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Common genetic variants modify  
disease risk and clinical presentation  
in monogenic diabetes
 

Jacques Murray Leech    1, Robin N. Beaumont    1, Ankit M. Arni1, 
V. Kartik Chundru    1, Luke N. Sharp    1, Kevin Colclough2, 
Andrew T. Hattersley    1, Michael N. Weedon    1 & Kashyap A. Patel    1 

Young-onset monogenic disorders often show variable penetrance, yet the 
underlying causes remain poorly understood. Uncovering these influences 
could reveal new biological mechanisms and enhance risk prediction for 
monogenic diseases. Here we show that polygenic background substantially 
shapes the clinical presentation of maturity-onset diabetes of the young 
(MODY), a common monogenic form of diabetes that typically presents 
in adolescence or early adulthood. We find strong enrichment of type 2 
diabetes (T2D) polygenic risk, but not type 1 diabetes risk, in genetically 
confirmed MODY cases (n = 1,462). This T2D polygenic burden, primarily 
through beta-cell dysfunction pathways, is strongly associated with earlier 
age of diagnosis and increased diabetes severity. Common genetic variants 
collectively account for 24% (P < 0.0001) of the phenotypic variability. Using 
a large population cohort (n = 424,553), we demonstrate that T2D polygenic 
burden substantially modifies diabetes onset in individuals with pathogenic 
variants, with diabetes risk ranging from 11% to 81%. Finally, we show that 
individuals with MODY-like phenotypes (n = 300) without a causal variant 
have elevated polygenic burden for T2D and related traits, representing 
potential polygenic phenocopies. These findings reveal substantial 
influence of common genetic variation in shaping the clinical presentation 
of early-onset monogenic disorders. Incorporating these may improve risk 
estimates for individuals carrying pathogenic variants.

Growing evidence suggests that factors beyond the primary muta-
tion play a greater role in rare monogenic conditions than previously 
recognized1,2. Monogenic diseases are classically defined by single, 
highly penetrant (proportion of carriers who develop the disease) caus-
ative mutations. However, many individuals carrying the same patho-
genic variant show wide variation in disease expression, suggesting that 
additional factors influence disease risk3. For example, our analysis of 
pathogenic HNF1A mutations, typically associated with young-onset 
diabetes, revealed striking differences in penetrance: over 90% in 

clinically ascertained cohorts versus under 30% in population-based 
cohorts by the age of 40 years4. This pattern of unexpectedly low 
and variable penetrance has now been documented across multiple 
monogenic conditions5,6. Polygenic background has been proposed as 
one possible contributor, particularly in age-dependent monogenic 
disorders7,8.

Maturity-onset diabetes of the young (MODY) serves as an excel-
lent genetic disease model to investigate how common genetic variants 
influence young-onset monogenic disease. MODY is the most common 
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pathway-specific hard cluster PGSs20 (Fig. 1d). Of these, the meta-
bolic syndrome (0.20 s.d. increase), residual glycaemic (0.17 s.d.) 
and beta-cell proinsulin-positive (0.16 s.d.) pathway scores showed 
the strongest enrichments in patients with MODY (all P < 4 × 10−8). 
Sensitivity analyses by each gene and limited to probands showed 
consistent findings (Extended Data Figs. 1 and 2). Supporting sub-
stantial interplay between rare and common variation, we observed 
an interaction between T2D PGS and pathogenic variants across the 
spectrum of predicted deleteriousness. Carriers of less-damaging 
missense variants showed relatively higher T2D polygenic risk com-
pared with carriers of more deleterious protein-truncating variants 
(Extended Data Fig. 3). Together, these data suggest that common 
T2D-associated variants contribute substantially to clinically diag-
nosed HNF-MODY.

Increased type 2 diabetes polygenic burden was associated 
with an earlier onset and greater phenotypic severity in 
patients with genetically confirmed MODY
We next assessed how the polygenic burden of T2D, T1D and related 
metabolic traits influenced both the age of diagnosis and severity of 
diabetes in patients with clinically identified HNF-MODY. We defined 
diabetes severity as either requiring insulin treatment or having 
HbA1c ≥ 8.5% as proposed previously21. Only T2D PGS demonstrated 
a significant association with age of diagnosis after adjusting for other 
PGSs (P < 3.3 × 10−5), with 1 s.d. increase linked with a 1.19 years (0.63–
1.75) earlier diagnosis (Fig. 2a). In contrast, both the T2D and body mass 
index (BMI) PGSs were significantly associated with diabetes severity, 
with ORs of 1.24 (95% CI 1.07–1.44, P = 0.004) and 1.32 (95% CI 1.16–1.51, 
P < 3.1 × 10−5), respectively (Fig. 2b). Our pathway analysis revealed 
that the beta-cell proinsulin-positive pathway primarily drove the 
T2D PGS effect on diagnosis age (0.83 years (0.33–1.32) versus 0.67 
(0.15–1.18) years for all others combined) (Fig. 2c). Whereas the obe-
sity pathway demonstrated the strongest association with diabetes 
severity (OR 1.36, 1.19–1.56 versus 1.19,1.04–1.35 for all other pathways 
combined) (Fig. 2d). As expected, only the BMI PGS was significantly 
associated with measured BMI (Supplementary Table 4). Age of diag-
nosis and severity associations were maintained even after adjust-
ing for clinical features and genetic aetiology. However, we observed 
strong effects of sex (females diagnosed 2.28 years earlier), maternal 
diabetes history (diagnosed 3.54 years earlier) and BMI (0.24-year 
earlier diagnosis) on age of diagnosis (Supplementary Tables 5 and 6). 
Sensitivity analyses by each gene show directional consistent results 
(Supplementary Table 7). We also conducted additional sensitivity 
analyses in 413 HNF-MODY cases with available birthweight data and 
found that associations between T2D polygenic scores and clinical 
outcomes remained largely unchanged after adjusting for birthweight 
(Supplementary Tables 8 and 9). These findings highlight the complex 
interaction between genetic and clinical factors that shape the clinical 
presentation of HNF-MODY.

Type 2 diabetes polygenic burden modifies the risk of diabetes 
in clinically unselected carriers of pathogenic HNF-MODY 
variants
We next investigated how polygenic T2D background influences diabe-
tes risk in carriers of pathogenic HNF-MODY variants. To assess this, we 
needed to investigate individuals not ascertained clinically to see the 
clear effect of polygenic background. Therefore, we analysed 424,553 
European individuals with whole exome sequencing data from the 
clinically unselected UK Biobank population cohort. Among these, 100 
individuals were identified as carriers of pathogenic variants in HNF1A 
(n = 34), HNF4A (n = 51) or HNF1B (n = 15) (Supplementary Tables 10 
and 11). Using a T2D PGS that did not include UK Biobank in the dis-
covery cohort19, we found that among mutation carriers, diabetes risk 
varied substantially by T2D PGS. Compared with non-carriers with 
intermediate T2D PGS (middle three quintiles), carriers’ risk ranged 

autosomal dominant form of monogenic diabetes contributing up to 
3% of all diabetes under the age of 30 years9. In this study we focused 
on the HNF1A, HNF4A and HNF1B genes (collectively referred to as 
HNF-MODY). The pathogenic variants in these three genes account for 
>90% of MODY cases10–12. These variants cause beta-cell dysfunction 
leading to age-dependent diabetes typically presenting before age 
25 years11. The availability of extensive genome-wide association data 
for both type 1 and type 2 diabetes and related metabolic traits, widely 
measured diabetes markers such as HbA1c allowing accurate diagno-
sis, and the availability of large MODY patient cohorts make MODY 
particularly suitable for studying common and rare disease interplay. 
Together, these resources provide a robust framework for examining 
how polygenic factors interact with young-onset monogenic disorders.

Understanding these interactions is crucial both biologically and 
clinically. It can uncover new biological pathways and enhance disease 
prediction, knowledge that is essential for family counselling. This 
becomes increasingly important as genomic screening extends to clin-
ically unselected cases and healthy newborns13. Previous studies have 
demonstrated that polygenic background can modify the penetrance 
of various monogenic conditions, including familial hypercholester-
olaemia, obesity, kidney disease and long QT syndrome7,14–16. These 
studies are important but often lack a defined age of disease onset. Pre-
vious studies suggested that polygenic risk for type 2 diabetes (T2D) 
may influence the age at MODY diagnosis17,18. However, those studies 
used small sample sizes (n < 410), focused only on HNF1A-MODY, 
and did not assess diabetes-related metabolic traits or partition T2D 
polygenic scores to explore the underlying mechanisms in detail. A 
more recent study investigated the interaction between T2D poly-
genic risk and rare intermediate-effect variants in HNF1A and HNF4A 
within population cohorts but did not include clinically confirmed 
MODY cases with pathogenic variants19. No previous work has com-
prehensively analysed how common genetic backgrounds influence 
diabetes severity in MODY or quantified their overall contribution to 
the MODY phenotype. Finally, it remains unclear whether the com-
mon genetic background also contributes to MODY-like cases without 
pathogenic variants.

In this study, we investigated the interplay between polygenic 
background and age-dependent monogenic disorders, using MODY as 
a model disease. In the largest MODY cohort studied to date, we demon-
strate that common genetic variants explain a substantial proportion of 
phenotypic variation, disease expression and may explain MODY-like 
phenotypes in individuals without identified monogenic causes.

Results
Polygenic burden of type 2 diabetes is significantly enriched  
in genetically confirmed MODY
While common variants are known to modify disease expression in 
other monogenic disorders, their influence on HNF-MODY remains 
relatively unexplored. We investigated this assumption by ana-
lysing polygenic scores (PGSs) for T2D, type 1 diabetes (T1D) and 
related metabolic traits (n = 9) in 1,462 clinically referred patients 
with HNF-MODY (Supplementary Tables 1–3). We compared these 
scores with those of 7,645 individuals without diabetes and 4,773 
individuals with T2D (Supplementary Table 1). We found significantly 
higher polygenic scores for T2D, fasting glucose, fasting insulin and 
waist–hip ratio in HNF-MODY patients compared with non-diabetic 
controls (0.09–0.42 s.d. increase, all P < 0.005) but no enrichment 
for T1D PGS (Fig. 1a). The T2D PGS remained the strongest contrib-
utor (odds ratio (OR) 1.46, 95% confidence interval (CI) 1.36–1.58, 
P < 0.0001) after accounting for other PGSs (Fig. 1b). This enrichment 
was lower than observed in T2D cases and independent of parental 
diabetes history (Fig. 1c) and after removing variants in HNF1A, HNF4A 
or HNF1B genes from the PGS (0.4 s.d. higher than control, 95% CI 
0.35–0.46, P < 0.0001). To identify which T2D pathways contrib-
uted to this enrichment, we analysed eight recently developed T2D 
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from 8.5-fold (95% CI: 3.65–19.85) in those in the lowest T2D PGS quin-
tile to 40.22-fold (95% CI 14.95–108.24) in those in the highest quintile 
(Fig. 3a). HNF-MODY carriers had a 6.67-fold higher risk of diabetes 
(95% CI 4.39–10.12, P = 4.23 × 10−19) compared with non-carriers in the 
highest quintile, highlighting the strong impact of pathogenic muta-
tions. Despite the limited sample size, diabetes risk seemed to rise 
consistently across the range of T2D PGS, with diabetes risk ranging 
from 11.4% (first percentile, 95% CI 6.96–15.88) to 81.7% (99.9th percen-
tile, 95% CI 75.17–88.34) (Fig. 3b). Notably, non-carriers in the 99.9th 

T2D PGS percentile showed a 17.7% risk (95% CI 17.3–18.2), which was 
similar to mutation carriers with lowest T2D PGS. A sensitivity analysis 
using T2D PGS, which excluded variants within 1 Mb of the three MODY 
genes, showed similar effect sizes (OR 2.17, 1.2–3.91 per 1 s.d. change 
whole PGS versus 2.06, 1.16–3.82 without MODY genes). These data 
together suggest a substantial contribution of T2D polygenic back-
ground on diabetes risk in HNF-MODY, while some individuals without 
MODY mutations but with extreme polygenic risk may reach a similar 
risk as HNF-MODY.
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Fig. 1 | Elevated polygenic risk in HNF monogenic diabetes. a, Standardized 
differences in upper-level diabetes-related polygenic scores, determined by 
linear regression adjusting for the first ten within-cohort principal components. 
HNF-MODY carriers (orange, n = 1,462) and T2D cases (blue, n = 4,773) are 
compared with controls (dashed black line, n = 7,645). b, Adjusted ORs for T2D 
and HNF-MODY cases versus controls, assessed using a logistic regression 
model including each PGS, sex, age, BMI and the first ten within-cohort 
principal components as covariates. c, Adjusted ORs for T2D PGS enrichment 

in HNF-MODY and T2D cases under two models: (1) adjusting for covariates as 
described in b (yellow); and (2) adjusting for the same covariates plus family 
history of diabetes (blue). d, Standardized differences in T2D hard cluster 
partitioned polygenic scores. All scores are standardized to have a mean of 0 
and s.d. of 1 in controls. ORs represent the change in risk associated with a 1 s.d. 
increase in the respective polygenic score. Error bars represent 95% CIs. Asterisks 
denote Bonferroni-adjusted statistically significant differences from controls. 
Sample sizes are consistent across a–d.
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Common genetic variants explain 24% of phenotypic  
variance in MODY
Having observed substantial contribution of polygenic background, 
we next aimed to quantify the overall contribution of common 
genetic variants to MODY. Using genome-wide complex trait analysis 
(GCTA) genome-based restricted maximum likelihood (GREML), 
we estimated common variant (minor allele frequency > 0.01) sin-
gle nucleotide polymorphism (SNP) heritability (h2), on the liabil-
ity scale. Our analysis revealed a SNP heritability of 23.9% (95% CI 
17.2–30.7%, P < 0.0001) in individuals with HNF-MODY (Fig. 4). 
This estimate was only slightly lower than in polygenic T2D cases 
30.8% (95% CI 25.08–36.61%, P < 0.0001). The heritability esti-
mate remained consistent across multiple approaches, including 
restricting to HNF1A-related monogenic diabetes, phenotype cor-
relation–genotype correlation regression and applying GREML 
estimation in linkage-disequilibrium adjusted kinships (LDAK) 
(Supplementary Table 12). To determine how much of this com-
mon variant heritability stems from T2D-associated variants, we 
calculated SNP-heritability for MODY comparing against 4,461 T2D 

cases, both with and without T2D PGS adjustment. The heritability 
decreased to 20.3% when compared with T2D, and further dropped to 
17.2% (95% CI 4.7–29.7%, P = 0.035) after T2D PGS adjustment (Fig. 4). 
These findings reveal that common genetic variants substantially 
influence MODY’s clinical presentation. At least one-third of this 
influence comes from T2D variants, suggesting the presence of 
T2D-independent genetic modifiers in HNF-MODY.

Clinically referred MODY cases without a pathogenic  
variant have substantially higher polygenic burden of T2D  
and related traits
Following our observations of substantial common genetic variant con-
tributions in patients with mutation-positive MODY, we investigated 
whether higher polygenic background could also explain diabetes 
in individuals with a MODY phenotype but without causative muta-
tions in known monogenic diabetes genes. We studied 300 individuals 
referred for MODY genetic testing from routine clinical practice with 
diabetes diagnosis before age 30 and BMI < 30 kg m−2, and without 
evidence of T1D (positive islet autoantibodies, C-peptide <200 pmol l−1, 
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Fig. 2 | Increased polygenic risk associated with earlier and more severe 
diabetes diagnosis in HNF-MODY. a, Association between polygenic scores 
for upper-level diabetes-related traits and age of diabetes diagnosis. Estimates 
were derived using a mixed-effects linear model with family as a random effect 
and adjusted for other polygenic scores and the first ten within-cohort principal 
components. b, Association between polygenic scores and risk of severe diabetes 
(defined as HbA1c ≥ 8.5% or insulin treatment at recruitment), using a mixed-
effects logistic model with the same covariates as in a. In total, 676 out of 1,462 

MODY carriers met the criteria for severe diabetes. c,d, Association of T2D-
partitioned risk scores with age of diabetes diagnosis (c) and diabetes severity 
(d), estimated using linear mixed-effects models adjusted for the first ten within-
cohort principal components. Dots represent the estimates, with lines indicating 
95% CIs. Asterisks highlight significant differences (P < 0.0056), after Bonferroni 
correction. Estimates represent the effect of a 1 s.d. increase in the respective 
polygenic score. All analyses in a–d were conducted in 1,462 MODY cases.
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or high T1D genetic risk score >50th centile of the T1D population)22. 
These unsolved MODY cases showed similar age of diagnosis and BMI 
to mutation-positive MODY cases (P > 0.05 for both) (Fig. 5a,b and 
Supplementary Table 13). As expected, these unsolved cases showed 
no excess T1D PGS but displayed a striking 1.18 s.d. (95% CI 1.07–1.29, 
P < 0.0001) higher T2D PGS than controls (Fig. 5c). This polygenic 
burden was higher than both mutation-positive MODY cases by 0.73 
s.d. and T2D cases by 0.52 s.d. (all P < 0.0001) (Extended Data Fig. 4). 
Compared with controls, we also observed an excess polygenic burden 
of BMI and waist–hip ratio in these cases (Fig. 5d,e). Unsolved cases 
demonstrated an enrichment in all T2D partitioned PGSs, with the 
largest difference from controls in the beta-cell proinsulin-positive 
cluster (0.62 s.d. increase, 95% CI 0.51–0.74, P < 0.0001) (Extended 
Data Fig. 5). Excess biparental diabetes history further supported the 
observed excess polygenic enrichment in unsolved cases compared 
with T2D (53% one parent, 15.7% both parents with diabetes versus 28.9% 
and 4%, respectively in T2D) (Extended Data Figure 6). These findings 

suggest that while some unsolved cases may harbour novel monogenic 
diabetes mutations, many likely represent polygenic phenocopies 
driven by an excessive polygenic burden of T2D and related traits.

Discussion
In this study, we demonstrate that HNF-MODY has a significant poly-
genic component, with common genetic variation substantially influ-
encing disease onset and severity in genetically confirmed MODY cases. 
The elevated polygenic burden of T2D-related traits may explain MODY 
phenocopies lacking pathogenic mutations.

MODY’s genetic architecture seems more complex than its tradi-
tional characterization as a purely monogenic disorder. We found that 
common genetic variations explain approximately 24% of phenotypic 
variance in clinically identified cases. This estimate is substantially 
higher than previously reported in other monogenic disorders (long QT 
syndrome, 15%16 and developmental delay, 11% (ref. 23)) and approaches 
that of T2D. Such high polygenic contribution is unexpected for a 
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Fig. 3 | Polygenic background modifies diabetes risk in clinically unselected 
HNF-MODY carriers. a, ORs for diabetes risk in HNF-MODY carriers and 
non-carriers, stratified by T2D polygenic risk levels. Points represent ORs with 
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b, Predicted probability of diabetes at baseline across each percentile of T2D 
polygenic risk, assessed using a logistic model with T2D polygenic score as a 
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presumed monogenic disease and may reflect its young-onset nature. 
T2D-associated variants had the strongest effect among the traits 
we analysed, likely because of shared pathways in beta-cell dysfunc-
tion. We found that T2D polygenic risk influenced age at diagnosis 
mainly through proinsulin-associated beta-cell pathways, which sup-
ports current understanding that HNF-MODY arises primarily from 
beta-cell dysfunction. Our findings on the relationship between T2D 
polygenic scores and age at diagnosis are consistent with smaller stud-
ies in HNF1A-MODY17,18.The absence of interaction with T1D polygenic 
risk aligns with the current understanding that T1D variants primarily 
affect autoimmune pathways rather than transcriptional networks 
disrupted in HNF-MODY24. This genetic distinction supports using T1D 
polygenic risk scores to differentiate MODY from early-onset T1D22,25.

Our findings reveal distinct genetic pathways modifying differ-
ent aspects of MODY. Beta-cell proinsulin-related variants predomi-
nantly influence age of diagnosis, while obesity-associated variants and 
beta-cell pathways drive disease progression. This supports a liability 
threshold model where pathogenic MODY variants drive early-onset 
disease, with the polygenic background modifying overall disease 
risk. We observed that the polygenic contribution is not constant 
but depends on underlying pathogenic variant where less-damaging 
variants require more contribution for disease expression and clinical 
diagnosis. Importantly, we show that T2D polygenic risk strongly modi-
fies diabetes risk in individuals carrying pathogenic MODY variants. 
Previous studies have reported similar effects for intermediate-effect 
variants in HNF1A and HNF4A in population cohorts, where common 
T2D risk variants altered the penetrance of those rare alleles19. Notably, 
pathogenic variant carriers with low T2D polygenic risk show sub-
stantially lower diabetes risk, with about half remaining disease-free 
in the population cohort. This explains the disparity between MODY 
prevalence in clinical referrals (1:10,000) versus genetic screening 
(1:2,000)4,26. Together, these data demonstrate that MODY’s pathog
enesis involves substantial polygenic interaction rather than following 
a simple deterministic monogenic model.

Some unsolved MODY cases may represent polygenic pheno-
copies. Our small cohort of mutation-negative cases shows substan-
tial enrichment of T2D polygenic risk exceeding that seen in typical 
T2D. This enrichment extends beyond T2D to other related traits, 

supporting complex polygenic aetiology. Similar patterns are observed 
in other monogenic conditions like long QT syndrome16, developmental 
delay23 and familial hypercholesterolaemia14, where mutation-negative 
patients show higher polygenic burden than mutation-positive cases. 
These unsolved cases likely represent a heterogeneous group with 
multiple underlying causes, including potential overlap with previ-
ously defined T2D subtypes27,28. Although our sample size limited 
detailed clustering, it is plausible that some individuals may align 
with distinct mechanistic pathways, as observed in these subgroups 
of T2D. While some may resemble the severe insulin-deficient diabetes 
subgroup, our findings suggest broader enrichment across all T2D risk 
pathways. This implies that the unsolved MODY group does not map 
cleanly onto existing subtypes. It likely includes individuals at the 
extreme tail of the polygenic risk distribution, possibly carrying rare, 
low-penetrance variants that act additively with high polygenic burden 
to drive clinical referral. Collectively, these findings suggest the pres-
ence of polygenic phenocopies. However, due to the relatively small 
sample size, these results should be considered as preliminary. Further 
studies are needed to replicate these observations and elucidate the 
underlying mechanisms.

Our findings support the hypothesis that monogenic disorders 
exist on a continuum, where both pathogenic mutations and polygenic 
background shape disease manifestation29. Age-dependent conditions, 
such as MODY, are likely to have a larger polygenic contribution com-
pared with neonatal-onset disorders. As evidence accumulates, this 
observation may extend to the majority of monogenic disorders, albeit 
to varying degrees. However, each condition will require individual 
evaluation to quantify the relative contributions. With the declining 
cost of genetic testing and the increasing identification of presymp-
tomatic carriers through incidental findings30 and newborn screening 
programmes31, there is a growing need to refine disease risk prediction. 
Currently, risk assessment relies solely on the presence of pathogenic 
mutations. To provide more precise risk stratification, it may be nec-
essary to incorporate non-mutation factors, such as polygenic risk 
scores or family history, as is already done in conditions such as breast 
cancer32. As whole-genome sequencing moves toward becoming a 
first-line test, a single assessment could offer comprehensive genetic 
information, incorporating both monogenic and polygenic risk. How-
ever, clinical implementation will require large-scale, multi-ancestry 
MODY datasets and collaboration across dedicated cohorts to enable 
robust model development, validation and equitable application. 
Further research is needed to evaluate the added clinical value of this 
approach in improving diagnosis and risk prediction.

Although this is the largest MODY study to date, the sample size 
for individual genes and unsolved cases limited our power to detect 
subgroup-specific effects. Despite this, the direction and strength of 
associations were consistent across the HNF-MODY subtypes, support-
ing the generalizability of our findings. The predominantly UK-based, 
European ancestry cohorts limit generalizability to other populations. 
While MODY variants in the UK Biobank were not Sanger-confirmed, we 
minimized false positives through manual IGV review and strict quality 
filtering. The UK Biobank’s healthy volunteer bias likely underestimates 
true MODY penetrance in general populations due to underrepresen-
tation of early-onset diabetes. Furthermore, our sample size limited 
more detailed analysis of non-clinically referred HNF-MODY carriers. 
Our local MODY cohort is derived from routine clinical referrals across 
the UK, so case ascertainment may be influenced by environmental 
factors such as healthcare access, socioeconomic status, clinical prac-
tice variability and other unmeasured confounders. We adjusted our 
analyses of age at diagnosis and disease severity for several known or 
measurable confounding factors, including variant location, family 
ID, proband status, BMI, parental diabetes, birthweight and year of 
diagnosis. However, we could not adjust for lifestyle-related factors 
such as diet, physical activity, early-life factors, educational attain-
ment, social status, treatment preference or adherence. While these 
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limitations remain, the large sample size may mitigate some of their 
effects. The observation of similar associations between T2D risk and 
age at diagnosis in multigenerational pedigrees from Finland18 sup-
ports the robustness of our findings and suggests that these biases 
important but does not explain the all the results.

In summary, using MODY as a model disease, we demonstrate 
substantial interplay between monogenic mutations and polygenic 
background in young-onset monogenic disorders. Our findings sug-
gest that future approaches to disease prediction will require integra-
tion of monogenic, polygenic and environmental factors to improve 
clinical utility.

Methods
Study populations
This study complies with all relevant ethical regulation and was 
approved by the appropriate ethics committees. Our study com-
bined three ethically approved cohorts. In our local MODY cohort, 
all probands or their guardians provided informed consent, and the 
North Wales Ethics Committee approved the study, with Genetic Beta 
Cell Research Bank approving sample access. The National Institute for 
Health Research (NIHR) Exeter Clinical Research Facility management 

committee approved access to these samples and genotype data for our 
T2D and non-diabetic controls. This research also utilized data from 
the UK Biobank resource carried out under UK Biobank application 
number 103356. UK Biobank protocols were approved by the National 
Research Ethics Service Committee.

Exeter MODY cohort
MODY individuals with confirmed pathogenic variants. We analysed 
individuals referred for monogenic diabetes genetic testing at the 
Exeter Genomics Laboratory, Royal Devon University Healthcare NHS 
Foundation Trust, Exeter, UK. These referrals originated from clinical 
suspicion of MODY during routine clinical care in the UK. These indi-
viduals were found to have likely pathogenic or pathogenic variants 
either by Sanger sequencing or gene panel test performed as part of 
routine clinical care. Our cohort comprised European individuals with 
diabetes and carrying pathogenic variants in HNF1A (n = 997), HNF1B 
(n = 145) or HNF4A (n = 320). We focused on the more commonly diag-
nosed, age-dependent forms of MODY (HNF1A, HNF4A and HNF1B). We 
excluded GCK-MODY because it represents a fundamentally different 
disease: individuals present with lifelong, mild fasting hyperglycaemia 
that does not progress with age, does not require treatment and is not 
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associated with excess complications33. In this context, age at diagno-
sis reflects the timing of detection rather than age at disease onset.

Unsolved MODY individuals. We evaluated 300 European individu-
als referred from routine clinical care in the UK with suspected MODY. 
All participants received their diabetes diagnosis before age 30 years 
and lacked clinical features suggestive of T2D (BMI ≥ 30 kg m−2) or T1D 
(positive islet autoantibodies, C-peptide <200 pmol l−1 and a ten-SNP 
T1D genetic risk score above the 50th centile of the gold-standard T1D 
population from the WTCCC study)22. These individuals underwent 
comprehensive genetic testing for all known monogenic diabetes genes 
(n = 58) and were not found to have pathogenic variants in these genes. 
The clinical features of these solved and unsolved MODY cases, at 
referral for genetic testing, are summarized in Supplementary Table 1.

Type 2 diabetes and non-diabetes control cohort
We analysed participants from two ethically approved population 
cohorts in Southwest England: the Exeter 10000 study (https://
exetercrfnihr.org/about/exeter-10000/)34 and the Diabetes Alliance 
for Research in England study (https://www.diabetesgenes.org/
current-research/dare/)35. These studies recruited unselected par-
ticipants through primary care practices across the Southwest United 
Kingdom. At recruitment, participants completed baseline question-
naires and provided fasting blood and urine samples for measurement 
of diabetes-related markers, including fasting glucose and HbA1c. Our 
analysis included European individuals who underwent array genotyp-
ing as part of these studies. We classified participants as having T2D if 
they either did not require insulin treatment or initiated insulin treat-
ment after 36 months from diagnosis, thereby excluding potential 
misclassified T1D cases. We defined controls as individuals without 
a known diabetes diagnosis and HbA1c ≤ 48 mmol mol−1 (6.5%)36. The 
final cohort comprised 7,645 controls and 4,773 individuals with T2D, 
with their clinical characteristics presented in Supplementary Table 1.

UK Biobank cohort
The UK Biobank represents a large-scale, prospective population-based 
study comprising approximately 500,000 UK residents aged 40–70 
years at enrolment37. Recruitment occurred between 2006 and 2010, 
with comprehensive data collection through multiple channels: par-
ticipant questionnaires, structured interviews and biomarker meas-
urements37. The study supplemented this information with medical 
history data from Hospital Episode Statistics records coded using 
ICD-9 and ICD-10 codes. We defined diabetes status using three criteria: 
self-reported diagnosis, HbA1c levels ≥6.5 % at recruitment or active 
diabetes treatment at recruitment. Our study cohort consisted of 
424,553 European individuals who underwent exome sequencing and 
array genotyping. Clinical characteristics of these individuals can be 
found in Supplementary Table 10. We analysed the exome sequence 
data to identify individuals with likely pathogenic and pathogenic 
variants in HNF1A/HNF4A/HNF1B as described previously4, with details 
of variants identified in Supplementary Table 11.

Genetic analysis
MODY pathogenic variants in Exeter MODY cohort and UK Biobank. 
For the Exeter MODY cohort, all referred patients were screened for 
potential MODY-associated variants using either Sanger sequencing 
or gene panel testing, following the methodologies detailed by Ellard 
et al.38. For the UK Biobank participants, we utilized exome sequence 
data to identify carriers of pathogenic MODY variants. We annotated all 
variants using clinically validated transcripts: GenBank NM_000545.6 
for HNF1A, NM_000458.4 for HNF1B and NM_175914.4 for HNF4A. We 
classified variants according to the American College of Medical Genet-
ics and Genomics/Association of Molecular Pathology guidelines, desig-
nating them as either likely pathogenic (class 4) or pathogenic (class 5)39.  
This classification process followed our established protocols for the 

local Exeter cohort and aligned with our recent study’s methodology4. 
Supplementary Table 11 presents a comprehensive list of variants 
identified in the UK Biobank cohort.

Array genotyping. Exeter MODY, T2D and non-diabetic controls. We 
performed array genotyping using the Infinium Global Screening 
Array platform. Our comprehensive quality control protocol excluded 
samples with call rates below 98%, sex mismatches, relationship dis-
crepancies or inbreeding coefficients exceeding 0.1. At the variant 
level, we removed markers with missingness above 2%, minor allele 
frequency below 5% or deviation from the Hardy–Weinberg equilibrium 
(P < 1 × 10−6). We applied these quality control measures both indepen-
dently for each batch and following batch integration. We then used 
linkage disequilibrium (LD) pruned markers for genotype imputation 
through the TOPMed reference panel v.2 (ref. 40) via the Michigan 
Imputation Server41. To determine genetic ancestry, we compared our 
data with reference populations from the 1000 Genomes Phase 3 and 
Human Genome Diversity Project, implementing a principal compo-
nent analysis (PCA) approach within the GenoPred Pipeline (v.2.2.1)42,43. 
For relationship inference, we analysed LD-pruned data using the 
KING robust algorithm (v.2.2.4) to identify unrelated individuals up 
to the third degree44. To better capture the within-cohort population 
structure, we conducted PCA using FlashPCA (v.2.0)45. Initially, we 
calculated principal components in unrelated European individuals 
and then projected these onto related European individuals.

UK Biobank. The UK Biobank individuals were SNP-genotyped using 
the UK BiLEVE array for the first ~50,000 individuals, with the remain-
ing using the UK Biobank Axiom array. This dataset underwent central 
quality control by the UK Biobank and was imputed to the TOPMed 
reference panel40. Approximately 450,000 individuals from the UK 
Biobank Array also underwent exome sequencing using the IDT xGen 
Exome Research Panel v.1.0. Detailed sequencing methodology for 
UK Biobank samples has been described previously46. In brief, vari-
ants were called using GATK v.3.0 filtering variants with an inbreeding 
coefficient <−0.03 or without at least one variant genotype of DP ≥ 10, 
GQ ≥ 20 and, if heterozygous, AB ≥ 0.20. For this analysis, we included 
424,553 individuals who had both exome and array data and were 
of European ancestry, inferred from projected PCA using the same 
approach as for the local cohort.

Polygenic score calculation
We calculated polygenic scores for T2D20, T1D47 and seven diabetes- 
related traits48–52, alongside eight pathway-specific T2D risk scores20. 
We constructed weighted polygenic scores using genome-wide sig-
nificant variants. For traits with comprehensive genome-wide asso-
ciation study (GWAS) summary statistics available, we implemented 
genome-wide calculations to capture additional genetic signal. 
Our computational pipeline utilized PLINK 1.9’s score function for 
genome-wide significant variant-based scores53. For the genome-wide 
polygenic scores, we implemented the GenoPred v.2.2.1 pipeline with 
the LDpred2 auto model, enabling comprehensive processing of GWAS 
summary statistics43,54. Further details are available in Supplementary 
Table 3, including the specific approach used for each trait, including 
the calculation method, number of variants incorporated and the 
source GWAS studies.

Heritability estimation
To estimate the common variant contribution to MODY and T2D, 
SNP-based heritability was estimated in unrelated individuals using 
GCTA GREML-LDMS, stratifying into four LD bins of equal size to con-
struct the genetic relationship matrix.55 To test the validity of these 
estimates we ran phenotype correlation–genotype correlation and 
restricted maximum likelihood approaches implemented in LDAK, using 
thinned predictors to construct the kinship matrix56,57. We used sex, age 
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and the first ten within-cohort principal components as covariates for 
each method. For MODY, disease prevalence was set at 0.00054 and 
0.0002526, and for T2D, at 0.158 (Table S12). Variants with an imputation 
quality > 0.9 and minor allele frequency > 1% were used to in this analysis.

Statistical analysis
Assessing common variant enrichment in MODY cohort. To assess 
polygenic risk in MODY carriers and T2D cases, we employed several 
different approaches. To initially assess whether any common variant 
pathways contribute to clinically referred HNF-MODY we tested nine 
PGSs for enrichment. All scores were standardized using the control 
group as reference (mean = 0, s.d. = 1). To test differences in polygenic 
scores from controls, we used linear models adjusting within-cohort 
principal components to control for population structure. We assessed 
each score individually first, however, due to well-known overlaps of 
variants across these related metabolic traits, we then performed mul-
tivariable logistic regression analysis to identify the key independent 
common variant pathways contributing to HNF-MODY after adjusting 
for sex, age, BMI and the first ten within-cohort principal components. 
We repeated these steps with unsolved MODY cases to examine the 
hypothesis that they have excess polygenic risk. Owing to the high 
parental history in MODY that may tag inherited polygenic risk, we 
then performed further analysis adjusting for parental history of dia-
betes. We performed sensitivity analysis by limiting to each gene and 
to probands alone. To investigate whether less-deleterious variants 
are associated with higher polygenic enrichment, we first grouped 
variants into missense and protein-truncating variants (PTVs), with 
PTVs assumed to be the most deleterious due to their likely haplo
insufficiency effect. We further stratified missense variants by REVEL59 
(Rare Exome Variant Ensemble Learner) score (<0.9 versus ≥0.9), using 
it as a proxy for functional severity.

We aimed to include the largest number of MODY cases to maxi-
mize the power of the study but were limited by sample and data avail-
ability. Based on our final sample size, a post hoc power calculation 
suggested that we had 80% power to detect minimum differences of 
0.08, 0.16 and 0.05 s.d. in polygenic score between controls and geneti-
cally confirmed HNF-MODY, unsolved MODY and T2D, respectively. 
The minimum detectable differences for the clinically referred MODY 
genetic subgroups were 0.23, 0.16 and 0.094 s.d. for HNF1A, HNF1B 
and HNF4A, respectively.

Assessing impact of common variants on HNF-MODY phenotype. 
To investigate how common genetic variants influence the clinical 
presentation of HNF-MODY, we used mixed-effects models to assess 
associations between PGSs and key outcomes. Specifically, we applied 
mixed linear models to evaluate the relationship between PGSs and age 
at diabetes diagnosis, and mixed logistic models to assess associations 
with diabetes severity. To account for potential within-family correla-
tions that could bias associations, all models included family ID as a 
random effect. Initial models included all nine polygenic scores to iden-
tify independent genetic pathways contributing to variation in clinical 
presentation. Further analysis focused on scores that were found to be 
independently associated with modifying the clinical presentation in 
HNF-MODY, further adjusting for confounding factors that have been 
previously reported or suspected to influence clinical outcomes. This 
included sex, age, BMI, year of diabetes diagnosis, proband or family 
member, variant location, parental history of diabetes (stratified by 
mother, father or both to capture potential intrauterine exposure), 
along with the first ten within-cohort principal components. To account 
for gene-level differences, we included genetic aetiology (MODY gene) 
as a covariate and examined outcomes separately by gene.

Assessing impact of common variants on clinically unselected 
HNF-MODY carriers. HNF-MODY carriers in the UK Biobank allowed 
us to assess how common variants affect diabetes risk in a clinically 

unselected setting. We modelled the probability of diabetes using 
logistic regression, with T2D PGS as a continuous covariate alongside 
MODY carrier status and relevant clinical characteristics including sex, 
age, BMI, parental history of diabetes and the first ten ancestry princi-
pal components. Among clinically unselected HNF-MODY carriers, we 
had 80% power to detect an OR greater than 1.58 per s.d. increase in T2D 
PGS, below the observed effect size of 2.17. To examine how diabetes 
risk varies across T2D common variant burden, we computed marginal 
effects per PGS percentile. Additionally, individuals were stratified into 
low, intermediate or high PGS groups, defined as the bottom quintile, 
middle three quintiles and top quintile, respectively, using non-MODY 
carriers with intermediate T2D risk as the reference group. We used 
logistic regression to assess differences in diabetes risk relative to the 
reference group, adjusting for the same covariates.

All statistical analyses were performed using R v.4.4.1 and  
Stata v.18.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the 
article, source data and its Supplementary Information. The clinical 
data, including individual level data, generated and/or analysed as part 
of this study are not publicly available because of patient confidential-
ity and ethical approval associated with the data but are available from 
the corresponding authors upon reasonable request. The UK Biobank 
dataset is available from https://biobank.ctsu.ox.ac.uk. Source data 
are provided with this paper.

Code availability
Publicly available software was used for all analysis, as outlined in 
the Methods. Code supporting this manuscript is available at https://
github.com/ExeterGenetics/teamendo_manuscripts/tree/main/
Polygenic_MODY_2025.
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Extended Data Fig. 1 | Polygenic Score difference from controls restricted 
to probands only. Mean polygenic score difference for MODY probands 
(orange, N = 924) compared to controls (dashed black line, N = 7645). Scores are 
standardized, with controls set to a mean of 0 and a standard deviation of 1.  

Error bars indicate 95% confidence intervals, and dots represent the mean 
estimates, determined by linear regression models adjusted for the first ten 
within-cohort principal components.
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Extended Data Fig. 2 | Polygenic Score difference from controls by HNF MODY 
subtype. Mean polygenic score differences for HNF1A (pink, N = 997), HNF1B 
(blue, N = 145), and HNF4A (green, N = 320) carriers compared to controls 
(dashed black line, N = 7645), as determined by linear regression models adjusted 

for the first ten within-cohort principal components. Scores are standardized, 
with controls set to a mean of 0 and a standard deviation of 1. Error bars represent 
95% confidence intervals, and dots denote the mean estimates.
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Extended Data Fig. 3 | Type 2 Polygenic Risk across Mutation Severity in 
HNF-MODY. The graph shows mean type 2 diabetes (T2D) polygenic risk scores 
with 95% confidence intervals across mutation groups ordered by predicted 
deleteriousness, from low to high. Panel (a) includes all HNF-MODY genes 

assessed, while panels (b), (c), and (d) focus on HNF1A, HNF4A, and HNF1B, 
respectively. Scores are standardized, with controls set to a mean of 0 and a 
standard deviation of 1. We assessed statistical significance using one- 
way ANOVA.
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Extended Data Fig. 4 | Mean polygenic score difference from solved MODY 
cases. Mean polygenic score difference between unsolved MODY cases (N = 300, 
pink) and T2D cases (N = 4773, blue) versus MODY cases (N = 1462, assessed 
using a logistic regression model including the first ten within-cohort principal 

components as covariates. Asterisks denote significant differences (P < 0.0028). 
Polygenic Scores were standardized so that the control population has a mean of 
0 and standard deviation of 1. Error bars represent 95% confidence intervals.
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Extended Data Fig. 5 | T2D Hard Cluster Polygenic Score Differences in 
Unsolved MODY Cases Compared to Controls. Mean polygenic score differences 
for T2D hard cluster partitioned scores in Unsolved MODY cases (pink, N = 300) 
compared to non-diabetic controls (dashed black line, N = 7,645). Scores are 
standardized with controls set to a mean of 0 and a standard deviation of 1. 

Error bars represent 95% confidence intervals, and dots indicate the mean estimates. 
Asterisks denote statistically significant differences from controls (P < 0.006), 
based on the Bonferroni significance threshold, as determined by linear regression 
models adjusted for the first ten within-cohort principal components.
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Extended Data Fig. 6 | Unsolved MODY cases have a high percentage of 
familial diabetes history. The plot shows the distribution of parental family 
history of diabetes for four groups: non-diabetic controls (N = 7,645), genetically 
confirmed MODY cases (N = 1,462), Unsolved MODY cases (N = 300), and 

type 2 diabetes cases (N = 4,773). Family history is categorized into three groups: 
no parent with diabetes (grey), one parent with diabetes (blue), and both parents 
with diabetes (red). Percentages are calculated within each group.
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