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Elastic heterogeneity governs anomalous
dynamic scaling in a soft porous crystal

Check for updates

Kota Mitsumoto 1 & Kyohei Takae 2

Nanoscale molecular transport governs mass diffusion and responsiveness in soft porous crystals,
where guest adsorption induces host deformation and alters rigidity. Surface-mediated adsorption
generates inhomogeneous adsorbate distributions, leading to spatial variations in stiffness—elastic
heterogeneity—whose role in adsorption kinetics remains poorly understood. Here, we show that
elastic heterogeneity governs adsorption kinetics, giving rise to size-dependent uptake, surface
creasing, and anomalous dynamic scaling distinct from established scaling laws. Stress relaxation
near corners accelerates adsorption, while on surfaces, creases emerge at flexible unadsorbed
regions compressedbetween rigid adsorbed domains. The resulting lateral correlations of adsorbates
exhibit a breakdown of scale invariance between global and local fluctuations. These findings provide
amechanistic foundation for controlling adsorption anddeformation kinetics via elastic heterogeneity.
Ourwork opens a route to engineering responsivematerials,wheremechanical feedback is harnessed
to control cooperative molecular transport and drive macroscopic shape changes under external
perturbations.

Transport phenomena govern the structure, dynamics, and function of
systems spanning physics, chemistry, biology, and materials science1.
Among these, mass transport plays a central role in processes ranging from
droplet formation in biological cells2, ionic conduction in batteries3,4,
hydrogen uptake in metals5, and solvent permeation in gels and soils6–8, to
molecular diffusion in porous materials such as metal-organic frameworks
(MOFs)9–13. Designing materials with tunable responsiveness to external
stimuli requires a fundamental understanding of the material parameters
that regulate molecular transport14–16. Recent advances in quantum chem-
istry, molecular dynamics simulations, and continuum modelling have
elucidated how host-guest interactions influence adsorption energetics and
the dynamic response of the framework17–24. However, although these
approaches provide microscopic insight, building predictive theoretical
frameworks that bridge molecular-scale mechanisms and macroscopic
kinetics remains a major challenge. Cooperative transport among guest
molecules, combined with local structural flexibility, gives rise to spatio-
temporal heterogeneity in material properties, making the system intrinsi-
cally non-uniform. This non-uniformity leads to heterogeneous and size-
dependent adsorption through surface-controlled uptake, as extensively
observed inMOFs experimentally and numerically21,23,25–32. Such adsorption
behaviour leads to complex spatio-temporal dynamics and presents amajor
challenge for predicting and controlling uptake processes. Establishing
physical principles to address such mesoscopic heterogeneity is therefore
essential for engineeringMOF-based devices with enhanced functionalities,

including water harvesting33, catalysis34, sensors35, biomedicines36, and
artificial molecular machines37.

Onemajor origin of adsorption heterogeneity arises from the coupling
between molecular uptake and the elastic responses of the host
framework10,20,22,24. In soft porous crystals—mechanically flexible MOFs—
strong host-guest interactions lead not only to substantial structural
deformation but also to spatial variations in rigidity, referred to as elastic
heterogeneity38–40. This mechanical heterogeneity gives rise to cooperative
effects, which manifest as pattern formation, including domain formation
and superlattice ordering, mediated by long-range elastic interactions in the
host framework19,27,41. However, the impact of elastic heterogeneity on
adsorption kinetics, in both bulk and near-surface regions, remains poorly
understood.

To uncover the underlying principles governing heterogeneous
adsorption kinetics, it is crucial to determine whether these dynamics obey
universal scaling laws. Scaling concepts from interfacial growth
phenomena42–44—such as swelling-deswelling in gels7,39,45,46 and epitaxial
thin-film growth39,47,48—have revealed self-affine evolutions governed by
elasticity and interfacial tension. Given that adsorption in soft porous
crystals involves surface-mediated transport coupled to elastic stress, it is
natural to explore whether similar scaling descriptions apply. Establishing
such scaling laws would provide a unified framework for understanding
how elastic heterogeneity and the resulting cooperative guest transport
govern adsorption kinetics.
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However, to extract scaling exponents, it is necessary to perform large-
scale simulations of adsorption kinetics with statistically converged
ensemble averaging. Because soft porous crystals consist of metallic nodes
and organic linkers, molecular dynamics involving many unit cells remain
computationally demanding19,21,23.

In this paper, we examine the scaling behaviour of adsorption
kinetics in a soft porous crystal by performing dynamic Monte Carlo
simulations on a coarse-grained lattice model (see Methods for details).
The model captures the elastic deformation of soft porous crystals, as
schematically illustrated in Fig. 1a. Each lattice site can adsorb at most
one guest particle, and particles hop to adjacent sites while subject to
excluded volume constraints. Adsorption occurs only from the bottom
boundary, mimicking directional uptake. The model includes two key
material parameters: the rigidity change factor K, and the lattice
expansion ratio λ. Specifically, K > 1 and λ > 1 correspond to local lattice
hardening and expansion upon adsorption, respectively. We mainly
focus on the representative case of expansion and hardening,
(K, λ) = (3, 1.4), where heterogeneous adsorption kinetics becomes
pronounced, as schematically displayed in Fig. 1b. Under different
parameter conditions, qualitatively distinct patterns are observed (Sup-
plementary Fig. 1a–c). In the expansion and hardening case, three
characteristic features are observed. The first one is size-dependent
uptake. As shown in Fig. 1b, two major adsorption domains form at the
bottom corners, whereas smaller domains appear along the surface away
from the corners. Since the corner contribution to the overall uptake is
larger in smaller systems, the uptake rate shows size dependence. Second,
a creasing pattern is observed on the surface. The unadsorbed regions on
the surface are sandwiched and compressed by harder adsorption
domains, leading to the formation of elastic creases. Finally, the
adsorption distribution exhibits a characteristic time evolution known as
anomalous scaling. This anomalous scaling is distinct from super-
roughening and intrinsic anomalous scaling49,50. The adsorption kinetics
depend sensitively on temperature T and adsorption chemical potential
μ. The anomalous scaling is observed above the spinodal curve of the
phase diagram, which is shown in Fig. 1c (see Methods for numerical
details to obtain the phase diagram and Methods for the Landau theory).

As described later, adsorption kinetics at the surface are classified using a
dynamic scaling ansatz. The obtained scaling exponents for selected T
and μ are displayed in Fig. 1c (Table 1 for details).

Results
Nucleation and spinodal adsorption
The adsorptionkinetics is classified into three distinct processes, as shown in
Fig. 2.When the chemical potentialμ is in themetastable region (I inFig. 1c),
nucleation-growth is observed: Adsorption domains at surfaces nucleate
stochastically due to thermal fluctuations, and then the domains grow dif-
fusively. Because the corner region can relax mechanical stress more easily
than the surface region, corner nucleation occurs more frequently than
surface nucleation. Thus, only the corner nucleation occurs when the che-
mical potential is far below the spinodal point, as shown in Fig. 2a, whereas
surface nucleation also occurs when approaching the spinodal point, as
shown inFig. 2b (SupplementaryMovies 1 and 2). Before nucleation occurs,
the adsorption fraction nads(t) grows as nads(t) ~ tγwith γ < 1/2, because the
nucleation is a stochastic event (see Methods for the definition of nads(t)).
After the corner nucleation occurs, γ exhibits a crossover to 1 due to the
domain growth in both the x and y directions with t1/2, as described in the
next section (Supplementary Fig. 2).

Above the spinodal point (II in Fig. 1c), on the other hand, the
desorbed state becomes linearly unstable, resulting in spinodal-type
domain growth. Adsorption domain growth occurs both at the corners
and on the surface. However, adsorption at the surface does not proceed
homogeneously, as shown in Fig. 2c (Supplementary Movie 3). Coex-
istence of adsorbed and desorbed regions is observed. Because the des-
orbed sites have a smaller lattice size and are more flexible, they deform
more easily than the adsorbed sites to reduce overall elastic energy, which
results in the creasing of the host framework. As adsorption proceeds
further, the adsorption domains merge into large clusters, and then the
creasing points exhibit coarsening. In the supercritical region (III in
Fig. 1c), the host’s elasticity is no longer the dominant factor, and the
adsorption process becomes diffusion under simple exclusion. In the
following, we focus on the spinodal growth, whose growth law and
scaling properties are governed by elastic heterogeneity.

Fig. 1 | Schematic description of the numerical simulation. a The setup of
molecular adsorption kinetics. Guest particles, represented by orange spheres, enter
from the bottom boundary (y = 0), indicated by the magenta line. Lattice expansion
and hardening occur due to interactions between the hostmatrix and guest particles.
The other boundaries, represented by the green lines, do not allow the entrance and
exit of particles, whereas stress relaxation occurs to satisfy stress-free boundary
conditions. Inside the host matrix, guest particles move under the influence of other
particles and the host’s elasticity. The interparticle interaction is governed by simple
exclusion, where each matrix site can adsorb at most one guest particle. b Pattern
formation and elastic creasing during adsorption in the spinodal region. Adsorbed
(desorbed) regions are displayed in orange (grey). Molecular adsorption proceeds

faster at the two bottom corners, whereas adsorption domains appear at the bottom
surface. The domains at the corners grow both laterally and vertically as x* ~ t1/2 and
h ~ t1/2, respectively. Unadsorbed regions between domains exhibit creasing to relax
mechanical stresses with the correlation length ξ ~ t1/3. The domain morphology
satisfies an anomalous dynamic scaling relation. c Thermodynamic phase diagram
for (K, λ) = (3, 1.4) with respect to temperature T and adsorption chemical potential
μ. The solid line represents the equilibrium phase boundary between the adsorbed
and desorbed phases. The dashed lines represent the transition points under quasi-
equilibrium simulations with increasing μ (+ μ) and decreasing μ (− μ), exhibiting
hysteretic behaviour. Dynamic scaling exponents (α, β, 1/z) for several (T, μ) are also
displayed (Table 1).

https://doi.org/10.1038/s42005-026-02508-8 Article

Communications Physics |            (2026) 9:36 2

www.nature.com/commsphys


Here, it is worth noting that the morphology of the observed patterns
depends on the simulation conditions and the model parameters (Supple-
mentary Fig. 1d–f and Supplementary Movies 4–6), while the boundary
condition does not affect qualitative features (Supplementary Fig. 3).

Adsorption distribution
For spinodal growth in Fig. 2c, the scaling properties of the adsorption
fraction nads(t) can be understood by separating the contributions of the
corner and surface growths. The time evolution of adsorption distribution
along the x direction n(x; t) is displayed in Fig. 3a (see Methods for the
definition of n(x; t)). In this figure, averages of 300 independent runs are
taken. n(x; t) exhibits two peaks near the corners and a plateau in the central
surface region. Although adsorption proceeds heterogeneously on the sur-
face (Fig. 2c), the position of the creasing points (unadsorbed regions) is
sample dependent, resulting in the smooth distribution of n(x; t). As time
proceeds, the peak position of n(x; t) shifts inward, which results from the
lateral growth of the corner domains.

The contribution of the corner growth on nads(t) is quantified by a
scaling plot enðxt�1=2Þ ¼ t�1=2nðx; tÞ, which is shown in Fig. 3b. The col-
lapse of enðxt�1=2Þ for different t implies that both the peak height and
position are scaled as t1/2. Hence, the contribution of the corner growth to
nads(t) is proportional to t. enðxt�1=2Þ increases steeply for xt−1/2≲ 0.4, so the
length of the corner region x*(t) is defined as x*(t) = 0.4t1/2. Note that x*(t)
does not depend on the horizontal system size Lx (Supplementary Fig. 4),
implying that the corner contribution to nads(t) is proportional to
t1/2 × 2x*(t)/Lx ~ t/Lx for x

*(t) ≲ Lx/2. For x > x*(t), data collapse in Fig. 3b
implies n(x; t) ~ t1/2 in the surface region. Hence, the surface contribution is
proportional to t1/2 × (Lx − 2x*(t))/Lx for x*(t) ≲ Lx/2. Thus, the time
dependence of nads(t) for x

*(t) ≲ Lx/2 reads

nadsðtÞ ¼ At1=2 þ ðB=LxÞt; ð1Þ

whereA and B are constants. Eq.(1) implies that guest adsorption becomes
more efficientwhenLxbecomes smaller,which is confirmed inFig. 3c. In the
figure, nads(t) increases faster for smaller system sizes. The solid curve
represents the fitting of nads(t) using Eq.(1) for the Lx = 768 data. The fitted
curve agreeswith the data for smallerLx in the early stage, whereas deviation
is observed when x*(t) becomes comparable to Lx/2. For x

*(t) ≳ Lx/2, the
domains at both corners interact with each other, resulting in the

Table 1 | Scaling exponents

α β 1/z β0 αloc αs

EW 1/2 1/4 1/2 - - 1/2

KPZ 1/2 1/3 2/3 - - 1/2

linear MBE 3/2 3/8 1/4 1/8 1 3/2

random
diffusion

1
2ð1�ρÞ

1
2ð2�ρÞ

1�ρ
2�ρ

ρ
2ð2�ρÞ 1/2 1/2

T = 0.08,
μ = 1.2

1.20 0.40 1/3 0.25 0.45 1.20

T = 0.10,
μ = 1.2

1.18 0.39 1/3 0.25 0.42 1.18

T = 0.15,
μ = 1.3

1.09 0.36 1/3 0.25 0.33 1.09

T = 0.20,
μ = 1.4

- 0.31 - - - -

T = 0.30,
μ = 1.6

- 0.28 0 - - -

T = 0.50,
μ = 2.0

- 0.27 0 - - -

T = ∞, μ = ∞ - 1/4 0 - - -

α: the global roughness exponent, β: the growth exponent, z: the dynamic exponent, β0 : the
anomalous growth exponent, αloc: the local roughness exponent, αs: the spectral exponent (Fig. 4
and Supplementary Figs. 12 and 13 for details).
EW, KPZ, and linear MBE stand for (1+1)-dimensional Edwards-Wilkinson, Kardar-Parisi-Zhang,
and linear molecular-beam-epitaxy models, respectively42,43,51. ρ in exponents of the random
diffusion model is the strength of the disorder given in the probability of the diffusion coefficient
P(D) ~ D−ρ for D < 1 and P(D) = 0 for D > 149.

Fig. 2 | Nucleation and spinodal growth of molecular adsorption. a Snapshots at
t = 16,000, 64,000, 128,000, 256,000 for (T, μ) = (0.1, 0.9).When the desorbed state is
metastable, domain nucleation of adsorbates occurs at the corners, while adsorbed
domains do not grow at the surface (Supplementary Movie 1). The red arrows point
to nucleations at the corners and to a transient adsorption domain in the surface
region. b Snapshots at t = 8000, 32,000, 64,000, 128,000 for (T, μ) = (0.1, 0.95).When
the chemical potential approaches the spinodal point, surface nucleation also occurs

(Supplementary Movie 2), as indicated by red arrows. c Snapshots at
t = 4000, 8000, 32,000, 64,000 for (T, μ) = (0.1, 1.2). When the desorbed state is
unstable, molecular adsorption exhibits a spinodal-type growth (Supplementary
Movie 3). Adsorbed domains grow with a characteristic wavenumber. Because
unadsorbed regions between adsorbed domains are softer, creases appear in the
unadsorbed regions to reduce elastic energy, as indicated by red arrows. The para-
meters for all panels are: Lx = 192, K = 3.0, λ = 1.4.
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suppression of the lateral domain growth, whereas the growth in the y
direction remains unaffected.Accordingly,nads(t) follows t

1/2 at the late stage
until the adsorbed domains reach the upper boundary (y = Ly). The time
t*(Lx) at which Eq.(1) deviates from nads(t) is of the form t�ðLxÞ ¼ cL2x ,
which indicates x�ðt�Þ ¼ 0:4

ffiffi
c

p
Lx . By setting c= 0.65, t

*(Lx) is calculated to
be 24000 and 54000 for Lx = 192 and 288, respectively, showing a good
agreement with those estimated from Fig. 3c.

The time evolution of x*(t) depends on thermodynamic parameters
(T, μ). For larger μ, for example, x*(t)/t1/2 becomes larger, implying that the
lateral domain growth at the corner becomes faster as μ increases. In the
limit μ → ∞, the domains at both corners merge immediately, indicating
that the contribution of the corner lateral growth (the second termofEq.(1))
vanishes. Thus, the domain growth law for μ → ∞ is t1/2 (Supplementary

Fig. 2). It is also worth noting that when deformation upon adsorption does
not occur, i.e.,K=1andλ=1, lattice elasticity is irrelevant due to the absence
of effective guest-guest interaction, resulting in diffusive growth t1/2 (Sup-
plementary Fig. 5).

For desorption processes, the corner contribution exhibits a different
tendency. Fig. 3d shows the spatial distribution n(x; t) in a desorption
process. The desorption of guest particles is slower near the corners than in
the surface region. As a result, nads(t) decreases slower than t

1/2. This trend is
enhanced for smaller system sizes, as shown in Fig. 3e. The opposite trend
between adsorption and desorption kinetics arises from elastic hetero-
geneity, as explained by the Eshelby inclusion problem, a well-known
concept in metallurgy38,39. In alloys, it has been shown that elastic energy is
reduced when harder domains embedded in a softer matrix have an

Fig. 3 | Adsorption distribution and adsorption fraction. a Spatial distribution
of the adsorbed particle fraction with respect to x in adsorption processes.
Averages of 300 independent simulation runs are taken. b The scaling plotenðxt�1=2Þ ¼ nðx; tÞt�1=2. c System size dependence of the adsorption
fraction in adsorption processes. The solid curves represent Eq.(1), where
A = 0.000831(16) and B = 0.000578(54) are obtained by the fitting of the
Lx = 768 data. d Spatial distribution of the adsorbed particle fraction in des-
orption processes. e System size dependence of the adsorption fraction in

desorption processes. The desorption decrease is slower than t1/2, which is
shown by the solid curve. Different colours in (a, b, d) represent different times
t and colours in (b, d) correspond to those shown in (a). Error bars in (a, b, d)
are represented as shades. Different colours in (c, e) represent different system
sizes Lx. Colours in panel e correspond to those in (c). The following para-
meters are used: K = 3.0, λ = 1.4, and T = 0.1. a–c are for μ = 1.2 (adsorption),
while d, e are for μ = 0.3 (desorption). The system size is Lx = 768 in (a, b, d).
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isotropic shape, whereas softer domains in a harder matrix prefer an ani-
sotropic, flattened shape. Since the adsorbed sites are more rigid than des-
orbed sites, this argument also holds in our systems40,41. In the adsorption
process, the adsorbed domains become isotropic, separated by unadsorbed
narrow regions. Then, surface adsorption is slower than the corner
adsorption when taking a statistical average. In the desorption process, on
the other hand, the morphology of the desorbed domains becomes aniso-
tropic, where desorbed sites form elongated, narrow channels, which
penetrate into the bulk (Supplementary Fig. 1d and Supplementary
Movie 4). Then, surface desorption is faster than the corner desorption
when taking a statistical average. Thus, elastic heterogeneity is responsible
for the asymmetry in the adsorption and desorption kinetics. Furthermore,
the model parameters (K, λ) control the role of elastic heterogeneity. When
the adsorbed sites become more flexible, i.e., K < 1, the adsorption-
desorption kinetics remain asymmetric, but exhibit the opposite tendency
(Supplementary Figs. 1e, f and 6, and Supplementary Movies 5 and 6).

Anomalous scaling
We now focus on the creasing formation in the surface region, as shown in
Fig. 2c. By mapping the adsorption configuration onto the distribution
along the xdirectionn(x; t) (Supplementary Figs. 7 and 8, wheren(x; t) from
an individual run is displayed), the creasing pattern canbe interpreted as the
roughening of the n(x; t) profile. This roughness is characterised by three
physical quantities: spatial correlation functionC(ℓ; t), adsorption deviation
W(ℓ; t), and the structure factor S(k; t) (see Methods for their definitions).
These quantities are computed for each independent run and then averaged
over 300 runs to evaluate the statistical properties of the spatial fluctuations
of n(x; t). The dynamic scaling analysis yields the scaling exponents char-
acterising heterogeneous adsorption: the roughness exponent α, the growth
exponent β, the dynamic exponent z, the anomalous growth exponent β0,
the local roughness exponent αloc, and the spectral roughness exponent αs.
The presence of β0, αloc ( ≠ α), and αs indicates the anomalous scaling (see
Methods for details). Scaling exponents obtained in this study are sum-
marised in Table 1, where those in interfacial growth systems are also
displayed for reference; Edwards-Wilkinson (EW) and Kardar-Parisi-
Zhang (KPZ) models obey standard dynamic scaling, the linear molecular-
beam-epitaxy model obeys superroughening, and the random diffusion
model obeys intrinsic anomalous scaling42,43,49,51. Our model exhibits an
anomalous scaling distinct from theirs, as described below.

It should be noted that n(x; t) in ourmodel does not correspond to the
height of an “interface” measured from the bottom boundary, whereas
dynamic scaling analysis is conventionally applied to the interface of
interfacial growthmodels suchasEWandKPZmodels. In thepresent study,
a sharp interfacecannotbe clearly definedbecauseof thepresenceof voids in
the growing clusters and strong interactions between domains separated by
these voids (Fig. 2c). Therefore,we employn(x; t) as the relevant quantity for
examining dynamic scaling.

The spatial correlation functionC(ℓ; t) is presented in Fig. 4a. There are
two notable features in C(ℓ; t). (i) C(ℓ; t) has a maximum at ℓ = ℓpeak(t),
representing the typical distance between adsorbed domains and unad-
sorbed creases. As shown inFig. 4b, the peak position is scaled as ℓpeak(t) ~ t

1/

z with 1/z = 0.321(17), which is close to 1/3. The growth law t1/3 is char-
acteristic of mass-conserved ordering dynamics39. This suggests that the
lateral coarse-graining of adsorbed domains is governed by the internal
redistribution of adsorbed particles under effective attractive interactions
arising fromelastic heterogeneity. Therefore,we adopt z=3 in the following.
(ii) For sufficiently large ℓ, spatial correlation vanishes so that C(ℓ; t) con-
verges to time-dependent plateau values Cplateau(t), which represent the
variance of n(x; t). From Fig. 4b, Cplateau(t) ~ t2β with the growth exponent
β = 0.392(1). The scaling relation α = βz yields α ≃ 1.176. The scaling
function eCð‘t�1=zÞ ¼ Cð‘; tÞ‘�2α reads

eCðrÞ � r�2ðα�αlocÞ r≪r�

r�2α r≫r�;

(
ð2Þ

where the crossover length r*= ℓpeak(t)t
−1/3≅ 0.345. eCðrÞ for r≪ r* does not

exhibit a plateau, indicating α < αloc. αloc satisfies the scaling relation
αloc ¼ ðβ� β0Þz ’ 0:426, where β0 ¼ 0:250ð4Þ from Fig. 4b. For r ≲ 0.1,
however, the slope slightly deviates from − 2(α− αloc). The deviation arises
from the discreteness of our model, which becomes non-negligible below
five lattice spacings (Supplementary Fig. 9). This effect reflects the fact that
themorphology of small adsorption domains in the latticemodel is strongly
constrained by the underlying lattice structure40,41.

Compelling evidence for anomalous scaling is obtained by examining
the adsorptiondeviationW(ℓ; t), as shown inFig. 4d–f. The scaling functionseW1ðt‘�zÞ ¼ ‘�αWð‘; tÞ and eW2ð‘t�1=zÞ ¼ t�βWð‘; tÞ are displayed in
Fig. 4e, f respectively. Good data collapse is confirmed, indicating the
existence of scaling functions. From the figure, the scaling functions read

eW1ðuÞ �
uβ u ≪ u�

uβ
0

u ≫ u�;

(
ð3Þ

eW2ðvÞ �
vαloc v ≪ v�

const v ≫ v�;

�
ð4Þ

where the crossover points u� ¼ t‘�z
peak ¼ ðr�Þ�1=z ffi 24:4 and v*= r*. The

growth and anomalous growth exponents are determined as β = 0.391(1)
and β0 ¼ 0:252ð3Þ from Fig. 4e, and the local roughness exponent is
determined as αloc = 0.424(4) fromFig. 4f, which agrees with those obtained
by the scaling analysis for the correlation function.

It is known that αloc < 1 is a feature of intrinsic anomalous scaling (see
Methods for details)49. However, the scaling of the structure factor S(k; t)
shows a different behaviour. To see this, the time evolution of the structure
factor is presented inFig. 4g.The structure factorhas adistinct peak, yielding
the correlation length ξ = 1/kpeak. The peak corresponds to the peak of the
spatial correlation functionC(ℓ; t). In accordancewithC(ℓ; t), the peak of the
structure factor shifts to lower wavenumbers and its height increases with
time. Therefore, we regard ℓpeak as the correlation length ξ. From the scaling
arguments, the scaling function eSðkt1=zÞ ¼ k2αþ1Sðk; tÞ is given by

eSðwÞ � w2αþ1 w ≪ w�

w2ðα�αsÞ w ≫ w�;

�
ð5Þ

where w* = t1/z/ξ(t) = 1/r*50. As shown in Fig. 4h,eSðkt1=zÞ exhibits a plateau
near kt1/z ~ 1, implying αs = α ≠ αloc. This feature is known for super-
roughening rather than intrinsic anomalous scaling, though αloc = 1 is
required for superroughening. Thus, anomalous scaling in our model
deviates from both intrinsic anomalous scaling and superroughening. It
should be noted that the scaling plot Sðk; tÞt�2β0 at high wavenumbers
(k≳ 0.1) deviates fromboth−2α− 1 and−2αloc− 1, as shown in Fig. 4i. As
in the case ofC(ℓ; t), the deviation results from thediscreteness of ourmodel.

It is worth noting that the deviation of the scaling observed in our
model from both intrinsic anomalous scaling and superroughening cannot
be attributed to the time evolutionof the lengthof the surface region.As long
as the surface region is sufficiently longer than the correlation length ξ, the
time dependence of the surface region does not alter the scaling behaviour
except for S(k; t) at the low-wavenumber regime (Supplementary
Figs. 10 and 11).

The scaling exponents in Fig. 4 depend on (T, μ), as shown in Fig. 1c
and Table 1 (Supplementary Figs. 12 and 13). Furthermore, with increasing
T and μ, the scaling exponents exhibit a crossover to supercritical values
β = 1/4 and 1/z = 0: no characteristic length scale exists. In this region,
characteristic domain growth with elastic creasing does not occur because
the adsorption chemical potential and thermal fluctuations are much
greater than the elastic energy. In the crossover region between spinodal and
supercritical regions,W(ℓ; t) cannot be scaled by any dynamic exponent, so
that 1/z is not well-defined (Supplementary Fig. 12). It is also worth noting
that the dynamical exponents depend on the simulation conditions and
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material parameters (K, λ), where the anomalous scaling does not neces-
sarily hold (Supplementary Figs. 8 and 14).

Discussion
In this study, we identified two key features of molecular adsorption in soft
porous crystals using a simple model incorporating elastic heterogeneity.
First, surface effects enhance adsorption near corners due to local stress
relaxation. This trend is consistent with experimental reports showing that
surface and thin-film adsorption differ qualitatively from bulk
behaviour28,29, resulting in size-dependent uptake25,32,52. Second,we observed
anomalous adsorption scaling that deviates fromboth superroughening and
intrinsic anomalous scaling. The anomalous scaling is characterised by scale
separation between small and large length scales, resulting from cooperative

adsorption-induced elastic creasing in the host framework. The inhomo-
geneous adsorption resembles simulation studies of MOFs using more
realistic intermolecular potentials21,23. Thus, MOFs with large breathing
transitions, which produce significant elastic stresses, are candidates for
observing the creasing instability and anomalous scaling40. To validate our
model and identify relevant materials, it will be essential to examine the
relationship between changes in elastic properties—elastic moduli in par-
ticular—and molecular rearrangements in host frameworks upon adsorp-
tion using experimental techniques, quantummechanical calculations, and
molecular dynamics simulations.

From a macroscopic perspective, the creasing instability observed in
this study is reminiscent of pattern formation in polymeric gels39,45 and of
mechanical instability in electrochemical storage materials such as

Fig. 4 | Dynamic scaling of adsorption distribution. a Spatial correlation function
C(ℓ; t) exhibits a maximum at ℓpeak(t) and a plateau Cplateau(t) for large ℓ. b Time
evolution of ℓpeak(t), Cplateau(t), and C(1; t), obtained from the correlation function
C(ℓ; t) shown in (a). They exhibit power-law behaviours, yielding the dynamic
exponent 1/z = 0.319(18) ≃ 1/3, growth exponent β = 0.392(1), and anomalous
growth exponent β0 ¼ 0:250ð4Þ, respectively. The positive β0 indicates anomalous
dynamic scaling. Data in the interval [8000, 128000] are used for the fitting. c Scaling
plot eCð‘t�1=3Þ ¼ Cð‘; tÞ‘�2α , where α= βz represents the global roughness exponent.
d, Adsorption deviation W(ℓ; t). e Scaling plot eW1ðt‘�3Þ ¼ Wð‘; tÞ‘�α exhibits a
crossover between distinct slopes β = 0.391(1) and β0 ¼ 0:252ð3Þ at tℓ−3 ≃ 24.4.

f Another scaling plot eW2ð‘t�1=3Þ ¼ Wð‘; tÞt�β . Data collapse for ℓt−1/3 ≲ 0.1 yields
the local roughness exponent αloc = 0.424(4), which corresponds to ðβ� β0Þz.
g, Structure factor S(k; t). h Scaling plot eSðkt1=3Þ ¼ Sðk; tÞk2αþ1 using the global
roughness exponent α collapses for kt1/3≲ 1, whereas a plateau is observed at kt1/3 ~ 1.
i Another scaling plot eSðkÞ ¼ Sðk; tÞt�2β0 using the anomalous growth exponent β0 .
The slope reads k−2α−1 for k≲ 10−1, whereas deviation from both k−2α−1 and k�2αloc�1

is confirmed for k ≳ 10−1, though there is a good data collapse. Different colours in
(a, c,d, f–i) represent different times t. Colours in panels without legends correspond
to those shown in (a). Different colours in (e) represent different lengths ℓ. The
parameters for all panels are: Lx = 768, K = 3.0, λ = 1.4, T = 0.1, and μ = 1.2.
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hydrogen-metal alloys and battery electrodes5,39,53. Solvent adsorption and
desorption in gels, accompanied by swelling and deswelling, also exhibit
asymmetric patterns due to underlying elastic heterogeneity39,45,46. However,
the coarsening law in gels follows ξ~ t1/2 (z= 2), and creasing sites are stiffer;
in contrast, our results show z = 3 and indicate that creasing sites are more
flexible. These differences may arise from (i) gel softening upon solvent
uptake and (ii) solvent saturation, which occurs in gels but not necessarily in
soft porous crystals. To systematically compare these systems, por-
omechanics theory under unsaturated solvent conditions offers a promising
framework8. Despite these differences, continuum models of adsorption in
soft porous crystals, polymeric gels, and electrochemical storage materials
share a common Ginzburg-Landau framework: elastic deformation of the
hostmatrix coupled to guest uptake, incorporating spatial inhomogeneity39.
Extending continuum theories to soft porous crystalsmay therefore provide
deeper insights into the macroscopic and surface instabilities common to a
wide class of responsive materials.

Methods
Model Hamiltonian
A coarse-grained square-lattice model, which incorporates adsorption-
induced lattice expansion/contraction and hardening/softening, is
employed in our Monte Carlo simulations40. The model consists of the
translational degrees of freedom of the lattice nodes, ri (i = 1, 2,…, Nhost),
and the guest variable in each plaquette, σ□ (□ = 1, 2, …, N□) taking 1
(adsorbed) or 0 (desorbed). Nhost and N□ are the number of lattice nodes
and plaquettes, respectively. Nhost = (Lx+ 1)(Ly+ 1) and N□ = LxLy. Each
lattice node interacts with the nearest-neighbour (NN) and the next-
nearest-neighbour (NNN) nodes. The NN and NNN elastic potentials of
distance r are given by 1

2 ð1� rÞ2 and 1
2 ð

ffiffiffi
2

p � rÞ2 when a guest particle is
absent around the lattice nodes. Hence, the elastic potential of the plaquette
□ is given by V1ðri2&Þ ¼ 1

4

P
NNð1� rijÞ2 þ

P
NNN

1
2 ð

ffiffiffi
2

p � rijÞ
2
, where

ri∈□ represents thepositions of latticenodes composing the plaquette□. To
incorporate the lattice expansion/contraction and hardening/softening, we
add an elastic potential V2ðri2&Þ ¼ k½14

P
NNð1þ ζ � rijÞ2 þP

NNN
1
2 ð

ffiffiffi
2

p ð1þ ζÞ � rijÞ
2� when the guest particle is accommodated in

the plaquette. Thus, the Hamiltonian is given by

H ¼
XN&

&¼1

V1ðri2&Þ þ σ&½V2ðri2&Þ � μ�� �
; ð6Þ

where μ is the chemical potential for the guest particle adsorption. μ
depends on the guest-host interaction energy and the gas pressure of guest
particles. When the plaquette is occupied by a guest particle, the elastic
potential of the plaquette reads V1 þ V2 ¼ K½14

P
NNðλ� rijÞ2þP

NNN
1
2 ð

ffiffiffi
2

p
λ� rijÞ

2� þ μc, where λ = 1+ kζ/(1+ k) is a lattice expansion
(λ > 1) or contraction (0 < λ < 1) parameter,K = 1+ k is a lattice hardening
(K > 1) or softening (0 <K < 1) parameter, and μc= 3K(λ−1)2/(K− 1) is the
equilibrium adsorption-desorption transition point at T = 0.

Inourmodel, the chemical potentialμ is spatially uniformanddoesnot
impose any site-dependent bias inside the host lattice. Guest dynamics
inside the host framework are dictated solely by the elastic interactions
arising from the host’s deformation and exclusion effects between guest
particles (see method of dynamicMonte Carlo simulations). The effect of μ
arises only at the entrance/exit boundary (see Fig. 1a).

Ensemble
For simulating a system in which the entire volume V is changed by guest
adsorption, an osmotic ensemble is employed40,54. Control parameters in
this ensemble are the temperatureT, the chemical potential of guest particles
μ, the number of nodes Nhost, and external mechanical pressure P. Gas
pressure of guest particles is related to the chemical potential through the
equation of state. However, by applying external force in addition to the gas
pressure, we can treat μ and P as independent variables. The osmotic grand
potential is defined as Ω = U − TS + PV − μNads, where U is the internal

energy, S is the entropy, andNads is the number of adsorbed particles. In the
differential form, dΩ =− SdT+VdP−Nadsdμ+ μhostdNhost, where μhost is
the chemical potential of the host framework. We fix P = 0 for our con-
venience. In this study, particle adsorption proceeds from the bottom
boundary; the density of guest particles becomes heterogeneous during the
adsorption kinetics. Then, the bottom boundary is more swelled (con-
tracted) than the top boundary when λ > 1 (λ < 1). To avoid the numerical
difficulties arising from the lattice mismatch between the bottom and top
boundaries, the open boundary condition, rather than the periodic
boundary condition, is adopted.

Phase diagram
To obtain the phase diagram in Fig. 1c, we adopt a periodic boundary
condition to reduce the surface effect, which alters the nature of the tran-
sition. When the periodic boundary condition is imposed, an additional
degree of freedom, average swelling ratio a, is necessary to incorporate the
dynamical change of the entire volume. Then the system volume is repre-
sented as V = aLxLy. Unit Monte Carlo step (MCS) consists of one
Metropolis sweep for guest particles {σ□} andL-timesMetropolis sweeps for
lattice sites {ri}, and L-times Metropolis updates for the average swelling
ratio a. The updates of ri and a are restricted to ∣Δri∣ < 0.1 and Δa < 0.01,
respectively. The system size Lx = Ly = 24 is adopted.

The spinodal curves are obtained by standard Monte Carlo simu-
lations for μ-increasing/decreasing with a change in chemical potential
Δμ = 0.01 every 2 × 104 MCSs. Then, the hysteretic adsorption and
desorption transitionsareobserved.Becausemetastable states are robust
against thermal fluctuations, we regard each transition point as the
spinodal point40.

Multicanonical Monte Carlo simulation is utilised to obtain the ther-
modynamic equilibrium phase boundary. Here, theWang-Landaumethod
is applied, which efficiently samples the density of energy states g(E)55,56. By
adopting the weight proportional to e−g(E), all the energy states, including
those which are rarely realized in canonical ensembles, are uniformly
sampled. We obtain the energy histogram H(E) by multicanonical Monte
Carlo simulation. Then, the equilibrium probability distribution of the
energy at each temperature T is computed as P(E) =H(E)e−E/T+g(E)/∑EH(E)
e−E/T+g(E). The equilibrium phase transition point is determined as the
temperature at which an equally weighted double-peak probability dis-
tribution is realised.

Dynamic Monte Carlo simulations
We perform dynamic Monte Carlo simulations to study adsorption-
desorption kinetics. The unit MCS during adsorption simulations consists
of Nhost × Lx updates for lattice site positions and N□ updates for guest
variables. In the former, a lattice node position ri and its trial position
r0i ¼ ri þ Δr are randomly chosen,where ∣Δr∣<0.1 andbond intersection is
rejected to preserve the square lattice configuration. The acceptance is
determined by the Metropolis rule. In the latter, a plaquette □ and its
neighbour&0 are randomly selected. The Kawasaki dynamics is adopted56,
where a trial exchange of□ and&0 is evaluated under the Metropolis rule
with the energy change ðσ&0 � σ&ÞðV2ðfri2&gÞ � V2ðfri2&0 gÞÞ, which is
not affected by the chemical potential μ. If the plaquette□ is on the bottom
boundary, a trial step also includes particle entrance/exit through the
boundary. If particle entrance/exit is selected, σ□ is updated using the
Metropolis rule with an energy change ΔE = (2σ□ − 1)[V2({ri∈□}) − μ],
otherwise, the Kawasaki dynamics is adopted in the samemanner as above.
Before performing adsorption simulations, 48,000 single lattice-site updates
are conducted to realise initial equilibrium states. The vertical system length
is fixed to Ly= 48. For each parameter, 300 independent simulation runs are
conducted to obtain their sample averages.

Adsorption distribution and correlation functions
The adsorption fraction and distribution are defined by nads(t) = (1/
N□)∑□σ□(t) and n(x; t) = (1/Ly)∑yσ□(t), respectively. nads(t) in all figures
are averaged over 300 independent runs. n(x; t) in Fig. 3, Supplementary
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Figs. 4 and 6 are averaged over 300 independent runs, whereas n(x; t) for a
single run is displayed in Supplementary Figs. 7 and 8.

To quantify the inhomogeneity of n(x; t), the spatial correlation
function C(ℓ; t), the adsorption deviation W(ℓ; t), and the structure factor
S(k, t) are calculated. They are defined by

Cð‘; tÞ ¼ 1
‘surf ðtÞ þ 1� ‘

X
x

½nðx; tÞ � nðx þ ‘; tÞ�2; ð7Þ

Wð‘; tÞ ¼ 1
‘surf ðtÞ � ‘

X
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½nðx; tÞ � hnðx; tÞi‘�2i‘

q
; ð8Þ

Sðk; tÞ ¼ jenðk; tÞj2; ð9Þ

where∑x is the summation over the surface region x*(t) < x<Lx− x*(t)− ℓ,
ℓsurf(t) = Lx − 2x*(t) is the surface length unaffected by

corner adsorption, hnðx; tÞi‘ ¼
P‘

x0¼0nðx þ x0; tÞ=ð‘þ 1Þ denotes a seg-
mental average, and enðk; tÞ ¼ PLx�x�ðtÞ

x¼x�ðtÞ Δnðx; tÞe2πikx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘surf þ 1

p
is

the Fourier transform of the adsorption distribution with

Δnðx; tÞ ¼ nðx; tÞ �PLx�x�ðtÞ
x¼x�ðtÞ nðx; tÞ=ð‘surf ðtÞ þ 1Þ.

Dynamic scaling
Interfacial growth systems often exhibit self-affinity, meaning that inter-
facial fluctuations are statistically invariant under anisotropic scale
transformations42,43. More precisely, under a lateral scale transformation
x → bx, the interfacial fluctuation Δn(x; t) is rescaled as Δn → bαΔn. α is
called the roughness exponent, restricted to α < 157. Since the time evolution
must remain invariant under this transformation, the time t is rescaled as
t → bzt, where z is called the dynamic exponent. Accordingly, under a
temporal scale transformation t ! b0t, the lateral length scale and the
interfacial fluctuation are rescaled x ! b01=zx and Δn ! b0βΔn, respec-
tively, where β= α/z is called the growth exponent. Thus, the scaling formof
Δn readsΔnðx; tÞ ¼ b�αΔnðbx; bztÞ ¼ b0�βΔnðb01=zx; b0tÞ. In experiments
and numerical simulations on interfacial growth, these exponents are
extracted from the dynamic scaling of C(ℓ; t),W(ℓ; t), and S(k, t), which are
defined in Eqs. (7)–(9). The scaling forms are given by

Cð‘; tÞ ¼ ‘2αeCð‘t�1=zÞ; ð10Þ

Wð‘; tÞ ¼ ‘α eW1ðt‘�zÞ ¼ tβ eW2ð‘t�1=zÞ; ð11Þ

Sðk; tÞ ¼ k�ð2αþ1ÞeSðkt1=zÞ: ð12Þ

All scaling functions, eC, eW1, eW2, andeS, are also characterised by α, β and z.
Typical examples that exhibit self-affinity are the Edwards-Wilkinson58 and
Kardar-Parisi-Zhang (KPZ)models59, whose scaling exponents are listed in
Table 1.

However, self-affinity does not necessarily hold49,50. For example, an
experiment on fluid imbibition into a porous medium reports anomalous
scaling, in which local (short length scale) and global (large length scale)
interfacialfluctuations are characterised by different roughness exponents60.
In such cases, the global roughness exponent α is not restricted to α < 1.
Anomalous scaling is characterised by three additional scaling exponents50:
local roughness exponent αloc < α, anomalous growth exponent β0 > 0, and
spectral roughness exponent αs, satisfying the scaling relation
αloc ¼ zðβ� β0Þ. αloc and β0 appear in eC and eW, whereas αs appears ineS, as
shown in Eqs. (2)–(5). Standard dynamic scaling is recoveredwhen αloc = α,
β0 ¼ 0 and αs = α. The anomalous scaling has been classified into super-
roughening and intrinsic anomalous scaling49. Superroughening is char-
acterised by αloc = 1 and α > 1. The structure factor exhibits the ordinary
scaling, i.e., αs = α. It is realised for a system possessing conservation laws51,
such as the linearmolecular beam epitaxymodel61–64. In the case of intrinsic

anomalous scaling, the local exponent αloc is directly linked to the spectral
roughness exponent αs, i.e., αloc = αs. The local exponent takes αloc < 1 and α
can take any value. It is realised for systems having nonlocality or quenched
disorder51, e.g., the random diffusion model49, the fractional KPZ model
with long-range spatially correlated noise65, and a fluid imbibition
experiment60.

However, as shown in themain text, αloc < 1 < α and αs = α are realised
in our model. Thus, adsorption kinetics in our model exhibits anomalous
scaling distinct from both superroughening and intrinsic anomalous
scaling.

Landau theory of adsorption transition coupled to elasticity
To understand the adsorption-desorption transition with hysteresis in
Fig. 1c, it is convenient to construct a Landau free energy of the adsorption
fraction ϕ (nads in the main text) coupled with elastic deformation. For this
purpose, spatial inhomogeneity is not incorporated. Using the lattice dis-
placement vector u, the elastic strains in two dimensions reade1=∇ ⋅ u,
e2=∇xux−∇yuy, and e4=∇xuy+∇yux. e1 is the volumetric strain, and e2 and
e4 are the shear strains. In the absence of direct interactions between
adsorbates, the Landau free energy reads

f ¼ f 0ðϕÞ � μϕ� ηϕe1 þ f elðϕ; eÞ; ð13Þ

where f 0ðϕÞ ¼ kBT½ϕ ln ϕþ ð1� ϕÞ lnð1� ϕÞ� is the translational
entropy of the adsorbates, μ is the adsorption chemical potential (not to be
confused with the total chemical potential), and η represents the coupling
between lattice deformation and molecular adsorption. η > 0 for the

expansion case, and η < 0 for the contraction case. f elðϕ; eÞ ¼ KðϕÞ
2 e21 þ

GðϕÞ
2 ðe22 þ e24Þ is the isotropic elastic energy,whereK is the bulkmodulus and
G is the shear modulus. By incorporating adsorption-induced lattice
hardening/softening, the elastic coefficients K and G depend on ϕ as
K = K0 + K1ϕ and G = G0 + G1ϕ. Under the mechanical equilibrium
conditionwith stress-free boundary conditions, the space average of the free
energy variation with respect to the elastic tensor vanishes, which yields
〈Ge2〉 = 〈Ge4〉 = 0, and 〈e1〉 = η〈ϕ/K〉.

When the system is at chemical and mechanical equilibrium, ϕ and e
become homogeneous; hence, the Landau free energy reads

f ¼ kBT½ϕ ln ϕþ ð1� ϕÞ lnð1� ϕÞ� � μadsϕ� η2

2K
ϕ2; ð14Þ

by eliminating the elastic field. The last term describes the attractive guest-
guest interaction due to the presence of η. The chemical equilibrium is given
by df/dϕ = 0, which reads

kBT ln
ϕ

1� ϕ
� η2

K
ϕþ η2K1

2K2 ϕ2 ¼ μ: ð15Þ

Weconsider three cases: (i) η= 0, that is, lattice expansion/contraction does
not occur. The left-hand side increasesmonotonicallywithϕ, yieldingϕ=1/
(1+ e−βμ) without a phase transition (Supplementary Fig. 5). (ii) η ≠ 0 and
K1 = 0. Due to the second term, the l.h.s. does not increase monotonically
when η2≥4kBTK, resulting in the appearance of a phase transition regardless
of the sign of η. (iii) η ≠ 0 andK1 ≠ 0. The sign of the third term depends on
the sign ofK1. The elasticity-mediated attractive interaction is enhanced for
K1 < 0, whereas it is suppressed for K1 > 0; thus, when adsorbed sites are
more flexible than desorbed sites, they form a spatially connected cluster
(Supplementary Fig. 1e), whereas adsorbed domains are separated by
unadsorbed regions when adsorbed sites are more rigid (Fig. 2c).

It should be noted that, in general, the thermodynamic phase diagram
does not necessarily correspond to the instability upon molecular adsorp-
tion through the surface, because the shear deformation near the surface is
also important66. In the present study, however, the shearmodulus and bulk
modulus show the same dependence on adsorption fraction. Then the
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difference in macroscopic instability and surface instability points is
negligible.

Thus, the Landau free energy without spatial inhomogeneity can
describe the thermodynamic adsorption-desorption transition. However, it
does not account for the adsorption kinetics we have investigated in this
study. A detailed analysis of the Ginzburg-Landau free energy, incorpor-
ating spatial inhomogeneity, would offer deeper insights into the physical
origin of the anomalous dynamic scaling discussed in the main text.

Data availability
Input files to generate all of the figures are openly available at GitHub
(https://github.com/kmitsumoto51/mof_kinetics). All other raw and pro-
cesseddata generatedduring this study are available fromthe corresponding
author upon request.
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The computer codes used in this study are available from the corresponding
author upon request.
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