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Young-onset monogenic disorders often show variable penetrance, yet the

underlying causes remain poorly understood. Uncovering these influences
could reveal new biological mechanisms and enhance risk prediction for
monogenic diseases. Here we show that polygenic background substantially
shapes the clinical presentation of maturity-onset diabetes of the young
(MODY), acommon monogenic form of diabetes that typically presents
inadolescence or early adulthood. We find strong enrichment of type 2
diabetes (T2D) polygenic risk, but not type 1 diabetes risk, in genetically
confirmed MODY cases (n=1,462). This T2D polygenic burden, primarily
through beta-cell dysfunction pathways, is strongly associated with earlier
age of diagnosis and increased diabetes severity. Common genetic variants

collectively account for 24% (P < 0.0001) of the phenotypic variability. Using
alarge population cohort (n = 424,553), we demonstrate that T2D polygenic
burden substantially modifies diabetes onset in individuals with pathogenic

variants, with diabetes risk ranging from 11% to 81%. Finally, we show that
individuals with MODY-like phenotypes (n = 300) without a causal variant
have elevated polygenic burden for T2D and related traits, representing
potential polygenic phenocopies. These findings reveal substantial
influence of common genetic variation in shaping the clinical presentation
of early-onset monogenic disorders. Incorporating these may improve risk
estimates for individuals carrying pathogenic variants.

Growing evidence suggests that factors beyond the primary muta-
tion play a greater role in rare monogenic conditions than previously
recognized"”. Monogenic diseases are classically defined by single,
highly penetrant (proportion of carriers who develop the disease) caus-
ative mutations. However, many individuals carrying the same patho-
genic variant show wide variation in disease expression, suggesting that
additional factors influence disease risk’. For example, our analysis of
pathogenic HNFIA mutations, typically associated with young-onset
diabetes, revealed striking differences in penetrance: over 90% in

clinically ascertained cohorts versus under 30% in population-based
cohorts by the age of 40 years*. This pattern of unexpectedly low
and variable penetrance has now been documented across multiple
monogenic conditions>®. Polygenic background has been proposed as
one possible contributor, particularly in age-dependent monogenic
disorders™,

Maturity-onset diabetes of the young (MODY) serves as an excel-
lent genetic disease model to investigate how common genetic variants
influence young-onset monogenic disease. MODY is the most common
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autosomal dominant form of monogenic diabetes contributing up to
3% of all diabetes under the age of 30 years’. In this study we focused
on the HNF1A, HNF4A and HNFI1B genes (collectively referred to as
HNF-MODY). The pathogenic variantsin these three genes account for
>90% of MODY cases'’ ™. These variants cause beta-cell dysfunction
leading to age-dependent diabetes typically presenting before age
25years". The availability of extensive genome-wide association data
forbothtypelandtype?2diabetesand related metabolic traits, widely
measured diabetes markers such as HbAlc allowing accurate diagno-
sis, and the availability of large MODY patient cohorts make MODY
particularly suitable for studying common and rare disease interplay.
Together, these resources provide a robust framework for examining
how polygenic factorsinteract with young-onset monogenic disorders.

Understanding theseinteractionsis crucial both biologically and
clinically. It can uncover new biological pathways and enhance disease
prediction, knowledge that is essential for family counselling. This
becomesincreasingly important as genomic screening extends to clin-
ically unselected cases and healthy newborns®. Previous studies have
demonstrated that polygenic background can modify the penetrance
of'various monogenic conditions, including familial hypercholester-
olaemia, obesity, kidney disease and long QT syndrome”* ™, These
studies areimportant but often lack adefined age of disease onset. Pre-
vious studies suggested that polygenic risk for type 2 diabetes (T2D)
may influence the age at MODY diagnosis'”'. However, those studies
used small sample sizes (n < 410), focused only on HNF1A-MODY,
and did not assess diabetes-related metabolic traits or partition T2D
polygenic scores to explore the underlying mechanisms in detail. A
more recent study investigated the interaction between T2D poly-
genicrisk and rare intermediate-effect variants in HNFIA and HNF4A
within population cohorts but did not include clinically confirmed
MODY cases with pathogenic variants”. No previous work has com-
prehensively analysed how common genetic backgrounds influence
diabetes severity in MODY or quantified their overall contribution to
the MODY phenotype. Finally, it remains unclear whether the com-
mon genetic background also contributes to MODY-like cases without
pathogenic variants.

In this study, we investigated the interplay between polygenic
background and age-dependent monogenic disorders, using MODY as
amodel disease. Inthe largest MODY cohortstudied to date, we demon-
strate that common genetic variants explain asubstantial proportion of
phenotypic variation, disease expression and may explain MODY-like
phenotypesinindividuals without identified monogenic causes.

Results

Polygenicburden of type 2 diabetes is significantly enriched

in genetically confirmed MODY

While common variants are known to modify disease expression in
other monogenic disorders, their influence on HNF-MODY remains
relatively unexplored. We investigated this assumption by ana-
lysing polygenic scores (PGSs) for T2D, type 1 diabetes (T1D) and
related metabolic traits (n=9) in 1,462 clinically referred patients
with HNF-MODY (Supplementary Tables 1-3). We compared these
scores with those of 7,645 individuals without diabetes and 4,773
individuals with T2D (Supplementary Table 1). We found significantly
higher polygenicscores for T2D, fasting glucose, fasting insulin and
waist-hip ratioin HNF-MODY patients compared with non-diabetic
controls (0.09-0.42 s.d. increase, all P < 0.005) but no enrichment
for T1D PGS (Fig. 1a). The T2D PGS remained the strongest contrib-
utor (odds ratio (OR) 1.46, 95% confidence interval (CI) 1.36-1.58,
P <0.0001) after accounting for other PGSs (Fig. 1b). This enrichment
was lower than observed in T2D cases and independent of parental
diabetes history (Fig. 1c) and after removing variantsin HNFIA, HNF4A
or HNF1B genes from the PGS (0.4 s.d. higher than control, 95% CI
0.35-0.46, P<0.0001). To identify which T2D pathways contrib-
uted to this enrichment, we analysed eight recently developed T2D

pathway-specific hard cluster PGSs*® (Fig. 1d). Of these, the meta-
bolic syndrome (0.20 s.d. increase), residual glycaemic (0.17 s.d.)
and beta-cell proinsulin-positive (0.16 s.d.) pathway scores showed
the strongest enrichments in patients with MODY (all P <4 x1075).
Sensitivity analyses by each gene and limited to probands showed
consistent findings (Extended Data Figs. 1 and 2). Supporting sub-
stantialinterplay between rare and common variation, we observed
aninteraction between T2D PGS and pathogenic variants across the
spectrum of predicted deleteriousness. Carriers of less-damaging
missense variants showed relatively higher T2D polygenic risk com-
pared with carriers of more deleterious protein-truncating variants
(Extended Data Fig. 3). Together, these data suggest that common
T2D-associated variants contribute substantially to clinically diag-
nosed HNF-MODY.

Increased type 2 diabetes polygenic burden was associated
with an earlier onset and greater phenotypic severity in
patients with genetically confirmed MODY

We next assessed how the polygenic burden of T2D, T1D and related
metabolic traits influenced both the age of diagnosis and severity of
diabetes in patients with clinically identified HNF-MODY. We defined
diabetes severity as either requiring insulin treatment or having
HbAIlc > 8.5% as proposed previously*. Only T2D PGS demonstrated
asignificantassociation with age of diagnosis after adjusting for other
PGSs (P<3.3x107%), with1s.d. increase linked with a1.19 years (0.63-
1.75) earlier diagnosis (Fig. 2a). In contrast, both the T2D and body mass
index (BMI) PGSs were significantly associated with diabetes severity,
with ORs 0f1.24 (95% C11.07-1.44, P=0.004) and 1.32 (95% Cl1.16-1.51,
P<3.1x107%), respectively (Fig. 2b). Our pathway analysis revealed
that the beta-cell proinsulin-positive pathway primarily drove the
T2D PGS effect on diagnosis age (0.83 years (0.33-1.32) versus 0.67
(0.15-1.18) years for all others combined) (Fig. 2c). Whereas the obe-
sity pathway demonstrated the strongest association with diabetes
severity (OR1.36,1.19-1.56 versus 1.19,1.04-1.35 for all other pathways
combined) (Fig. 2d). As expected, only the BMI PGS was significantly
associated with measured BMI (Supplementary Table 4). Age of diag-
nosis and severity associations were maintained even after adjust-
ing for clinical features and genetic aetiology. However, we observed
strong effects of sex (females diagnosed 2.28 years earlier), maternal
diabetes history (diagnosed 3.54 years earlier) and BMI (0.24-year
earlier diagnosis) on age of diagnosis (Supplementary Tables 5and 6).
Sensitivity analyses by each gene show directional consistent results
(Supplementary Table 7). We also conducted additional sensitivity
analyses in 413 HNF-MODY cases with available birthweight data and
found that associations between T2D polygenic scores and clinical
outcomes remained largely unchanged after adjusting for birthweight
(Supplementary Tables 8and 9). These findings highlight the complex
interactionbetween genetic and clinical factors that shape the clinical
presentation of HNF-MODY.

Type 2 diabetes polygenic burden modifies the risk of diabetes
in clinically unselected carriers of pathogenic HNF-MODY
variants

We next investigated how polygenic T2D background influences diabe-
tesriskin carriers of pathogenic HNF-MODY variants. To assess this, we
needed toinvestigate individuals not ascertained clinically to see the
clear effect of polygenic background. Therefore, we analysed 424,553
European individuals with whole exome sequencing data from the
clinically unselected UK Biobank population cohort. Among these, 100
individuals were identified as carriers of pathogenic variantsin HNFIA
(n=34), HNF4A (n = 51) or HNFIB (n =15) (Supplementary Tables 10
and 11). Using a T2D PGS that did not include UK Biobank in the dis-
covery cohort”, we found thatamong mutation carriers, diabetes risk
varied substantially by T2D PGS. Compared with non-carriers with
intermediate T2D PGS (middle three quintiles), carriers’ risk ranged
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Fig.1|Elevated polygenic risk in HNF monogenic diabetes. a, Standardized
differences in upper-level diabetes-related polygenic scores, determined by
linear regression adjusting for the first ten within-cohort principal components.
HNF-MODY carriers (orange, n =1,462) and T2D cases (blue, n=4,773) are
compared with controls (dashed black line, n = 7,645). b, Adjusted ORs for T2D
and HNF-MODY cases versus controls, assessed using a logistic regression
modelincluding each PGS, sex, age, BMI and the first ten within-cohort
principal components as covariates. ¢, Adjusted ORs for T2D PGS enrichment

Average standardized PGS

Clinical features alone A Clinical features + parental diabetes history

in HNF-MODY and T2D cases under two models: (1) adjusting for covariates as
described inb (yellow); and (2) adjusting for the same covariates plus family
history of diabetes (blue). d, Standardized differences in T2D hard cluster
partitioned polygenic scores. All scores are standardized to have amean of 0
ands.d. of 1in controls. ORs represent the change in risk associated withals.d.
increase in the respective polygenic score. Error bars represent 95% Cls. Asterisks
denote Bonferroni-adjusted statistically significant differences from controls.
Sample sizes are consistent across a-d.

from 8.5-fold (95% Cl: 3.65-19.85) in those in the lowest T2D PGS quin-
tileto 40.22-fold (95% C114.95-108.24) in those in the highest quintile
(Fig. 3a). HNF-MODY carriers had a 6.67-fold higher risk of diabetes
(95% C14.39-10.12, P=4.23 x 10™°) compared with non-carriers in the
highest quintile, highlighting the strong impact of pathogenic muta-
tions. Despite the limited sample size, diabetes risk seemed to rise
consistently across the range of T2D PGS, with diabetes risk ranging
from11.4% (first percentile, 95% C16.96-15.88) to 81.7% (99.9th percen-
tile, 95% C175.17-88.34) (Fig. 3b). Notably, non-carriers in the 99.9th

T2D PGS percentile showed a17.7% risk (95% C117.3-18.2), which was
similar to mutation carriers with lowest T2D PGS. A sensitivity analysis
using T2D PGS, which excluded variants within 1 Mb of the three MODY
genes, showed similar effect sizes (OR 2.17,1.2-3.91 per 1s.d. change
whole PGS versus 2.06,1.16-3.82 without MODY genes). These data
together suggest a substantial contribution of T2D polygenic back-
ground on diabetes riskin HNF-MODY, while some individuals without
MODY mutations but with extreme polygenic risk may reach a similar
risk as HNF-MODY.
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Fig.2|Increased polygenicrisk associated with earlier and more severe
diabetes diagnosis in HNF-MODY. a, Association between polygenic scores

for upper-level diabetes-related traits and age of diabetes diagnosis. Estimates
were derived using a mixed-effects linear model with family as arandom effect
and adjusted for other polygenic scores and the first ten within-cohort principal
components. b, Association between polygenic scores and risk of severe diabetes
(defined as HbAlc > 8.5% or insulin treatment at recruitment), using a mixed-
effects logistic model with the same covariates asin a. In total, 676 out of 1,462
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MODY carriers met the criteria for severe diabetes. ¢,d, Association of T2D-
partitioned risk scores with age of diabetes diagnosis (c) and diabetes severity
(d), estimated using linear mixed-effects models adjusted for the first ten within-
cohort principal components. Dots represent the estimates, with lines indicating
95% Cls. Asterisks highlight significant differences (P < 0.0056), after Bonferroni
correction. Estimates represent the effect of als.d. increasein the respective
polygenic score. All analyses in a-d were conducted in 1,462 MODY cases.

Common genetic variants explain 24% of phenotypic
variancein MODY

Having observed substantial contribution of polygenic background,
we next aimed to quantify the overall contribution of common
genetic variants to MODY. Using genome-wide complex trait analysis
(GCTA) genome-based restricted maximum likelihood (GREML),
we estimated common variant (minor allele frequency > 0.01) sin-
gle nucleotide polymorphism (SNP) heritability (h%), on the liabil-
ity scale. Our analysis revealed a SNP heritability of 23.9% (95% ClI
17.2-30.7%, P < 0.0001) in individuals with HNF-MODY (Fig. 4).
This estimate was only slightly lower than in polygenic T2D cases
30.8% (95% Cl 25.08-36.61%, P < 0.0001). The heritability esti-
mate remained consistent across multiple approaches, including
restricting to HNF1A-related monogenic diabetes, phenotype cor-
relation-genotype correlation regression and applying GREML
estimation in linkage-disequilibrium adjusted kinships (LDAK)
(Supplementary Table 12). To determine how much of this com-
mon variant heritability stems from T2D-associated variants, we
calculated SNP-heritability for MODY comparing against 4,461 T2D

cases, both with and without T2D PGS adjustment. The heritability
decreased to 20.3% when compared with T2D, and further dropped to
17.2% (95% C14.7-29.7%, P = 0.035) after T2D PGS adjustment (Fig. 4).
These findings reveal that common genetic variants substantially
influence MODY’s clinical presentation. At least one-third of this
influence comes from T2D variants, suggesting the presence of
T2D-independent genetic modifiers in HNF-MODY.

Clinically referred MODY cases without a pathogenic

variant have substantially higher polygenic burden of T2D
andrelated traits

Following our observations of substantial common genetic variant con-
tributions in patients with mutation-positive MODY, we investigated
whether higher polygenic background could also explain diabetes
inindividuals with a MODY phenotype but without causative muta-
tionsinknown monogenic diabetes genes. We studied 300 individuals
referred for MODY genetic testing from routine clinical practice with
diabetes diagnosis before age 30 and BMI < 30 kg m™, and without
evidence of T1D (positive islet autoantibodies, C-peptide <200 pmol I,
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Fig. 3| Polygenic background modifies diabetes risk in clinically unselected
HNF-MODY carriers. a, ORs for diabetes riskin HNF-MODY carriers and
non-carriers, stratified by T2D polygenic risk levels. Points represent ORs with
error bars representing 95% Cls. Low risk is defined as the bottom 20% of T2D
polygenic scores, high risk as the top 20% and intermediate risk as the remaining
60%. n=88,905,265,079 and 70,469 for non-carriers and n =28, 55and 17 for
carriers, for low, intermediate and high T2D PGS risk, respectively. Diabetes risk
was estimated using a two-sided logistic regression model adjusted for sex, age,

family history of diabetes, the first ten ancestry principal components and BMI.
b, Predicted probability of diabetes at baseline across each percentile of T2D
polygenic risk, assessed using a logistic model with T2D polygenic score as a
continuous variable and the same covariates as in a. Points represent predicted
mean probability per percentile, and shaded regions represent 95% Cls. Dashed
linesindicate the baseline diabetes risk at the 50th percentile of T2D polygenic
scores for HNF-MODY carriers and non-carriers.

or high T1D genetic risk score >50th centile of the T1D population)®.
These unsolved MODY cases showed similar age of diagnosis and BMI
to mutation-positive MODY cases (P> 0.05 for both) (Fig. 5a,b and
Supplementary Table 13). As expected, these unsolved cases showed
no excess T1D PGS but displayed a striking 1.18 s.d. (95% C11.07-1.29,
P <0.0001) higher T2D PGS than controls (Fig. 5¢c). This polygenic
burden was higher than both mutation-positive MODY cases by 0.73
s.d.and T2D cases by 0.52 s.d. (all P< 0.0001) (Extended Data Fig. 4).
Compared with controls, we also observed an excess polygenicburden
of BMI and waist-hip ratio in these cases (Fig. 5d,e). Unsolved cases
demonstrated an enrichment in all T2D partitioned PGSs, with the
largest difference from controls in the beta-cell proinsulin-positive
cluster (0.62 s.d. increase, 95% Cl1 0.51-0.74, P < 0.0001) (Extended
DataFig. 5). Excess biparental diabetes history further supported the
observed excess polygenic enrichment in unsolved cases compared
with T2D (53% one parent, 15.7% both parents with diabetes versus 28.9%
and 4%, respectivelyin T2D) (Extended Data Figure 6). These findings

suggest that while some unsolved cases may harbour novel monogenic
diabetes mutations, many likely represent polygenic phenocopies
driven by an excessive polygenic burden of T2D and related traits.

Discussion

In this study, we demonstrate that HNF-MODY has a significant poly-
geniccomponent, with common genetic variation substantially influ-
encing disease onset and severity in genetically confirmed MODY cases.
Theelevated polygenic burden of T2D-related traits may explainMODY
phenocopies lacking pathogenic mutations.

MODY’s genetic architecture seems more complex than its tradi-
tional characterization as a purely monogenic disorder. We found that
common genetic variations explain approximately 24% of phenotypic
variance in clinically identified cases. This estimate is substantially
higher than previously reported in other monogenicdisorders (long QT
syndrome, 15%" and developmental delay, 11% (ref. 23)) and approaches
that of T2D. Such high polygenic contribution is unexpected for a
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Fig. 4| SNP-based heritability estimates for MODY. SNP-based h2 estimates
were calculated in unrelated individuals using GCTA GREML-LDMS, stratified
into four LD bins of equal size to construct the genetic relationship matrix, with
sex, age and the first ten principal components within the cohort as covariates.
Barsrepresent heritability point estimates and error bars represent the 95%
confidence intervals. Estimates for HNF-MODY carriers (n = 864) and T2D cases
(n=4,461) were compared with non-diabetic controls (n = 6,935). h?is shown
on the liability scale for T2D (prevalence, 0.1) and MODY (prevalence, 0.0005).
MODY and T2D cases were compared, adjusting for T2D polygenic score.

presumed monogenic disease and may reflect its young-onset nature.
T2D-associated variants had the strongest effect among the traits
we analysed, likely because of shared pathways in beta-cell dysfunc-
tion. We found that T2D polygenic risk influenced age at diagnosis
mainly through proinsulin-associated beta-cell pathways, which sup-
ports current understanding that HNF-MODY arises primarily from
beta-cell dysfunction. Our findings on the relationship between T2D
polygenic scores and age at diagnosis are consistent with smaller stud-
iesin HNFIA-MODY'"'8 The absence of interaction with T1D polygenic
risk aligns with the current understanding that T1D variants primarily
affect autoimmune pathways rather than transcriptional networks
disrupted in HNF-MODY?*. This genetic distinction supports using T1D
polygenic risk scores to differentiate MODY from early-onset TID**.

Our findings reveal distinct genetic pathways modifying differ-
ent aspects of MODY. Beta-cell proinsulin-related variants predomi-
nantly influence age of diagnosis, while obesity-associated variants and
beta-cell pathways drive disease progression. This supports aliability
threshold model where pathogenic MODY variants drive early-onset
disease, with the polygenic background modifying overall disease
risk. We observed that the polygenic contribution is not constant
but depends on underlying pathogenic variant where less-damaging
variants require more contribution for disease expression and clinical
diagnosis. Importantly, we show that T2D polygenicrisk strongly modi-
fies diabetes risk in individuals carrying pathogenic MODY variants.
Previous studies have reported similar effects for intermediate-effect
variants in HNF1A and HNF4A in population cohorts, where common
T2Drisk variants altered the penetrance of those rare alleles”. Notably,
pathogenic variant carriers with low T2D polygenic risk show sub-
stantially lower diabetes risk, with about half remaining disease-free
in the population cohort. This explains the disparity between MODY
prevalence in clinical referrals (1:10,000) versus genetic screening
(1:2,000)**. Together, these data demonstrate that MODY’s pathog-
enesis involves substantial polygenicinteraction rather than following
asimple deterministic monogenic model.

Some unsolved MODY cases may represent polygenic pheno-
copies. Our small cohort of mutation-negative cases shows substan-
tial enrichment of T2D polygenic risk exceeding that seen in typical
T2D. This enrichment extends beyond T2D to other related traits,

supporting complex polygenic aetiology. Similar patterns are observed
in other monogenic conditionslike long QT syndrome’®, developmental
delay” and familial hypercholesterolaemia', where mutation-negative
patients show higher polygenic burden than mutation-positive cases.
These unsolved cases likely represent a heterogeneous group with
multiple underlying causes, including potential overlap with previ-
ously defined T2D subtypes*-*%, Although our sample size limited
detailed clustering, it is plausible that some individuals may align
with distinct mechanistic pathways, as observed in these subgroups
of T2D. While some may resemble the severe insulin-deficient diabetes
subgroup, our findings suggest broader enrichmentacross all T2D risk
pathways. This implies that the unsolved MODY group does not map
cleanly onto existing subtypes. It likely includes individuals at the
extreme tail of the polygenic risk distribution, possibly carrying rare,
low-penetrance variants thatact additively with high polygenicburden
todrive clinical referral. Collectively, these findings suggest the pres-
ence of polygenic phenocopies. However, due to the relatively small
samplessize, these results should be considered as preliminary. Further
studies are needed to replicate these observations and elucidate the
underlying mechanisms.

Our findings support the hypothesis that monogenic disorders
existonacontinuum, where both pathogenic mutations and polygenic
background shape disease manifestation®. Age-dependent conditions,
such as MODY, are likely to have alarger polygenic contribution com-
pared with neonatal-onset disorders. As evidence accumulates, this
observation may extend to the majority of monogenic disorders, albeit
to varying degrees. However, each condition will require individual
evaluation to quantify the relative contributions. With the declining
cost of genetic testing and the increasing identification of presymp-
tomatic carriers throughincidental findings*° and newborn screening
programmes®, there is agrowing need to refine disease risk prediction.
Currently, risk assessment relies solely on the presence of pathogenic
mutations. To provide more precise risk stratification, it may be nec-
essary to incorporate non-mutation factors, such as polygenic risk
scores or family history, asis already done in conditions such as breast
cancer®. As whole-genome sequencing moves toward becoming a
first-line test, a single assessment could offer comprehensive genetic
information, incorporating both monogenic and polygenic risk. How-
ever, clinical implementation will require large-scale, multi-ancestry
MODY datasets and collaboration across dedicated cohorts to enable
robust model development, validation and equitable application.
Further researchis needed to evaluate the added clinical value of this
approachinimproving diagnosis and risk prediction.

Although this is the largest MODY study to date, the sample size
for individual genes and unsolved cases limited our power to detect
subgroup-specific effects. Despite this, the direction and strength of
associations were consistent across the HNF-MODY subtypes, support-
ing the generalizability of our findings. The predominantly UK-based,
Europeanancestry cohorts limit generalizability to other populations.
While MODY variantsin the UK Biobank were not Sanger-confirmed, we
minimized false positives through manual IGV review and strict quality
filtering. The UK Biobank’s healthy volunteer bias likely underestimates
true MODY penetrancein general populations due to underrepresen-
tation of early-onset diabetes. Furthermore, our sample size limited
more detailed analysis of non-clinically referred HNF-MODY carriers.
Ourlocal MODY cohortis derived fromroutine clinical referrals across
the UK, so case ascertainment may be influenced by environmental
factorssuch as healthcare access, socioeconomic status, clinical prac-
tice variability and other unmeasured confounders. We adjusted our
analyses of age at diagnosis and disease severity for several known or
measurable confounding factors, including variant location, family
ID, proband status, BMI, parental diabetes, birthweight and year of
diagnosis. However, we could not adjust for lifestyle-related factors
such as diet, physical activity, early-life factors, educational attain-
ment, social status, treatment preference or adherence. While these
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Fig. 5| Unsolved MODY cases exhibit extreme T2D polygenic risk while
phenotypically resembling typical MODY cases. Distribution of key
characteristics and polygenic risk across MODY carriers (orange, n =1,462), T2D
cases (blue, n =4,773) and unsolved MODY cases (pink, n =300). a,b, Distribution
of the clinical characteristics BMI (a) and age at diabetes diagnosis (b), collected
at patient referral. Box plots display the median and interquartile range, with
individual data points overlaid. Statistical significance between groups is
indicated; ***P < 0.017; NS, not significant, as determined by two-sided ¢-tests.

¢, Mean T2D polygenic risk across groups versus controls (n = 7,645), assessed

MODY

Adjusted OR

Unsolved MODY 12D

using a two-sided linear regression model adjusting for the first ten within-cohort
principal components. d, Mean polygenic risk score differences for diabetes-
related traits in unsolved MODY cases versus controls, using the same method
asinc.e, Adjusted ORs for unsolved MODY cases versus controls, assessed using
atwo-sided logistic regression model including each PGS, sex, age, BMl and the
first ten within-cohort principal components as covariates. Ind and e, asterisks
denote Bonferroni-corrected significant differences from controls (P < 0.0056).
Inc-e, dots represent point estimates, with error bars representing 95% Cls.

limitations remain, the large sample size may mitigate some of their
effects. The observation of similar associations between T2D risk and
age at diagnosis in multigenerational pedigrees from Finland'® sup-
ports the robustness of our findings and suggests that these biases
importantbut does not explain the all the results.

In summary, using MODY as a model disease, we demonstrate
substantial interplay between monogenic mutations and polygenic
background in young-onset monogenic disorders. Our findings sug-
gest that future approaches to disease prediction will require integra-
tion of monogenic, polygenic and environmental factors to improve
clinical utility.

Methods

Study populations

This study complies with all relevant ethical regulation and was
approved by the appropriate ethics committees. Our study com-
bined three ethically approved cohorts. In our local MODY cohort,
all probands or their guardians provided informed consent, and the
North Wales Ethics Committee approved the study, with Genetic Beta
Cell Research Bank approving sample access. The National Institute for
Health Research (NIHR) Exeter Clinical Research Facility management

committee approved access to these samples and genotype data for our
T2D and non-diabetic controls. This research also utilized data from
the UK Biobank resource carried out under UK Biobank application
number 103356. UK Biobank protocols were approved by the National
Research Ethics Service Committee.

Exeter MODY cohort

MODY individuals with confirmed pathogenic variants. We analysed
individuals referred for monogenic diabetes genetic testing at the
Exeter Genomics Laboratory, Royal Devon University Healthcare NHS
Foundation Trust, Exeter, UK. These referrals originated from clinical
suspicion of MODY during routine clinical care in the UK. These indi-
viduals were found to have likely pathogenic or pathogenic variants
either by Sanger sequencing or gene panel test performed as part of
routine clinical care. Our cohort comprised Europeanindividuals with
diabetes and carrying pathogenic variantsin HNFIA (n=997), HNF1B
(n=145) or HNF4A (n=320). We focused on the more commonly diag-
nosed, age-dependent forms of MODY (HNFIA, HNF4A and HNF1B). We
excluded GCK-MODY becauseit represents afundamentally different
disease: individuals present with lifelong, mild fasting hyperglycaemia
that does not progress with age, does not require treatment and is not
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associated with excess complications™. In this context, age at diagno-
sis reflects the timing of detection rather than age at disease onset.

Unsolved MODY individuals. We evaluated 300 European individu-
alsreferred fromroutine clinical care in the UK with suspected MODY.
All participants received their diabetes diagnosis before age 30 years
andlacked clinical features suggestive of T2D (BMI = 30 kg m?) or T1D
(positive islet autoantibodies, C-peptide <200 pmol I and a ten-SNP
T1D geneticrisk score above the 50th centile of the gold-standard T1ID
population from the WTCCC study)*. These individuals underwent
comprehensive genetic testing for allknown monogenic diabetes genes
(n=58) and were not found to have pathogenic variants in these genes.
The clinical features of these solved and unsolved MODY cases, at
referral for genetic testing, are summarized in Supplementary Table 1.

Type 2 diabetes and non-diabetes control cohort

We analysed participants from two ethically approved population
cohorts in Southwest England: the Exeter 10000 study (https://
exetercrfnihr.org/about/exeter-10000/)** and the Diabetes Alliance
for Research in England study (https://www.diabetesgenes.org/
current-research/dare/)*. These studies recruited unselected par-
ticipants through primary care practices across the Southwest United
Kingdom. At recruitment, participants completed baseline question-
naires and provided fasting blood and urine samples for measurement
of diabetes-related markers, including fasting glucose and HbAlc. Our
analysisincluded Europeanindividuals who underwent array genotyp-
ing as part of these studies. We classified participants as having T2D if
they either did not require insulin treatment or initiated insulin treat-
ment after 36 months from diagnosis, thereby excluding potential
misclassified T1D cases. We defined controls as individuals without
aknown diabetes diagnosis and HbAlc < 48 mmol mol™ (6.5%)*°. The
final cohort comprised 7,645 controls and 4,773 individuals with T2D,
with their clinical characteristics presented in Supplementary Table 1.

UK Biobank cohort

The UK Biobank represents alarge-scale, prospective population-based
study comprising approximately 500,000 UK residents aged 40-70
years at enrolment®. Recruitment occurred between 2006 and 2010,
with comprehensive data collection through multiple channels: par-
ticipant questionnaires, structured interviews and biomarker meas-
urements”. The study supplemented this information with medical
history data from Hospital Episode Statistics records coded using
ICD-9 and ICD-10 codes. We defined diabetes status using three criteria:
self-reported diagnosis, HbAlc levels 6.5 % at recruitment or active
diabetes treatment at recruitment. Our study cohort consisted of
424,553 Europeanindividuals who underwent exome sequencing and
array genotyping. Clinical characteristics of these individuals can be
found in Supplementary Table 10. We analysed the exome sequence
data to identify individuals with likely pathogenic and pathogenic
variants in HNFIA/HNF4A/HNFI1B as described previously*, with details
of variants identified in Supplementary Table 11.

Genetic analysis

MODY pathogenic variants in Exeter MODY cohort and UK Biobank.
For the Exeter MODY cohort, all referred patients were screened for
potential MODY-associated variants using either Sanger sequencing
or gene panel testing, following the methodologies detailed by Ellard
et al.’®. For the UK Biobank participants, we utilized exome sequence
datatoidentify carriers of pathogenic MODY variants. We annotated all
variants using clinically validated transcripts: GenBank NM_000545.6
for HNF1IA, NM_000458.4 for HNF1B and NM _175914.4 for HNF4A. We
classified variants according to the American College of Medical Genet-
icsand Genomics/Association of Molecular Pathology guidelines, desig-
nating themas either likely pathogenic (class 4) or pathogenic (class 5)*.
This classification process followed our established protocols for the

local Exeter cohort and aligned with our recent study’s methodology*.
Supplementary Table 11 presents a comprehensive list of variants
identified in the UK Biobank cohort.

Array genotyping. Exeter MODY, T2D and non-diabetic controls. We
performed array genotyping using the Infinium Global Screening
Array platform. Our comprehensive quality control protocol excluded
samples with call rates below 98%, sex mismatches, relationship dis-
crepancies or inbreeding coefficients exceeding 0.1. At the variant
level, we removed markers with missingness above 2%, minor allele
frequency below 5% or deviation from the Hardy-Weinberg equilibrium
(P<1x107%). We applied these quality control measures both indepen-
dently for each batch and following batch integration. We then used
linkage disequilibrium (LD) pruned markers for genotype imputation
through the TOPMed reference panel v.2 (ref. 40) via the Michigan
Imputation Server*'. To determine genetic ancestry, we compared our
datawith reference populations from the 1000 Genomes Phase 3 and
Human Genome Diversity Project, implementing a principal compo-
nentanalysis (PCA) approach within the GenoPred Pipeline (v.2.2.1)**,
For relationship inference, we analysed LD-pruned data using the
KING robust algorithm (v.2.2.4) to identify unrelated individuals up
to the third degree**. To better capture the within-cohort population
structure, we conducted PCA using FlashPCA (v.2.0)*. Initially, we
calculated principal components in unrelated European individuals
and then projected these onto related European individuals.

UK Biobank. The UK Biobank individuals were SNP-genotyped using
the UKBIiLEVE array for the first 50,000 individuals, with the remain-
ing using the UK Biobank Axiom array. This dataset underwent central
quality control by the UK Biobank and was imputed to the TOPMed
reference panel*’. Approximately 450,000 individuals from the UK
Biobank Array also underwent exome sequencing using the IDT xGen
Exome Research Panel v.1.0. Detailed sequencing methodology for
UK Biobank samples has been described previously*. In brief, vari-
antswere called using GATK v.3.0 filtering variants with an inbreeding
coefficient <—0.03 or without at least one variant genotype of DP > 10,
GQ=20and, ifheterozygous, AB > 0.20. For this analysis, weincluded
424,553 individuals who had both exome and array data and were
of European ancestry, inferred from projected PCA using the same
approachas for thelocal cohort.

Polygenicscore calculation

We calculated polygenic scores for T2D*°, TID* and seven diabetes-
related traits**~?, alongside eight pathway-specific T2D risk scores®.
We constructed weighted polygenic scores using genome-wide sig-
nificant variants. For traits with comprehensive genome-wide asso-
ciation study (GWAS) summary statistics available, we implemented
genome-wide calculations to capture additional genetic signal.
Our computational pipeline utilized PLINK 1.9’s score function for
genome-wide significant variant-based scores®. For the genome-wide
polygenicscores, weimplemented the GenoPred v.2.2.1 pipeline with
the LDpred2 auto model, enabling comprehensive processing of GWAS
summary statistics*>**. Further details are available in Supplementary
Table 3, including the specific approach used for each trait, including
the calculation method, number of variants incorporated and the
source GWAS studies.

Heritability estimation

To estimate the common variant contribution to MODY and T2D,
SNP-based heritability was estimated in unrelated individuals using
GCTA GREML-LDMS, stratifying into four LD bins of equal size to con-
struct the genetic relationship matrix.” To test the validity of these
estimates we ran phenotype correlation-genotype correlation and
restricted maximum likelihood approachesimplemented in LDAK, using
thinned predictors to construct the kinship matrix***”. We used sex, age
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and the first ten within-cohort principal components as covariates for
each method. For MODY, disease prevalence was set at 0.0005* and
0.00025%, and for T2D, at 0.1°® (Table S12). Variants with an imputation
quality >0.9 and minor allele frequency >1% were used to in this analysis.

Statistical analysis

Assessing common variant enrichment in MODY cohort. To assess
polygenic risk in MODY carriers and T2D cases, we employed several
differentapproaches. Toinitially assess whether any common variant
pathways contribute to clinically referred HNF-MODY we tested nine
PGSs for enrichment. All scores were standardized using the control
group asreference (mean =0, s.d. =1). Totest differences in polygenic
scores from controls, we used linear models adjusting within-cohort
principal componentsto control for population structure. We assessed
each score individually first, however, due to well-known overlaps of
variants across these related metabolic traits, we then performed mul-
tivariable logistic regression analysis to identify the key independent
common variant pathways contributing to HNF-MODY after adjusting
for sex, age, BMIand the first ten within-cohort principal components.
We repeated these steps with unsolved MODY cases to examine the
hypothesis that they have excess polygenic risk. Owing to the high
parental history in MODY that may tag inherited polygenic risk, we
then performed further analysis adjusting for parental history of dia-
betes. We performed sensitivity analysis by limiting to each gene and
to probands alone. To investigate whether less-deleterious variants
are associated with higher polygenic enrichment, we first grouped
variants into missense and protein-truncating variants (PTVs), with
PTVs assumed to be the most deleterious due to their likely haplo-
insufficiency effect. We further stratified missense variants by REVEL”
(Rare Exome Variant Ensemble Learner) score (<0.9 versus >0.9), using
itasa proxy for functional severity.

We aimed to include the largest number of MODY cases to maxi-
mize the power of the study but were limited by sample and data avail-
ability. Based on our final sample size, a post hoc power calculation
suggested that we had 80% power to detect minimum differences of
0.08,0.16 and 0.05 s.d. in polygenic score between controls and geneti-
cally confirmed HNF-MODY, unsolved MODY and T2D, respectively.
The minimum detectable differences for the clinically referred MODY
genetic subgroups were 0.23, 0.16 and 0.094 s.d. for HNF1A, HNF1B
and HNF4A, respectively.

Assessing impact of common variants on HNF-MODY phenotype.
To investigate how common genetic variants influence the clinical
presentation of HNF-MODY, we used mixed-effects models to assess
associations between PGSs and key outcomes. Specifically, we applied
mixed linear models to evaluate the relationship between PGSs and age
atdiabetes diagnosis, and mixed logistic models to assess associations
with diabetes severity. To account for potential within-family correla-
tions that could bias associations, all models included family ID as a
random effect. Initialmodelsincluded all nine polygenic scores toiden-
tify independent genetic pathways contributing to variationin clinical
presentation. Further analysis focused onscores that were found tobe
independently associated with modifying the clinical presentationin
HNF-MODY, further adjusting for confounding factors that have been
previously reported or suspected toinfluence clinical outcomes. This
included sex, age, BMI, year of diabetes diagnosis, proband or family
member, variant location, parental history of diabetes (stratified by
mother, father or both to capture potential intrauterine exposure),
alongwith thefirst ten within-cohort principal components. To account
for gene-level differences, we included genetic aetiology (MODY gene)
asacovariate and examined outcomes separately by gene.

Assessing impact of common variants on clinically unselected
HNF-MODY carriers. HNF-MODY carriers in the UK Biobank allowed
us to assess how common variants affect diabetes risk in a clinically

unselected setting. We modelled the probability of diabetes using
logistic regression, with T2D PGS as a continuous covariate alongside
MODY carrier status and relevant clinical characteristicsincluding sex,
age, BMI, parental history of diabetes and the first ten ancestry princi-
pal components. Among clinically unselected HNF-MODY carriers, we
had 80% power to detect an OR greater than 1.58 per s.d. increase in T2D
PGS, below the observed effect size of 2.17. To examine how diabetes
risk varies across T2D common variant burden, we computed marginal
effects per PGS percentile. Additionally, individuals were stratified into
low, intermediate or high PGS groups, defined as the bottom quintile,
middle three quintiles and top quintile, respectively, using non-MODY
carriers with intermediate T2D risk as the reference group. We used
logisticregression to assess differencesin diabetes risk relative to the
reference group, adjusting for the same covariates.

All statistical analyses were performed using R v.4.4.1 and
Statav.18.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data supporting the findings of this study are available within the
article, source data and its Supplementary Information. The clinical
data, includingindividuallevel data, generated and/or analysed as part
ofthis study are not publicly available because of patient confidential-
ity and ethical approval associated with the data but are available from
the corresponding authors uponreasonable request. The UK Biobank
dataset is available from https://biobank.ctsu.ox.ac.uk. Source data
are provided with this paper.

Code availability
Publicly available software was used for all analysis, as outlined in
the Methods. Code supporting this manuscriptis available at https://
github.com/ExeterGenetics/teamendo_manuscripts/tree/main/
Polygenic_ MODY_2025.

References

1. Kingdom, R., Beaumont, R. N., Wood, A. R., Weedon, M. N. &
Wright, C. F. Genetic modifiers of rare variants in monogenic
developmental disorder loci. Nat. Genet. 56, 861-868 (2024).

2. Tukker, A. M., Royal, C. D., Bowman, A. B. & McAllister, K. A. The
impact of environmental factors on monogenic Mendelian
diseases. Toxicol. Sci. https://doi.org/10.1093/toxsci/kfab022
(2021).

3. Kingdom, R. & Wright, C. F. Incomplete penetrance and variable
expressivity: from clinical studies to population cohorts. Front.
Genet. https://doi.org/10.3389/fgene.2022.920390 (2022).

4. Mirshahi, U. L. et al. Reduced penetrance of MODY-associated
HNF1A/HNF4A variants but not GCK variants in clinically
unselected cohorts. Am. J. Hum. Genet. 109, 2018-2028
(2022).

5. Cho, B. P. H. et al. Association of vascular risk factors and genetic
factors with penetrance of variants causing monogenic stroke.
JAMA Neurol. 79,1303-1311(2022).

6. Cooper, D. N., Krawczak, M., Polychronakos, C., Tyler-Smith, C. &
Kehrer-Sawatzki, H. Where genotype is not predictive of
phenotype: towards an understanding of the molecular basis of
reduced penetrance in human inherited disease. Hum. Genet.
https://doi.org/10.1007/s00439-013-1331-2 (2013).

7. Khan, A. et al. Polygenic risk alters the penetrance of monogenic
kidney disease. Nat. Commun. 14, 8318 (2023).

8. Fahed, A. C. et al. Polygenic background modifies penetrance of
monogenic variants for tier 1 genomic conditions. Nat. Commun.
11, 3635 (2020).

Nature Metabolism | Volume 7 | September 2025 | 1819-1829

1827


http://www.nature.com/natmetab
https://biobank.ctsu.ox.ac.uk/
https://github.com/ExeterGenetics/teamendo_manuscripts/tree/main/Polygenic_MODY_2025
https://github.com/ExeterGenetics/teamendo_manuscripts/tree/main/Polygenic_MODY_2025
https://github.com/ExeterGenetics/teamendo_manuscripts/tree/main/Polygenic_MODY_2025
https://doi.org/10.1093/toxsci/kfab022
https://doi.org/10.3389/fgene.2022.920390
https://doi.org/10.1007/s00439-013-1331-2

Article

https://doi.org/10.1038/s42255-025-01372-0

10.

.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Shepherd, M. H. et al. A UK nationwide prospective study

of treatment change in MODY: genetic subtype and clinical
characteristics predict optimal glycaemic control after
discontinuing insulin and metformin. Diabetologia 61, 2520-2527
(2018).

Shields, B. M. et al. Maturity-onset diabetes of the young (MODY):
how many cases are we missing? Diabetologia 53, 2504-2508
(2010).

Hattersley, A. T. & Patel, K. A. Precision diabetes: learning from
monogenic diabetes. Diabetologia https://doi.org/10.1007/
s00125-017-4226-2 (2017).

Colclough, K., Ellard, S., Hattersley, A. & Patel, K. Syndromic
monogenic diabetes genes should be tested in patients with

a clinical suspicion of maturity-onset diabetes of the young.
Diabetes 71, 530-537 (2022).

Downie, L. et al. Gene selection for genomic newborn screening:
moving toward consensus? Genet. Med. 26, 101077 (2024).
Nomura, A. et al. Polygenic risk scores for low-density lipoprotein
cholesterol and familial hypercholesterolemia. J. Hum. Genet. 66,
1079-1087 (2021).

Chami, N., Preuss, M., Walker, R. W., Moscati, A. & Loos, R. J. F.
The role of polygenic susceptibility to obesity among carriers

of pathogenic mutations in MC4R in the UK Biobank population.
PLoS Med. 17, e1003196 (2020).

Lahrouchi, N. et al. Transethnic genome-wide association study
provides insights in the genetic architecture and heritability of
long QT syndrome. Circulation 142, 324-338 (2020).

Allen, H. L. et al. Polygenic risk variants for type 2 diabetes
susceptibility modify age at diagnosis in monogenic HNF1A
diabetes. Diabetes 59, 266-271(2010).

Kettunen, J. L. T. et al. A multigenerational study on phenotypic
conseguences of the most common causal variant of
HNF1A-MODY. Diabetologia 65, 632-643 (2022).
Huerta-Chagoya, A. et al. Rare variant analyses in 51,256 type 2
diabetes cases and 370,487 controls reveal the pathogenicity
spectrum of monogenic diabetes genes. Nat. Genet. 56,
2370-2379 (2024).

Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes
pathophysiology. Nature 627, 347-357 (2024).

Zhou, K. et al. Clinical and genetic determinants of progression
of type 2 diabetes: a direct study. Diabetes Care 37, 718-724
(2014).

Patel, K. A. et al. Type 1 diabetes genetic risk score: a novel tool
to discriminate monogenic and type 1diabetes. Diabetes 65,
2094-2099 (2016).

Huang, Q. Q. et al. Examining the role of common variants in

rare neurodevelopmental conditions. Nature 636, 404-411
(2024).

Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes
susceptibility loci and evidence for colocalization of causal
variants with lymphoid gene enhancers. Nat. Genet. 47, 381-386
(2015).

Oram, R. A. et al. A type 1 diabetes genetic risk score can aid
discrimination between type 1and type 2 diabetes in young
adults. Diabetes Care 39, 337-344 (2016).

Pang, L. et al. Improvements in awareness and testing have

led to a threefold increase over 10 years in the identification

of monogenic diabetes in the UK. Diabetes Care 45, 642-649
(2022).

Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and
their association with outcomes: a data-driven cluster analysis of
six variables. Lancet Diabetes Endocrinol. 6, 361-369 (2018).
Mansour Aly, D. et al. Genome-wide association analyses highlight
etiological differences underlying newly defined subtypes of
diabetes. Nat. Genet. 53, 1534-1542 (2021).

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

43.

44,

45.

46.

47,

48.

49.

Le Collen, L., Froguel, P. & Bonnefond, A. Towards the recognition
of oligogenic forms of type 2 diabetes. Trends Endocrinol. Metab.
36, 109-117 (2025).

Watson, M. S. ACMG policy statement: Updated
recommendations regarding analysis and reporting of secondary
findings in clinical genome-scale sequencing. Genet. Med.
https://doi.org/10.1038/gim.2014.151 (2015).

Horton, R. et al. Challenges of using whole genome sequencing
in population newborn screening. Brit. Med. J. 384, 077060
(2024).

Lee, A. et al. BOADICEA: a comprehensive breast cancer risk
prediction model incorporating genetic and nongenetic risk
factors. Genet. Med. 21,1708-1718 (2019).

Chakera, A. J. et al. Recognition and management of individuals
with hyperglycemia because of a heterozygous glucokinase
mutation. Diabetes Care https://doi.org/10.2337/dc14-2769
(2015).

Rodgers, L. R. et al. Choice of HbA1c threshold for identifying
individuals at high risk of type 2 diabetes and implications for
diabetes prevention programmes: a cohort study. BMC Med. 19,
184 (2021).

Thomas, N. J. et al. Type 1 diabetes defined by severe insulin
deficiency occurs after 30 years of age and is commonly treated
as type 2 diabetes. Diabetologia 62, 1167-1172 (2019).

American Diabetes Association Professional Practice Committee.
2. Classification and diagnosis of diabetes: standards of medical
care in diabetes—2022. Diabetes Care 45, S17-S38 (2022).
Bycroft, C. et al. The UK Biobank resource with deep phenotyping
and genomic data. Nature 562, 203-209 (2018).

Ellard, S. et al. Improved genetic testing for monogenic diabetes
using targeted next-generation sequencing. Diabetologia 56,
1958-1963 (2013).

Richards, S. et al. Standards and guidelines for the interpretation
of sequence variants: a joint consensus recommendation of the
American College of Medical Genetics and Genomics and the
Association for Molecular Pathology. Genet. Med. 17, 405-424
(2015).

Taliun, D. et al. Sequencing of 53,831 diverse genomes from the
NHLBI TOPMed Program. Nature 590, 290-299 (2021).

Das, S. et al. Next-generation genotype imputation service and
methods. Nat. Genet. 48, 1284-1287 (2016).

Koenig, Z. et al. A harmonized public resource of deeply
sequenced diverse human genomes. Genome Res. 34, 796-809
(2024).

Pain, O., Al-Chalabi, A. & Lewis, C. M. The GenoPred pipeline:

a comprehensive and scalable pipeline for polygenic scoring.
Bioinformatics 40, btae551(2024).

Manichaikul, A. et al. Robust relationship inference in genome-
wide association studies. Bioinformatics 26, 2867-2873 (2010).
Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal
component analysis of Biobank-scale genotype datasets.
Bioinformatics 33, 2776-2778 (2017).

Szustakowski, J. D. et al. Advancing human genetics research

and drug discovery through exome sequencing of the UK Biobank.
Nat. Genet. https://doi.org/10.1038/s41588-021-00885-0 (2021).
Sharp, S. A. et al. Development and standardization of an
improved type 1diabetes genetic risk score for use in newborn
screening and incident diagnosis. Diabetes Care 42, 200-207
(2019).

Wood, A. R. et al. A genome-wide association study of
IVGTT-based measures of first-phase insulin secretion refines the
underlying physiology of type 2 diabetes variants. Diabetes 66,
2296-2309 (2017).

Locke, A. E. et al. Genetic studies of body mass index yield new
insights for obesity biology. Nature 518, 197-206 (2015).

Nature Metabolism | Volume 7 | September 2025 | 1819-1829

1828


http://www.nature.com/natmetab
https://doi.org/10.1007/s00125-017-4226-2
https://doi.org/10.1007/s00125-017-4226-2
https://doi.org/10.1038/gim.2014.151
https://doi.org/10.2337/dc14-2769
https://doi.org/10.1038/s41588-021-00885-0

Article

https://doi.org/10.1038/s42255-025-01372-0

50. Chen, J. et al. The trans-ancestral genomic architecture of
glycemic traits. Nat. Genet. 53, 840-860 (2021).

51. Pulit, S. L. et al. Meta-analysis of genome-wide association studies
for body fat distribution in 694 649 individuals of European
ancestry. Hum. Mol. Genet. 28, 166-174 (2019).

52. Lotta, L. A. et al. Integrative genomic analysis implicates limited
peripheral adipose storage capacity in the pathogenesis of
human insulin resistance. Nat. Genet. 49, 17-26 (2017).

53. Chang, C. C. et al. Second-generation PLINK: rising to the
challenge of larger and richer datasets. Gigascience 4, 7
(2015).

54. Privé, F.,, Arbel, J. & Vilhjalmsson, B. J. LDpred2: better, faster,
stronger. Bioinformatics 36, 5424-5431(2020).

55. Yang, J. et al. Genetic variance estimation with imputed variants
finds negligible missing heritability for human height and body
mass index. Nat. Genet. 47, 1114-1120 (2015).

56. Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability:
inferring the contribution of common variants. Proc. Natl Acad.
Sci. USA 1M, E5272-E5281 (2014).

57. Weissbrod, O., Flint, J. & Rosset, S. Estimating SNP-based
heritability and genetic correlation in case-control studies
directly and with summary statistics. Am. J. Hum. Genet. 103,
89-99 (2018).

58. Xue, A. et al. Genome-wide association analyses identify 143 risk
variants and putative regulatory mechanisms for type 2 diabetes.
Nat. Commun. 9, 2941 (2018).

59. loannidis, N. M. et al. REVEL: an ensemble method for predicting
the pathogenicity of rare missense variants. Am. J. Hum. Genet.
99, 877-885 (2016).

Acknowledgements

The research utilized data from the UK Biobank resource carried

out under UK Biobank application number 103356. UK Biobank
protocols were approved by the National Research Ethics Service
Committee. K.A.P. is funded by the Wellcome Trust (219606/7/19/7)
and AT.H. is supported by the Wellcome Trust Senior Investigator
Award (WT098395/Z/12/Z). The work is supported by the NIHR
Exeter Biomedical Research Centre, Exeter, UK. The Wellcome

Trust, Medical Research Council and NIHR had no role in the design
and conduct of the study; collection, management, analysis and
interpretation of the data; preparation, review or approval of the
manuscript; and decision to submit the manuscript for publication.
The views expressed are those of the author(s) and not necessarily
those of the Wellcome Trust, Department of Health, NHS or NIHR. For
the purpose of open access, the author has applied a CC BY public
copyright licence to any Author Accepted Manuscript version arising
from this submission.

Author contributions

Concept and design: K.A.P., M.N.W., AT.H. and J.M.L. Acquisition,
analysis or interpretation of data: J.M.L., K.A.P.,, AM.A., R.N.B., K.C,,
V.K.C. and L.N.S. All authors contributed to the revisions and the final
paper. K.A.P. is the guarantor of the work.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42255-025-01372-0.

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42255-025-01372-0.

Correspondence and requests for materials should be addressed to
Kashyap A. Patel.

Peer review information Nature Metabolism thanks

Constantin Polychronakos, Rashmi Prasad and Magdalena Szopa for
their contribution to the peer review of this work. Primary Handling
Editor: Yanina-Yasmin Pesch, in collaboration with the Nature
Metabolism team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

Nature Metabolism | Volume 7 | September 2025 | 1819-1829

1829


http://www.nature.com/natmetab
https://doi.org/10.1038/s42255-025-01372-0
https://doi.org/10.1038/s42255-025-01372-0
https://doi.org/10.1038/s42255-025-01372-0
https://doi.org/10.1038/s42255-025-01372-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s42255-025-01372-0

T2D A

T1DA

Acute Insulin Response

Body Mass Index 1

Fasting Glucose

Polygenic Score

HbA1c A

Fasting Insulin

Lipodystrophy

Waist Hip Ratio

02 0.0

Extended Data Fig. 1| Polygenic Score difference from controls restricted

to probands only. Mean polygenic score difference for MODY probands

(orange, N = 924) compared to controls (dashed black line, N = 7645). Scores are

standardized, with controls set to amean of 0 and a standard deviation of 1.

0.2 0.4
Average Standardised PGS
Error bars indicate 95% confidence intervals, and dots represent the mean
estimates, determined by linear regression models adjusted for the first ten
within-cohort principal components.

Nature Metabolism


http://www.nature.com/natmetab

Article https://doi.org/10.1038/s42255-025-01372-0

Gene @ HNF1A @ HNF1B HNF4A

|
T2D | o
1 —_—
|
T1D ! @
| o
|
) |
Acute Insulin Response 1 L 4 I
|
1
Body Mass Index - L i
< I c
3
@ 1
'% Fasting Glucose 1 @
£ | ——
&
1
HbA1c t L
+—o—
|
Fasting Insulin 4 I L
| —_—
|
Lipodystrophy - 1 L 4
I—.—
|
Waist Hip Ratio ! @
| o
|
-0.25 0.00 0.25 0.50

Average Standardised PGS

Extended DataFig. 2 | Polygenic Score difference from controls by HNF MODY for the first ten within-cohort principal components. Scores are standardized,
subtype. Mean polygenic score differences for HNF1A (pink, N =997), HNF1B with controls set to amean of 0 and astandard deviation of 1. Error bars represent
(blue, N =145), and HNF4A (green, N = 320) carriers compared to controls 95% confidence intervals, and dots denote the mean estimates.

(dashed black line, N = 7645), as determined by linear regression models adjusted

Nature Metabolism


http://www.nature.com/natmetab

https://doi.org/10.1038/s42255-025-01372-0

Article
A All HNF MODY
1.251 ANOVA p = 0.00191
1.
o
S  0.751
s ¢
Q
U:.) 05.
2 ° ¢
& °
Q  0.25-1
'_
O == o oo o = o o e o o= = = e
—-0.25
Misslense Miss'ense P'i'V
REVEL <0.9 REVEL>=0.9
(n =132) (n =493) (n=711)
C HNF4A
1.25 ANOVA p = 0.456
1
o
8 0751
N
Q
C
5 os] ¢
>
£
Q  0.251
|_
[ e e e e T B
-0.251
Misslense Misslense P'i'V
REVEL <0.9 REVEL>=0.9
(n =35) (n =180) (n=71)

Extended DataFig. 3| Type 2 Polygenic Risk across Mutation Severity in
HNF-MODY. The graph shows mean type 2 diabetes (T2D) polygenic risk scores
with 95% confidence intervals across mutation groups ordered by predicted
deleteriousness, from low to high. Panel (a) includes all HNF-MODY genes

B HNF1A
1.251 ANOVA p = 0.00156
1.
<l
S 0751 +
()
Q
C
“;3’2 0.5
3 ¢
5 [
Q  0.25-1
'_
Of= == == = o= e o= = o o e = =
-0.25
Misslense Miss'ense P'i'V
REVEL <0.9 REVEL>=0.9
(n =85) (n =297) (n =573)
D HNF1B
1.25 1 ANOVA p = 0.0624
14
o
g8 0751
()
Q
C
S 0.5 +
>
&
Q  0.251
|_
04 == e e
-0.251
Misslense Misslense P'i'V
REVEL<0.9 REVEL>=0.9
(n=12) (n=16) (n =67)

assessed, while panels (b), (¢), and (d) focus on HNF1A, HNF4A, and HNFI1B,
respectively. Scores are standardized, with controls set to amean of 0 and a
standard deviation of 1. We assessed statistical significance using one-
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