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Accurateinsilico determination of CD8" T cell epitopes would greatly

enhance T cell-based vaccine development, but current prediction models
are notreliably successful. Here, motivated by recent successes applying
machine learning to complex biology, we curated a dataset of 651,237
unique human leukocyte antigen class I (HLA-I) ligands and developed
MUNIS, adeep learning model that identifies peptides presented by HLA-I
alleles. MUNIS shows improved performance compared with existing
modelsin predicting peptide presentation and CD8" T cell epitope imm-
unodominance hierarchies. Moreover, application of MUNIS to proteins

from Epstein—Barr virus led to successful identification of both established
and novel HLA-1 epitopes which were experimentally validated by in vitro

HLA-I-peptide stability and T cellimmunogenicity assays. MUNIS performs
comparably to an experimental stability assay in terms of immunogenicity
prediction, suggesting that deep learning can reduce experimental burden
and accelerate identification of CD8" T cell epitopes for rapid T cell vaccine

development.

Cytotoxic CD8" T cells have been shown to limit disease severity and
provide protection against viral infections such as humanimmunodefi-
ciency virus (HIV)"? and severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2)* by recognizing short viral peptides bound to human
leukocyte antigen class I (HLA-I) molecules. While T cell-based vaccines
hold great promise for foreign pathogens®*’'°, rapidly identifying
immunogenic epitopes across viral proteomes is challenging owing
to the extensive degree of HLA polymorphism in the population and
the experimental burdenrequired to validate HLA-1binding and CD8*
T cell reactivity. Given that only a small fraction of pathogen-derived
peptideselicitaninvivo CD8" T cell response'", computational algo-
rithms that can rapidly identify immunogenic epitopes within viral

proteomes for abroad range of HLA-1alleles would greatly accelerate
T cell-based vaccine development.

Although numerous computational methods exist to predict
CDS8' T cell epitopes™™, their accuracy varies substantially across
HLA-1 alleles”. Moreover, the extent to which these models can iden-
tify immunogenic epitopes is not well understood, in part owing to
the lack of unbiased evaluation datasets. Peptides frequently tested
for immunogenicity are often conditionally selected using existing
binding predictors” . Although several tools can define the char-
acteristics of immunogenic cancer neoepitopes'® %, they are yet to
show strong generalizability to foreign pathogens. Thus, given the
remarkable success of deep learning toimprove model generalization
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Fig. 1| Characteristics of the deep learning model and the training and
evaluation datasets for prediction of HLA-l1 epitopes. a, Datasets used for
training and evaluation were curated by combining data from several previous
studies as well as arecent download of the IEDB. Eluted ligand data were used as
positives and randomly sampled decoys from Swiss-Prot*® served as negatives.
For evaluation, data from animmunopeptidomic study involving 24 monoallelic
cell lines were used”. To evaluate immunogenicity, five studies?®>° that measure
theimmunogenicity of influenza epitopes identified via mass spectrometry were
used. b-e, Peptide length distribution of the HLA-I binders (b,c) and pie chart of
the proportion of epitopes per HLA-I allele (d,e) in the presentation training (b,d)
and evaluation (c,e) datasets. All alleles present in the dataset with a frequency
<1% are denoted as ‘other’.f, The binding module takes as input the amino acid
sequences of the major histocompatibility complex and peptide in the form: [cls]
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mhc [sep] pep [eos], where [cls], [sep] and [eos] are special tokens that separate
the two sequences. This new sequence is fed to the Evolutionary Scale Modeling-2
(ESM-2) Transformer protein language model, and the vector representation

for the [cls] tokenis used to represent the complex. The ligand elution module
combines the binding vector with along short-term memory (LSTM) recurrent
neural network encoding of the peptide that includes its left and right flanks in
the parent protein of origin. The model can be used when trained with or without
flanking residues. These combined features are then concatenated and used to
compute aligand presentation score. The modelis first trained on the ligand
presentation task. Then, the modelis trained with five different random seeds
and their scores are averaged to create an ensemble score. pHLA: peptide-human
leukocyte antigen complex; TCR: T cell receptor. Panel f created with BioRender.
com.

across several areas of biology, such as protein structure prediction®
and CD4" T cell epitope presentation®*, we reasoned that it could also
enhance the prediction of presented and immunogenic CD8" T cell
epitopes.

We therefore developed MUNIS: a deep learning-based predic-
tor of HLA-1 epitopes that utilizes a bimodal architecture to jointly
model both HLA-I-peptide binding and antigen processing by lev-
eraging a well-curated and expanded training set of 651,237 unique
HLA-Iligands across 205 HLA-I alleles. We validated MUNIS in silicoon
immunopeptidomic data and achieved superior performance com-
pared with existing HLA-1 epitope predictors. Distinct from previ-
ous work"®, we evaluated immunogenicity prediction using several

unbiased immunopeptidomic benchmarks. We subsequently vali-
dated MUNIS experimentally using an in vitro HLA-I-peptide stabil-
ity assay”” and T cell immunogenicity assays on predicted peptides
from Epstein-Barr virus (EBV). We explicitly omitted all peptides
in EBV from the model training set to mimic prediction of a novel
virus. Importantly, MUNIS identified both established and new CD8*
T cell epitopes in EBV that elicited effector and memory CD8" T cell
responses. Moreover, MUNIS was a comparable immunogenicity pre-
dictor toan HLA-I-peptide stability assay”, which defined epitopes for
a SARS-CoV-2 T cell vaccine®, illustrating the power of deep learning
to reduce experimental burden and rapidly accelerate T cell vaccine
development.
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Deep learning model development for CD8' T cell
epitopeidentification

To develop a robust model of immunogenic CD8" T cell epitope pre-
diction, we constructed a training dataset composed of mass spec-
trometry data from immunopeptidomic experiments used for the
MixMHCpred2.2', NetMHCpan4.1" and MHCflurry2.0" training sets
and data obtained from the Immune Epitope Database (IEDB: iedb.
org)”. We supplemented these HLA-I-binding peptides with randomly
sampled decoy peptides (non-binders) from Swiss-Prot*° at a ratio
of 1:5 HLA-I binders to non-binders. Importantly, all epitopes used
in model evaluation were removed from training sets, regardless of
HLA-Irestriction. This is a far stricter approach to data filtering than
previous methodologies where only matched HLA-I-peptide pairs
were removed from the training set, resulting in substantial overlap
between test set epitopes and training sets. We show the sources of
these datasets (Fig.1a), the peptide length distributions (Fig. 1b,c) and
the frequencies at which peptides bind HLA-I molecules (Fig. 1d,e).

The architecture of the model is composed of two submodules
(Fig. 1f). First, the binding module takes as input the sequences of
the HLA-I molecule and peptide and learns a numerical vector repre-
sentation, which we refer to as binding features, to produce the final
prediction score. Our second module augments the binding features
with a signal relevant to antigen processing. This is accomplished by
encodingthe peptide and five N-terminal and C-terminal flanking resi-
dues from its parent protein of origin, similar to MHCflurry2.0™. Using
thisapproach, we train five models and combine themin anensemble
by taking the average score onany giveninput. The score of the model
for HLA-I-peptide pairs ranges between 0 and 1and indicates the prob-
ability of a peptide binding that particular HLA-1 allele.

Previous work has frequently relied on area under the receiver
operating characteristic curve (ROC-AUC) and precision (that is,
positive predictive value) as evaluation metrics. However, given the
abundance of negatives, it is possible that for a given threshold, the
proportion of positives is dominated by false positives even withalow
false-positiverate. Thus, we primarily use the areaunder the precision-
recall curve, known as average precision score, to describe the model
performance. This score ranges from O to 1, with arandom predictor
having a value equal to the percentage of positives in the data. For
datasets of sufficient size, we also show the ROC-AUC.

MUNIS outperforms existing predictorsin
classifying HLA-1 binders
Wefirst evaluated the presentation model ona published immunopep-
tidomic dataset™ that contains 41,725 positive HLA-1-peptide pairs
and 208,625 randomly sampled decoys across 24 HLA-I alleles. We
calculated the average precision scores and ROC-AUC of classifying
binders and non-binders on aper-allele basis and compared our scores
with the existing tools MixMHCpred2.2, NetMHCpan4.1, MHCflurry2.0,
TransPHLA?? and BigMHC?*, which predicts both presented peptides
(BigMHC-EL) and immunogenic epitopes (BigMHC-IM). On this data-
set, our model achieves a median average precision of 0.952, which
correspondstoa2l%reductioninerror compared with existing tools,
with MixMHCpred2.2 scoring 0.924, NetMHCpan4.1 scoring 0.925,
MHCflurry2.0 scoring 0.938, TransPHLA scoring 0.854 and BigMHC
scoring 0.939 (Fig.2a). The median ROC-AUC of MUNIS is 0.980, which
correspondstoa31%reductioninerror compared with MHCflurry2.0
at 0.971, NetMHCpan4.1at 0.962, MixMHCpred2.2 at 0.956, TransPHLA
at 0.948 and BigMHC at 0.969 (Fig. 2b). Importantly, over 65% of posi-
tive epitopes in the evaluation dataset are also present in the training
sets of existing predictors, excluding MUNIS where we ensure a 0%
overlap. Despite this overlap, MUNIS still outperforms these prediction
algorithmson22/24 HLA-l alleles tested in average precision (Fig. 2c).
Evaluation of these various predictors suggests that differences
inmodel performance could be due to each model’s ability to encode
peptide length'®. We therefore evaluated model performance across

HLA-lalleles stratified by peptide length (Fig. 2d,e). This revealed that
MUNIS outperforms for 9-mer,10-mer and 11-mer peptides, indicating
that encoding of peptide lengths is unlikely to be a key discriminator
of model predictive capability.

To further evaluate predictive capabilities, we compared MUNIS
withexisting predictors using theidentical evaluation dataset as above
but with most peptides included in the tool training sets removed. In
thissetting, we observed awider gap in performance for several HLA-I
alleles, with MUNIS achieving a median average precision score of
0.894, MixMHCpred2.2 scoring 0.854, NetMHCpan4.1scoring 0.868,
MHCflurry2.0 scoring 0.867, TransPHLA scoring 0.795 and BigMHC
scoring 0.891 (Extended Data Fig. 1a). MUNIS outperforms existing
tools on 18/24 HLA-I alleles tested in average precision and 21/24 in
ROC-AUC (Extended Data Fig. 1b), and a larger performance gap was
observed for several HLA-I alleles on this cleaned evaluation set against
all tools, except for BigMHC which retains 30% overlap with positive
epitopesinthe cleantest setand TransPHLA which retains14% overlap
(Extended DataFig.1c). These datareveal that MUNIS canidentify pre-
sented peptides from mass spectrometry data with greater accuracy
than existing tools across several source proteins, HLA-I alleles and
peptide lengths.

MUNIS predicts fewer false positives by using
canonical HLA-I motif's

Given the improved performance of MUNIS in predicting
HLA-I-presented peptides, we evaluated peptide-binding motif's for
several alleles. Interestingly, we found that existing tools assign high
individual model scores to non-HLA-I-binding peptides and thereby
predict an increased number of false positives (Fig. 3a). We there-
fore evaluated the HLA-I-binding motifs for correctly classified pep-
tides (true positives) versus misclassified peptides (false positives)
for all HLA-I alleles in the evaluation set, with HLA-B*40:01 shown as
arepresentative example (Fig. 3b). While all predictors were capa-
ble of correctly identifying peptides with canonical binding motifs,
MixMHCpred2.2, NetMHCpan4.1 and MHCflurry2.0 also classified
peptides with non-canonical anchor residue motifs as binders as well.
The binding motifs of the false positives across these three predictors
did not have a dominant amino acid at HLA anchor residue positions
(Fig. 3b, highlighted in yellow) as observed for true positives. In addi-
tion, falsely classified binders have significantly greater entropy at
HLA anchor residues compared with true binders (Fig. 3¢c). Incontrast,
MUNIS largely avoids classifying peptides without expected HLA anchor
residues as positives and, consequently, false positives were extremely
low for MUNIS with fewer than 25 misclassified peptides per HLA-1allele.

MUNIS predicts epitope immunogenicity and
immunodominance
Giventhat only afraction of HLA-I-presented peptides elicit CD8" T cell
responses, we next measured the ability of MUNIS to predictimmuno-
genic epitopes. To avoid biases from existing prediction algorithms
in peptide selection, we constructed a test set of peptides using five
immunopeptidomic datasets from the influenza viruses A and B that
bind to HLA-A*02:01, HLA-A*11:01 and HLA-A*24:02 (524 presented
peptides across the five datasets)** ¢, Each of these datasets comprises
alistof HLA-I-presented peptidesidentified viamass spectrometry that
were subsequently evaluated for immunogenicity using interferon-y
(IFNy) enzyme-linked immunospot (ELISpot) assays, where 36 of the 524
peptides werereported asimmunogenicin the IEDB. For each dataset,
we ranked positive (that is,immunogenic) peptides against all other
peptides in the viral proteome. When compiling the set of negatives,
we considered only proteins with at least one immunogenic peptide
to prevent confounding by inherent levels of proteinimmunogenicity.
We benchmarked MUNIS against immunogenicity predictors
PRIME2.0" and BigMHC_IM and the HLA presentation prediction
tools (MixMHCpred2.2, NetMHCpan4.1, MHCflurry2.0, TransPHLA
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Fig. 2| MUNIS outperforms existing predictors in classifying HLA-1 binders
across 8-11mers. a,b, Average precision (a) and ROC-AUC (b) of MUNIS and
current state-of-the-art tools MixMHCpred 2.2, NetMHCpan 4.1, MHCflurry
2.0, TransPHLA and BigMHC on predicting eluted ligands (binders) from mass
spectrometry experiments from Pyke et al.”’ against decoy peptides (non-
binders), n =24 HLA-l alleles. Percentages of overlap with the training datasets
of each tool across all epitopes in the presentation benchmark are shown below
the plots. ¢, Per-allele pairwise comparisons of MUNIS and other predictorsin

classifying HLA-1binders. Each point is the model performance on one allele.
d,e, Average precision (d) and ROC-AUC (e) of all predictors on classifying
binders versus non-binders binned by epitope length, n =24 HLA-I alleles.
Pvalues for pairwise comparisons between MUNIS and each predictor were
calculated using the two-sided Wilcoxon rank sums test (not shownif P> 0.1;
4P <1x10*). Box plots are presented with medians as centre lines, 25th and
75th percentiles as lower and upper quartiles, and 1.5 times the interquartile
range from the quartiles as whiskers (outliers not shown).
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Fig. 3| Motif analysis of misclassified binders reveals inconsistent reliance of
existing models on canonical HLA-I-binding motifs. a, Box plots of model score
for eluted ligands (binders) from mass spectrometry experiments from

Pyke etal.”” and decoy peptides (non-binders) for each predictor (41,724 binders
and 208,609 non-binders). Box plots are presented with medians as centre

lines, 25th and 75th percentiles as lower and upper quartiles, and 1.5 times the
interquartile range from the quartiles as whiskers (outliers not shown).

b, Binding motifs for 9-mers for all correctly classified binders (true positives)
and misclassified non-binders (false positives) by each tool for representative

allele HLA-B*40:01. HLA anchor residues are highlighted in yellow. Binding
motifs are not shown for MUNIS false positives as there were fewer than
25incorrectly labelled binders per allele. Model scores >0.90 were used as
cut-offs for true positives and false negatives. ¢, Shannon entropy at HLA anchor
residues (positions two and nine in a 9-mer) for true-positive (TP) and false-
positive (FP) HLA-I binders predicted by each tool. Each point represents the
Shannon entropy at a particular anchor residue for peptides that are false and
true predicted binders for one HLA allele. P values for pairwise comparisons were
calculated using the two-sided Wilcoxon rank sums test (**P<1x107).

and BigMHC_EL). PRIME2.0 was benchmarked on immunogenicity
test sets by running each allele-peptide pair independently using
‘%Rank_bestAllele’ as areadout of prediction strength. We found that
MUNIS outperforms all other prediction algorithms in identifying
presented epitopes across the 5 datasets, with a median average pre-
cision of 0.289, which is a 26% relative improvement in performance
compared with the next-best tool (MHCflurry2.0; Fig. 4a). However, all
tools showed a similar predictive capability across HLA-l1 alleles when
predictingimmunogenic epitopes against decoy peptides (Fig. 4b). Of
note, thetools with higher median average precision scores than MUNIS
were the tools with substantial overlap between evaluation and train-
ingsets. To further understand this result, we measured performance
with only non-immunogenic HLA-Ibinders as negatives (Extended Data
Fig.2a). Thisresultedinincreased average precision over several alleles,
indicating the tendency of models to rank presented, immunogenic
epitopes higher than presented, non-immunogenic ones. These results
highlight theintricate relationship between anincreased likelihood of
presentation and downstream T cell recognition and also underscore
the unresolved gap to achieve high accuracy forimmunogenicity when
filtered on known HLA-I binders.

While notable differencesinimmunogenicity prediction for indi-
vidual epitopes were not observed, we explored whether MUNIS could
predictimmunodominance hierarchies, as effective T cell vaccines
would ideally elicit immune responses across many individuals. We
therefore leveraged T cell response data for HIV given known immu-
nodominance hierarchies for multiple HLA-I alleles”. Specifically,
we used a dataset where 119 HIV epitopes were tested for CD8" T cell
responses in 527 individuals with HIV split across acute and chronic
infection groups™®*, with each peptide elicitinga CDS" T cell response
inup to 81% of corresponding individuals with HLA-I".

We evaluated our model by computing the Spearman rank
correlation coefficient between the MUNIS-predicted score and

response frequency for each epitope. MUNIS had a Spearman
correlation coefficient of 0.35 compared with 0.34 and 0.295 for the
next-best-performing tools (BigMHC_IM and NetMHCpan4.1) for
epitopes targeted in the acutely infected HIV* subgroup (Fig. 4c) and
0.33 compared with 0.34 and 0.28 (BigMHC and MixMHCpred 2.2) for
epitopestargeted inthe chronically infected HIV* subgroup (Fig. 4d). Of
note, three tools used for comparison (NetMHCpan4.1, MHCflurry2.0,
BigMHC) were enriched for HIV epitopes in their training dataset,
whereas these were excluded from the MUNIS training set. We also
stratified performance on a per-allele basis and found that MUNIS
outperforms in both the acute (Extended Data Fig. 2b) and chronic
(Extended Data Fig. 2c) subgroups. Overall, these data demonstrate
that MUNIS is competitive inidentifyingimmunodominant CD8" T cell
epitopes despite not having been explicitly trained for this task.

Because of the numerous false-positive binders predicted by
othertools, we hypothesized that the superior capability of MUNIS to
recapitulate immunodominance hierarchies could be due to predic-
tion scores that reflect the targeting frequency of epitopes. When we
binned epitopes by targeting frequency, we again observed that more
conservative prediction scores from MUNIS discriminate between
subdominant and immunodominant epitopes in HIV (Fig. 4e,f),
with BigMHC being the only other tool to share this property. Col-
lectively, these data demonstrate that MUNIS can identify epitopes
with higher likelihoods of eliciting CD8" T cell responses broadly
acrossindividuals.

To deconvolute which features contribute to enhanced model
performance, we performed an extensive ablation analysis with com-
peting models (Extended Data Fig. 3). We selectively ablated indi-
vidual features to query the impact of the pretrained Evolutionary
Scale Modeling-2 (ESM-2) Transformer protein language model, size
of the language model, flanking residues, negative sampling logic
and model score versus percentage rank score, which attempts to
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Fig. 4| MUNIS outperforms existing tools in predicting epitope
immunodominance hierarchies. a, Per-dataset performance of MUNIS against
existing tools MixMHCpred 2.2, NetMHCpan 4.1, MHCflurry 2.0, TransPHLA,
BigMHC and Prime 2.0 on predicting eluted ligands (binders) from five
influenzaimmunopeptidome experiments against ‘decoy’ peptides (non-
binders). Positives are all mass spectrometry-eluted ligands and negatives are
all other peptides (‘decoys’) in the viral proteome. Only proteins with at least
one eluted ligand are considered. b, Per-dataset performance when positives
are conditioned onimmunogenic peptides and negatives contain both the
‘decoys’ and the eluted ligands that were notimmunogenic.Inaandb, each
point represents performance on one dataset (that is one HLA-I allele). Bar plots
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show median performance across datasets and error bars show the standard
error across the five datasets. Percentages of epitope overlap with the training
datasets of each tool across all positive epitopes in the five influenza benchmarks
are shown below the plots. No pairwise comparisons between MUNIS and other
predictors had a Pvalue <0.05. ¢,d, Spearman correlation of each model’s score
and frequency of response to an epitope across all epitope-allele pairs in acute
(c) and chronic (d) HIV infection. Percentages of epitope overlap with the training
datasets of each tool across all epitopes in the HIV benchmark are shown below
the plots. e,f, Median model score + standard error of the median for epitopes
with binned frequencies of responses across all epitope-allele pairsin acute (e)
and chronic (f) HIV infection.

normalize model scores across HLA-I alleles (Extended Data Fig. 3b).
Alarger ESM-2 model (35 million parameters) improved performance
slightly over a smaller model (8 million parameters), with an average
precision of 0.959 compared with 0.953, respectively. Pretraining the
model also improved the prediction of HLA-I-peptide presentation
from an average precision of 0.946 to 0.953. Introducing flanking

residues enhanced HLA-I-peptide presentation prediction from an
average precision of 0.947 to 0.953. Interestingly, many of these fea-
tures (namely, pretraining and incorporating flanking residues) slightly
reduced the average precision on immunogenicity prediction. With
regards to immunodominance, where the results are not stratified
by allele, we compared the performance of MUNIS using the native
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Fig. 5| Experimental HLA-I-peptide stability assay confirms the ability of
MUNIS to discriminate between binding and non-binding peptides within
EBV. a, Schematic showing the epitope prioritization pipeline for experimental
validation. The top-337 ranked peptides from the BRLF1, B2LF1, EBNA1, LMP2
and EBNA3a proteins from EBV predicted to bind 10f 17 different HLA- alleles
were chosen for downstream analysis. b, Schematic showing experimental
validation of MUNIS performance on EBV epitope prediction. Stability assays

on HLA-I-peptide pairs were performed using TAP-deficient monoallelic HLA-1
celllines to identify peptides that bind and are presented by HLA-I molecules.
IFNy ELISpot assays were performed on each peptide predicted to bind an HLA
molecule presented by 30 HLA-haplotyped individuals to identify immunogenic
peptides (datashowninFig. 6). ¢, Representative data of the relative stabilization
of HLA-B*35:01 by two EBV peptides predicted to bind the allele. The MFI

for the DMSO negative control shown in light grey, the B*3501-specific HIV
immunodominant peptide in light blue, the two predicted binders from the EBV
proteomeinblue and a predicted non-binder from the EBV proteome in dark

grey. The higher the MFI, the greater stabilized the allele by a given peptide.

d, Summary data for all predicted binders and non-binders for HLA-B*35:01.

All MFIs were normalized to the HIVimmunodominant peptide for the given
HLA-I allele as denoted by the dashed line. Blue circles are predicted binders
and grey circles are predicted non-binders. e, Summary data for all 17 HLA-I
alleles evaluated for the 337 predicted peptides. Box plots are presented with
medians as centre lines, 25th and 75th percentiles as lower and upper quartiles,
and 1.5times the interquartile range from the quartiles as whiskers (outliers not
shown). f, Normalized anti-HLA MFI for binders versus non-binders conditioned
on predicted binders with a MUNIS score greater than or equal to the given
threshold score. Each point represents the median normalized anti-HLA MFI
across all peptides predicted to bind or not bind a particular HLA-I allele (n =17
HLA-Ialleles). Pvalues for pairwise comparisons between predicted binders and
non-binders were calculated using the two-sided Wilcoxon rank sums test.
Panelsaandb created with BioRender.com.

score and the percentage rank for any given peptide and found that
both methods perform similarly on the HIV acute and chronic immu-
nodominance datasets. Finally, we observed that sampling decoys
from Swiss-Prot was generally equivalent to sampling solely from the
human proteome.

MUNIS discriminates between HLA-I-binding and
non-binding EBV peptides

Toevaluate the practical utility of MUNIS, we experimentally assessed
predictions of epitope binding and immunogenicity within the EBV
proteome for several HLA-I alleles, given its relevance to immuno-
compromised populations®, linkage to multiple sclerosis***° and
>90% prevalence in the human population*. For this evaluation, we
made EBV a de novo virus by excluding epitopes from the EBV pro-
teome from the MUNIS training set. We first scanned all 8-15mers
from 5 immunogenic EBV proteins (BRLF1, B2LF1, EBNA1, LMP2 and
EBNA3a) and selected 337 peptides predicted to bind 17 HLA-1 alleles
using an earlier iteration of MUNIS. All of these peptides had scores
>0.01upon modelfinalization (Fig. 5a). Predicted binders for one allele
were used as predicted non-binders for another allele if the MUNIS

score was less than 0.01, contributing to a robust immunogenicity
evaluation set. Each peptide was evaluated for HLA-Ibinding using an
established HLA-I-peptide stability assay”’ and subsequently tested
for T cellimmunogenicity by IFNy ELISpot assays in peripheral blood
mononuclear cells (PBMCs) obtained from HLA-haplotyped human
participants (Fig. 5b).

For each HLA-I allele, we evaluated the HLA-I-binding and sta-
bilization capacity of 9-52 predicted peptide binders and 3-5 pre-
dicted non-binders. When normalized to the HLA-I stabilizing mean
fluorescence intensity (MFI) of a corresponding immunodominant
HLA-I-restricted HIV epitope”, the predicted binders have a signifi-
cantly higher MFIthan predicted non-binders (Fig. 5c-e and Extended
DataFigs.4 and 5).For the selected top-337 ranked peptides usedin the
HLA-I-peptide stability assay, the median MUNIS score for a predicted
binder was 0.96, with 318 HLA-I-peptide pairs scoring >0.50, 285 pairs
>0.70, 219 pairs 20.90 and 187 pairs =0.95. This provided the opportu-
nity to assess the relationship between quantitative MUNIS score and
experimental HLA-I-peptide stabilization, revealing that higher MUNIS
score thresholds for classifying peptides led to increased discrimina-
tion between binders and non-binders (Fig. 5f).
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Fig. 6| MUNIS identifies established and novel EBV CD8' T cell epitopes.

a, Representative IFNy ELISpot assays for HLA-A*02:01- and HLA-B*35:01-
restricted peptides from the EBV proteome within individuals who express these
HLA-l alleles. DMSO was used as a negative control and soluble CD3 and CD28
antibodies were used as a positive control. TNTC, too numerous to count. All
peptides were tested as technical duplicates. b, List of all 25 unique immunogenic
epitopes from EBV identified by IFNy ELISpot as well as 12 epitopes not currently
depositedin the IEDB as HLA binders orimmunogenic peptides. ¢, IFNy ELISpot
assays forimmunogenic HLA-A*02:01 peptides from the EBV proteome

for three individuals who are HLA-A*02:01". DMSO was used as a negative

control and soluble CD3 and CD28 antibodies were used as a positive control.

d, Proliferation of CD8" T cells from the 3 individuals above when stimulated for
5 days with animmunogenic HLA-A*02:01 epitope. All peptides were tested as
technical duplicates. e f, Average precision of MUNIS and current

state-of-the-art tools MixMHCpred 2.2, NetMHCpan 4.1, MHCflurry 2.0,
TransPHLA, BigMHC and PRIME in predicting all experimentally determined
immunogenic epitopes and those derived from the IEDB (8-14mers) (e) or
solely restricted to those novel epitopes that were experimentally confirmed

(f). g h, Percentage of experimentally determined and known immunogenic EBV
epitopesin the top-nranked tested peptides as predicted by MUNIS or the HLA-I
stability assay (g) and further stratified by HLA-I allele with no restriction on
epitope length (8-15mers) (h). N=15,14,12, 8,4, 2,1,1and 1alleles with sufficient
datato calculate the fraction of immunogenic epitopes in the top-5, -10, -15,
-20,-25,-30,-35,-40 and -45 ranked peptides per allele, respectively. Data are
presented as mean values * standard error of the mean. Four of theimmunogenic
epitopes were excluded from the analyses ing and h given the absence of
corresponding monoallelic TAP-deficient HLA-I cell lines and HLA-I-peptide
stability measurements.

MUNIS identifies established and novel
immunogenic EBV epitopes

To assess the ability of MUNIS to identify immunogenic epitopes from
EBV proteins (BRLF1, B2LF1, EBNA1, LMP2 and EBNA3a), we performed
IFNy ELISpot assays on PBMCs from 30 HLA-I-typed individuals using
overlapping15mer peptide pools fromeach protein. This demonstrated
that all individuals had non-zero IFNy ELISpot responses to at least
one of the five overlapping EBV peptide pools (Extended Data Fig. 5),
providing strong rationale for testing individual predicted peptides
within these individuals. We therefore assessed T cell reactivity using
an IFNy ELISpot by matching individual peptides to participants with
the requisite restricting HLA-I allele (Fig. 6a). Given the HLA-I haplo-
types of our cohort, we expanded the set of HLA-I-peptide pairs to 370
to include HLA-A*11:01-, B*44:02- and C*08:02-peptide pairs, which
were not present in HLA-I-peptide stability assessments. Of these 370
unique HLA-I-peptide pairs tested, we identified 27 HLA-I-peptide
pairsand 25 unique peptides that elicited detectable T cell responses.
Interestingly, 12immunogenic peptides predicted by our model had not
previously beenidentified or depositedin the IEDB (Fig. 6b), illustrating
the ability of MUNIS to predict novel CD8* T cell epitopes, even for an
extensively studied pathogen such as EBV. Using ex vivo IFNy ELISpot
and proliferation assays, we further confirmed that one of the novel
HLA-A*02:01-restricted EBV epitopes (SIIPRTPDV, BZLF1: 229-237)
as well as a MUNIS-predicted, known immunodominant EBV epitope

(YVLDHLIVV, BRLF1:109-117) are capable of eliciting both effector
(Fig. 6¢) and memory (Fig. 6d) CD8" T cell responses across multiple
individuals, illustrating the ability of MUNIS to identify broadly reac-
tive epitopes.

Because our cohort was limited to 30 individuals, we supple-
mented our list of IFNy ELISpot-confirmed immunogenic epitopes
with CD8" T cell reactivity data from the IEDB. Thus, in addition to the
27 pairs found to be immunogenic, we included any peptide with a
positive frequency of responsereported inthe IEDB viaan established
T cell assay (for example, tetramer staining, IFNy ELISpot or intracel-
lular cytokine staining). This revealed an additional 18 HLA-I-peptide
pairs, for a total of 45 pairs with 42 unique peptides. Compared with
other computational epitope prediction algorithms, MUNIS showed
enhanced identification ofimmunogenic EBV epitopes. MUNIS ranked
four immunogenic epitopes in the top 5 and 20 in the top-60 ranked
peptides. When compared with other tools, MUNIS and BigMHC-IM
performbest, withanaverage precision of 0.3 (Fig. 6e).Interms of novel
immunogenicepitopes (thatis, those not currently in the IEDB), MUNIS
outperforms all other tools (Fig. 6f). While these comparisons are
performed on epitopes with lengths of 8-14 residues (the peptide
length training range for several tools), one of the highly ranked immu-
nogenic peptides for HLA-A*02:01is a 15mer (HSDYQPLGTQDQSLY,
LMP2A: 71-85), illustrating the ability of MUNIS to predict longer
epitopes. Notably, without restriction on peptide length, MUNIS
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outperformed the HLA-I-peptide stability assay in immunogenicity
prediction (Fig. 6g) and had comparable results when stratified by
HLA-I allele (Fig. 6h). Collectively, these results confirm that MUNIS
can identify not only binders but also immunogenic epitopes from a
de novo pathogen with high accuracy.

Discussion

In this study, we report the development of MUNIS, a deep learn-
ing model for CD8* T cell epitope prediction within foreign patho-
gens. We utilized a deep learning architecture and curated dataset
for HLA-I epitope presentation and implemented the encoding of
HLA-I-peptide sequences with a protein language model, utilized as
a deep transformer model*. These models are trained on millions of
protein sequences and learn features that are broadly applicable to
property-prediction tasks®*, making them well suited for accurate
immunogenic epitope prediction. Similar to MHCflurry2.0", we used
context from the parent protein to capture epitope processing. This
composite of characteristics led toimproved performancein the pre-
diction of HLA-I-presented peptides withincreased probability of being
targeted by multiple individuals.

Despite notableimprovementsin predicting epitope presentation,
we did not observe substantial discrimination betweenimmunogenic
and non-immunogenic epitopes when conditioned on peptides pre-
sented by HLA-l in influenza immunopeptidomic datasets. This may
be due to the ability of MUNIS to enhance prediction of peptide pres-
entationitself and not necessarily predictimmunogenicity of filtered
HLA-I binders. Similarly, this may explain its improved performance
ranking immunogenic epitopes in EBV when seen as a de novo virus,
where all aspects of the model could be leveraged. In addition, we also
found that MUNIS showed noticeable improvement compared with
contemporary tools in predicting immunodominance hierarchies in
acute and chronic HIV infection. Immunodominance hierarchies can
be partially dictated by the dependence of HLA-1 alleles on the protein
tapasin®’ by aligning hierarchical responses with HLA-I-peptide sta-
bility*’. Because MUNIS ranks immunogenic epitopes comparably to
experimental HLA-I-peptide stability, this may explain its increased
efficacyinrecapitulatingimmunodominance hierarchies. Notably, we
find that BigMHC (when using both its eluted ligand EL and immuno-
genicity IMmodels) is the only predictor comparable to MUNIS across
different evaluation settings. However, MUNIS performs consistently
onall metrics using asingle output score, making it broadly useful for
presentation and immunodominance prediction.

Anextensive ablationanalysisrevealed that the pretrained ESM-2
model and incorporation of flanking residues contribute to the out-
performance of MUNIS on HLA-I-peptide prediction. As the model
pretrained on 8 million parameters performed similarly to the one
pretrained on 35 million parameters, we opted for the smaller model
toincrease efficiency. Given that the prediction task focuses onasingle
protein family, the benefits of deconvoluting underlying structural
features across the full protein landscape by a larger language model
may belesser. Using percentage rank and the native score of the model
to predict HLA-I-peptide binding partners performed similarly on
immunodominance datasets, highlighting that MUNIS has learned
to compare scores across HLA-1 alleles despite inherent differences
in sample sizes across alleles within the training data. Finally, abla-
tion analysis on the decoy sampling method revealed similar results
whether decoys were derived from Swiss-Prot or the human proteome.
Overall, this analysis showed that while modelling features selectively
benefit presentation prediction, some subtly detract from immuno-
genicity prediction. Thus, we offer versions of MUNIS trained with and
without flanking residues.

Importantly, we note limitations to this work. First, the train-
ing and evaluation data of 205 prominent HLA-I alleles only partially
captures the extent of HLA polymorphism in the population. In addi-
tion, while MUNIS captures features ofimmunogenic peptides, it does

notsubstantially improve immunogenicity prediction when peptides
arefiltered on HLA-Ibinding. This would benefit from conditioning pre-
dictions based on thelikelihood of HLA-I-peptide complexes engaging
specific T cell receptors. However, the lack of available data®**** for
T cell receptor-peptide-HLA-I binding makes this task challenging.
We also note that our model is largely trained on mass spectrometry
data, which may contain potential biases such as under-representation
of cysteine residues”. In addition, while we find that our architecture
decisions result in improved presentation prediction, some features
resulted in weaker immunogenicity prediction. This suggests that
the transfer between the two tasks, although positive, is not completely
linear.

Nonetheless, the ability of MUNIS to accurately predict immu-
nogenic peptides and identify new epitopes has several implications.
Rationally designingimmunogens that will elicit robust T cell responses
is pivotal to vaccine design, and MUNIS could therefore greatly accel-
erate this process. Surprisingly, we found that MUNIS outperformed
anexperimental HLA-I-peptide stability assay in predictingimmuno-
genic epitopes. Thus, it may be possible to substantially reduce the
experimental burden that accompanies binding and stability assays
and directly perform immunogenicity studies on MUNIS-predicted
peptides. Lastly, MUNIS was able to identify several novel CD8*
T cell epitopes in EBV, highlighting the potential of deep learning
for epitope discovery. We envision that future efforts with expanded
training datasets of immunogenic peptides will further improve model
performance.

Methods

Datasets

The eluted ligand (that is, presentation) training set consists of four
different datasets: the eluted ligand data deposited in the IEDB*° as
well as data from the NetMHCpan4.1"*, MHCflurry2.0" and MixMH-
Cpred2.2'studies. The final dataset after filtering out epitopesin the
evaluation dataset is composed of 651,237 positive peptide-HLA-I
pairs and 3,701,209 negative decoys with peptide lengths between
8 and 15. Five-amino-acid-long N- and C-terminal flanking sequences
for each peptide were fetched from the parent protein sequence anno-
tatedinthe IEDB. When not available, we attempted to find amatching
sequence by searching the Swiss-Prot sequences using MMSeqs2*¢. The
dataset was filtered to data points where the parent protein could be
identified. Sequences for the HLA alleles were obtained from the IMGT
database®. Contrary to previous work that uses pseudo-sequences,
thatis, sequences of HLA molecules that are within peptide-binding
range’’, our model takes as input the full al and a2 domains of the
HLA sequence, specifically the 180 residues ranging from positions
27t0207.

Model architecture

The binding module uses the ESM-2 protein language model of 6 mil-
lion parameters®. Language models are trained on millions of protein
sequences and have been shown to implicitly learn various structural
features of proteins from sequence alone. The language model takes
asinput the HLA and peptide sequences in the form: [CLS]HLA [SEP]
PEPTIDE [EOS], where the [CLS], [SEP] and [EOS] tokens indicate the
start, separator and end of the sequence, respectively. After encoding
the sequence with the language model, we use the representation of the
[CLS]token as sequencerepresentation, whichis then fed to atwo-layer
feed-forward network. The loss is the binary cross entropy between
the output scores and the ground-truth labels. As opposed to using
only the outputembeddings from the language model as features, we
fine-tune the full ESM-2 language model during training.

The processing module uses a bidirectional long short-term
memory (LSTM) recurrent neural network®, which is fed the peptide
sequence as one-hot encoded amino acids, including its left and right
flanks, corresponding to five amino acids on the N-and C-terminal ends

Nature Machine Intelligence | Volume 7 | February 2025 | 232-243

240


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00971-y

of the peptide in its parent protein of origin. To allow the network to
determine which of the amino acids belong to the peptide sequence
and not to the flanks, we include a binary feature at each amino acid
position. The output of the LSTMis asequence of vectors that we pool
into asingle vector representation for the sequence by averaging along
the sequence length dimension. Finally, we concatenate this feature
vector with one from the binding module and feed it into a two-layer
feed-forward network to produce the presentation score.

Model training

We train our models using the PyTorch framework on 4x A6000
graphic processing units for 75,000 steps with atotal batch size of 256
(2 hours of total training time). The binding model is initialized using
the pretrained ESM-2 8 million parameter model and all the weights are
fine-tuned during training. The LSTM used to model flanking residues
israndomly initialized at the start of training. Our models are trained
using half mixed-precision (fp16) using the Adam optimizer, with a
learning rate of 1 x 10~ that is constant throughout training.

Peptide synthesis reagents

Fmoc-protected amino acids and synthesis resin, 2-chlorotrityl
chloride, were purchased from Akaal Organics. Dimethylforma-
mide (DMF), N-methyl pyrrolidone (NMP), acetonitrile and methyl
tert-butyl ether (MTBE) were purchased from Fisher Bioreagents.
2-(6-Chloro-1-H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hex-
afluorophosphate (HCTU) was purchased from AAPPTEC. Piperidine
and dichloromethane (DCM) were from EMD-Millipore. Diisopropyl-
ethylamine (DIEA), N-methyl-morpholine (NMM), triisoprpopyl-silane,
3,6-dioxa-1,8-octanedithiol (DODT) and trifluoroacetic acid (TFA) were
purchased from Sigma-Aldrich.

Peptide synthesis and analysis

Peptides were synthesized on an automated robotic peptide synthe-
sizer (AAPPTEC, Model 396 Omega) by using Fmoc solid-phase chem-
istry> on 2-chlorotrityl chloride resin**. The C-terminal amino acids
were loaded using the respective Fmoc amino acids in the presence
of DIEA. Unreacted sites on the resin were blocked using methanol,
DIEA and DCM (15:5:80 v/v). Subsequent amino acids were coupled
using optimized (to generate peptides containing more than 90% of
the desired full-length peptides) cycles consisting of Fmoc removal
(deprotection) with 25% piperidine in NMP followed by coupling of
Fmocamino acids using HCTU/NMM activation. Each deprotectionor
coupling was followed by several washes of the resin with DMF to remove
excessreagents. After the peptides were assembled and the final Fmoc
group removed, peptide resin was then washed with DMF, DCM and
methanol three times each and air-dried. Peptides were cleaved from
the solid support and deprotected using odour-free cocktail (TFA/
triisopropyl silane/water/DODT; 94/2.5/2.5/1.0 v/v) for 2.5 h at room
temperature®. Peptides were precipitated using cold MTBE. The pre-
cipitate was washed 2 times in MTBE, dissolved inasolvent (0.1% TFAin
30% acetonitrile/70% water) followed by freeze-drying. Peptides were
characterized by ultra-performance liquid chromatography and matrix
assisted laser desorption/ionization mass spectrometry. All peptides
were dissolved initially in 100% DMSO at a concentration of 40 mM,
before dilution at the appropriate concentration in RPMI-1640 medium.

HLA-I-peptide stability assay

HLA-I-peptide stability assays were performed as previously
described”. In brief, 5 x 10* Transporter Associated with Antigen Pro-
cessing (TAP)-deficient monoallelic HLA-I-expressing 721.221 cells were
incubated with 100 pM of peptide and 3 pg ml™ of 2-microglobulin
(Sino Biological) in RPMI-1640 medium overnight at 26 °C/5% CO,
for 18 h. Controls without peptide but with DMSO were performed
in parallel. Following overnight incubation, cells were incubated at
37 °C/5% CO, for 2 h before staining with live/dead violet viability dye

(Life Technologies) and pan-HLA-ABC-APC antibody (Clone W6/32,
BioLegend, 1:100 dilution). HLA-I surface expression was analysed by
flow cytometry.

Calculation of Shannon entropy
Shannon entropy (thatis, sequence conservationscores) ateach HLA
anchor residue position was calculated using the following formula:

S = _Z:P(x,») log, P(x;),

where nisthe number of unique amino acids at any given position, x;is
the ith unique amino acid, and P(x;) is the probability of amino acid x;
at that given position, calculated by dividing the number of peptides
with amino acid x; at the position of interest by the total number of
peptidesin the dataset.

Study participants

Study participants were recruited from outpatient clinics at local
Boston area clinics and from outside Boston. The Institutional Review
Board of Massachusetts General Hospital approved the studies of cells
derived fromhumanblood samples. PBMCs from HIV* individuals with
viralloadsbelow 2,000 copies either onor off suppressive anti-retroviral
therapy were collected by Ficoll gradient separation from acid citrate
dextrose tubes or leukapheresis samples. They were then cryopre-
served and stored in liquid nitrogen for future use. High-resolution
HLA-Ityping was performed for all patients as described previously*.
Inbrief, locus-specific PCR primers were used to amplify polymorphic
exons of HLA-A, HLA-B and HLA-C genes with the Fluidigm Access Array
(Fluidigm). PCR amplicons were pooled and sequenced on anlllumina
MiSeq platform (Illumina). HLA alleles and genotypes were called using
the Omixon HLA Explore (beta version) software (Omixon). Ambiguous
calls wereresolved by Sanger sequencing.

Exvivo IFNy ELISpot assay

IFNy ELISpot assays were performed according to the manufacturer’s
instructions (Mabtech). PBMCs were incubated with individual pep-
tides from EBV atafinal concentration of 0.5 pg ml™ for16-18 h. Positive
controls were anti-human CD3 (Clone OKT3, BioLegend, 0.5 pg ml™)
and anti-human CD28 (Clone CD28.2, BioLegend, 0.5 pg m1™) anti-
bodies. The number of spot-forming units in the highest-value DMSO
control well was subtracted from each experimental well. Responses
were considered positive if both replicates had greater than or equal
to five spot-forming units per well above background.

Ex vivo proliferation assay

PBMCswere suspended at1x 10° cells per mlin1uM CellTrace Far Red
dye (ThermoFisher) in PBS and incubated at 37 °C for 20 min. Cells were
protected from light and mixed every 5 min during the incubation.
RPMIsupplemented with 10% fetal bovine serum was added to quench
thereaction for 5 min, followed by centrifugationat1,500 rpm for3 min
before resuspension in culture media. Cells were plated into 96-well
U-bottom plates (Corning) (200,000 cells per wellin200 pl of culture
media) and incubated with individual EBV peptides at a concentration
of 0.5 pg ml™ for 5 days. Cells were washed with PBS supplemented with
2% fetal bovine serum and stained with anti-human CD3-BUV395 (Clone
UCHT1, BD Biosciences, 1:100 dilution), anti-human CD4-PE-Cy7 (Clone
OKT4, BiolLegend, 1:100 dilution), anti-human CD8-BV605
(Clone SK1, BioLegend, 1:100 dilution) and live/dead violet viability
dye (Life Technologies). Cells were washed and fixed in 2% paraform-
aldehyde and flow cytometric analysis was performed on a BD LSR
Fortessa (BD Biosciences).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

All data required to train and evaluate the models, HLA-I-peptide
stability assay and ELISpot data are deposited in the Mendeley Data
repository”. Sequences for the major histocompatibility complex
alleles were obtained from the IMGT*’ and can also be found alongside
the released code. Full viral protein sequences, including accession
codes, are also available in the Mendeley Data repository.

Code availability

The codeused to train the model and run predictions using our trained
model weights is available via Zenodo at https://doi.org/10.5281/
zenodo.142195009 (ref. 58).
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Extended Data Fig. 1| MUNIS outperforms state-of-the-art predictorsin
classifying HLA-I1binders using a test set with no overlap with the training set.
(a) Average precision and (b) ROC-AUC of all predictors on classifying binders
versus non-binders using the subset of the data with no epitope overlap with

any of the tools’ training datasets (“cleaned evaluation set”), n = 24 alleles.

Box plots are presented with medians as center lines, 25" and 75" percentiles

aslower and upper quartiles, and 1.5 x interquartile range from the quartiles as
whiskers (outliers not shown). (c) Per allele pairwise comparisons of MUNIS and
other predictors in classifying HLA-1binders using the cleaned evaluation set.
Each point is model performance on one allele. P values for pairwise comparisons
between MUNIS and each predictor were calculated using the two-sided
Wilcoxon rank sums test (not showniif p > 0.1).
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Extended Data Fig. 2 | Performance of all algorithms in predicting

epitope immunogenicity conditioned on HLA-I-peptide binders and
immunodominance stratified by HLA-1 allele. (a) Per-dataset performance

of our model, MUNIS, against existing tools MixMHCpred2.2, NetMHCpan4.1,
MHCFlurry2.0, TransPHLA, BigMHC and PRIME2.0 in predicting eluted ligands
from the five influenzaimmunopeptidomic experiments against decoy peptides.

Positives are allimmunogenic epitopes and negatives are all eluted ligands (i.e
binders) in the viral proteome. Error bars show the standard error across the five
datasets. Bar plots show median values. Spearman correlation of each model’s
score and the frequency of response across all epitope-allele pairs in (b) acute
(n=33alleles) and (c) chronic (n = 33 alleles) HIV. Bar plots show medians and
error bars show the standard error across alleles.
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known HIVimmunodominant peptide (dashed line) for each allele. Blue circles indicate predicted binders and gray circles indicate predicted non-binders.
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Extended Data Fig. 5| Response of individuals in cohort to overlapping
peptide pools from Epstein-Barr Virus (EBV) proteins. (a) Representative IFN-y
ELISpot assays for representative HLA-haplotyped individuals in cohort using
overlapping peptide pools from EBV proteins BRLF1, B2LF1, EBNA1, LMP2 and
EBNA3a. DMSO was used as a negative control and phytohemagglutinin-L (PHA)

BRLF1 B2LF1 EBNA1 LMP2 EBNA3a
was used as a positive control. TNTC: Too Numerous To Count. (b) Summary data
for ELISpot data for all individuals in cohort (n = 50 peptides per protein). Box
plots are presented with medians as center lines, 25" and 75" percentiles as lower
and upper quartiles, and 1.5 x interquartile range from the quartiles as whiskers
(outliers not shown).
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Extended Data Table 1| Features of MUNIS and competing predictive models

MixMHCpred 2.2 Mass spectrometry Human No No No
NetMHCpan 4.1 MfsBsinZ‘i’ﬁ;t;‘;f’l‘;ft;'y Uniprot No No No
MHCflurry 2.0 Mf;sinsdpi):;t;c;rrlrr\“et;ry Parent protein No Optional No
TransPHLA Mf;?:(ﬁﬁ;g%?\ﬁ;w Parent protein Yes No No
BigMHC - EL Mass spectrometry Random Yes No No
BigMHC - IM Immunogenic epitopes Human Yes No No
Prime 2.0 Immunogenic epitopes Human No No No

Table showing the differences between MUNIS and other models. Models in the literature differ based on several factors, including the sampling of negatives, model architecture and the use
of flanking residues.
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Extended Data Table 2 | Ablation analysis of MUNIS deconvolutes features contributing to enhanced prediction of
HLA-I-peptide binders and immunogenic epitopes compared to competing models

Model Evaluation
pHLA presentation Immunogenicity Immunodominance
Immunogenic Epitopes Immunogenic _ _ .
LI vs. All Epitopes Epitopes vs. Binders HIV -Acute | HIV - Chronic
MUNIS (Pretrained size: 8M, flanking
residues, SwissProt negatives, 95.3 22.8 34.5 325 29.3
model score)
ESM-2 Protein Language Model
Not pretrained (Size: 8M) 94.6 27.7 401 34.9 31.7
Pretrained (Size: 35M) 95.9 27.3 38.5 32.6 29.1
Flanking Residues
No flanking residues | 94.7 235 35.6 341 31.7
Negative Sampling
Human decoys 95.6 23.8 36.2 31.3 315
Allelic Bias
Munis %Rank n/a n/a n/a 31.9 30.7
NetMHC %Rank n/a n/a n/a 29.3 26.9
NetMHC Score n/a n/a n/a 29.7 27.6

Ablation analysis showing the performance of MUNIS as a function of various modifications. All numbers are provided as median average precision stratified per allele, except for HIV
immunodominance which is given as spearman coefficient. All ablated models were trained as an ensemble of five models to match the original MUNIS training schema.
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Extended Data Table 3 | Characteristics of patient cohort utilized for assessment of immunogenicity of EBV peptides

135137 62 Female White 0201, 0201 4402, 4427 0501, 0704
185075 61 Male White 0101, 0201 4402, 5701 0102, 0602
186089 60 Male White 0101, 0201 4001, 5201 0304, 1202
225942 52 Male Black 0202, 0301 5702, 8101 1801, 1801
237983 77 Female White 3201, 3201 2705, 4402 0102, 0501
238936 60 Male White 0201, 0201 4001, 5701 0304, 0602
244849 58 Male White 0201, 2301 4901, 5701 0602, 0701
245487 72 Male White 0206, 2501 2705, 3701 0303, 0602
246734 70 Male White 0301, 3101 2705, 5701 01127, 0602
247792 64 Male White 0101, 6801 2705, 5701 0202, 0602
254378 61 Male White 0301, 2402 2705, 5701 0102, 0701
265823 59 Male White 0301, 3101 1401, 3501 0401, 0802
269198 57 Male White 0101, 2402 3801, 5701 0602, 1203
409640 67 Female White 2402, 2402 1402, 5701 0602, 0802
443552 67 Male Black 0201, 0201 4901, 5301 0401, 0701
447160 72 Male Black 0201, 0301 0702, 1402 0702, 0802
481241 89 Male White 0201, 3201 4002, 5701 0202, 0602
516980 64 Male Black 0101, 0201 5101, 5201 1202, 1601
534694 69 Male White 0201, 0201 2705, 5701 0102, 0602
540772 61 Male White 0101, 6801 5501, 5701 0303, 0602
575509 80 Male White 0201, 3601 4002, 5701 0304, 0602
622054 56 Female White 0201, 0201 0702, 4402 0501, 0702
667335 43 Male White 0201, 2902 4403, 4403 1601, 1601
690641 66 Male White 0201, 3303 1302, 2705 0202, 0401
712894 69 Male White 0201, 2402 1302, 5701 0602, 0602
805181 57 Male White 0201, 0201 0702, 4403 0401, 0702
930024 61 Male White 0101, 6801 0801, 5701 0602, 0701
995725 60 Male White 0201, 2902 1501, 4404 0102, 1601
280008 Al Male White 0101, 2902 4403, 5801 0602, 1601
595424 57 Male White 0201. 1101 1402, 5101 0802, 1402

N/A
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis Data analysis was performed using standard python packages (pandas, matplotlib). Model training was done using machine learning
frameworks (pytorch, pytorch-lightning).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data required to train and evaluate the models and raw stability assay and ELISpot data are deposited in the Mendeley Data repository with DOI:
10.17632/5w2zg5jn27.1. Dataset used for training were extracted from the publicly available NetMHCpan4.1 (https://doi.org/10.1093/nar/gkaa379), MHCflurry2.0
(https://doi.org/10.1016/j.cels.2020.06.010), and MixMHCpred2.2 (https://doi.org/10.1016/j.cels.2022.12.002) studies. Evaluation data was taken from the IEDB




(https://www.iedb.org/), Calis et al (https://doi.org/10.1371/journal.pcbi.1003266), and Pyke et al (https://doi.org/10.1016/j.mcpro.2021.100111). Sequences for
the MHC alleles were obtained from the IMGT (https://www.ebi.ac.uk/ipd/imgt/hla/) and can also be found alongside the released code. Full viral protein
sequences, including accession codes, are also available in the Mendeley Data repository.
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Reporting on sex and gender We have reported sex and race in Extended Table 3 of the manuscript.

Population characteristics Population characteristics are reported in Extended Table 3 of the manuscript.

Recruitment Study participants included those that had been recruited by the Ragon Institute of Mass General, MIT and Harvard. HLA
typing had previous been obtained on all participants. Sex and/or gender of participants was determined based on self-
report.

Ethics oversight All study participants provided written informed consent. The study was approved by the Mass General Brigham Institutional

Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size A total of 30 HLA-typed participants were selected for analysis. Written informed consent was obtained from all participants.

Sample size was not calculated due to the extensive degree of HLA polymorphism in the human population. We therefore selected individuals
with HLA class | alleles that matched those that were present in our HLA class |-peptide stability assessments and computational predictions.

Data exclusions  No data were excluded.
Replication All experiments were performed in technical duplicates and all attempts at replication were successful.
Randomization  No randomization was performed as participants were assigned to epitope immunogenicity assessments based on their HLA class | haplotype.

Blinding No blinding was performed and sample names were labeled based on their de-identified ID, sample collection date and time points. No
blinding was done to avoid sample cross-contamination.
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Antibodies

Antibodies used Anti-human CD3 (Clone OKT3, BioLegend, Cat # 317302, Lot B358930), anti-human CD28 (Clone CD28.2, BioLegend, Cat # 302902,
Lot B394362), anti-human CD3-BUV395 (Clone UCHT1, BD Biosciences, Cat # 563546, Lot 3072678), anti-human CD4-PE-Cy7 (Clone
OKT4, BioLegend, Cat # 317414, Lot B357837), anti-human CD8-BV605 (Clone SK1, BioLegend, Cat # 344742, Lot B370756), pan-HLA-
ABC-APC antibody (Clone W6/32, BioLegend, Cat # 311410, Lot B373456).

Validation Antibodies validated by manufacturers and confirmed to bind populations of interest.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) All cell lines used were derived from human female B cell line 721.221 (https://doi.org/10.4049/jimmunol.142.9.3320). HLA-
monoallelic TAP-deficient cell lines were developed previously using CRISPR-Cas9 technology (https://doi.org/10.1016/
j.celrep.2021.109378).
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Authentication Each monoallelic TAP-deficient cell lines was authenticated using surface staining for HLA expression and CRISPR amplicon
sequencing to confirm TAP1 gene editing (https://doi.org/10.1016/j.celrep.2021.109378).

Mycoplasma contamination Cell lines are routinely tested for mycoplasma contamination.

Commonly misidentified lines N/
(See ICLAC register)
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Methodology
Sample preparation Details in Methods section. Patient PBMCs were extracted from whole blood using Ficoll gradient separation.
Instrument BD LSR Il (H47200037)
Software BD FACSDiva Software was used to collect the data and FlowJo was used to analyze the data.
Cell population abundance No cell sorting was performed in this paper.
Gating strategy Gating strategy for HLA class I-peptide stability assays: FSC-A/SSC-A --> SSC-H/SSC-W --> Live/Dead Violet/SSC-A --> HLA-APC

histogram. Gating strategy for proliferation assays: FSC-A/SSC-A --> SSC-H/SSC-W --> CD3-BUV395/Live/Dead Violet --> CD8-
BV605/CD4-PECy7 --> CellTrace Far Red (CTFR)/CD8-BV605.
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	Deep learning enhances the prediction of HLA class I-presented CD8+ T cell epitopes in foreign pathogens

	Deep learning model development for CD8+ T cell epitope identification

	MUNIS outperforms existing predictors in classifying HLA-I binders

	MUNIS predicts fewer false positives by using canonical HLA-I motifs

	MUNIS predicts epitope immunogenicity and immunodominance

	MUNIS discriminates between HLA-I-binding and non-binding EBV peptides

	MUNIS identifies established and novel immunogenic EBV epitopes

	Discussion

	Methods

	Datasets

	Model architecture

	Model training

	Peptide synthesis reagents

	Peptide synthesis and analysis

	HLA-I–peptide stability assay

	Calculation of Shannon entropy

	Study participants

	Ex vivo IFNγ ELISpot assay

	Ex vivo proliferation assay

	Reporting summary


	Acknowledgements

	Fig. 1 Characteristics of the deep learning model and the training and evaluation datasets for prediction of HLA-I epitopes.
	Fig. 2 MUNIS outperforms existing predictors in classifying HLA-I binders across 8–11mers.
	Fig. 3 Motif analysis of misclassified binders reveals inconsistent reliance of existing models on canonical HLA-I-binding motifs.
	Fig. 4 MUNIS outperforms existing tools in predicting epitope immunodominance hierarchies.
	Fig. 5 Experimental HLA-I–peptide stability assay confirms the ability of MUNIS to discriminate between binding and non-binding peptides within EBV.
	Fig. 6 MUNIS identifies established and novel EBV CD8+ T cell epitopes.
	Extended Data Fig. 1 MUNIS outperforms state-of-the-art predictors in classifying HLA-I binders using a test set with no overlap with the training set.
	Extended Data Fig. 2 Performance of all algorithms in predicting epitope immunogenicity conditioned on HLA-I-peptide binders and immunodominance stratified by HLA-I allele.
	Extended Data Fig. 3 Flow cytometry gating strategies for HLA class I-peptide stability and proliferation assays.
	Extended Data Fig. 4 HLA class I-peptide stability assay data of predicted binder and non-binder peptides for each allele.
	Extended Data Fig. 5 Response of individuals in cohort to overlapping peptide pools from Epstein-Barr Virus (EBV) proteins.
	Extended Data Table 1 Features of MUNIS and competing predictive models.
	Extended Data Table 2 Ablation analysis of MUNIS deconvolutes features contributing to enhanced prediction of HLA-I-peptide binders and immunogenic epitopes compared to competing models.
	Extended Data Table 3 Characteristics of patient cohort utilized for assessment of immunogenicity of EBV peptides.




