni-konstanz.de
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INTRODUCTION

Pulsed quantum states of light [1–3] are vastly complex and rich objects with numerous degrees of freedom

– a property which makes these states desirable or even unavoidable for many applications spanning from fun-

damental investigation of the dynamics of quantum systems [4, 5] to the transmission of quantum information

over large distances [6–14] or through quantum networks [15–17]. Full quantum state tomography of the

radiation field, i.e., the complete characterization encompassing the statistics of pulsed (free space) quantum

states poses a challenge even for state-of-the-art experiments using fast detection [18–21] or mode selection

[22–27], since the information describing the state can be distributed among a high number of optical modes.

The complete dynamics of a pulsed quantum state (for some fixed polarization) can be described in a phase

space, spanned by the electric-field-related quadrature p̂ω = i√
2
(â†ω − âω) and its conjugate x̂ω = 1√

2
(â†ω + âω)

with (angular) frequency ω and corresponding Bosonic annihilation operator âω [28, 29]. Defining a quantum

state in the phase space of continuous frequency ω can lead to divergences [30, 31], whereas discretizing the

(free space) phase space using a basis of orthogonal functions fi(ω) allows one to describe the quantum state

by a multimode Wigner function [32, 33]. Since the Fourier transforms fi(t) of the mode functions allow a

description in the time domain, the corresponding modes are called temporal modes [34, 35]. To describe

low-frequency and broadband modes, we introduced the subcycle mode basis. The fundamental mode,

f0(ω) =

[
2/σ0

Γ (k0 + 1/2)

] 1
2
(
ω

σ0

)k0

exp

(
− ω2

2σ2
0

)
, (1)

of the subcycle mode basis is described by the frequency scaling σ0 and cycle parameter k0. While the

frequency scaling relates to the bandwidth ∆ω0 ≈
√

2 ln(2)σ0 of the fundamental mode, the cycle parameter

k0 determines the number of optical cycles completed during the temporal extent of the pulse. Thus, for

a given bandwidth, k0 determines the central frequency, ω̄0 ≈ ∆ω0√
2 ln(2)

√
k0 +

1
π
of the pulse. The pulse is

subcycle for 0 < k0 ≤ 1, i.e., the duration of the pulse is to short to complete a single optical oscillation.

All higher order modes, fi(ω), of the subcycle basis are obtained by multiplying the fundamental mode with

generalized Laguerre polynomials (see Methods for more details). The orthogonal functions define two sets of

orthogonal quadrature operators x̂i =
∫∞
0

fi(ω)x̂ωdω and p̂i =
∫∞
0

fi(ω)p̂ωdω, each pair (x̂i , p̂i) acting on the

same temporal mode. If we collect the eigenvalues of the operators ζ̂ζζ = (x̂0, x̂1, . . . , p̂0, p̂1, . . .)
T in a vector

ζζζ, the pulsed quantum state can be represented by the multimode Wigner function W (ζζζ). For multi-mode

Gaussian states, the Wigner function,

W (ζζζ) =
1√

det(cov)
exp

[
−1

2
(ζζζ−µµµ)T cov−1(ζζζ−µµµ)

]
, (2)

is completely characterized by the expectation value, µµµ = ⟨ζ̂ζζ⟩, of the quadrature with respect to the quantum

state and the (symmetric) covariance matrix cov, with the determinant of the covariance matrix det(cov)

[32, 33]. Tomography of optical quantum states is usually accomplished by reconstructing the Wigner func-

tion (or a smoothed out, positive phase-space density like the Husimi function), from individual quadrature
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measurements at different directions in phase space [36–41] (or simultaneous measurement of two noncom-

muting quadratures [42–48]). Quadrature measurements can be implemented using homodyne detection

where the quantum pulse to be measured is interfered at a beam splitter with a strong, coherent reference

pulse, called local oscillator (LO). The difference between the photon number detected at each output port

constitutes a quadrature measurement in the temporal mode defined by the local oscillator pulse [49]. Yet,

the reconstruction of the multimode Wigner function W (ζζζ) would require the measurement of the complete

high-dimensional phase-space statistics and even in the Gaussian case of equation (2) would require the mea-

surement of all covariances between temporal modes. One approach is to measure in a quadrature basis for

which the covariance matrix cov is diagonal [22–25, 27]. Measuring in the eigenbasis of cov is optimal in the

number of measurements required for a complete reconstruction, i.e., for the determination of the variances

corresponding to the most significant modes. While being very efficient, this approach requires knowledge of

the most significant modes constituting the pulsed quantum state.

In contrast to matching the (temporal) mode of the local oscillator to the quantum state, as described

above, recent works have proposed a quantum state tomography in the time domain, accessing the (time

local) phase-space dynamics of free-space quantum states with a high temporal resolution [50–53]. Inspired by

the electro-optic sampling of vacuum fluctuations [54–60] and pulsed squeezed states [61–63], time-domain

quantum state tomography uses an ultrashort local oscillator pulse to sample the phase space statistics of

the quantum pulse. By repeating the reconstruction for different time delays between the local oscillator

and quantum pulse, the (time-local) dynamics of the quantum state can be scanned through. Electro-optic

sampling can be understood as homodyne detection with the local oscillator pulse in a higher frequency

range as the sampled state [64–71]. To enable the interference of the high-frequency local oscillator and the

lower-frequency state, the state is upconverted to the frequency range of the local oscillator with the aid of a

nonlinear interaction. We refer to the coherent pulse involved in the nonlinear interaction as probe and in the

subsequent homodyne detection as local oscillator. In our description the probe and local oscillator pulses can

differ. In general, the frequency conversion can involve sum-frequency (SF) and difference-frequency (DF)

processes [72]. In many cases, the DF processes are suppressed by a wave-vector mismatch between the

involved photons; however, they are matched in the subcycle regime and have to be accounted for in electro-

optic sampling. The simultaneous presence of both SF and DF processes affects the quadrature correlations

generated in the nonlinear interaction [50], similar to the effect of losses during the interaction [73]. In

the Supplementary Note 5, we present a approach that still allows the identification of the most significant

modes contributing to the nonlinear interaction, even in the non-perturbative regime, for which electro-optic

sampling is expected to operate shot-noise free [50]. The advantage of electro-optic sampling compared to

homodyne detection is the ability to sample low frequencies, usually in the mid-infrared to THz range, with

a broadband probe at optical frequencies, thus approaching a subcycle temporal resolution. In this frequency

range, the dynamics is too fast for electronics, but the photon energy is comparable to thermal energies

at room temperature, making efficient photo-detection challenging. Therefore, electro-optic sampling and

3



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

homodyne detection can be used complementarily, covering a frequency range from microwave to optical, with

electro-optic sampling accessing the mid-infrared to THz range [60], filling the gap between the microwave

[30, 74] and optical [75, 76] frequency ranges that homodyne detection is available for. Electro-optic sampling

has recently been extended to temporal quadrature correlation measurements and applied to the ground state

of the electromagnetic field [77–82]. A similar method based on the time-domain correlation measurement

method has been applied to investigate magnetic properties exploiting the magneto-optic instead of the

electro-optic effect [83]. However, the application of temporal quadrature correlation measurements to more

intricate, highly multimode (Gaussian) quantum states of the electromagnetic field is still missing. We fill

this gap with our proposal to reconstruct the orthogonal mode structure of pulsed Gaussian quantum states

from overlapping time-domain correlation measurements.

In this work, we propose a method, which we term correlation tomography, that only relies on time-domain

correlation measurements of two electromagnetic field quadratures. Each of the two quadrature measure-

ments determines the quantum state of the field at an individually controllable time instance. Since any

real experiment exhibits a finite bandwidth and thus a finite detection time, the two time windows of the

measurement may overlap. The key insight is that the covariances between distinguishable temporal modes of

quantum states can be recovered from temporally overlapping correlation measurements by orthogonalizing

the overlapping local oscillator states in post-processing. Thus, the proposed method is able to reconstruct

the temporal mode structure and the statistics of a pulsed quantum state of light. While the mode basis

is determined by the temporal resolution of the measurements, the statistics of the quadrature in this basis

is determined by the quantum state. We find that the number of reconstructable modes scales with the

bandwidth of the detection and the number of time delays used in the measurement. We compare two imple-

mentations of correlation tomography: One based on homodyne detection and one on electro-optic sampling.

By optimising the probe pulse used in electro-optic sampling, one can shift the reconstructed modes toward

lower frequencies, potentially resolving dynamics below a single optical oscillation and entering the subcycle

regime. We analyse signs of (quantum) correlations present in the measurement data obtained from dual-pulse

homodyne detection and argue how thermalisation due to entanglement breakage leads to the requirement

of correlation measurements even for pure states such as the squeezed vacuum. Furthermore, we open an

avenue to the extension to non-Gaussian states by providing the full joint statistics of time-domain quadrature

measurements and show how to obtain information about the dynamics of a Fock state occupying a single

temporal mode from correlation measurements. The ultrafast measurement of photon-number correlations of

two non-overlapping spatial-temporal modes using dual-pulse, phase-averaged homodyne detection has been

demonstrated by McAllister and Raymer [84, 85]. While this seminal method allows to obtain higher-order

correlation functions, it is restricted to non-overlapping modes. It is still an open question whether the or-

thogonalization procedure presented in this work combined with the phase-averaged homodyne detection of

[84, 85] could be used to obtain higher-order photon-number correlators between more than two temporal

modes. Parallel to our work, the reconstruction of Gaussian states has been explored using electro-optic
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sampling in the perturbative regime [86]. This approach starts by deconvolving the measurement statistics

and then expands the result in the principle modes, while we propose to first expand the local oscillator states

in the mode basis and then invert the measurement statistics by a singular value decomposition, automatically

taking care of any numerical instability. The numerical stability is especially relevant for electro-optic sam-

pling, since for some frequency the phase mismatch may result in small contributions to the measurement and

thus singularities during the inversion. Overall, we present a numerically stable algorithm able to reconstruct

a highly multimode pulsed Gaussian quantum states from field correlation measurements. Furthermore, ex-

panding in the mode basis first allows us to perform a time-domain quantum correlation analysis of multimode

squeezed vacuum pulses which motivates the requirement of a correlation measurement. Lastly, we present a

possibility to extend the reconstruction to pulsed non-Gaussian states by considering the example of a Fock

state.

RESULTS AND DISCUSSION

Time-domain quadrature correlation measurements

The time-domain quadrature correlation measurement we propose is schematically depicted in Fig. 1. To

enable correlation measurements, the local oscillator and quantum pulse are subdivided using 50:50 beam

splitters and are directed towards two detection arms, which we will refer to as arm a and arm b. The

two local-oscillator pulses traverse a delay stage, which adds the time delays ∆ta and ∆tb relative to the

pulsed quantum state to the respective local oscillators. Subsequently, the local oscillator and quantum pulse

combine in a polarizing beam splitter (PBS) and enter the detection stage.

Each detection stage constitutes a homodyne measurement and can thus be related to a quadrature

measurement of the temporal mode defined by the local oscillator. One subtle difference to usual homodyne

detection is the orthogonal polarization of the local oscillator and the quantum pulse in the z- and s-

direction. This requires a wave plate which shifts the phase of the field polarized along the optical axis of

the wave plate by Φ. The optical axis of the wave plate is rotated by θ away from the z-axis around the

propagation direction k , to produce interference between the quantum and classical pulse. For the balanced

photodetection, a polarizing beam splitter is required to separate the s- and z-polarisation direction. The

combined effect of the wave plate and polarizing beam splitter replaces the beam splitter and unrotated wave

plate in usual homodyne detection [41, 50]. The wave plate leads to an effective phase shift φ = φ(Φ, θ) of

the local oscillator (see Methods). The use of a half-wave plate rotated by 22.5° results in an x̂-quadrature

measurement with φ = 0, while choosing a quarter-wave plate rotated by 45° results in a p̂-quadrature

measurement with φ = π/2. Electro-optic sampling combines a frequency up-conversion in a nonlinear

crystal, called detection crystal (DX), with homodyne detection to enable quadrature measurements in the

terahertz (THz) frequency range. The nonlinear interaction is gated by a strong coherent pulse, with amplitude

αDX for both arms, which we will call the probe pulse. While the probe is polarized along the z-direction,
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Fig. 1. Schematic of the proposed quadrature correlation measurement. The z-polarised, short local oscillator

(LO) pulse (blue) and s-polarised quantum pulse (orange) are subdivided by beam splitters (BS) and directed towards

the two detection arms referred to as a and b. Before combining in a polarising beam splitter (PBS) with the quantum

pulse, each local oscillator pulse traverses a delay stage, adding the time delays ∆ta or ∆tb between the quantum

state and LO. If the detection stage is implemented through electro-optic sampling, the quantum pulse is at lower

frequencies (usually THz to mid-infrared) than the LO (usually optical frequencies), which is called the probe pulse

in this context. The quantum pulse is upconverted to the probe’s frequency range by interacting in a nonlinear

(detection) crystal (DX). To control the quadrature amplified by the nonlinear crystal, the two parts of the quantum

pulse need to pass through wave plates (WP) prior to the nonlinear crystal. Afterwards, the quadrature of the

(potentially upconverted) quantum pulse in the temporal mode of the LO is measured by homodyne detection.

Different from usual homodyne detection, the quantum and classical pulses are mixed in a wave plate with its optical

axis rotated by θ away from the z-axis around the k-direction. A half-wave plate rotated by θ = 22.5° results in

an x-quadrature measurement, while a quarter-wave plate rotated by θ = 45° yields a p-quadrature measurement.

Subsequently, on each detection stage, the s- and z-polarised contributions are separated by a PBS. A balanced

photon detection results in a measurement signal that amounts to the difference between the photon numbers in the

s- and z-polarisation. If the detection stage is implemented as homodyne detection, the nonlinear crystal is removed.

the quantum pulse is polarized in the s-direction, which is why we introduced the homodyne detection with

orthogonal polarizations as inputs. After the nonlinear interaction, the probe pulse can be replaced by a new

local oscillator pulse to optimise the detection. Since the nonlinear crystal only amplifies one quadrature,

an additional (unrotated) wave plate acting on the quantum pulse between the beam splitter and nonlinear

crystals is required, to enable the rotation of the quantum state in phase space by 90°.

The initial state of the local oscillator pulse at detection arm ξ = a, b directly after the first beam splitter,

can be represented by the vector ζζζTLO in the high-dimensional phase space with respect to the mode basis

fi(ω) (see Methods for definition). Since all components of the setup in Fig. 1 correspond to a quadratic

Hamiltonian, we can describe the time evolution of the initial quadratures ζ̂ζζ using a symplectic transformation,

ζ̂ζζ
′
= Mζ̂ζζ [32, 33]. With only expressions linear in the quadrature operators, ζζζTLOζ̂ζζ

′, relevant to field quadrature
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measurements, we can equivalently calculate the effective state of the local oscillator MTζζζLO. Thus, at the

arm ξ = a, b the effective state of the local oscillator for the quadrature measurement is described by the

vector ζζζTLO(∆tξ,αDX,φ
tot
ξ ) = MT

WP(φ
tot
ξ − φξ)M

T
DLY(∆tξ)M

T
NL(αDX)M

T
WP(φξ)ζζζLO, depending on the phase

φtot
ξ −φξ of the unrotated wave plate represented by MT

WP(φ
tot
ξ −φξ), the time delay ∆tξ added by the delay

stage, described through MDLY(∆t), the probe amplitude αDX driving the nonlinear interaction, MT
NL(αDX),

and phase φξ added to the local oscillator by the wave plate, MT
WP(φξ). The quadrature measured by the

setup is determined by the total angle, φtot
ζ , which equals the sum of the phase added by each of the two

wave plate. In the case of homodyne detection the nonlinear crystal and unrotated wave plate are absent,

i.e., αDX = 0 and φtot
ξ = φξ. For more details, see Methods.

As a final step to relate the quadrature of the quantum pulse at the input to the quadrature measured by

one of the balanced detections, the effect of the beam splitter has to be considered. While one input port of

the beam splitter is occupied by the pulsed quantum state (with quadrature operators ζ̂ζζ), the other input port

couples to the vacuum (with quadrature operators ζ̂ζζvac). The vacuum at the empty port leads to additional

noise to the detected photon-count difference. This additional noise is fundamentally unavoidable in the

simultaneous detection since it ensures the positivity of the probability distribution over the photon-difference

counts [41, 50]. Thus, the detection arm ξ = a, b measures the quadrature,

q̂ξ(∆tξ,αDX,φ
tot
ξ ) = ζζζTLO(∆tξ,αDX,φ

tot
ξ )ζ̂ζζ+ ζζζTLO(∆tξ,αDX,φ

tot
ξ +∆φξ)ζ̂ζζvac. (3)

Here we have assumed a uniform 50:50 beam splitter over all frequencies. While this assumption might hold

for the broadband quantum state, the even broader local oscillator could violate this assumption. However,

by expanding the time-evolution of a non-uniform beam splitter in the mode basis fi(ω), one can account for

this effect. The above equation can be understood as projecting the high-dimensional, s-polarized quadrature

operators ζ̂ζζ and ζ̂ζζvac at the inputs of the beam splitter onto the transformed local oscillator state. The

additional phase ∆φa = π/2 for detection arm a and ∆φb = −π/2 for arm b is due to the phase shift

acquired in the reflection at the beam splitter. The phase is on the vacuum port since φtot
ξ is already adjusted

to the reflection phase shift (see Methods). Equation (3) is only valid for a large local oscillator amplitude.

We assume the amplitude of the two probes both equal αDX ̸= 0 in the case of electro-optic sampling and

αDX = 0 for homodyne sampling.

Reconstruction of highly multimode Gaussian quantum states

To gain statistical information about the sampled quantum state and its dynamics, different combinations

of time delays in the two detection arms of the setup in Fig. 1 have to be measured. Yet, the statistical

information contained in the covariance matrix, cov, of the pulsed quantum state is encoded in orthogonal,

distinguishable modes, while the local oscillator pulses at different time delays can overlap and are thus

partially indistinguishable. We present an algorithm capable of extracting information about the orthogonal
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mode structure of the pulsed quantum state from the correlation measurements. The algorithm contains the

following steps:

1. Perform a field quadrature correlation measurement, as described above, for all possible combinations,

i , j ∈ N≤2N , of parameter settings (∆ta,αDX,φ
tot
a ) = Γi at arm a and (∆tb,αDX,φ

tot
b ) = Γj at arm b,

taken from the series

Γ =
(
(∆t1,αDX, 0), (∆t2,αDX, 0), . . . , (∆t1,αDX,π/2), (∆t2,αDX,π/2), . . .

)
, (4)

of N time delays (∆ti)i≤N = {∆t1,∆t2, . . . ,∆tN} and two possible wave plate settings φtot
ξ = 0,π/2.

Collect all the measurement results for the different time delays and wave plate settings in the correlation

matrix

corri ,j =
1

2
⟨{q̂a(Γi), q̂b(Γj)}⟩ , (5)

where the quadrature operators q̂ξ are defined in equation (3) and {Â, B̂} = ÂB̂ + B̂Â denotes the

anticommutator.

2. The states of the local oscillators for the corresponding measurements in the first step are assembled

in the matrix

ZLO = (ζζζLO(Γi) | i ≤ 2N). (6)

3. Use the definitions in equation (3)-(6) to relate the covariance matrix of the pulsed quantum state,

covρ̂, as well as the covariance matrix of the vacuum at the empty input port of the beam splitter,

covvac =
1
2
I (I being the identity matrix), to the covariance matrix of the measurement results,

corr = ZT
LO covρ̂ ZLO − ZT

LO covvac ZLO. (7)

Orthogonalise the local oscillator states and transform the correlation matrix with the aid of the singular

value decomposition, ZLO = UΣV T, and the Moore-Penrose pseudoinverse [87, 88] of Σ , denoted by

Σ+. We define the diagonal projector P = ΣΣ+ and the transformed covariance matrix covρ̂,U =

UT covρ̂ U . After subtracting the vacuum contribution and transforming equation (7) with VΣ+, we

get the (partially) reconstructed covariance matrix

P covρ̂,U P =
[
VΣ+

]T
corrVΣ+ +

1

2
UPUT. (8)

To avoid numerical instability, we set all singular values of the matrix ZLO to zero if they are smaller

than 10−3 times the maximal singular value.

We provide an implementation of the algorithm in Python [89]. The matrix U used in the last step of the

algorithm needs to be symplectic to ensure that the reconstructed covariance matrix corresponds to a valid

quantum state. However, it is always possible to find such a symplectic U since the two wave plate settings

8
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Fig. 2. Temporal resolution and reconstructed mode basis. a, Number of (temporal) modes, given by rank(P),

reconstructed with the algorithm presented in the main text in dependence of the local oscillators bandwidth ∆ωLO

and the number of time delays N used in the correlation measurements for homodyne detection and electro-optic

sampling respectively. The centre of the local oscillator pulse is fixed at ω̄LO/(2π) = 230THz and the vertical dashed

lines indicate the transition from multicycle to single cycle (kLO = 3) and to subcycle pulses (kLO = 1). b, First four

(orthogonalized) mode functions in the frequency domain reconstructed by the correlation measurement. In the case

of homodyne detection, the bandwidth of the local oscillator is ∆ωLO/(2π) = 59THz and thus multicycle with kLO =

20.8. For electro-optic sampling, the probe involved in the nonlinear interaction is centred at ω̄DX/(2π) = 200THz

with the bandwidth∆ωDX = 118THz (kLO = 4), but is filtered after the nonlinear interaction to ω̄LO/(2π) = 230THz

and∆ωLO/(2π) = 59THz.

exchange the role of the x- and p-quadrature, therefore the x- and p-quadrature blocks of ZLO possess the

same singular value decomposition. In the case of electro-optic sampling, the phase φξ is fixed by the choice

of quadrature amplified by the nonlinear interaction. Thus, the quantum pulse needs to pass an additional

(unrotated) (φtot
ξ − φξ)-wave plate prior to the beam splitter in order to amplify the other quadrate and

enable the decomposition using a symplectic matrix U . In general, the reconstructed covariance matrix in

equation (8) corresponds to the marginal distribution of a Gaussian state with covariance matrix covρ̂,U . Thus,

the rank r = rank(P) of the projector determines the dimension of the phase space reconstructable from the

measurement data. The number of reconstructable phase space dimensions increases with the number of

time delays N and the bandwidth ∆ωLO of the local oscillators, as shown in Fig. 2 a for the case of homodyne

detection (αDX = 0) and electro-optic sampling (αDX = −1.95 · 106, optimised according to Supplementary

Note 5). We assume an equal temporal distribution of the time delays (∆ti)i≤N over the time interval

I∆t = [−12 fs, 12 fs] in the case of homodyne detection and I∆t = [−17 fs, 17 fs] for electro-optic sampling.

The corresponding orthogonalized (local oscillator) mode functions, fU,i(ω), are obtained from the rows of

U , introduced in step 3 of the algorithm, and are shown in Fig. 2 b. In the case of homodyne detection, the
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number of reconstructable modes increases linearly with the number of time delays until reaching a plateau.

A behaviour explained by Fig. 3 a and c. As the time delay changes, the vector describing the state of the

local oscillator moves along spirals through the high-dimensional phase space, spanned by the rows of U . The

vectors describing the local oscillators at two different time delays are linearly independent and, in principle,

orthogonalizable. Yet, if the difference in time delay is small, then the vectors are almost linearly dependent,

as is the case in Fig. 3 a for ∆t = 0 fs and ∆t = 0.12 fs. The cutoff introduced at the end of the third

step of the algorithm will parallelise these vectors. The cutoff explains the plateau in Fig. 2 a and can only

be increased by increasing the bandwidth of the local oscillator. A local oscillator shorter in time can resolve

more features of the orthogonal mode basis, as evident from Fig. 3 b and d by considering the overlap from

the local oscillator and the orthogonal modes in the time domain. In electro-optic sampling, the modes are

centred at much lower frequencies reaching the mid-infrared (MIR) range due to the frequency conversion

in the nonlinear crystal, as evident from Fig. 2 b and thus can reach a few- up to subcycle resolution as

visible in Fig. 3 d. This frequency range is particularly interesting. While homodyne detection is available

for higher or lower frequencies, the lack of efficient photo detectors makes homodyne detection unsuitable

for this frequency range. Another striking feature of Fig. 2 a is the dependence of the reconstructed phase

space dimension on the bandwidth of the local oscillator in the case of electro-optic sampling. The nonlinear

interaction correlates a broad band of frequencies to the detected ones, making the signal resilient to losses

due to filtering [26, 50, 90]. This band only weakly depends on the bandwidth of the local oscillator. Thus,

the bandwidth of the detection can be much smaller than the sampled frequency range. In the Supplementary

Note 5 we show how to choose optimised parameters to correlate the lower frequency modes to the detected

ones. The time domain picture in Fig. 3 also shows the different time scales of the dynamics captured by

homodyne detection and electro-optic sampling.

As a final remark, we would like to mention that this approach is not limited to time-delayed pulses. In

principle, any set of linearly independent pulses, in the time or frequency domain, can be used.

Analysing correlations in the time domain

In the remainder of this article, we will only consider field correlation measurements based on homodyne

detection. However, all concepts presented in the following translate to electro-optic sampling. In this section

we argue that time local sampling, as done for classical, coherent pulses in time-domain spectroscopy, is not

sufficient for quantum states, since correlations prevent the reconstruction of the complete quantum pulse

from individual time-local measurements. We begin with the observation that time-local phase-sensitive

measurements are insufficient to reconstruct thermal states since they do not carry any phase information.

The same argument cannot be made for the squeezed vacuum, since the variance depends on the phase

and, in turn, on time. Yet, in the following, we show that squeezed states appear thermalised in a time-

domain measurement due to entanglement breaking between measured and unmeasured modes, leading to the
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Fig. 3. Dynamics of the local oscillator in phase space and in the time domain. a, State of the local oscillator

for different time delays, (∆ti )i=1,2,3,4 = (−11.76 fs, 0.00 fs, 0.12 fs, 11.76 fs), in the phase space spanned by the first

two orthogonalized modes obtained from a homodyne measurement, αDX = 0, with a quarter-wave plate. The black

(gray) line indicates the evolution for negative (positive) time delays. b, Waveform of the time-delayed local oscillator,

fLO(t), and first two orthogonalized modes. fU,i (t), obtained from homodyne detection, in the time domain. The

symmetric function corresponds to the x̂ quadrature, while the antisymmetric function relates to the p̂ quadrature.

The dynamics in a can be obtained from the overlap of the time-delayed local oscillator and the orthogonal quadrature

basis. c, Phase space representation of the local oscillator with (∆ti )i=1,2,3,4 = (−16.66 fs, 0.00 fs, 0.17 fs, 16.66 fs),

in electro-optic sampling after the nonlinear interaction (see Supplementary Note 5.). d, Time-domain picture of the

effective time-delayed local oscillator and the first two corresponding orthogonalized modes, if electro-optic sampling,

αDX = −1.95 · 106, is used in place of homodyne detection. Due to the frequency conversion of the nonlinear crystal

the effective local oscillator, described by ζζζLO(Γi ) in equation (3), is much broader in and centred at lower frequencies

as the actual detection. The parameters for the probe and local oscillator pulse are the same as in Fig. 2.
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requirement of correlation measurements for the reconstruction of multimode squeezed states. We assume

that the pulsed squeezed state is generated by squeezing the vacuum using a nonlinear interaction equivalent to

the one used for electro-optic sampling (see Supplementary Note 6). The strength of the squeezing interaction

is determined, among other parameters, by the photon-number content of the pump NGX = |αGX|2, with αGX

being the coherent amplitude. The average x̂ x̂-signal for a measurement with two half-wave plates, i.e.,

g(∆ta,∆tb, 0, 0) = ⟨q̂a(∆ta, 0, 0)q̂b(∆tb, 0, 0)⟩, for a weakly squeezed state with αGX = 2 · 103 is shown

in Fig. 4 a. The signal is dominated by alternating squeezing and antisqueezing along the time-local axis,

i.e., ∆ta = ∆tb. The maxima of the signal are shifted along this axis, which originates from the frequency

oscillations of the phase matching function [50]. As the pump strength is increased from αGX = 2 · 103 via

αGX = 3 ·104 to αGX = 7 ·105, oscillations along the orthogonal axis, ∆ta = −∆tb, appear. These oscillations

along the time-nonlocal axis are a sign of thermalisation, as a comparison with the signal of a thermal state

in Fig. 4 e illustrates (see Supplementary Note 9 for details).

The thermalisation of the detected state can be validated with the von Neumann entropy (VNE) shown

in Fig. 4 b. We define the detected state via the covariance matrix of the observable

qqq =
1√

2∥ζζζLO(0, 0, 0)∥
(q̂a[∆ta, 0, 0], q̂a[∆ta, 0,π/2], q̂b[∆tb, 0, 0], q̂b[∆tb, 0,π/2])

T, (9)

the Wigner function of which corresponds to a valid quantum state. Since the initial state is assumed to be

pure and the evolution unitary, a finite von Neumann entropy can only originate from entanglement between

the detected and undetected parts of the quantum state. The presence of entanglement in the detected

state can be determined using the logarithmic negativity (see Methods), shown in Fig. 4 c. We chose the

bipartition of the detected state to be between the two detection arms ξ = a, b. The logarithmic negativity

results from an interplay between entanglement within and purity of the quantum state. For weak squeezing,

the entanglement and thermalisation (quantified by the von Neumann entropy in Fig. 4 b) are low, resulting

in a small logarithmic negativity. Increasing the squeezing, the entanglement will increase as well, which

in turn leads to more thermalisation, increasing the logarithmic negativity until thermalisation overshadows

the entanglement and the logarithmic negativity drops to zero. However, the quantum correlations of the

thermalised state can still be captured by the quantum discord (see Methods), even in the presence of

thermalisation, and shows a clear increase with the squeezing strength, as can be seen in Fig. 4 d. Since the

quantum correlations are low in the weak squeezing limit, the signal can be understood as a time-varying noise

pattern along the time local axis, ∆ta = ∆tb (see Supplementary Notes 7 and 8). For stronger squeezing

the quantum nature of the multimode squeezed state becomes relevant and correlation measurements are

necessary. Fig. 4 f shows the von Neumann entropy of the detected state at ∆ta = ∆tb = 0, at which point

the local oscillator is matched best to the quantum pulse, as a function of the parameters describing the mode

of the local oscillator, i.e., the centre frequency ω̄LO and the bandwidth ∆ωLO. The minimum of the von

Neumann entropy in Fig. 4 f, corresponds to the local oscillator mode matched closest to the first principal

mode of the squeezed state (see Supplementary Note 6). Yet, in time-domain sampling, the modes of the

local oscillator and quantum state are never matched since the detection is faster than the dynamics of the

12
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Fig. 4. Correlations in the sampled state. a, Correlated signal, g(∆ta,∆tb, 0, 0) = ⟨q̂a(∆ta, 0, 0)q̂b(∆tb, 0, 0)⟩,
for a x̂ x̂-quadrature measurement, based on homodyne detection, as a function of the time delays ∆ta and ∆tb on

the two detection arms a and b, for a weakly squeezed state, αGX = 2 ·103, moderately squeezed, αGX = 3 ·104, and
strongly squeezed state, αGX = 7 · 105. The squeezing is implemented by the same free-space nonlinear interaction

used in Fig. 1 (see Supplementary Note 6). b, Von Neumann entropy (VNE) of the detected state defined by all 16

(co-)variances of the two possible wave-plate settings at the two arms, i.e., quarter- and half-wave plate, and given

time delays ∆ta and ∆tb. The input states are the same squeezed states as in a. c, Entanglement between the two

detection arms quantified by the logarithmic negativity of the detected state, described above, with the bipartition

between the two detection arms a and b. d, Quantum correlations, beyond the entanglement in c, quantified by the

quantum discord with the bipartition as above. e, Correlated signal for x̂ x̂-quadrature measurement for a thermal

state with temperature T = 1000K (see Supplementary Note 9). f, Von Neumann entropy of the strongly squeezed

state at fixed time delays ∆ta = ∆tb = 0 as a function of the two parameters of the local oscillator, i.e., the

bandwidth ∆ωLO and centre frequency ω̄LO.
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state, leading to the breakage of entanglement and in turn to thermalisation of the detected state. Therefore,

the reconstruction of the (thermalised) multimode quantum state requires correlation measurements, at least

in the strong squeezing regime in which thermalisation becomes relevant.

Correlations measurements of non-Gaussian states

Since Gaussian states are completely described by their expectation values and covariance matrix, two-

point correlation measurements can fully characterize even highly multimode Gaussian states. Non-Gaussian

states such as Fock states, on the other hand, can exhibit higher-order correlations and require going beyond

the second moment. In the following, we will provide the joint probability distribution of the correlation

measurement and show how to obtain not only statistical, but also dynamical information about the quantum

state, even if they are rotationally symmetric in phase space, such as the Fock states. The joint probability

distribution,

Prob(xa, pb) =

∫
. . .

∫ ∞

−∞
K (xa, pb|ζζζ)W (ζζζ)d2imaxζ, (10)

of the correlated quadrature measurement with outcomes xa for q̂a(∆ta, 0, 0) and pb for q̂b(∆tb, 0,π/2) is

given by convolving the 2imax-dimensional, multimode Wigner function W (ζζζ), describing the pulsed quantum

state with a multivariate Gaussian kernel K (xa, pb|ζζζ) defined in equation (31), accounting for the effect of the

measurement (for details see the Supplementary Note 10). Generally, inverting equation (10) is a nontrivial

task. However, in the case of a Gaussian Wigner function, we can recover equation (7) from the convolution,

the inversion of which is demonstrated in equation (8). Another example for which equation (10) proves useful

is the reconstruction of n-photon Fock states. Figure 5 a shows the result of the convolution in equation (10)

for a single-mode, three-photon Fock state.

We can distinguish between two special cases of the joint probability distribution by scrutinising the

two singular values σq with q = x , p, quantifying the measurement and preparation uncertainty along two

orthogonal directions in the phase space of the Fock state (see Supplementary Note 10 for more details).

The singular values σq are shown in Fig. 5 b as a function of the time delay ∆tb.

In the first case, the two singular values, and thus the measurement uncertainties, are equal, σx ≈ σp. In

this case, the two quadrature measurements are maximally incompatible and the measurement statistics are

determined by a phase space distribution. If the mode functions of the local oscillator and the pulsed quantum

state are matched, the singular values approach 4, σq → 4, and the phase space distribution converges to the

Husimi function of the quantum pulse. Equal measurement uncertainties can be observed along the time local

(tl) axis with ∆ta = ∆tb. The Fock state appears to the detection as an incoherent mixture of Fock states

with occupations 0 to n distributed binomially, with probability p = σq/4, reproducing the result obtained by

time-local quantum state tomography [50].

In the second case, one singular value tends to 2, while the other stays above 2. In this case, the

measurement uncertainty of one measurement is decreased at the expense of the other measurement, resulting
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Fig. 5. Joint probability distribution for correlation measurements of a Fock state. a, Joint probability

distribution for a x̂-quadrature measurement at detection arm a and a p̂-quadrature measurement at detection arm

b with fixed time delay ∆ta = 0 and different ∆tb for each distribution. The joint probability distribution is taken

over the possible measurement outcomes, which are the eigenvalues xa and pb of the operators q̂a(∆ta, 0, 0) and

q̂b(∆tb, 0,π/2). The input state used in this example is a three-photon Fock state in a temporal mode centred at

ω̄ph = 200THz with a bandwidth ∆ωph = 59THz. The local oscillator is characterized by ω̄LO = 230THz and

∆ωLO = 118THz. b, The singular values σq with q = x , p quantify the compatibility of the two measurements

compared to the waveform fph,e(t) and fph,o(t) related to the x̂ and p̂ quadratures of the pulsed Fock state. For a

time local (tl) measurement, ∆ta = ∆tb, or for a difference between the time delays equal to integer multiple of

half an optical cycle of the quantum states waveform, the singular values are equal σx ≈ σp and the measurement is

incompatible leading to a measurement of the Husimi function, e.g., for ∆tb = 0 fs or ∆tb = 2.47 fs. For a correlation

(corr) measurement with a difference between the time delays equal to odd multiples of a quarter optical cycle, one

of the singular values approaches 2. In this case, the same quadrature is measured by both detection arms and the

measurements are compatible. The compatibility of the measurement allows the extraction of phase information

about the, rotationally symmetric, Fock state. The effect of detectors with a quantum efficiency of η = 0.5 is shown

as dashed coloured lines, labelled σx , corr, (noisy) and σp, corr, (noisy).

in a smoothed-out quadrature distribution. An example of this special case can be observed at large differences

in time delay, one detection arm measures the vacuum and the other (partially) the Fock state. In this case,

the probability distribution disintegrates into the quadrature distribution of the vacuum and the Fock state,

given by a Hermite-Gauss polynomial, convolved with a Gaussian describing the vacuum contributions from

the empty beam splitter port.
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Neither case reveals any phase information about the quantum state. However, the singular values σq for

correlation (corr) measurements oscillate with twice the carrier frequency of the quantum pulse, as shown in

Fig. 5 b. At a difference between the time delays corresponding to even multiples of a quarter optical cycle

of the quantum pulse, orthogonal quadratures of the quantum pulse are measured and the singular values are

equal. At a difference between the time delays corresponding to odd multiples of a quarter optical cycle, the

same quadrature is measured and one singular value tends to 2. As one of the time delays is varied while the

other one is fixed, the measurement statistics interpolates between the two cases and oscillates with twice

the carrier frequency of the quantum pulse, as can be seen in Fig. 5 b. The oscillation between compatible

and incompatible measurements allows the extraction of spectral information about the pulsed Fock states.

There are two effects which could negatively influence the reconstruction of the quantum state. First, a

finite quantum efficiency, η, of the detectors used in the balanced detection. While for Gaussian states the

noise due to finite quantum efficiency can be subtracted from the variance of the measurement data, in the

case of non-Gaussian states we need to include the noise into the calculation. Following Leonhardt and Paul

[38], we can calculate the singular values σx and σp as shown in Fig. 5 b for η = 0.5 in dashed lines. Overall

the σx and σp with finite quantum efficiency are always below the ideal ones, thus the statistics in phase space

as well as the dynamics seen in σq are washed out. However, photo detectors in the optical frequency can

achieve quantum efficiencies well above η = 0.5 [19]. Second, the phase-space statistics also becomes washed

out if the mismatch between the mode of the local oscillator and the Fock state is increased. Additionally,

the dynamics of σq may deviate more strongly. Including the mode mismatch, quantum efficiencies above

50% are reachable [19] and sufficient to reconstruct Wigner negativity of single photons [91]. While the local

oscillator and Fock state mode are not matched in the example of Fig. 5, the oscillation of the incompatibility

clearly follow the Fock states temporal mode. Using the dynamical information extracted from Fig. 5 b, the

local oscillator mode can be matched to the Fock states mode adaptively, improving the reconstruction of

the quantum state and thus iteratively approaching the actual quantum state. This is a general feature of

any measurement: The more prior information ia available, the better the experiment can be tailored to the

measured system and one can thus obtain a more precise measurement result. We chose the example of three

photons here to clearly exemplify the shape of the Hermite-Gauss polynomials at ∆tb = 1.15 fs.

CONCLUSION

While time-domain quadrature correlation measurements have already been used to scrutinise the statistics

of the ground state of the electromagnetic field, the reconstruction of (unknown) pulsed quantum states

has not been addressed to this point. Here, we present a full quantum state tomography scheme able to

reconstruct highly multimode Gaussian quantum states. Different from existing tomography schemes, our

proposed reconstruction only relies on time-delayed pulses, which are orthogonalised in post-processing. We

compare two implementations of the correlation measurement, one based on homodyne detection suited for
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multicycle modes in microwave or optical frequencies and another, based on electro-optic sampling suited

for subcycle modes in the THz to mid-infrared frequency range. Accompanying the latter, we develop a

non-perturbative description of electro-optic sampling which allows to optimise the probe strength in the

strong interaction regime. Furthermore, we show how thermalisation during the detection makes correlation

measurements necessary, by analysing the sign of quantum correlations in the measurement data obtained by

field correlation remeasurements based on homodyne detection. Whereas the above achievements are limited

to Gaussian states, we also present the joint measurement statistics for the correlation measurement of non-

Gaussian states and show how correlation measurements can improve the reconstruction of Fock states. Thus,

we are opening a avenue to the investigation of quantum phenomena of light on an ultrafast time scale.

METHODS

Discretization and the calculation (subcycle) mode basis

To discretise the continuous Hilbert space of the free-space electromagnetic field, we introduce the subcycle

mode basis,

fi(ω) = f0(ω)L̃i(ω), (11)

with two parameters, σ0, k0 > 0 based on the fundamental mode in equation (1), centred at ω̄0 ≈
σ0

√
k0 + 1/π with bandwidth ∆ω0 ≈

√
2 ln(2)σ0 and the (scaled) generalized Laguerre polynomials

L̃i(ω) =

[
Γ (i + 1)Γ (k0 + 1/2)

Γ (i + k0 + 1/2)

] 1
2

L
(k0−1/2)
i

(
ω2

σ2
0

)
. (12)

We used σ0/(2π) = 100THz and k0 = 0.5. See Supplementary Note 1 for further details about the subcycle

mode basis. Using the relation â(ω) ≈∑imax

i=0 f
∗
i (ω)âi , we can discretize the quadrature operator,

q̂(0, 0,φ′) ≈
∫ ∞

0

[
e iφ

′
αLO(ω){â′s(ω)}† + e−iφ′

α∗
LO(ω)â

′
s(ω)

]
dω, (13)

measured in a homodyne detection with a local oscillator described by a frequency-dependent coherent

amplitude αLO(ω) given by the function defined in equation (1) with parameters σLO and kLO and a phase

shift φ′ due to a Φ-wave plate rotated by θ. By choosing

θ =
1

2
arccos

(√
1− 2 cos2(Φ/2)

2 sin2(Φ/2)

)
, (14)

the effective phase can be calculated using

φ′ = − arctan

(√
2 cos2(Φ/2)

1− 2 cos2(Φ/2)

)
. (15)
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A detailed derivation is given in Supplementary Note 2. We collect the coefficients resulting from the mode

expansion in the vector ζζζLO, with

[ζζζLO]i =




Re
[∫∞

0
αLO(ω)fi(ω)dω

]
0 ≤ i < imax

Im
[∫∞

0
αLO(ω)fi−imax(ω)dω

]
imax ≤ i < 2imax

. (16)

With

MWP(φ
′) =

(
cos(φ′)I − sin(φ′)I
sin(φ′)I cos(φ′)I

)
(17)

describing the effect of the wave plate, the measured quadrature can be expressed as

q̂ =
(
MT

WP(φ
′)ζζζLO

)T
ζ̂ζζ. (18)

The vector of mode operators ζ̂ζζ is defined in the introduction. With the matrix elements ω̃i j =
∫∞
0

ωfi(ω)fj(ω)dω

of the free-field Hamiltonian and the definition

G∆t = ∆t

(
0 ω̃

−ω̃ 0

)
(19)

we can describe the time delay using the symplectic matrixMDLY(∆t) = exp(G∆t). The effect of the nonlinear

crystal can be described with a squeezing and beam-splitting interaction of photons at (angular) frequency

Ω and ω, using the kernels derived in the Supplementary Notes 3 and 4,

S(Ω ,ω) =
1

ℏ
(2π)3/2

(
ℏ

4πε0cA

)3/2
√

ω + Ω

n(ω + Ω)
fα(ω + Ω)

√
ωΩ

n(ω)n(Ω
λ̂[∆k(Ω ,ω)], (20)

B(Ω ,ω) =
1

ℏ
(2π)3/2

(
ℏ

4πε0cA

)3/2
√

|ω − Ω |
n(ω + Ω)

[f ∗α (ω − Ω) + fα(Ω − ω)]

√
ωΩ

n(ω)n(Ω
λ̂[∆k(−Ω ,ω)],

(21)

with c , ℏ, ε0 being the speed of light in vacuum, reduced Planck constant, and the vacuum permittivity.

Furthermore, A = π(3 µm)2 is the beam waist area and λ̂[∆k(Ω ,ω)] the Fourier transform of the transversal

profile of the χ(2) interaction at the wave-vector mismatch ∆k(Ω ,ω). In case of a zinc-telluride crystal

of length L = 20 µm in free space, we have λ̂(k) = λ L√
2π

sinc(kL/2) with λ = Aε0d/2, the interaction

parameter d = −n4(⟨ω⟩)r41 and the electro-optic coefficient of zinc telluride [92], r41 = 4pmV−1. The

refractive index n(ω) is modelled from experimental data [93]. The function fα(ω) described the spectrum of

the coherent pump/probe pulse with amplitude α driving the nonlinear interaction. We assume the spectrum

to be described by equation (1) with parameters σp = 100THz and kp = 4. Expanding the kernel again in

the subcycle mode basis leads to the matrix elements,

Si j = 2

∫∫ ∞

0

S(Ω ,ω)f ∗i (Ω)f ∗j (ω)dΩdω, (22)

Bi j = 2

∫∫ ∞

0

B(Ω ,ω)fi(Ω)f ∗j (ω)dΩdω, (23)
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and by defining the matrix

GNL =

(
−Re(S − B) Im(S − B)

Im(S + B) Re(S + B)

)
, (24)

we can describe the effect of the nonlinear interaction using the symplectic matrix MNL(α) = exp[|α|GNL].

Applying the transformation of the beam splitter to the measured quadrature, we obtain equation (3).

Correlation analysis

Since the detection takes place at two outputs of a beam splitter, the detected modes commute and

the operators qqq = (q̂a[∆ta, 0, 0], q̂a[∆ta, 0,π/2], q̂b[∆tb, 0, 0], q̂b[∆tb, 0,π/2])
T/(

√
2∥ζζζLO(0, 0, 0)∥) define a

covariance matrix,

[covρ̂,d]i j =
1

2
⟨{qqqi , qqqj}⟩ρ̂⊗|vac⟩⟨vac| , (25)

corresponding to a valid quantum state, which we call the detected state. The von Neumann entropy [33]

of the sampled state can be calculated from the symplectic spectrum {νi}i=1,2 using S(covρ̂,d) =
∑2

i=1 s(νi)

with

s(x) =

(
x + 1

2

)
log2

(
x + 1

2

)
−
(
x − 1

2

)
log2

(
x − 1

2

)
. (26)

Correlation measures can be calculated using the bipartition between the mode measured at arm a and b.

Thus, the subsystem A is spanned by the mode operators in qqqA = (q̂a[∆ta, 0, 0], q̂a[∆ta, 0,π/2])
T, and the

subsystem B by qqqB = (q̂b[∆tb, 0, 0], q̂b[∆tb, 0,π/2])
T. Moreover, by defining the time-reversal operator for

the subsystem B , Λ = diag(1, 1, 1,−1), the logarithmic negativity,

L(covρ̂,d) = max{0,− log2(min{ν̃i}i=1,2)}, (27)

can be calculated from the symplectic spectrum {ν̃i}i=1,2 of the covariance matrix Λ covρ̂,d Λ [33, 94]. The

same bipartitian is used to calculate the quantum discord [95].

While not being independent of the local oscillator mode, analysing correlations in the time domain could

offer insights to the entanglement of Gaussian states beyond correlations in the orthogonal mode basis and

could be used to define a mode independent notion of entanglement present in Gaussian quantum states [96].

The joint probability distribution

A detailed derivation of the full joint measurement statistics of correlation homodyne detection (i.e.,

αDX = 0) is given in the Supplementary Note 10. With the definitions

PLO = ζζζLO(∆ta,π/2)[ζζζLO(∆ta,π/2)]
T + ζζζLO(∆tb, 0)[ζζζLO(∆tb, 0)]

T, (28)

and

ζζζd(xa, pb) = 4
PLO[xaζζζLO(∆ta,π/2)− pbζζζLO(∆tb, 0)]

∥ζζζLO(∆ta,π/2)− ζζζLO(∆tb, 0)∥2
, (29)
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as well as the covariance matrix (Ω defining the symplectic matrices)

cov−1
d = 4

ΩTP2
LOΩ

∥ζζζLO(∆ta,π/2)− ζζζLO(∆tb, 0)∥2
, (30)

we can express the integration kernel in equation (10) as

K (xa, pb|ζζζ) =
2
√
2 exp

[
−2∥xaζζζLO(∆ta,π/2)−pbζζζLO(∆tb,0)∥2

∥ζζζLO(∆ta,π/2)−ζζζLO(∆tb,0)∥2

]

∥ζζζLO(∆ta,π/2)− ζζζLO(∆tb, 0)∥
exp

[
ζζζTd (xa, pb)ζζζ−

1

2
ζζζT cov−1

d ζζζ

]
. (31)

We assume the quantum pulse is an nph-photon Fock state in a single temporal mode with mode function

according to equation (1) parametrized by ∆ωph = 59THz and ω̄ph/(2π) = 202THz (kph = 16). By defining

the projector Pph of the Fock states phase space, we can calculate the Schur complement

cov−1
schur = Pph(cov

−1
vac +cov−1

d )Pph − Pph cov
−1
d Pr[Pr(cov

−1
vac+cov−1

d )Pr]
−1Pr cov

−1
d Pph, (32)

with singular values σx , σp and define

ζζζd,ph(xa, pb) = Pph[I− cov−1
d Pr{Pr(cov

−1
vac+cov−1

d )Pr}−1Pr]ζζζd(xa, pb). (33)

as well as the normalization envelope

N(xa, pa) =
2
√
2 exp

[
−2∥xaζζζLO(∆ta,π/2)−pbζζζLO(∆tb,0)∥2

∥ζζζLO(∆ta,π/2)−ζζζLO(∆tb,0)∥2

]

∥ζζζLO(∆ta,π/2)− ζζζLO(∆tb, 0)∥

×
√

(2π)2(imax−1)

det
(
Pr[cov−1

vac +cov−1
d ]Pr

) exp
[
1

2
ζζζTd (xa, pb)ΩPr{Pr(cov

−1
vac +cov−1

d )Pr}−1PrΩ
Tζζζd(xa, pb)

]
, (34)

to express the probability distribution of the joint quadrature measurement of the Fock state as

Prob(xa, pb) = N(xa, pb)
(−1)n

π

√
2π

σx

√
2π

σp
e

[ζζζTd,ph(xa ,pb)eeex ]
2

2σx e
[ζζζTd,ph(xa ,pb)eeep ]

2

2σp

×
n∑

i=0

(
1− 4

σx

)i (
1− 4

σp

)n−i

L
(− 1

2
)

i

[
2
{ζζζTd,ph(xa, pb)eeex}2

σ2
x − 4σx

]
L
(− 1

2
)

n−i

[
2
{ζζζTd,ph(xa, pb)eeep}2

σ2
p − 4σp

]
. (35)

If a finite quantum efficiency, η, of the detectors [43] is assumed, we have to replace the detection covariance

matrix cov−1
d by η

2−η
cov−1

d before calculating the singular values σq.

DATA AVAILABILITY

All data presented here is available online [89].

CODE AVAILABILITY

The Python code supporting the results can be obtained from the GitLab repository: https://gitlab.

inf.uni-konstanz.de/emanuel.hubenschmid/subcycleq . A archived version of the specific code used

here is available online [89].
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