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ABSTRACT

The correlation function observed in high-energy collision experiments encodes critical information about the emitted source
and hadronic interactions. While the proton-proton interaction potential is well constrained by nucleon-nucleon scattering data,
these measurements offer a unique avenue to investigate the proton-emitting source, reflecting the dynamical properties of
the collisions. In this context, the understanding of other hadronic interactions such as hyperon–nucleon remains limited. In
this work, we present an unbiased approach to reconstruct proton-emitting sources from experimental correlation functions.
Within an automatic differentiation framework, we parameterize the source functions with deep neural networks, to compute
correlation functions. This approach achieves a lower chi-squared value compared to conventional Gaussian source functions
and captures the long-tail behavior, in qualitative agreement with simulation predictions. We finally apply our method to extract
hyperon–nucleon correlations.

Introduction

Nuclear forces, also referred to as strong forces, are the forces
that act between two or more nucleons (nuclei), which bind
the nucleons (nuclei) together. The nuclear force between two
nucleons is generated by mediating the π meson, as first pro-
posed by H. Yukawa1. Following the experimental discovery
of the heavier mesons, namely the σ , ρ(770), and ω(782),
the Yukawa theory was extended to the one-boson-exchange
(OBE) model2, 3. There are numerous OBE-based/extended
phenomenological nucleon-nucleon (N-N) potentials exist,
including the Paris potential4, the Argonne-18 potential (Av-
18)5, the Reid Soft-Core potential6, the Nijmegen poten-
tials7, 8, and so on. The parameters in these forms are de-
termined by explaining the N-N elastic scattering data. More-
over, the chiral effective field theory approach is derived from
the principles of Quantum Chromodynamics (QCD) using
chiral perturbation theory to investigate the nuclear force9–14,
which systematically consider the symmetries of QCD and
provide a framework for including multi-nucleon forces. Ad-
ditionally, the nuclear forces can also been extracted from the
first-principles approach, namely lattice QCD15–19.

So far, we already have a better understanding of the N-N
interaction. However, our comprehension of other interactions,
such as those involving mesons and hyperons, remains limited.
The clarification of these nuclear forces facilitates not only
an understanding of the formation and reaction of nuclei,
but also an understanding of the behavior of QCD matter at
the most fundamental level. Meanwhile, the nuclear force
plays a critical role in the evolution of stellar and supernova
explosions, the formation of heavy elements in the universe,

and the characteristics of neutron stars20.
One effective experimental method for investigating

hadronic interactions is the femtoscopy, which is inspired
by the Hanbury Brown and Twiss (HBT) correlation21–23.
Femtoscopy method was utilized to probe the space-time con-
figuration of the system at freeze-out23–29. The femtoscopy
technique relates the final two-body correlation to the two-
body interaction23. In accordance with the formalism of fem-
toscopy, the correlation function observed in the experiment
can be calculated theoretically by convoluting the source func-
tion S(rrr) with the two-body scattering wavefunction ψk(rrr)
via,

C(k) =
∫

S(rrr)|ψk(rrr)|2drrr, (1)

where k = |p1 −p2|/2 is the relative momentum in the center-
of-mass frame of the pair, and r is the relative distance be-
tween the two particles. The two-body scattering wave func-
tion ψk(r) can be obtained by solving the Schrödinger equa-
tion. This has been done in two popular tools that are the
Correlation Afterburner (CRAB)30 and the Correlation Anal-
ysis Tool using the Schrödinger equation (CATS)31, 32.

Benefit from advanced experimental conditions, many two-
hadrons correlations have been observed in both proton-proton
and heavy-ion collisions in the Relativistic Heavy Ion Col-
lider (RHIC)33–36 and the Large Hadron Collider (LHC)37–41.
This provides an excellent opportunity to study hadronic in-
teractions. In experiments, the Lednický and Lyuboshits
model37, 42, 43 has consistently been employed to describe cor-
relation functions, that assume a Gaussian source function
and the interaction is encoded in the scattering length, a0,
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and the effective range, reff, which are based on a short-range
interaction approximation. Nevertheless, many previous the-
oretical26, 27, 44–46 and experimental47–53 studies have shown
that the hadron-emitting source exhibits significant deviations
from a purely Gaussian shape. A precise emission source is in-
dispensable for probing hadronic interactions with high accu-
racy, particularly nucleon–hyperon, hyperon-hyperon forces,
which are weakly constrained by scattering experiments and
complementary approaches such as lattice QCD. Second, it
offers valuable constraints on hadronic dynamics and hadron
coalescence mechanisms. Given the growing availability of
high-precision correlation data, the extraction of an accurate
emission source is both timely and highly worthwhile. Benefit-
ing from the well-established knowledge of the proton–proton
interaction, in this work we perform an unbiased analysis to
precisely determine the hadron-emitting source directly from
experimental data.

Figures/Fig_1.pdf

Figure 1. The interaction potentials and the scattering
wavefunction square between proton-proton pairs. The
proton-proton interaction potential is shown in (a) and the
scattering wavefunction square at k = 19.5 MeV/c is shown
in (b). The red and blue lines represent the Av-18 and Reid
potential, respectively. The solid lines indicate the
spin-singlet state, while the dashed lines depict the
spin-triplet state.

Results
As previously noted, the proton-proton interaction potential
has been built by fitting the N-N scattering data. In this
study, we consider two commonly used pp potentials: the Reid
potential7, 54 and the Av-18 potential5, as shown in the panel
(a) of Fig. 1. These potentials include only strong interactions,
with tensor interactions excluded. It can be observed that both

the Av-18 and Reid potentials exhibit a pronounced repulsive
core at short range, which gradually diminishes to zero at
long range due to one-pion exchange. The intermediate range,
defined as 1 < r < 2fm, is attributed to the exchange of scalar
and vector mesons. Considering the spin configuration, the
interaction potentials are categorized as either spin-singlet or
spin-triplet. For the spin-singlet state, the Av-18 and Reid
potentials are observed to be in close agreement. However,
a significant difference is evident in the spin-triplet state, as
depicted by the dotted lines.

In experiments, it is insufficient to distinguish between the
spin-singlet and spin-triplet states, necessitating considera-
tion of contributions from both. The relative contributions
are determined by the spin degeneracy. Consequently, the
correlation function given in Eq. (1) can be expressed as,

C(k) =
∫

S(rrr)
(

1
4
|ψS=0

k (rrr)|2 + 3
4
|ψS=1

k (rrr)|2
)

drrr, (2)

where the spin-singlet wave function ψS=0
k (rrr) and the spin-

triplet scattering wave function ψS=1
k (rrr) are calculated by

solving the Schrödinger equation with the aforementioned
potential. The radial Schrödinger equation for the scattering
states is,

d2uS
k,l(r)

dr2 =

(
2µV (r)+

l(l +1)
r2 − k2

)
uS

k,l(r), (3)

where µ = mp/2 is the reduced mass, and uS
k,l(r) represents

the radial wave function for spin state S in l−wave scattering.
For low-energy scattering, the S−wave channel dominates.
However, as the energy increases, contributions from higher-
order spin channels become significant.

Consequently, the total scattering wavefunction can be ex-
pressed as follows,

ψ
S
k (r) =

lmax

∑
l=0

(2l +1)il
uS

k,l(r)

r
Pl(cosθ), (4)

where Pl denotes the Legendre polynomials. For low-energy
scattering, the series converges relatively rapidly. In this
study, we set lmax = 3, and utilized the CATS to solve the
Schrödinger equation31, 32. The convergence of the series was
verified. The scattering wavefunctions are shown in the panel
(b) of Fig. 1, where it is evident that the spin-singlet wavefunc-
tion is significantly larger than the spin-triplet wavefunction.

The correlation function (CF), C(k), can be obtained by
convolving the scattering functions with the estimated source
function (SF). The isotropic Gaussian function is the most
commonly used form55. Its functional form is given by Eq. (5),
where the radius r0 serves as the controlling parameter for the
source size,

S(r) =
1

(4πr2
0)

3/2 exp
(
− r2

4r2
0

)
. (5)

However, many studies have shown that the SF significantly
deviates from the Gaussian Ansatz with resonance contri-
butions26, 27, 50. This deviations is even more pronounced in
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Figures/Fig_2.pdf

Figure 2. Reconstruction of source functions from correlation functions using a neural-network mapping. A neural
network takes radial distance r as input (grey squares) and outputs the source function values Sθ (ri) (red squares) at discretized
points. These outputs are combined with known kernel functions |ψk(ri)|2 (blue squares) via convolution to produce predicted
correlation functions C(k j) = ∑

Nr
i ∆r Sθ (ri) |ψk(ri)|2 (yellow squares). The predicted results are compared with observed data

Ci (black squares) to compute the loss function L = ∑
Nk
j (C(k j)−C j)

2/error2
j . The gradients ∂L /∂θ are then used to

optimize the network parameters, {θ}.

small collision systems such as pp collisions47. A solid model-
ing of the strong resonance contribution to the source function
is imperative, yet currently lacking. Such deviations can in-
troduce non-negligible biases when attempting to understand
hadron-hadron interactions through Femtoscopy. From an
inverse problem perspective56, we propose an automatic dif-
ferentiable framework illustrated in Fig. 2, to reconstruct an
unbiased source function directly from correlation functions.
Here, an isotropic source approximation is adopted for pp
collisions, which is advantageous for smaller systems due to
the absence of evident collective flow.

In our framework, the SF is from outputs of a deep neural
network (DNN) Ansatz, collected as S⃗ = [S1,S2, · · · ,SNr ]. It is

illustrated with red squares in Fig. 2. The correlation function
can be calculated as,

C(k) =
Nr

∑
i

Si|ψk(ri)|2∆r, (6)

where Nr is the number of discrete radii and ∆r is the step size
of the wavefunction. As shown in Fig. 2, after the forward
process of the network and convolution, we obtain S⃗ and
subsequently compute the reconstruction error as the loss
function,

L =
Nk

∑
i
(Ci −C(ki))

2/σ
2
i , (7)

3/9
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where Ci represents the measured CF at ki with Nk points,
and σ2

i denotes the variance assigned to each uncorrelated
observation in the standard χ2 function. Furthermore, this
approach can be extended to multi-source observations by
summing over them.

To optimize the parameters of the network representations,
{θθθ}, with the loss function, we employ gradient-based algo-
rithms. The gradient of the loss function is derived as,

∇θθθ L = ∑
i, j
|ψk j(ri)|2

∂L

∂C(k j)
∇θθθ Sθθθ (ri), (8)

where ∇θθθ Sθθθ (ri) is computed using the standard backpropaga-
tion (BP) method in deep learning57. The reconstruction error
is propagated through each layer of the neural network, and,
combined with gradients derived via automatic differentiation,
these are used to optimize the network parameters.

Figures/Fig_3.pdf

Figure 3. Emission sources and proton-proton
correlation functions using a Gaussian or neural network
source with the Reid potential. The comparison of the
emission sources is shown in (a). Panel (b) shows the
proton-proton correlation functions with different emission
sources. The red line corresponds to the Neural Network
Ansatz, while the blue line represents the Gaussian source
with r0 = 1.32 fm. The shaded red band corresponds to the
68% Confidence Level (CL) uncertainty. The experimental
data (black dots) are obtained from pp collisions at√

s = 7 TeV by the ALICE collaboration37.

The proton-proton CF can be obtained by convolving the
scattering functions with the Gaussian source as Eq. (5), and
the Neural Network source, as illustrated in Fig. 3 (a) with the
Reid potential and Fig. 4 (a) with the Av-18 potential.

The width r0 of the Gaussian source is obtained by mini-
mizing the chi-squared value relative to the experimental data,

Figures/Fig_4.pdf

Figure 4. Emission sources and proton-proton
correlation functions using a Gaussian or neural network
source with the Av-18 potential. The comparison of the
emission sources is shown in (a). Panel (b) shows the
proton-proton correlation functions with different emission
sources. The red line corresponds to the Neural Network
Ansatz, while the blue line represents the Gaussian source
with r0 = 1.26 fm. The shaded red band corresponds to the
68% Confidence Level (CL) uncertainty. The experimental
data (black dots) are obtained from pp collisions at√

s = 7 TeV by the ALICE collaboration37.

yielding r0 = 1.32 fm for the Reid potential (χ2 = 90.72)
and r0 = 1.26 fm for the Av-18 potential (χ2 = 89.12). It is
evident that the CF cannot be accurately reproduced across
the full range of relative momentum in either case using the
optimized Gaussian sources. In contrast, the SF constructed
by the neural network (χ2 = 34.55 for the Reid potential
and χ2 = 35.81 for the Av-18 potential) provides an ade-
quate description of the experimental data, except for the
first data point, which exhibits a significant degree of un-
certainty and lies outside the predicted range, as shown in
Fig. 3 (b) and Fig. 4 (b) with red curves. A visual inspection
of the SF reveals that it adopts a non-Gaussian form with a
pronounced “tail”. Such behavior of the SF may be caused
by strong resonance contributions, as suggested in previous
studies26, 27, 44–46. This effect is even more pronounced in
small collision systems such as proton-proton and proton-lead
collisions47–53. In Ref.49, the SF is constructed by incorpo-
rating the effects of short-lived resonances, resulting in a
non-Gaussian shape. The exponential nature of resonance
decays manifests as exponential tails in the source distribu-
tion. Inspired by this framework, a source distribution for
baryons is built starting from two components: a Gaussian
core and a non-Gaussian halo. A Cauchy/Exponential or Lévy

4/9
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source as used in Refs.50–53, is often adopted to account for
the non-Gaussian features of the emission profile. This of-
fers a physically intuitive interpretation of the non-Gaussian
nature of the emission source. However, the results are sensi-
tive to the choice and number of the resonances and to their
momentum distributions, introducing potential model depen-
dence. In contrast, the SF in this study is constructed using
a model-independent deep neural network (DNN) approach.
This approach avoids assumptions about resonance contri-
butions and provides a more data-driven, model-independent
extraction of the SF directly from experimental measurements.

Figures/Fig_5.pdf

Figure 5. The correlation function of p−Λ pairs is
obtained using the Neural Network source, which was
extracted based on the Av-18 potential derived from
proton-proton correlations. The shaded red band
corresponds to the 68% Confidence Level (CL) uncertainty.
The experimental data (black dots) are from pp collisions at√

s = 7 TeV, as measured by the ALICE collaboration37.

For other hadron–hadron systems, such as p−Λ, Λ−Λ,
and so on, the interactions are less well known. For instance,
only 36 data points exist for p−Λ scattering, measured at
relatively high relative momenta and with sizable uncertain-
ties. The interaction potential between a proton and a hyperon
Λ has been described through many effective models58–64.
The results obtained from these models are rather different,
but all confirm the attractiveness of the p−Λ interaction for
low momenta. Because the mass and quark composition of a
hyperon is nearly identical to those of a proton, the hadron-
emitting source learned from the proton–proton correlation
function can be applied to study hyperon–nucleon correla-
tions and to investigate the p−Λ interaction interactions. The
correlation function of p−Λ is computed assuming the inter-
action follows the Usmani form58 with a parameter WC, which
determines the depth of the potential. The best agreement

with experimental data is obtained for a relatively shallow
potential well, WC = 2250 MeV, which is consistent with
preliminary lattice QCD results64, 65. A comparison with the
experimental data is presented in Fig. 5. This analysis thus
provides an alternative avenue for examining and constraining
the hyperon–nucleon interaction.

Conclusions
High-energy collision experiments reveal insights into the
hadronic interactions, yet understanding hyperon-nucleon in-
teractions remains limited. In this work, we employ deep neu-
ral networks within an automatic differentiation framework to
reconstruct proton-emitting sources using the well-established
Reid and AV18 interaction potentials. By comparison with
experimental data, a non-Gaussian source function exhibiting
a pronounced long-range tail is extracted. Notably, this work
constitutes the first data-driven determination of a hadron-
emitting source, significantly improving the extraction of hy-
peron–nucleon correlations, and providing a more accurate
and model-independent probe of hadronic interactions via
femtoscopy. We will extend this study to extract the three-
dimensional hadron-emitting source in heavy-ion collisions
in future.

Methods
In details, an L-layer neural network is used to represent
Sθθθ (r), with an input node r and a single output node Sθθθ (r).
The network comprises finite first-order differentiable mod-
ules, ensuring the continuity of the function Sθθθ (r) is natu-
rally preserved66–68. We adopt a default parameter setting
of width = 64 and L = 4 throughout this study, with 4,224
trainable parameters in total. For optimizing the neural net-
work representations, the Adam optimizer69 is utilized, with
a learning rate of 10−3 and training conducted over 10,000
epochs to approach the convergence.

Reconstruction of the source function S(r) from correlation
via C(q) =

∫
K(q,r)S(r)dr is a first-kind Fredholm inversion

and is routinely ill-posed in the absence of regularizations. In
this work we enforce the physically mandated constraints of
continuity and non-negativity by parameterizing S(r) with a
one-input/one-output neural network with positive activations,
Softplus, defined as σ(x) = ln(1+ ex). These designs render
the inverse problem well-posed; as shown in our previous
analysis56, 70–72, the admissible solution space is reduced. Em-
pirically, reconstructions from multiple random initializations
converge to the same S(r), corroborating uniqueness within
the constrained class.

To evaluate the uncertainty of the reconstruction, a
Bayesian perspective can be adopted, focusing on the pos-
terior distribution of the SFs for the given astrophysical obser-
vations, Posterior(θθθ SF|data). In this approach, an ensemble
of C(ki) samples is first drawn from the normal distribution
of real measurements. From this ensemble, the corresponding
SFs are deterministically inferred using maximum likelihood

5/9
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estimation. Given the ensemble of reconstructed SFs, impor-
tance sampling is applied to estimate the uncertainty associ-
ated with the desired posterior distribution. In this process, a
proper weight is assigned to each SF to ensure accurate uncer-
tainty quantification. Our results and uncertainty estimations
in the main text adhere to this strategy. In general, a physical
variable Ô can be estimated as:

Ō = ⟨Ô⟩=
Nsamples

∑
j

w( j)O( j). (9)

The standard deviation is given by, (∆O)2 = ⟨Ô2⟩− Ō2. The
weights are defined as similar in Ref.73,

w( j) =
Posterior(θθθ ( j)

SF |data)

Proposal(θθθ ( j)
SF )

(10)

∝
p(data|θθθ ( j)

SF )Prior(θθθ ( j)
SF )

p(θθθ ( j)
SF |samples( j))p(samples( j)|data)Prior(data)

,

where j denotes the index of a reconstructed SF (from the
sampled SF ensemble), and θθθ SF represents the parameter
set describing the SF. Here, p(samples|data) = N (Ci,∆Ci

2)
describes the probability of samples drawn from the normal
distribution of errors. Additionally, p(θθθ ( j)

SF |samples( j)) = 1, as
the reconstruction deterministically locates the corresponding
SF given the sampled C(ki) points. The likelihood function,
p(data|θθθ ( j)

SF ) ∝ exp(−χ2(C
θθθ
( j)
SF
)), quantifies the distances of

the predicted C(ki) values from the real observations. For
practical calculations, weights should be normalized as,

w̃( j) =
w( j)

∑ j w( j)
, (11)

and a cutoff is applied to mitigate the influence of outliers in
the samples. In the normalization procedure, Prior(θθθ ( j)

SF ) and
Prior(data) will be removed.

Data availability
The data that support the findings of this study are available
from the corresponding author upon request.

Code availability
The open codes can be found in a public GitHub repository,
https://github.com/Anguswlx/InferSFs.
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