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Phy-Q as a measure for physical reasoning 
intelligence

Cheng Xue    1,2  , Vimukthini Pinto    1,2  , Chathura Gamage    1,2  , 
Ekaterina Nikonova1, Peng Zhang1 & Jochen Renz    1

Humans are well versed in reasoning about the behaviours of physical objects 
and choosing actions accordingly to accomplish tasks, while this remains a 
major challenge for artificial intelligence. To facilitate research addressing 
this problem, we propose a new testbed that requires an agent to reason 
about physical scenarios and take an action appropriately. Inspired by the 
physical knowledge acquired in infancy and the capabilities required for 
robots to operate in real-world environments, we identify 15 essential physical 
scenarios. We create a wide variety of distinct task templates, and we ensure 
that all the task templates within the same scenario can be solved by using 
one specific strategic physical rule. By having such a design, we evaluate 
two distinct levels of generalization, namely local generalization and broad 
generalization. We conduct an extensive evaluation with human players, 
learning agents with various input types and architectures, and heuristic 
agents with different strategies. Inspired by how the human intelligence 
quotient is calculated, we define the physical reasoning quotient (Phy-Q 
score) that reflects the physical reasoning intelligence of an agent using 
the physical scenarios we considered. Our evaluation shows that (1) all the 
agents are far below human performance, and (2) learning agents, even with 
good local generalization ability, struggle to learn the underlying physical 
reasoning rules and fail to generalize broadly. We encourage the development 
of intelligent agents that can reach the human-level Phy-Q score.

The ability to reason about objects’ properties and behaviours in physi-
cal environments lies at the core of human cognitive development1. A 
few days after birth, infants understand object solidity2, and within 
the first year after birth, they understand notions such as object per-
manence3, spatiotemporal continuity4, stability5, support6, causality7 
and shape constancy8. Generalization performance on novel physical 
puzzles is commonly used as a measure of physical reasoning abilities 
for children9,10, animals11 and artificial intelligence (AI) agents12–15.

Chollet’s study16 on the measure of intelligence proposes a qualita-
tive spectrum of different forms of generalization that includes local 
generalization and broad generalization. Current evidence17–19 sug-
gests that contemporary deep learning models are local generalization 

systems, that is, systems that adapt to known unknowns within a single 
task. Broad generalization, on the other hand, can be characterized as 
‘adaptation to unknown unknowns across a broad category of related 
tasks’ and is being increasingly emphasized among the AI research 
community16,20. Moreover, when solving physics puzzles, it is common 
that a player must use a strategy to work out a plan and use dexterity 
to accurately execute the strategic plan21. For instance, in a snooker 
game, a player needs to plan the path of the white cue ball, for example, 
where it should go and where it should stop, and then execute the strike 
that precisely produces the planned path. Some cognitive psychology 
researchers believe that humans possess inaccurate forward physics 
prediction models22,23 and hence require practice to improve dexterity, 
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AIBIRDS competition running since 2012 (ref. 29). In 2016, Angry 
Birds was considered to be the next milestone where AI will surpass 
humans30. A time horizon of 4 years was predicted, but so far such 
a breakthrough seems very unlikely. In the AIBIRDS competition, 
heuristic methods generally perform better than their deep learn-
ing counterparts, but it remains unclear what has contributed 
to the gap between their performance. It has also not yet been 
analysed why current AI agents fall short when compared with 
humans. By the systematic analysis of agents from the AIBIRDS 
competition, we show how they need to be improved to achieve 
human-level performance.

Background and related work
In this section, we conduct a comparison between ten related physical 
reasoning benchmarks and two physics-based AI game competitions 
to show how the Phy-Q testbed advances upon existing work. The com-
parison is done with respect to six criteria:

	1.	 Measuring broad generalization in individual physical 
scenario(s), that is, testing the ability of an agent to generalize 
to tasks that require the same physical rule to solve.

	2.	 Categorization of tasks of the test environment into different 
physical scenarios, that is, agents can be evaluated for individual 
scenarios to recognize the scenarios that they can perform well.

	3.	 Procedural generation of tasks or variations of the tasks, that 
is, the tasks/variants of the tasks in the test environment are  
created algorithmically, helping users to generate any amount 
of data.

	4.	 Destructibility of objects in the environment, that is, if the  
environment contains objects that can be destroyed upon  
the application of forces. Having destructible objects makes 
the environment more realistic than an environment that only 
has indestructible objects since the agents need to consider the 
magnitude of the force that is applied to the objects. For exam-
ple, when a robot moves a cup, it needs to reason that the force 
to exert should be large enough to grab the cup but not large 
enough to break it.

	5.	 Observing the outcome of a desired physical action, that is, 
whether an agent can physically interact and observe the out-
come of the action the agent takes.

high dexterity requirements of physics tasks make it unfair to compare 
AI agents’ physical reasoning ability with that of average humans. For 
example, when a human player fails a physics puzzle, it is hard to tell if 
this is owing to incorrect physical reasoning or the inability to make 
precise actions (dexterity). Despite the recent advancement in physical 
reasoning benchmarks and testbeds12–15,24–27, there is a lack of a bench-
mark or a testbed with human-comparable strategic physics puzzles and 
that explicitly evaluates learning agents’ local and broad generalization.

To close these gaps, we propose a new testbed (Phy-Q) and the 
associated Phy-Q score that measures physical reasoning intelligence 
using the physical scenarios we identified. Inspired by the physical 
knowledge acquired in infancy and the abilities required by the robots 
to operate in the real world, we created a wide variety of tasks with low 
dexterity requirements in the video game Angry Birds28. We believe 
that the contributions of this paper pave the way for the development 
of agents with human-level strategic physical reasoning capabilities.

Our main contributions can be summarized as follows:

•	 Phy-Q: A testbed for physical reasoning. We designed a variety of 
task templates in Angry Birds with 15 physical scenarios, where 
all the task templates of a scenario can be solved by following a 
common strategic physical rule. Then, we generated task instances 
from the templates using a task variation generator. This design 
allows us to evaluate both the local and the broad generalization 
ability of an agent. We also define the Phy-Q score, a quantitative 
measure that reflects physical reasoning intelligence using the 
physical scenarios we considered.

•	 An agent-friendly framework. To facilitate agent training in 
our testbed, we propose a framework that allows the training 
of multi-agent instances simultaneously with game play speed 
accelerated up to 50 fold.

•	 Establishing results for baseline agents. The evaluation consists of 
nine baseline agents: four of our best-performing learning agents, 
four heuristic-based agents and a random agent. For each of the 
baseline agents, we present the Phy-Q score, the broad generaliza-
tion performance and the local generalization performance. We 
have collected human player data so that agent performance can 
be compared directly with human performance.

•	 Guidance for agents in the AIBIRDS competition. Angry Birds is a 
popular physical reasoning domain among AI researchers, with the 

Table 1 | Comparison of Phy-Q with related physics benchmarks and competitions

Test Generalization Categorization Procedurally Destructible Observe outcome Human

environment to individual of tasks to generated objects of a desired player

physical scenario/s physical scenarios tasks/variations physical action data

PHYRE12 ✗ ✗ ✓ ✗ ✓ ✗

Virtual Tools14 ✗ ✓ ✗ ✗ ✓ ✓

OGRE13 ✗ ✗ ✓ ✗ ✓ ✗

IntPhys 2019 24 ✓ ✓ ✓ ✗ ✗ ✓

CLEVERER25 ✓ ✗ ✓ ✗ ✗ ✗

CATER31 ✓ ✓ ✓ ✗ ✗ ✗

Physion27 ✓ ✓ ✓ ✗ ✗ ✓

COPHY26 ✓ ✓ ✓ ✗ ✗ ✓

CausalWorld15 ✓ ✓ ✓ ✗ ✓ ✗

RLBench32 ✗ ✗ ✓ ✗ ✓ ✗

Computational Pool33 ✗ ✗ ✗ ✗ ✓ ✗

Geometry Friends34 ✗ ✗ ✓ ✗ ✓ ✗

AIBIRDS35 ✗ ✗ ✓ ✓ ✓ ✓

Phy-Q (this study) ✓ ✓ ✓ ✓ ✓ ✓
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	6.	 Inclusion of human player data, that is, if the evaluation has re-
sults of human players.
We consider PHYRE12, the Virtual Tools game14 and OGRE13 as 

game-based benchmarks, IntPhys24, CLEVERER25, CATER31 and Physion27 
as video-based benchmarks, COPHY26 as an image-based benchmark, 
and CausalWorld15 and RLBench32 as robotic benchmarks. The AI game 
competitions we consider are Computational Pool33 and Geometry 
Friends 34. We also included the AIBIRDS35 competition in the compari-
son to show what properties in Phy-Q facilitate the systematic evaluation 
of AIBIRDS competition agents. Table 1 summarizes the comparison.

The physical reasoning test environment that is most closely 
related to ours is PHYRE12, which also consists of tasks to measure two 
levels of generalization of agents. The PHYRE benchmark tests whether 
agents can generalize to solve tasks within a task template (within tem-
plate) and whether agents can generalize between different task tem-
plates (cross template). The cross-template evaluation in PHYRE does 
not guarantee that the physical rules required to solve the testing tasks 
exist in the training tasks. This leads to uncertainties in understanding 
agents’ performance: inferior performance may not be an indicator of 
inferior physical reasoning but of a difficult training and testing split. 
In contrast, the broad generalization evaluation in our testbed always 

ensures that the physical rules required in testing tasks are covered in 
the training tasks, thereby guaranteeing a more systematic evaluation 
of the physical reasoning capabilities of AI agents. According to the task 
design in PHYRE, tasks must be solved by trial and error. That is, even 
when the physical rule is known, multiple attempts are still needed to 
solve the tasks. Therefore, PHYRE promotes the development of agents 
with physical dexterity. In contrast, we focus on strategy-based physical 
reasoning tasks that can be solved in a single attempt when the physi-
cal rule is understood. We promote the development of agents that 
can understand a physical rule rather than taking a precise action in a 
physical environment (that is, agents with strategic physical reasoning 
capabilities). Furthermore, a limited number of object shapes, motion 
and material properties on scene dynamics hinder the ability for a 
comprehensive evaluation, as performing well on these tests might 
not indicate a greater physical reasoning ability in more general and 
realistic contexts27. Therefore, compared with PHYRE, Phy-Q offers (1) 
three more object shapes (rectangles, squares and triangles) to allow 
more diverse physical dynamics, (2) destructible objects to make our 
environment more realistic and (3) objects with three different mate-
rials that have different densities, bounciness and friction to allow 
physical reasoning in a more realistic context.

a b c

Single force Multiple forces Rolling

d e f

Falling Sliding Bouncing

g h i

Relative weight Relative height Relative width

j k l

Shape difference Non-greedy actions Structural analysis

m n o

Clearing paths Adequate timing Manoeuvring

Fig. 1 | Example tasks in Phy-Q representing the 15 physical scenarios. The slingshot with birds is situated on the left of the task. The goal of the agent is to kill all the 
green pigs by shooting birds from the slingshot. The dark-brown objects are static platforms. The objects with other colours are dynamic and subject to the physics in 
the environments.
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As a recent visual and physical prediction benchmark, Physion27 
evaluates algorithms’ physical prediction capability using videos of 
eight different physical scenarios. Compared with Physion, the Phy-Q 
testbed has a more comprehensive set of 15 physical scenarios enabling 
the evaluation of agents in a wider range of physical scenarios. The 
Phy-Q testbed requires agents to interact with the environment and 
select the desired action to accomplish physical tasks. Therefore, on 
top of predicting a physical event’s outcome, agents need to apply 
the acquired physical knowledge to solve new situations, which is 
considered to be a more advanced type of task in Bloom’s taxonomy36. 
In addition, a study on forward prediction for physical reasoning37 
confirms that higher forward prediction accuracy does not necessar-
ily increase performance in domains that require selecting an action. 
Therefore, Physion and Phy-Q focus on different research problems.

Despite Angry Birds being a simplified and controlled physics envi-
ronment as compared with the much messier real physical world, no AI 
system that comes close to human performance has been developed.  
To encourage the development of AI agents that can reason with physics 
as humans do, the AIBIRDS competition has been organized annually 
since 2012, mostly held at the International Joint Conference on Arti-
ficial Intelligence35. Since then, many different AI approaches have 
been proposed, ranging from modern deep reinforcement learning 
methods to more old-school heuristic methods, for example, qualita-
tive physical reasoning methods. However, none of these approaches 
has reached the milestone of achieving human-level performance. One 
major reason is that an agent’s performance in the competition does 
not enable an agent developer to identify the physical scenarios that 

the agent falls short of. This is because the tasks in the competition are 
generally complex with multiple physical scenarios within the same 
task. In this work, we show how the Phy-Q testbed can be used towards 
guiding the competition agents through a systematic evaluation of 
agents’ performance.

The Phy-Q testbed
In this section, we introduce our testbed and discuss the physical sce-
narios we have identified.

Introduction to the Phy-Q testbed
Based on the 15 identified physical scenarios (discussed in detail in Sec-
tion 3.2), we develop a physical reasoning testbed using Angry Birds. In 
Angry Birds, the player interacts with the game by shooting birds at pigs 
from a slingshot. The goal of the player is to destroy all the pigs using 
the provided set of birds. As the original game by Rovio Entertainment 
is not open-sourced, we use a research clone of the game developed 
in Unity38. The game environment is a deterministic two-dimensional 
world where objects in motion follow Newtonian physics. The game 
objects are of four types: birds, pigs, blocks and platforms. There are 
five types of birds, four of which have powers that can be activated once 
tapped in their flight. There are three types of pigs, varying in size. The 
health points of the pigs increase with their size. Blocks in the game 
are made of three materials (wood, ice and stone), and each of them 
has 12 variations in shape. Platforms are static objects that remain at 
a fixed position and are not affected by forces and are indestructible. 
All other objects are dynamic, that is, can be moved by applying forces. 

............

Training tasks Testing tasks

Local generalization

Training tasks Testing tasks

Broad generalization

a

b

c

Bouncing
Physical rule: objects have to be bounced

off a surface to reach a target

 Agent learns the physical rule
associated with the training tasks

Agent applies the learnt physical
rule to the testing tasks

Training tasks Testing tasks

Fig. 2 | Phy-Q task templates and evaluation settings. a, The task templates of 
the relative height scenario (first row) and the tasks generated using the second 
task template in the first row (second row). b, The local generalization and the 

broad generalization evaluation settings. c, An illustration of how generalizing 
a physical rule is evaluated in the broad generalization evaluation using the 
bouncing scenario as an example.
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Dynamic objects have health points that are reduced upon collisions 
with other objects, and they get destroyed and disappear when their 
health points reach zero. The initial state of a game level is physically 
stable (that is, none of the objects is in motion), and the goal is not 
achieved. The action of an agent is to shoot the bird on the slingshot 
by providing the release coordinates relative to the slingshot. We have 
included a module that aids trajectory planning to reduce the dexter-
ity requirement. Additionally, the agent provides the tap time of the 
bird to activate powers (if available). The selection of the release point 
and the tap time makes the action space essentially continuous. When 
playing, an agent takes a sequence of actions, that is, shoots the birds in 
a predefined order. The agent passes a game level when it destroys all 
the pigs with the provided set of birds, and fails otherwise. We do not 
provide the full world state that includes the exact location of objects 
in the simulator or their physical properties such as mass and friction 
to the agents, as these properties are not directly observable in the real 
world. Instead, an agent can request screenshots and/or a symbolic 
representation of the game level at any time while playing. A game 
screenshot is a 480 × 640 coloured image, and the symbolic representa-
tion is in JavaScript object notation format, containing all the objects 
in the screenshot represented as a polygon of its vertices (provided 
in order) and its respective colour map. The colour map provides the 
list of eight-bit quantized colours that appear in the game object with 
their respective percentages.

Physical scenarios in the Phy-Q testbed
In this section, we introduce the 15 physical scenarios we consider in 
our testbed. Firstly, we consider the basic physical scenarios associ-
ated with applying forces directly on the target objects, that is, the 
effect of a single force and the effect of multiple forces39. On top of the 
application of a single force, we also include scenarios associated with 
more complex motion including rolling, falling, sliding and bouncing, 
which are inspired by the physical reasoning capabilities developed in 
human infancy40. Furthermore, we define the objects’ relative weight41, 
the relative height42, the relative width43, the shape differences44 and 
the stability45 scenarios, which require physical reasoning abilities that 
infants acquire typically at a later stage. On the other hand, we also 
incorporate clearing path, adequate timing and manoeuvring46 and 
taking non-greedy actions47, which are required to overcome challenges 
for robots to work safely and efficiently in physical environments. Each 
of these scenarios tests a different aspect of the agent’s skill, physical 
understanding and planning ability. To sum up, the physical scenar-
ios we consider and the corresponding high-level strategic physical 
rules that can be used to achieve the goal of the associated tasks are 
mentioned below. Example task templates from those scenarios are  
shown in Fig. 1.

	1.	 Single force: Target objects have to be destroyed with a single 
force.

	2.	 Multiple forces: Target objects need multiple forces to be 
destroyed.

	3.	 Rolling: Circular objects have to be rolled along a surface to a 
target.

	4.	 Falling: Objects have to fall onto a target.
	5.	 Sliding: Non-circular objects have to be slid along a surface to a 

target.
	6.	 Bouncing: Objects have to be bounced off a surface to reach a 

target.
	7.	 Relative weight: Objects with the correct weight have to be 

moved to reach a target.
	8.	 Relative height: Objects with the correct height have to be 

moved to reach a target.
	9.	 Relative width: Objects with the correct width or the opening 

with the correct width have to be selected to reach a target.
	10.	Shape difference: Objects with the correct shape have to be 

moved/destroyed to reach a target.
	11.	 Non-greedy actions: Actions have to be selected in the correct 

order based on physical consequences. The immediate action 
may be less effective in the short term but advantageous in long 
term, that is, reach fewer targets in the short term to reach more 
targets later.

	12.	Structural analysis: The correct target has to be chosen to break 
the stability of a structure.

	13.	Clearing paths: A path must be created before the target can be 
reached.

	14.	Adequate timing: Correct actions have to be performed within 
time constraints.

	15.	 Manoeuvring: Objects have to be carefully guided to reach a 
target.

Conclusion and future work
The goal of the Phy-Q testbed is to facilitate the development of physi-
cal reasoning AI methods with broad generalizing abilities similar to 
that of humans. As mentioned above, humans may possess inaccurate 
forward physics prediction models. We focus on tasks that can be solved 
by using a strategic physical rule and with low dexterity requirements 
instead of tasks that require precise forward prediction. Therefore, 
towards that goal, we designed 75 task templates considering 15 differ-
ent physical scenarios in our testbed. The tasks that belong to the same 
physical scenario can be solved by a specific strategic physical rule, 
enabling us to measure the broad generalization of agents by allowing 
the agent to learn a strategic physical rule in the learning phase that 
can be used in the testing phase. Apart from the broad generalization 
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performance evaluation, the Phy-Q testbed also enables evaluating 
agents’ local generalization performance. We have established baseline 
results from the testbed and have shown that, even though current 
learning agents can generalize locally, the broad generalization ability 
of these agents is below heuristic agents and far below human perfor-
mance. Further, we have defined the Phy-Q score to reflect the physical 
reasoning ability of agents. In addition, we have shown how the testbed 
can be used for the advancement of the AIBIRDS competition agents.

Although we discourage the development of heuristic agents with 
hard-coded rules that apply only to Angry Birds, we believe that the 
superior performance of these rule-based systems, given that none 
of the agent developers has seen the Phy-Q tasks previously, indicates 
that the human-extracted strategic physical rules are highly generaliz-
able. Therefore, we foresee several areas of improvement: (1) Agents 
should learn and store generalizable abstract causal knowledge48, for 

example, strategic physical rules. For example, humans understand not 
only that shooting a bird at a pig can destroy the pig, but also that the 
pig is destroyed because, when the bird hits the pig, a force is exerted 
by the bird on the pig49 and, if the force is large enough, an object will 
be destroyed. One possible way to learn this abstract causal knowledge 
is through explanation-based learning50, where an agent constructs 
an explanation for initial exemplars and then constructs a candidate 
rule that depends only on the explanation. If the rule is proven true 
for a small number of additional exemplars, the rule is adopted. As 
the representation of abstract and causal knowledge allows for sym-
bolic manipulation48, (2) it is also worthwhile to explore the possibility 
of combining deep learning techniques with reasoning over knowl-
edge systems in physical domains. Neural symbolic methods, such as 
Neuro-Symbolic Dynamic Reasoning25, have shown promising results 
on physical reasoning.
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Phy-Q can be advanced in different directions. Characteristics 
such as deforming can be introduced to the objects in the tasks. Fur-
ther, complex scenarios can be added to the testbed by combining 
the existing scenarios. This will also enable the combinatorial gener-
alization of the agents to be measured. Moreover, additional physical 
scenarios that are not covered in the testbed could be introduced, such 
as shape constancy, object permanence, spatiotemporal continuity, 
and causality. We hope that Phy-Q will provide a foundation for future 
research on the development of AI agents with human-level physical 
reasoning capabilities, thereby coordinating research efforts towards 
ever new goals.

Methods
Phy-Q testbed tasks and evaluation
In this section, we discuss the details of the designing of task templates 
and the generation of task instances. We also explain the evaluation 
settings we have used in the testbed.

Task templates and task generation. We design task templates in 
Angry Birds for each of the 15 physical scenarios mentioned above. A 
task template can be solved by a specific strategic physical rule, and 
all the templates belonging to the same scenario can be solved by the 
high-level strategic physical rules discussed above. To guarantee this, in 
the Phy-Q testbed, we hand-crafted the task templates because existing 
task generators for Angry Birds51,52 do not generate tasks according to a 
strategic physical rule. Also, we ensure that, if an agent understood the 
strategic physical rule to solve the template, it can solve the template 
without requiring highly accurate shooting, for example, the template 
can be solved by shooting at a specific object rather than shooting a 
specific coordinate. This design criterion is followed to reduce the 
dexterity requirement when solving the tasks in our testbed. We have 
developed 2–8 task templates for each scenario, totalling 75 task tem-
plates. Figure 1 shows example task templates for the 15 scenarios.

We generate 100 game levels from each template, and we refer to 
these game levels as tasks of the task template. All tasks of the same 
template share the same strategic physical rule to solve. Similar to ref. 12,  
the tasks are generated by varying the location of the game objects in 
the task template within a suitable range. Furthermore, various game 
objects are added at random positions in the task as distractions, ensur-
ing that they do not alter the solution of the task. When generating 
the tasks, each task template has constraints to satisfy such that the 
physical rule of the template is preserved. For example, the constraints 
can be: which game objects should be directly reachable by a bird shot 
from the slingshot, which game objects should be unreachable to the 
bird, which locations in the game level space are feasible to place the 
game objects, etc. These constraints are specific to each task template. 
They were determined by the template developers and hard coded in 
the task generator.

Although we provide 100 tasks for each task template, we also 
provide a task variation generation module to generate more tasks if 
needed. Figure 2a shows task templates of the relative height scenario 
and example tasks generated from a single task template. All 75 task 
templates and example task variations can be found in Supplementary 
Sect.. C.

Proposed evaluation settings. The spectrum of generalization pro-
posed by Chollet16 can be used to measure intelligence as laid out 
by theories of the structure of intelligence in cognitive psychology. 
There are three different levels in the spectrum: local generalization, 
broad generalization and extreme generalization. Having 15 physical 
scenarios, a variety of task templates for each scenario and task vari-
ations for each task template, our testbed is capable of evaluating all 
three different generalization levels. However, in this work, we focus 
on measuring the local generalization and the broad generalization 
of agents, as local generalization is the form of generalization that 

has been studied from the 1950s up to this day and there is increasing 
research interest in achieving broad generalization16.

More formally, consider each scenarioi in the set of all scenarios 
SCENARIO, where ∣SCENARIO∣ = 15. We define templatej ∈ scenarioi, 
where ∣scenarioi∣ = NTi and NTi is the number of templates we included 
for scenarioi. As we have 100 tasks for each templates, we define 
taskk ∈ templatej, where ∣templatej∣ = 100 for all templates, that is, 
each scenario is a set of tasks and the tasks in a scenario are partitioned 
into templates.

To evaluate local generalization within a particular template, we 
train an agent on some (80% in practice) of the tasks in a template and 
evaluate it on the remaining tasks of the same template. To evaluate 
broad generalization within a particular scenario, we train an agent 
on the tasks of some of the templates of that scenario and evaluate 
it on the tasks of the other templates of the same scenario (see Sup-
plementary Sect. E for the division of task templates for training and 
testing for each scenario).

We evaluate the broad generalization performance for all 15 sce-
narios. We assume that, if an agent learns the strategic physical rule 
required to solve a set of task templates, it should be able to apply the 
same strategic physical rule to solve unseen tasks from other templates 
within the same scenario. As opposed to this, the performance on local 
generalization evaluation may not represent an agent’s physical rule 
generalizing capability but memorizing a special-purpose heuristic. 
Figure 2b shows a diagrammatic representation of the two evaluation 
settings, and Fig. 2c shows an illustration of how generalizing a physical 
rule is evaluated in the broad generalization evaluation setting.

Our physical reasoning quotient (Phy-Q) is inspired by the devia-
tion intelligence quotient53 of humans. We calculate the Phy-Q of an 
agent by using the results of our broad generalization evaluation, 
since we consider that this evaluation measures the agent’s ability in 
generalizing strategic physical rules. When calculating the Phy-Q, we 
exclude the first two scenarios (single force and multiple forces), as 
the solution for these two scenarios is directly shooting the bird to 
the exact location of the pig. Given that we have provided a trajectory 
planner for both humans and agents, solving the tasks of these two 
scenarios is straightforward. This is also evident from the exception-
ally high results (Section 5.3.2) of the Pig Shooter agent that directly 
shoots at the pigs without doing any physical reasoning. We define the 
Phy-Q score as follows:

Zagent =
1

|SCENARIO − {scenario1, scenario2}|
∑

|SCENARIO|
m=3

Pagent,m − Phuman,m
σhuman,m

,
(1)

Phy-Qscoreagent = 100 + Zagent
100

|Zrandom|
, (2)

where Pn,m is the average pass rate of subject n in the mth scenario. 
σhuman,m is the s.d. of the human pass rate in scenario m and ‘random’ 
indicates the random agent that selects a random action (Section 5.2.1). 
A Phy-Q score of 100 represents an agent having an average human level 
performance, whereas if the score is less than 100, the agent’s perfor-
mance is less than the average human performance and vice versa. As 
the random agent does not have any physical reasoning capabilities, 
we bring the random agent’s Phy-Q score to zero. Therefore, we set the 
scaling factor to 100/∣Zrandom∣, which is 13.58, as compared with 15 for the 
intelligence quotient. Therefore, a Phy-Q score of more than zero indi-
cates performance better than an agent that selects a random action.

Experiments
We conduct experiments on baseline learning agents to measure how 
well they can generalize in two different settings: local generalization 
and broad generalization. We also conduct experiments using heuris-
tic baseline agents in the two generalization settings. In addition, we 
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establish human performance in the 15 scenarios. Further, we conduct 
an additional experiment using heuristic agents in AIBIRDS competi-
tion game levels to examine whether the performance of agents in the 
testbed resembles the performance in the competition.

Baseline agents. We present experimental results of nine baseline 
agents: two DQN agents (one using screenshot input and the other 
using symbolic representation), two relational agents (one using 
screenshot input and the other using symbolic representation), four 
heuristic agents from the AIBIRDS competition and a random agent.

Learning agents: For the learning agents, we tested value-based 
and policy-based (Supplementary Sect. I) reinforcement learning 
algorithms and report the results of double duelling deep Q-network 
(DQN) agents and relational DQN agents.

•	 DQN: The DQN54 agent collects state–action–reward–next state 
quadruplets at the training time following decaying epsilon 
greedy. We define the reward function as task pass status, mean-
ing that the agent receives 1 if the task is passed and 0 otherwise. 
We report the performance of double duelling DQN55,56 with two 
different input types: symbolic representation (D-DDQN-Image) 
and screenshot (D-DDQN-Symbolic).

•	 Relational DQN: The relational agent consists of the relational 
module57 that was built on top of the deep Q-network. The aim of 
this agent is to generalize over the presented templates/events 
by using structured perception and relational reasoning. In our 
experiments, we wanted to test whether the relational agent 
would be able to learn the important relations between the 
objects that could be generalized to other templates or events. 
We have tested the agent with symbolic and image input types 
and refer to them as Relational-Symbolic and Relational-Image 
agents, respectively.

Heuristic agents: The heuristic agents are based on hard-coded 
strategic physical rules designed by the developers. We included four 
heuristic agents from the AIBIRDS competition. We compare the heu-
ristic agents’ performance on our testbed with the generalization 
performance of the baseline learning agents.

•	 Bambirds: Bambirds was the winner of the 2016 and 2019 
AIBIRDS competitions. The agent chooses one of nine different 
strategies. The strategies include creating a domino effect, tar-
geting blocks that support heavy objects, maximum structure 
penetration, prioritizing protective blocks, targeting pigs and 
utilizing certain bird’s powers58.

•	 Eagle’s Wing: Eagle’s Wing was the winner of the 2017 and 2018 
AIBIRDS competitions. This agent selects an action based on 
strategies including shoot at pigs, destroy most blocks, shoot 
high round objects and destroy structures59.

•	 Datalab: Datalab was the winner of the 2014 and 2015 AIBIRDS 
competitions. The agent uses the following strategies: destroy 
pigs, destroy physical structures and shoot at round blocks. 
The agent selects a strategy based on the game states, possible 
trajectories, bird types and the remaining birds60.

•	 Pig Shooter: The strategy of the Pig Shooter is to shoot directly 
at the pigs. The agent shoots the bird on the slingshot by ran-
domly selecting a pig and a trajectory to shoot the pig61.

Random agent: For each shot, the agent selects a random release 
point (x, y), where x is sampled from [−100, −10] and y from [−100, 100] 
relative to the slingshot. It also provides a tapping time when the bird 
is between 50% and 80% of the trajectory length, where applicable.

Experimental setups. Human experiment setup: Experiments were 
approved by the Australian National University committee on human 
ethics under protocol 2021/293. Participation was voluntary with no 
monetary compensation. The volunteers were males and females with 

age in the range of 18–35 years. They were not experienced Angry Birds 
players. Participants provided consent to use their play data. For each 
of them, we provided two tasks from each physical scenario for the 15 
scenarios in Phy-Q (except the manoeuvring scenario, which used four 
tasks representing the four types of birds with powers). We provided a 
trajectory visualizer of the bird to the participants to remove the need 
for precise shooting. If the participants solved a task or failed to solve a 
task in five attempts, they moved on to the next task. As humans acquire 
physical reasoning capabilities from their infancy40,62, using an evalu-
ation setting that we proposed for agents does not exactly measure 
the generalization ability of humans. Therefore, we measure the task 
performance in humans using the pass rate.

D-DDQN and relational DQN experimental setup: We conducted 
separate experiments on the D-DDQN and relational agents in the two 
settings: local generalization and broad generalization. For the local 
generalization evaluation, we run ten sampling agents that use the same 
DQN model to collect experiences. Each sampling agent runs on the 
randomly selected task for ten episodes. After the set of experiences 
is collected, the DQN model is trained for ten epochs with a batch size 
of 32. We train DQN until it either converges or reaches N update steps, 
where N is the number of training tasks per template divided by 5. Simi-
lar to ref. 12, for each batch, we sample 16 experiences in which a task is 
solved and 16 that failed. We train our agent on 80% of the tasks of the 
task template and evaluate on the rest of the tasks of the same template. 
We used the same training setting for all of the task templates. At the 
testing time, the agent runs on each of the testing tasks only once and 
selects the action that has the highest Q-value for a given state. For the 
broad generalization evaluation, we use the same training and testing 
setting as in the local generalization evaluation, except we train our 
agents on the tasks in the training templates in each scenario and test 
on the tasks from the testing templates.

Heuristic agents experimental setup: We conduct two experi-
ments using the AIBIRDS heuristic agents. The first experiment is to 
evaluate the local and broad generalization capabilities, and the second 
is to evaluate the performance in the AIBIRDS competition game levels.

•	 Local and broad generalization setup: Due to the randomness 
in the heuristic agents, we allow them to have five attempts per 
task and calculate the task pass rate by averaging the result 
over these five attempts. For the local generalization setting, 
the agents were tested on the same 20% of the test tasks from 
each task template (1,500 tasks in total) as used for the D-DDQN 
evaluation. We report the local generalization performance by 
averaging the pass rates of all templates. For the broad gener-
alization setting, the same testing templates as used for the 
D-DDQN evaluation were applied, and the within-scenario pass 
rate is calculated by averaging over all the tested templates 
within the scenario.

•	 AIBIRDS competition setup: We evaluate the AIBIRDS heuristic 
agents on 2021 AIBIRDS competition game levels to compare 
their performance in the competition game levels and the Phy-Q 
testbed tasks. We exclude the competition game levels with 
unrealistic effects as our focus in the testbed is scenarios with 
realistic physics. The game levels used for this evaluation are 
shown in Supplementary Sect. G. In the AIBIRDS competition, 
the agent with the highest score wins the competition. There-
fore, in this experiment, we record the score and pass rate of the 
agents. The agents are allowed to have five attempts per game 
level to account for their randomness. Altogether, an agent had 
40 plays.

Random agent experimental setup: The random agent was 
tested on the same testing tasks set from each task template. We run 
the random agent 50 times per task and report the average pass rate of 
these 50 attempts. The same as how we evaluate the heuristic agents, 
we further average the task performance within the same task template 
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and average the pass rate of all the templates to present the local gen-
eralization performance. For the broad generalization setting, the 
within-scenario pass rate is calculated by averaging over all the tested 
templates within the scenario.

Results and analysis
In this section, we first present and analyse the results obtained from 
our experiment with human players. Next, we present the results 
obtained from our experiments in measuring the local and broad 
generalization ability of agents and the Phy-Q score. We further analyse 
the results and discuss what we can derive from the experiments. We 
also discuss the results obtained from the heuristic agents in the 2021 
AIBIRDS competition levels and the Phy-Q testbed tasks to show how 
the testbed can be used as a guide for the competition.

Human performance. Figure 3 presents the average pass rate, the pass 
rate the human players achieved within five attempts, the maximum 
number of attempts made and the total thinking time of human play-
ers for the 15 capabilities. The average pass rate is calculated as 100% 
if the player passes at the first attempt, whereas if the player passes at 
the fifth attempt, the pass rate is 20%. We record the thinking time of 
an attempt as the time between the task loading and the player mak-
ing the first action. The total thinking time of a player is the sum of the 
thinking time of all their attempts. The number of attempts made and 
the total thinking time is scaled to 0–1 using min–max scaling in Fig. 3.  
Charts with the real values are available in Supplementary Sect. F.

Overall, human players passed almost all the tasks in each scenario 
within the five attempts. On average, they used 1.86 attempts per 
task and took 23.73 s to think per task. On average, the low number of 
attempts to pass the tasks shows that the dexterity required to solve the 
tasks when the strategy is determined is low. The average thinking time 
per task shows that humans have to think carefully about the strategic 
physical rule required to solve the task.

Humans have the longest thinking time for the tasks in the ade-
quate timing scenario, but the average pass rate for these tasks is the 
second lowest. Similarly, the tasks from the non-greedy actions sce-
nario have the lowest average pass rate with the highest number of 
attempts, while the thinking time is the second longest. This shows 
that figuring out the correct strategies for the tasks of these scenarios 
was difficult for humans. In the relative weight scenario, the pass rate 
achieved within five attempts is the lowest, but the thinking time is 
average for this scenario. This suggests that some humans take the 
action without carefully thinking about the strategy, and the strategy 
realized at a glance is not the correct strategy to solve the task. This 
also agrees with our observation that humans are overconfident in 
their wrong actions.

Local and broad generalization performance and Phy-Q score. 
Local generalization performance: Figure 4b (first row) presents 
the average local generalization evaluation pass rate for all of our 
baseline agents. We also include the full results for the pass rate per 
agent per template in Supplementary Sect. D. The table shows that the 
four learning agents perform significantly better than their heuristic 
counterparts. While both the symbolic learning agents and both the 
image learning agents on average pass approximately 33% and 24% of 
the test levels, respectively, the previous champions in the AIBIRDS 
competition (Bambirds, Eagle’s Wing and Datalab) pass around only 
half of the levels as compared with the learning agents, averaging 15%, 
14% and 15%, respectively. This agrees with what is generally accepted 
that deep learning systems can perform a single narrow task much 
better than heuristic methods when enough densely sampled training 
data are available.

Broad generalization performance: Figure 4a presents the aver-
age pass rate of test templates of the broad generalization evaluation 
of all the baseline agents and human players. It is clear that the humans 

substantially outperform all the other agents, while all the agents have 
above-chance performance compared with the random agent. Heuris-
tic agents achieved a better pass rate in the single force scenario (sce-
nario 1) and multiple force scenario (scenario 2) as these two scenarios 
correspond to the essential ability needed to play Angry Birds, that is, 
shooting directly at pigs. It can be seen that the heuristic agents gener-
ally perform better if the physical scenario is covered in their built-in 
rules. For example, Datalab and Eagle’s Wing have a built-in strategic 
physical rule to roll round objects, and they have the highest pass rate 
in scenario 3 (rolling) among all the agents. For scenario 4 (falling) and 
scenario 13 (clearing paths), Bambirds dominates the leaderboard of 
pass rate because it explicitly analyses spatial relationships between 
blocks and pigs and is the only heuristic agent with the ‘prioritizing 
protective blocks’ rule.

The second row in Fig. 4b shows the overall average pass rate for 
the broad generalization evaluation of the agents and humans. The 
heuristic agents’ results were obtained in a similar way as applied for 
the local generalization evaluation, except we only consider the tasks 
from the testing task templates given to the learning agents. In con-
trast to the local generalization results, in this evaluation setup, the 
learning agents have worse results than all the heuristic agents. The 
D-DDQN-Symbolic and the D-DDQN-Image agents have an average 
pass rate of 12% and 10%, respectively, while Relational-Symbolic and 
Relational-Image have 14% and 9%, respectively. The champions in the 
AIBIRDS competition have almost twice the pass rate compared with 
the learning agents. This result further advocates the claim that deep 
learning agents often exploit spurious statistical patterns instead of 
learning in a meaningful and generalizable way as humans do16,48,50,63,64.

Phy-Q score: As discussed in Section 5.1.2, the Phy-Q score of 
humans is set to 100 while that of the random agent is set to 0. A Phy-Q 
score above 100 indicates superhuman performance. Figure 5 shows 
the positions of agents and humans in the Phy-Q score distribution. 
Even though Eagle’s Wing was the first in the broad generalization 
leaderboard (where Eagle’s Wing scored 0.1142 while Bambirds scored 
0.1022, even after removing the results of the first two scenarios), Bam-
birds took the lead in terms of the Phy-Q score, pushing Eagle’s Wing 
into second place. This is because the Phy-Q score positions the agent 
with respect to human performance. Interestingly, the D-DDQN-Image 
and Relational-Symbolic agents achieved higher Phy-Q values com-
pared with Datalab. Similar to the above reason, this is due to the posi-
tioning of the agents with respect to human performance. Moreover, 
the Phy-Q of the Pig Shooter is negative. This result is expected as the 
Pig Shooter only shoots at the pigs, thus exhibiting below-chance 
performance compared with the random agent. Overall, it can be seen 
that all the agents are far below the humans’ Phy-Q score.

AIBIRDS competition performance. Extended Data Fig. 1 presents 
the results of the AIBIRDS heuristic agents in the AIBIRDS competi-
tion game levels. As can be seen from these results, the pass rate of the 
agents in competition game levels agree with the rank they achieved 
using the Phy-Q score. Eagle’s Wing and Datalab achieved the same pass 
rate of 0.2. However, considering the total score, Eagle’s Wing obtained 
667,394 while Datalab obtained 634,435, pushing Eagle’s Wing into sec-
ond position. Overall, these results illustrate that the tasks in the Phy-Q 
testbed are representative of the tasks in the AIBIRDS competition.

On the basis of this result, we infer that the physical scenarios avail-
able in the Phy-Q tasks are also the scenarios that are commonly encoun-
tered in the AIBIRDS competition game levels. The within-scenario 
(broad generalization) evaluation that we have conducted can be used 
to identify an agent’s ability in performing in those individual physical 
scenarios. Therefore, one can use the Phy-Q testbed to thoroughly 
analyse the physical reasoning capabilities of an AIBIRDS agent and 
determine where it falls short and improve on those capabilities. Addi-
tionally, the human performance results that we have established in the 
15 scenarios facilitate the comparison of the agents’ performance with 
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humans’ performance, allowing us to set targets for agents to achieve 
human-level performance in those scenarios. Thus, the Phy-Q testbed 
and the evaluation settings we proposed in the testbed can be used 
to better evaluate AIBIRDS agents and guide them towards achieving 
human-level performance in the competition.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data collected from human players and baseline agents have been 
made available at https://github.com/phy-q/benchmark/tree/master/
playdata.

Code availability
The testbed software and baseline agents’ codes have been made avail-
able at https://github.com/phy-q/benchmark65.
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Extended Data Fig. 1 | Comparison of AIBIRDS competition performance with Phy-Q score of heuristic agents. Results of the AIBIRDS heuristic agents in the 
AIBIRDS competition game levels. The competition performance (pass rate) of the agents in competition game levels agree to the rank they achieved using the  
Phy-Q score.
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