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Humans are well versed in reasoning about the behaviours of physical objects
and choosing actions accordingly to accomplish tasks, while this remains a

major challenge for artificial intelligence. To facilitate research addressing
this problem, we propose a new testbed that requires an agent to reason
about physical scenarios and take an action appropriately. Inspired by the
physical knowledge acquired ininfancy and the capabilities required for
robots to operate in real-world environments, we identify 15 essential physical
scenarios. We create awide variety of distinct task templates, and we ensure
that all the task templates within the same scenario can be solved by using
one specific strategic physical rule. By having such a design, we evaluate

two distinct levels of generalization, namely local generalization and broad
generalization. We conduct an extensive evaluation with human players,
learning agents with various input types and architectures, and heuristic
agents with different strategies. Inspired by how the human intelligence
quotientis calculated, we define the physical reasoning quotient (Phy-Q
score) that reflects the physical reasoning intelligence of an agent using

the physical scenarios we considered. Our evaluation shows that (1) allthe
agents are far below human performance, and (2) learning agents, even with
good local generalization ability, struggle to learn the underlying physical
reasoning rules and fail to generalize broadly. We encourage the development
of intelligent agents that can reach the human-level Phy-Q score.

The ability to reason about objects’ properties and behaviours in physi-
cal environments lies at the core of human cognitive development’. A
few days after birth, infants understand object solidity? and within
the first year after birth, they understand notions such as object per-
manence’, spatiotemporal continuity*, stability’, support®, causality”
and shape constancy®. Generalization performance on novel physical
puzzlesis commonly used as ameasure of physical reasoning abilities
for children®, animals" and artificial intelligence (Al) agents' ",
Chollet’s study' on the measure of intelligence proposes a qualita-
tive spectrum of different forms of generalization that includes local
generalization and broad generalization. Current evidence"” ™" sug-
geststhat contemporary deep learning models are local generalization

systems, thatis, systems that adapt to known unknowns withinasingle
task. Broad generalization, on the other hand, can be characterized as
‘adaptation to unknown unknowns across a broad category of related
tasks’ and is being increasingly emphasized among the Al research
community'®*°. Moreover, whensolving physics puzzles, itiscommon
that a player must use a strategy to work out a plan and use dexterity
to accurately execute the strategic plan®. For instance, in a snooker
game, a player needs to planthe path of the white cue ball, for example,
whereitshould goand whereit should stop, and then execute the strike
that precisely produces the planned path. Some cognitive psychology
researchers believe that humans possess inaccurate forward physics
prediction models®** and hence require practice toimprove dexterity,
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Table 1| Comparison of Phy-Q with related physics benchmarks and competitions

Test Generalization Categorization Procedurally Destructible Observe outcome Human
environment to individual of tasks to generated objects of adesired player
physical scenario/s physical scenarios tasks/variations physical action data

PHYRE" X X 4 X v X
Virtual Tools" X v/ X X v v
OGRE®™ X X 4 X v X
IntPhys 2019 # v/ v v X X v
CLEVERER* v X v X X X
CATER” v v v X X X
Physion? v v/ v X X v
COPHY* v v 4 X X v
CausalWorld™ v v/ v/ X v X
RLBench® X X v X v X
Computational Pool** X X X X v X
Geometry Friends®* X X v X v X
AIBIRDS*® X X 4 4 v v
Phy-Q (this study) v v v v v 4

high dexterity requirements of physics tasks make it unfair to compare
Al agents’ physical reasoning ability with that of average humans. For
example, when a human player fails a physics puzzle, it is hard to tell if
this is owing to incorrect physical reasoning or the inability to make
preciseactions (dexterity). Despite the recent advancementin physical
reasoning benchmarks and testbeds'>>**, there is a lack of a bench-
mark oratestbed with human-comparable strategic physics puzzles and
thatexplicitly evaluates learning agents’ local and broad generalization.
To close these gaps, we propose a new testbed (Phy-Q) and the
associated Phy-Q score that measures physical reasoning intelligence
using the physical scenarios we identified. Inspired by the physical
knowledge acquiredininfancy and the abilities required by the robots
tooperateinthereal world, we created awide variety of tasks with low
dexterity requirements in the video game Angry Birds. We believe
that the contributions of this paper pave the way for the development
of agents with human-level strategic physical reasoning capabilities.
Our main contributions can be summarized as follows:

« Phy-Q:Atestbed for physical reasoning. We designed a variety of
task templates in Angry Birds with 15 physical scenarios, where
all the task templates of a scenario can be solved by following a
commonstrategic physicalrule. Then, we generated task instances
from the templates using a task variation generator. This design
allows us to evaluate both the local and the broad generalization
ability of an agent. We also define the Phy-Q score, a quantitative
measure that reflects physical reasoning intelligence using the
physical scenarios we considered.

« An agent-friendly framework. To facilitate agent training in
our testbed, we propose a framework that allows the training
of multi-agent instances simultaneously with game play speed
accelerated up to 50 fold.

« Establishing results for baseline agents. The evaluation consists of
nine baseline agents: four of our best-performing learning agents,
four heuristic-based agents and a random agent. For each of the
baseline agents, we present the Phy-Qscore, the broad generaliza-
tion performance and the local generalization performance. We
have collected human player data so that agent performance can
be compared directly with human performance.

 Guidance for agentsin the AIBIRDS competition. Angry Birdsis a
popular physical reasoning domainamong Al researchers, with the

AIBIRDS competition running since 2012 (ref. *°). In 2016, Angry
Birds was considered to be the next milestone where Al will surpass
humans®. Atime horizon of 4 years was predicted, butso far such
abreakthrough seems very unlikely. In the AIBIRDS competition,
heuristic methods generally perform better than their deep learn-
ing counterparts, but it remains unclear what has contributed
to the gap between their performance. It has also not yet been
analysed why current Al agents fall short when compared with
humans. By the systematic analysis of agents from the AIBIRDS
competition, we show how they need to be improved to achieve
human-level performance.

Background and related work

Inthis section, we conduct acomparison between ten related physical
reasoning benchmarks and two physics-based Al game competitions
toshow how the Phy-Q testbed advances upon existing work. The com-
parison is done with respect to six criteria:

1. Measuring broad generalization in individual physical
scenario(s), that s, testing the ability of an agent to generalize
to tasks that require the same physical rule to solve.

2. Categorization of tasks of the test environment into different
physical scenarios, that is, agents can be evaluated for individual
scenarios to recognize the scenarios that they can perform well.

3. Procedural generation of tasks or variations of the tasks, that
is, the tasks/variants of the tasks in the test environment are
created algorithmically, helping users to generate any amount
of data.

4. Destructibility of objects in the environment, that is, if the
environment contains objects that can be destroyed upon
the application of forces. Having destructible objects makes
the environment more realistic than an environment that only
has indestructible objects since the agents need to consider the
magnitude of the force that is applied to the objects. For exam-
ple, when a robot moves a cup, it needs to reason that the force
to exert should be large enough to grab the cup but not large
enough to break it.

5. Observing the outcome of a desired physical action, that is,
whether an agent can physically interact and observe the out-
come of the action the agent takes.
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Fig.1|Example tasks in Phy-Qrepresenting the 15 physical scenarios. The slingshot with birds is situated on the left of the task. The goal of the agent is to kill all the
green pigs by shooting birds from the slingshot. The dark-brown objects are static platforms. The objects with other colours are dynamic and subject to the physics in

the environments.

6. Inclusion of human player data, that is, if the evaluation has re-
sults of human players.

We consider PHYRE?, the Virtual Tools game' and OGRE" as
game-based benchmarks, IntPhys?*, CLEVERER”, CATER* and Physion?
as video-based benchmarks, COPHY? as an image-based benchmark,
and CausalWorld"” and RLBench?? as robotic benchmarks. The Algame
competitions we consider are Computational Pool** and Geometry
Friends**. Wealsoincluded the AIBIRDS* competitionin the compari-
sontoshowwhat propertiesin Phy-Q facilitate the systematic evaluation
of AIBIRDS competition agents. Table 1 summarizes the comparison.

The physical reasoning test environment that is most closely
related to ours is PHYRE", which also consists of tasks to measure two
levels of generalization of agents. The PHYRE benchmark tests whether
agents cangeneralize to solve tasks within atask template (within tem-
plate) and whether agents can generalize between different task tem-
plates (cross template). The cross-template evaluationin PHYRE does
notguarantee that the physical rules required to solve the testing tasks
existinthe trainingtasks. This leads to uncertainties inunderstanding
agents’ performance: inferior performance may notbe anindicator of
inferior physical reasoning but of a difficult training and testing split.
Incontrast, the broad generalization evaluationin our testbed always

ensures that the physicalrules required in testing tasks are coveredin
thetrainingtasks, thereby guaranteeing a more systematic evaluation
ofthe physical reasoning capabilities of Alagents. According to the task
design in PHYRE, tasks must be solved by trial and error. That is, even
when the physical rule is known, multiple attempts are still needed to
solve the tasks. Therefore, PHYRE promotes the development of agents
with physical dexterity. In contrast, we focus on strategy-based physical
reasoning tasks that can be solved in a single attempt when the physi-
cal rule is understood. We promote the development of agents that
canunderstand a physical rule rather than taking a precise actionina
physical environment (that s, agents with strategic physical reasoning
capabilities). Furthermore, alimited number of object shapes, motion
and material properties on scene dynamics hinder the ability for a
comprehensive evaluation, as performing well on these tests might
not indicate a greater physical reasoning ability in more general and
realistic contexts”. Therefore, compared with PHYRE, Phy-Q offers (1)
three more object shapes (rectangles, squares and triangles) to allow
more diverse physical dynamics, (2) destructible objects to make our
environment more realistic and (3) objects with three different mate-
rials that have different densities, bounciness and friction to allow
physical reasoning in a more realistic context.
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Fig. 2| Phy-Qtask templates and evaluation settings. a, The task templates of
the relative height scenario (first row) and the tasks generated using the second
task template in the first row (second row). b, The local generalization and the

broad generalization evaluation settings. ¢, Anillustration of how generalizing
aphysical ruleis evaluated in the broad generalization evaluation using the
bouncingscenario asanexample.

As arecent visual and physical prediction benchmark, Physion?
evaluates algorithms’ physical prediction capability using videos of
eight different physical scenarios. Compared with Physion, the Phy-Q
testbed has amore comprehensive set of 15 physical scenarios enabling
the evaluation of agents in a wider range of physical scenarios. The
Phy-Q testbed requires agents to interact with the environment and
select the desired action to accomplish physical tasks. Therefore, on
top of predicting a physical event’s outcome, agents need to apply
the acquired physical knowledge to solve new situations, which is
considered to be amore advanced type of task in Bloom’s taxonomy*®.
In addition, a study on forward prediction for physical reasoning®
confirms that higher forward prediction accuracy does not necessar-
ily increase performance in domains that require selecting an action.
Therefore, Physion and Phy-Q focus on different research problems.

Despite Angry Birds being a simplified and controlled physics envi-
ronment as compared with the much messier real physical world, no Al
system that comes close to human performance has been developed.
Toencourage the development of Alagents that canreason with physics
as humans do, the AIBIRDS competition has been organized annually
since 2012, mostly held at the International Joint Conference on Arti-
ficial Intelligence®. Since then, many different Al approaches have
been proposed, ranging from modern deep reinforcement learning
methods to more old-school heuristic methods, for example, qualita-
tive physical reasoning methods. However, none of these approaches
hasreached the milestone of achieving human-level performance. One
major reason is that an agent’s performance in the competition does
not enable an agent developer to identify the physical scenarios that

the agentfalls shortof. Thisis because the tasksin the competitionare
generally complex with multiple physical scenarios within the same
task. Inthis work, we show how the Phy-Q testbed can be used towards
guiding the competition agents through a systematic evaluation of
agents’ performance.

The Phy-Q testbed
Inthis section, we introduce our testbed and discuss the physical sce-
narios we have identified.

Introduction to the Phy-Q testbed

Based onthe 15identified physical scenarios (discussedin detail in Sec-
tion3.2), we develop a physical reasoning testbed using Angry Birds. In
Angry Birds, the player interacts with the game by shooting birds at pigs
from aslingshot. The goal of the player is to destroy all the pigs using
the provided set of birds. As the original game by Rovio Entertainment
is not open-sourced, we use a research clone of the game developed
in Unity*. The game environment is a deterministic two-dimensional
world where objects in motion follow Newtonian physics. The game
objects are of four types: birds, pigs, blocks and platforms. There are
five types of birds, four of which have powers that can be activated once
tappedintheirflight. There are three types of pigs, varyinginsize. The
health points of the pigs increase with their size. Blocks in the game
are made of three materials (wood, ice and stone), and each of them
has 12 variations in shape. Platforms are static objects that remain at
afixed position and are not affected by forces and are indestructible.
Allother objects are dynamic, thatis, canbe moved by applying forces.
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Dynamic objects have health points that are reduced upon collisions
with other objects, and they get destroyed and disappear when their
health points reach zero. The initial state of a game level is physically
stable (that is, none of the objects is in motion), and the goal is not
achieved. The action of an agent is to shoot the bird on the slingshot
by providing the release coordinates relative to the slingshot. We have
included amodule that aids trajectory planning to reduce the dexter-
ity requirement. Additionally, the agent provides the tap time of the
birdtoactivate powers (if available). The selection of the release point
and the tap time makes the action space essentially continuous. When
playing, an agent takes asequence of actions, that is, shoots the birdsin
apredefined order. The agent passes a game level when it destroys all
the pigs with the provided set of birds, and fails otherwise. We do not
provide the full world state that includes the exact location of objects
inthe simulator or their physical properties such as mass and friction
totheagents, asthese properties are not directly observablein thereal
world. Instead, an agent can request screenshots and/or a symbolic
representation of the game level at any time while playing. A game
screenshotisa480 x 640 coloured image, and the symbolic representa-
tionisinjavaScript object notation format, containing all the objects
in the screenshot represented as a polygon of its vertices (provided
in order) and its respective colour map. The colour map provides the
list of eight-bit quantized colours that appear in the game object with
their respective percentages.

Physical scenarios in the Phy-Q testbed

In this section, we introduce the 15 physical scenarios we consider in
our testbed. Firstly, we consider the basic physical scenarios associ-
ated with applying forces directly on the target objects, that is, the
effect of asingle force and the effect of multiple forces™. Ontop of the
application of asingle force, we also include scenarios associated with
more complex motionincludingrolling, falling, sliding and bouncing,
whichareinspired by the physical reasoning capabilities developedin
humaninfancy*’. Furthermore, we define the objects’ relative weight",
the relative height*, the relative width*, the shape differences** and
the stability* scenarios, which require physical reasoning abilities that
infants acquire typically at a later stage. On the other hand, we also
incorporate clearing path, adequate timing and manoeuvring*® and
taking non-greedy actions*, which are required to overcome challenges
for robots to work safely and efficiently in physical environments. Each
of these scenarios tests a different aspect of the agent’s skill, physical
understanding and planning ability. To sum up, the physical scenar-
ios we consider and the corresponding high-level strategic physical
rules that can be used to achieve the goal of the associated tasks are
mentioned below. Example task templates from those scenarios are
showninFig. 1.

1. Single force: Target objects have to be destroyed with a single
force.

2. Multiple forces: Target objects need multiple forces to be
destroyed.

3. Rolling: Circular objects have to be rolled along a surface to a
target.

4. Falling: Objects have to fall onto a target.

5. Sliding: Non-circular objects have to be slid along a surface to a
target.

6. Bouncing: Objects have to be bounced off a surface to reach a
target.

7. Relative weight: Objects with the correct weight have to be
moved to reach a target.

8. Relative height: Objects with the correct height have to be
moved to reach a target.

9. Relative width: Objects with the correct width or the opening

with the correct width have to be selected to reach a target.
10.Shape difference: Objects with the correct shape have to be
moved/destroyed to reach a target.
Non-greedy actions: Actions have to be selected in the correct
order based on physical consequences. The immediate action
may be less effective in the short term but advantageous in long
term, that is, reach fewer targets in the short term to reach more
targets later.
Structural analysis: The correct target has to be chosen to break
the stability of a structure.
Clearing paths: A path must be created before the target can be
reached.
Adequate timing: Correct actions have to be performed within
time constraints.
Manoeuvring: Objects have to be carefully guided to reach a
target.

11.

12.
13.
14.

15.

Conclusion and future work

The goal of the Phy-Qtestbed is to facilitate the development of physi-
cal reasoning Al methods with broad generalizing abilities similar to
that of humans. As mentioned above, humans may possess inaccurate
forward physics prediction models. We focus on tasks that canbe solved
by using astrategic physical rule and with low dexterity requirements
instead of tasks that require precise forward prediction. Therefore,
towardsthat goal, we designed 75 task templates considering 15 differ-
ent physical scenariosin our testbed. The tasks that belong to the same
physical scenario can be solved by a specific strategic physical rule,
enabling us to measure the broad generalization of agents by allowing
the agent to learn a strategic physical rule in the learning phase that
can be used in the testing phase. Apart from the broad generalization
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Relational-Image (Rel-Im) and random (Random). The performance of the
best-performing agent is showninbold. Learning agents have higher local
generalization values but lower values in broad generalization than the
performance of heuristic agents. Human performance is way beyond agents.
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performance evaluation, the Phy-Q testbed also enables evaluating
agents’local generalization performance. We have established baseline
results from the testbed and have shown that, even though current
learning agents can generalize locally, the broad generalization ability
of these agents is below heuristic agents and far below human perfor-
mance. Further, we have defined the Phy-Qscore toreflect the physical
reasoning ability of agents. Inaddition, we have shown how the testbed
can be used for the advancement of the AIBIRDS competition agents.

Although we discourage the development of heuristic agents with
hard-coded rules that apply only to Angry Birds, we believe that the
superior performance of these rule-based systems, given that none
ofthe agent developers has seen the Phy-Q tasks previously, indicates
that the human-extracted strategic physical rules are highly generaliz-
able. Therefore, we foresee several areas of improvement: (1) Agents
should learn and store generalizable abstract causal knowledge*®, for

example, strategic physical rules. For example, humans understand not
only that shooting abird at a pig can destroy the pig, but also that the
pigis destroyed because, when the bird hits the pig, a force is exerted
by the bird on the pig*’ and, if the force is large enough, an object will
be destroyed. One possible way to learn this abstract causal knowledge
is through explanation-based learning’®, where an agent constructs
an explanation for initial exemplars and then constructs a candidate
rule that depends only on the explanation. If the rule is proven true
for a small number of additional exemplars, the rule is adopted. As
the representation of abstract and causal knowledge allows for sym-
bolic manipulation*®, (2) itis also worthwhile to explore the possibility
of combining deep learning techniques with reasoning over knowl-
edge systems in physical domains. Neural symbolic methods, such as
Neuro-Symbolic Dynamic Reasoning®, have shown promising results
on physical reasoning.
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Phy-Q can be advanced in different directions. Characteristics
such as deforming can be introduced to the objects in the tasks. Fur-
ther, complex scenarios can be added to the testbed by combining
the existing scenarios. This will also enable the combinatorial gener-
alization of the agents to be measured. Moreover, additional physical
scenarios thatare not coveredin the testbed could beintroduced, such
as shape constancy, object permanence, spatiotemporal continuity,
and causality. We hope that Phy-Q will provide a foundation for future
research on the development of Al agents with human-level physical
reasoning capabilities, thereby coordinating research efforts towards
ever new goals.

Methods

Phy-Q testbed tasks and evaluation

Inthis section, we discuss the details of the designing of task templates
and the generation of task instances. We also explain the evaluation
settings we have used in the testbed.

Task templates and task generation. We design task templates in
Angry Birds for each of the 15 physical scenarios mentioned above. A
task template can be solved by a specific strategic physical rule, and
all the templates belonging to the same scenario can be solved by the
high-levelstrategic physical rules discussed above. To guarantee this, in
the Phy-Qtestbed, we hand-crafted the task templates because existing
task generators for Angry Birds**? do not generate tasks according toa
strategic physical rule. Also, we ensure that, if an agent understood the
strategic physical rule to solve the template, it can solve the template
without requiring highly accurate shooting, for example, the template
can be solved by shooting at a specific object rather than shooting a
specific coordinate. This design criterion is followed to reduce the
dexterity requirement when solving the tasks in our testbed. We have
developed 2-8task templates for each scenario, totalling 75 task tem-
plates. Figure 1shows example task templates for the 15 scenarios.

We generate 100 game levels from each template, and we refer to
these game levels as tasks of the task template. All tasks of the same
template share the same strategic physical rule to solve. Similar toref.”,
the tasks are generated by varying the location of the game objects in
the task template within a suitable range. Furthermore, various game
objectsareadded atrandom positionsin the task as distractions, ensur-
ing that they do not alter the solution of the task. When generating
the tasks, each task template has constraints to satisfy such that the
physical rule of the template is preserved. For example, the constraints
canbe: which game objects should be directly reachable by abird shot
from the slingshot, which game objects should be unreachable to the
bird, which locations in the game level space are feasible to place the
game objects, etc. These constraints are specificto each task template.
They were determined by the template developers and hard coded in
the task generator.

Although we provide 100 tasks for each task template, we also
provide a task variation generation module to generate more tasks if
needed. Figure 2ashows task templates of the relative height scenario
and example tasks generated from a single task template. All 75 task
templates and example task variations can be found in Supplementary
Sect..C.

Proposed evaluation settings. The spectrum of generalization pro-
posed by Chollet' can be used to measure intelligence as laid out
by theories of the structure of intelligence in cognitive psychology.
There are three different levels in the spectrum: local generalization,
broad generalization and extreme generalization. Having 15 physical
scenarios, a variety of task templates for each scenario and task vari-
ations for each task template, our testbed is capable of evaluating all
three different generalization levels. However, in this work, we focus
on measuring the local generalization and the broad generalization
of agents, as local generalization is the form of generalization that

has been studied from the 1950s up to this day and there is increasing
researchinterest in achieving broad generalization®.

More formally, consider each scenario, in the set of all scenarios
SCENARIO, where |SCENARIO| =15. We define template; € scenario,,
where |scenario,| = NT,and NT;is the number of templates we included
for scenario,. As we have 100 tasks for each templates, we define
task, € template;, where [template;| =100 for all templates, that is,
eachscenarioisaset of tasks and the tasks inascenario are partitioned
into templates.

To evaluate local generalization within a particular template, we
trainanagent onsome (80% in practice) of the tasksin atemplate and
evaluate it on the remaining tasks of the same template. To evaluate
broad generalization within a particular scenario, we train an agent
on the tasks of some of the templates of that scenario and evaluate
it on the tasks of the other templates of the same scenario (see Sup-
plementary Sect. E for the division of task templates for training and
testing for each scenario).

We evaluate the broad generalization performance for all 15 sce-
narios. We assume that, if an agent learns the strategic physical rule
required to solve aset of task templates, it should be able to apply the
same strategic physical rule to solve unseen tasks from other templates
withinthe same scenario. As opposedto this, the performance onlocal
generalization evaluation may not represent an agent’s physical rule
generalizing capability but memorizing a special-purpose heuristic.
Figure 2b shows adiagrammatic representation of the two evaluation
settings, and Fig. 2c shows anillustration of how generalizing a physical
ruleis evaluated in the broad generalization evaluation setting.

Our physical reasoning quotient (Phy-Q) is inspired by the devia-
tion intelligence quotient® of humans. We calculate the Phy-Q of an
agent by using the results of our broad generalization evaluation,
since we consider that this evaluation measures the agent’s ability in
generalizing strategic physical rules. When calculating the Phy-Q, we
exclude the first two scenarios (single force and multiple forces), as
the solution for these two scenarios is directly shooting the bird to
the exactlocation of the pig. Given that we have provided a trajectory
planner for both humans and agents, solving the tasks of these two
scenarios is straightforward. This is also evident from the exception-
ally high results (Section 5.3.2) of the Pig Shooter agent that directly
shootsat the pigs without doing any physical reasoning. We define the
Phy-Qscore as follows:

_ 1 ISCENARIO| Pagent,m — Phuman,m
8ent ~ |SCENARIO — {scenario,, scenario,}|

Z, _
m=3 ohuman,m

@

100
‘Z random | ’

Phy-Qscore,gene = 100 + Zygen )

where P, is the average pass rate of subject n in the mth scenario.
Ohuman,m IS the s.d. of the human pass rate in scenario m and ‘random’
indicatestherandomagent that selectsarandomaction (Section 5.2.1).
APhy-Qscore of 100 represents an agent having anaverage human level
performance, whereas if the score is less than 100, the agent’s perfor-
mance is less than the average human performance and vice versa. As
the random agent does not have any physical reasoning capabilities,
webringthe randomagent’s Phy-Q score to zero. Therefore, we set the
scaling factor to100/|Z,,n40oml, Whichis 13.58, as compared with 15 for the
intelligence quotient. Therefore, a Phy-Q score of more than zero indi-
cates performance better than an agent that selects arandom action.

Experiments

We conduct experiments on baseline learning agents to measure how
well they can generalize in two different settings: local generalization
and broad generalization. We also conduct experiments using heuris-
tic baseline agents in the two generalization settings. In addition, we
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establish human performanceinthe15scenarios. Further, we conduct
an additional experiment using heuristic agents in AIBIRDS competi-
tiongame levelsto examine whether the performance of agentsin the
testbed resembles the performance in the competition.

Baseline agents. We present experimental results of nine baseline
agents: two DQN agents (one using screenshot input and the other
using symbolic representation), two relational agents (one using
screenshot input and the other using symbolic representation), four
heuristic agents from the AIBIRDS competition and arandom agent.

Learning agents: For the learning agents, we tested value-based
and policy-based (Supplementary Sect. I) reinforcement learning
algorithms and report the results of double duelling deep Q-network
(DQN) agents and relational DQN agents.

+ DQN: The DQN**agent collects state-action-reward-next state
quadruplets at the training time following decaying epsilon
greedy. We define the reward function as task pass status, mean-
ing that the agent receives 1if the task is passed and O otherwise.
We report the performance of double duelling DQN>**¢ with two
different input types: symbolic representation (D-DDQN-Image)
and screenshot (D-DDQN-Symbolic).

« Relational DQN: The relational agent consists of the relational
module” that was built on top of the deep Q-network. The aim of
this agent s to generalize over the presented templates/events
by using structured perception and relational reasoning. In our
experiments, we wanted to test whether the relational agent
would be able to learn the important relations between the
objects that could be generalized to other templates or events.
We have tested the agent with symbolic and image input types
and refer to them as Relational-Symbolic and Relational-Image
agents, respectively.

Heuristic agents: The heuristic agents are based on hard-coded
strategic physical rules designed by the developers. We included four
heuristic agents from the AIBIRDS competition. We compare the heu-
ristic agents’ performance on our testbed with the generalization
performance of the baseline learning agents.

« Bambirds: Bambirds was the winner of the 2016 and 2019
AIBIRDS competitions. The agent chooses one of nine different
strategies. The strategies include creating a domino effect, tar-
geting blocks that support heavy objects, maximum structure
penetration, prioritizing protective blocks, targeting pigs and
utilizing certain bird’s powers®.

- Eagle’s Wing: Eagle’s Wing was the winner of the 2017 and 2018
AIBIRDS competitions. This agent selects an action based on
strategies including shoot at pigs, destroy most blocks, shoot
high round objects and destroy structures®’.

- Datalab: Datalab was the winner of the 2014 and 2015 AIBIRDS
competitions. The agent uses the following strategies: destroy
pigs, destroy physical structures and shoot at round blocks.
The agent selects a strategy based on the game states, possible
trajectories, bird types and the remaining birds®.

« PigShooter: The strategy of the Pig Shooter is to shoot directly
at the pigs. The agent shoots the bird on the slingshot by ran-
domly selecting a pig and a trajectory to shoot the pig®.

Random agent: For each shot, the agent selectsarandomrelease
point (x, y), wherexis sampled from[-100, -10] and y from [-100, 100]
relative to the slingshot. It also provides a tapping time when the bird
isbetween 50% and 80% of the trajectory length, where applicable.

Experimental setups. Human experiment setup: Experiments were
approved by the Australian National University committee on human
ethics under protocol 2021/293. Participation was voluntary with no
monetary compensation. The volunteers were males and females with

ageintherange of18-35 years. They were not experienced Angry Birds
players. Participants provided consent to use their play data. For each
of them, we provided two tasks from each physical scenario for the 15
scenariosin Phy-Q (except the manoeuvring scenario, which used four
tasksrepresenting the four types of birds with powers). We provided a
trajectory visualizer of the bird to the participants to remove the need
for precise shooting. If the participants solved a task or failed to solve a
taskin five attempts, they moved on to the next task. As humans acquire
physical reasoning capabilities from their infancy**®*, using an evalu-
ation setting that we proposed for agents does not exactly measure
the generalization ability of humans. Therefore, we measure the task
performance in humans using the pass rate.

D-DDQN andrelational DQN experimental setup: We conducted
separate experiments onthe D-DDQN and relational agents in the two
settings: local generalization and broad generalization. For the local
generalization evaluation, werun ten sampling agents that use the same
DQN model to collect experiences. Each sampling agent runs on the
randomly selected task for ten episodes. After the set of experiences
iscollected, the DQN modelis trained for ten epochs with abatch size
of32. Wetrain DQN until it either converges or reaches Nupdate steps,
where Nis the number of training tasks per template divided by 5. Simi-
lar toref.'?, for each batch, we sample 16 experiencesin which a taskis
solved and 16 that failed. We train our agent on 80% of the tasks of the
task template and evaluate on the rest of the tasks of the same template.
We used the same training setting for all of the task templates. At the
testing time, the agent runs on each of the testing tasks only once and
selects the actionthat has the highest Q-value for agiven state. For the
broad generalization evaluation, we use the same training and testing
setting as in the local generalization evaluation, except we train our
agentson the tasksin the training templates in each scenario and test
onthe tasks from the testing templates.

Heuristic agents experimental setup: We conduct two experi-
ments using the AIBIRDS heuristic agents. The first experiment is to
evaluate thelocal and broad generalization capabilities, and the second
istoevaluate the performancein the AIBIRDS competition game levels.

« Local and broad generalization setup: Due to the randomness
in the heuristic agents, we allow them to have five attempts per
task and calculate the task pass rate by averaging the result
over these five attempts. For the local generalization setting,
the agents were tested on the same 20% of the test tasks from
each task template (1,500 tasks in total) as used for the D-DDQN
evaluation. We report the local generalization performance by
averaging the pass rates of all templates. For the broad gener-
alization setting, the same testing templates as used for the
D-DDQN evaluation were applied, and the within-scenario pass
rate is calculated by averaging over all the tested templates
within the scenario.

+ AIBIRDS competition setup: We evaluate the AIBIRDS heuristic
agents on 2021 AIBIRDS competition game levels to compare
their performance in the competition game levels and the Phy-Q
testbed tasks. We exclude the competition game levels with
unrealistic effects as our focus in the testbed is scenarios with
realistic physics. The game levels used for this evaluation are
shown in Supplementary Sect. G. In the AIBIRDS competition,
the agent with the highest score wins the competition. There-
fore, in this experiment, we record the score and pass rate of the
agents. The agents are allowed to have five attempts per game
level to account for their randomness. Altogether, an agent had
40 plays.

Random agent experimental setup: The random agent was
tested on the same testing tasks set from each task template. We run
therandomagent 50 times per task and report the average pass rate of
these 50 attempts. The same as how we evaluate the heuristic agents,
we further average the task performance within the same task template

Nature Machine Intelligence | Volume 5 | January 2023 | 83-93

290


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-022-00583-4

and average the pass rate of all the templates to present the local gen-
eralization performance. For the broad generalization setting, the
within-scenario pass rate is calculated by averaging over all the tested
templates within the scenario.

Results and analysis

In this section, we first present and analyse the results obtained from
our experiment with human players. Next, we present the results
obtained from our experiments in measuring the local and broad
generalization ability of agents and the Phy-Q score. We further analyse
the results and discuss what we can derive from the experiments. We
also discuss the results obtained from the heuristic agentsin the 2021
AIBIRDS competition levels and the Phy-Q testbed tasks to show how
the testbed canbe used as aguide for the competition.

Human performance. Figure 3 presents the average pass rate, the pass
rate the human players achieved within five attempts, the maximum
number of attempts made and the total thinking time of human play-
ers for the 15 capabilities. The average pass rate is calculated as100%
if the player passes at the first attempt, whereas if the player passes at
the fifth attempt, the pass rate is 20%. We record the thinking time of
an attempt as the time between the task loading and the player mak-
ing thefirstaction. The total thinking time of a player is the sum of the
thinking time of all their attempts. The number of attempts made and
the total thinking time is scaled to 0-1using min-max scalingin Fig. 3.
Charts with thereal values are available in Supplementary Sect. F.

Overall, human players passed almost all the tasks in each scenario
within the five attempts. On average, they used 1.86 attempts per
task and took 23.73 s to think per task. On average, the low number of
attempts to pass the tasks shows that the dexterity required to solve the
tasks whenthestrategy is determined is low. The average thinking time
per task shows that humans have to think carefully about the strategic
physical rule required to solve the task.

Humans have the longest thinking time for the tasks in the ade-
quate timing scenario, but the average pass rate for these tasks is the
second lowest. Similarly, the tasks from the non-greedy actions sce-
nario have the lowest average pass rate with the highest number of
attempts, while the thinking time is the second longest. This shows
thatfiguring out the correctstrategies for the tasks of these scenarios
was difficult for humans. In the relative weight scenario, the pass rate
achieved within five attempts is the lowest, but the thinking time is
average for this scenario. This suggests that some humans take the
actionwithout carefully thinking about the strategy, and the strategy
realized at a glance is not the correct strategy to solve the task. This
also agrees with our observation that humans are overconfident in
their wrong actions.

Local and broad generalization performance and Phy-Q score.
Local generalization performance: Figure 4b (first row) presents
the average local generalization evaluation pass rate for all of our
baseline agents. We also include the full results for the pass rate per
agent per templatein Supplementary Sect.D. The table shows that the
four learning agents perform significantly better than their heuristic
counterparts. While both the symbolic learning agents and both the
image learning agents on average pass approximately 33% and 24% of
the test levels, respectively, the previous champions in the AIBIRDS
competition (Bambirds, Eagle’s Wing and Datalab) pass around only
half of the levels as compared with the learning agents, averaging 15%,
14% and 15%, respectively. This agrees with what is generally accepted
that deep learning systems can perform a single narrow task much
better than heuristic methods when enough densely sampled training
dataareavailable.

Broad generalization performance: Figure 4a presents the aver-
age pass rate of test templates of the broad generalization evaluation
ofallthe baseline agents and human players. Itis clear that the humans

substantially outperformall the other agents, while all the agents have
above-chance performance compared with therandom agent. Heuris-
tic agents achieved a better pass rate in the single force scenario (sce-
nario1) and multiple force scenario (scenario 2) as these two scenarios
correspond to the essential ability needed to play Angry Birds, that s,
shooting directly at pigs. It can be seen that the heuristic agents gener-
ally perform better if the physical scenario is covered in their built-in
rules. For example, Datalab and Eagle’s Wing have a built-in strategic
physical rule to roll round objects, and they have the highest pass rate
inscenario 3 (rolling) amongall the agents. For scenario 4 (falling) and
scenario 13 (clearing paths), Bambirds dominates the leaderboard of
pass rate because it explicitly analyses spatial relationships between
blocks and pigs and is the only heuristic agent with the ‘prioritizing
protective blocks’ rule.

The second row in Fig. 4b shows the overall average pass rate for
the broad generalization evaluation of the agents and humans. The
heuristic agents’ results were obtained in a similar way as applied for
thelocal generalization evaluation, except we only consider the tasks
from the testing task templates given to the learning agents. In con-
trast to the local generalization results, in this evaluation setup, the
learning agents have worse results than all the heuristic agents. The
D-DDQN-Symbolic and the D-DDQN-Image agents have an average
pass rate of 12% and 10%, respectively, while Relational-Symbolic and
Relational-Image have 14% and 9%, respectively. The championsin the
AIBIRDS competition have almost twice the pass rate compared with
the learning agents. This result further advocates the claim that deep
learning agents often exploit spurious statistical patterns instead of
learning inameaningful and generalizable way as humans do'¢%°06>¢4,

Phy-Q score: As discussed in Section 5.1.2, the Phy-Q score of
humansisset to100 while that of the random agentissetto 0. A Phy-Q
score above 100 indicates superhuman performance. Figure 5 shows
the positions of agents and humans in the Phy-Q score distribution.
Even though Eagle’s Wing was the first in the broad generalization
leaderboard (where Eagle’s Wing scored 0.1142 while Bambirds scored
0.1022, even after removing the results of the first two scenarios), Bam-
birds took the lead in terms of the Phy-Q score, pushing Eagle’s Wing
intosecond place. Thisis because the Phy-Q score positions the agent
withrespect to human performance. Interestingly, the D-DDQN-Image
and Relational-Symbolic agents achieved higher Phy-Q values com-
pared with Datalab. Similar to the above reason, thisis due to the posi-
tioning of the agents with respect to human performance. Moreover,
the Phy-Q of the Pig Shooter is negative. This result is expected as the
Pig Shooter only shoots at the pigs, thus exhibiting below-chance
performance compared with the randomagent. Overall, it can be seen
that all the agents are far below the humans’ Phy-Q score.

AIBIRDS competition performance. Extended Data Fig. 1 presents
the results of the AIBIRDS heuristic agents in the AIBIRDS competi-
tiongamelevels. As canbeseen from these results, the passrate of the
agents in competition game levels agree with the rank they achieved
usingthe Phy-Qscore. Eagle’s Wing and Datalab achieved the same pass
rateof 0.2. However, considering the total score, Eagle’s Wing obtained
667,394 while Datalab obtained 634,435, pushing Eagle’s Winginto sec-
ond position. Overall, these resultsillustrate that the tasks in the Phy-Q
testbed are representative of the tasks in the AIBIRDS competition.
Onthebasis of this result, we infer that the physical scenarios avail-
ableinthePhy-Qtasksarealsothescenarios that are commonly encoun-
tered in the AIBIRDS competition game levels. The within-scenario
(broad generalization) evaluation that we have conducted can be used
toidentify anagent’s ability in performingin those individual physical
scenarios. Therefore, one can use the Phy-Q testbed to thoroughly
analyse the physical reasoning capabilities of an AIBIRDS agent and
determine whereitfallsshort and improve on those capabilities. Addi-
tionally, the human performance results that we have established in the
15scenarios facilitate the comparison of the agents’ performance with

Nature Machine Intelligence | Volume 5 | January 2023 | 83-93

91


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-022-00583-4

humans’ performance, allowing us to set targets for agents to achieve
human-level performance in those scenarios. Thus, the Phy-Q testbed
and the evaluation settings we proposed in the testbed can be used
to better evaluate AIBIRDS agents and guide them towards achieving
human-level performance in the competition.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The datacollected from human players and baseline agents have been
made available at https://github.com/phy-q/benchmark/tree/master/
playdata.

Code availability
Thetestbed software and baseline agents’ codes have been made avail-
able at https://github.com/phy-q/benchmark®.
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Rank from Phy-Q score 1 2 3 4
Agent name Bambirds Eagle’s Wing Datalab Pig Shooter
Competition performance 0.2727 0.2000 0.2000 0.0000
Phy-Q score 14 12 7 -2

Extended Data Fig. 1| Comparison of AIBIRDS competition performance with Phy-Qscore of heuristic agents. Results of the AIBIRDS heuristic agentsin the
AIBIRDS competition game levels. The competition performance (pass rate) of the agents in competition game levels agree to the rank they achieved using the
Phy-Qscore.
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Data collection  The testbed software that includes data collection codes has been made available at https://github.com/phy-q/benchmark

Data analysis Custom codes written in Python 3 for data visualization can be made available upon request.
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The data collected from human players and baseline agents have been made available at https://github.com/phy-g/benchmark/tree/master/playdata.

>
QO
—
C
=
(D
=
D
wn
(D
Q
=
@)
>
=
(D
©O
]
=
>
(e}
%)
c
3
QO
=
<

0202 fudy




Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
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Study description We conducted two experiments. The first experiment using Al agents and the other experiment using human players playing Angry
Birds game levels.
1) Al agents: 9 Al agents were used and quantitative data on scorers and pass/fail status were recorded.
2) Human players: 20 human players participated and quantitative data on scorers, pass/fail, and time taken to solve were recorded.
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Research sample 1) Al agents: four of our best performing learning agents, four heuristic-based agents, and a random agent. Learning agents are with
varying input types and architectures, and heuristic agents are with different physical reasoning strategies. Rational for selecting
these agents was that the heuristic agents represent varying heuristics and learning agents are general reinforcement agents in Al
research.

2) Human players: Voluntary participants in Australia, representing both males and females and age ranging from 18-35. Rational for
selecting these participants is that generally these game levels are easily solvable by humans and no special consideration is required.

Sampling strategy 1) Al agents: Data is collected from the two main types of agents, learning agents and heuristic agents. Learning agents are with
varying input types and architectures, and heuristic agents are with different physical reasoning strategies. Sample size calculations
was not conducted for agents as we used agents that represent different heuristics and learning architectures.

2) Human players: Convenience sampling method is used after sending out emails/ posters in social media for voluntary participation.
Sample size was sufficient as the game levels could easily be solved by humans. Human players do not need special requirements to
participate in this study. According to the sample size calculation conducted using our prior knowledge in AIBIRDS competitions
(human vs machine challenge) and after playing these game levels among researchers, the pass rate standard deviation was around
0.1, and therefore to enable 5% standard error at 95% level of confidence 15 samples were sufficient. Therefore, we used data from
the 20 players who volunteered.

Data collection 1) Al agents: Data was collected under the experimental settings presented in the paper. The game scores and pass/fail status and
time taken to solve is recorded from the testbed software.
2) Human players: Data was collected from voluntary participants after sending out emails/ posters in social media. The game scores
and pass/fail status and time taken to solve is recorded from the testbed software. Only the researchers were present in the room
when participants were playing to solve any technical difficulties during the experiment. However, data does not record details of the
participant. Therefore researchers were not aware of the participant details from the recorded data.

Timing 1) Al agents: 01/03/2021 - 31/12/2021
2) Human players: 01/03/2021 - 01/08/2021

Data exclusions 1) Al agents: Some learning agents that we obtained data from are excluded due to poor performance. Explained in the paper.
2) Human players: Data from one player was excluded as the data was not recorded correctly.

Non-participation No participant dropped out

Randomization Participants were not allocated into groups as it is not applicable to our study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq >
Eukaryotic cell lines |Z |:| Flow cytometry %
Palaeontology and archaeology |Z |:| MRI-based neuroimaging g
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XXX NXNXX &
OOXOOOO

Dual use research of concern




Human research participants

Policy information about studies involving human research participants

Population characteristics See above

Recruitment Convenience sampling method is used after sending out emails/ posters in social media for voluntary participation. Voluntary
participants were in Australia, representing both males and females and age ranging from 18-35. The participant selection
will not impact results as the game levels that humans' played require simple physical reasoning capabilities. No
remuneration was provided for the participants.

Ethics oversight Informed consent was obtained from all the participants to use their palydata. Ethics approval was obtained from the
Australian National University committee on human ethics under protocol 2021/293

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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