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Deep learning enhances the prediction of 
HLA class I-presented CD8+ T cell epitopes  
in foreign pathogens
 

Jeremy Wohlwend1,2,6, Anusha Nathan3,4,6, Nitan Shalon1,2, Charles R. Crain3, 
Rhoda Tano-Menka3, Benjamin Goldberg    3, Emma Richards3, 
Gaurav D. Gaiha    3,4,5   & Regina Barzilay1,2 

Accurate in silico determination of CD8+ T cell epitopes would greatly 
enhance T cell-based vaccine development, but current prediction models 
are not reliably successful. Here, motivated by recent successes applying 
machine learning to complex biology, we curated a dataset of 651,237 
unique human leukocyte antigen class I (HLA-I) ligands and developed 
MUNIS, a deep learning model that identifies peptides presented by HLA-I 
alleles. MUNIS shows improved performance compared with existing 
models in predicting peptide presentation and CD8+ T cell epitope imm
unodominance hierarchies. Moreover, application of MUNIS to proteins 
from Epstein–Barr virus led to successful identification of both established 
and novel HLA-I epitopes which were experimentally validated by in vitro 
HLA-I-peptide stability and T cell immunogenicity assays. MUNIS performs 
comparably to an experimental stability assay in terms of immunogenicity 
prediction, suggesting that deep learning can reduce experimental burden 
and accelerate identification of CD8+ T cell epitopes for rapid T cell vaccine 
development.

Cytotoxic CD8+ T cells have been shown to limit disease severity and 
provide protection against viral infections such as human immunodefi-
ciency virus (HIV)1,2 and severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2)3–6 by recognizing short viral peptides bound to human 
leukocyte antigen class I (HLA-I) molecules. While T cell-based vaccines 
hold great promise for foreign pathogens2,4,7–10, rapidly identifying 
immunogenic epitopes across viral proteomes is challenging owing 
to the extensive degree of HLA polymorphism in the population and 
the experimental burden required to validate HLA-I binding and CD8+ 
T cell reactivity. Given that only a small fraction of pathogen-derived 
peptides elicit an in vivo CD8+ T cell response11,12, computational algo-
rithms that can rapidly identify immunogenic epitopes within viral 

proteomes for a broad range of HLA-I alleles would greatly accelerate 
T cell-based vaccine development.

Although numerous computational methods exist to predict 
CD8+ T cell epitopes13–16, their accuracy varies substantially across 
HLA-I alleles17. Moreover, the extent to which these models can iden-
tify immunogenic epitopes is not well understood, in part owing to 
the lack of unbiased evaluation datasets. Peptides frequently tested 
for immunogenicity are often conditionally selected using existing 
binding predictors13–16. Although several tools can define the char-
acteristics of immunogenic cancer neoepitopes18–23, they are yet to 
show strong generalizability to foreign pathogens. Thus, given the 
remarkable success of deep learning to improve model generalization 
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unbiased immunopeptidomic benchmarks. We subsequently vali-
dated MUNIS experimentally using an in vitro HLA-I–peptide stabil-
ity assay27 and T cell immunogenicity assays on predicted peptides 
from Epstein–Barr virus (EBV). We explicitly omitted all peptides 
in EBV from the model training set to mimic prediction of a novel 
virus. Importantly, MUNIS identified both established and new CD8+ 
T cell epitopes in EBV that elicited effector and memory CD8+ T cell 
responses. Moreover, MUNIS was a comparable immunogenicity pre-
dictor to an HLA-I–peptide stability assay27, which defined epitopes for 
a SARS-CoV-2 T cell vaccine28, illustrating the power of deep learning 
to reduce experimental burden and rapidly accelerate T cell vaccine  
development.

across several areas of biology, such as protein structure prediction24 
and CD4+ T cell epitope presentation25,26, we reasoned that it could also 
enhance the prediction of presented and immunogenic CD8+ T cell  
epitopes.

We therefore developed MUNIS: a deep learning-based predic-
tor of HLA-I epitopes that utilizes a bimodal architecture to jointly 
model both HLA-I–peptide binding and antigen processing by lev-
eraging a well-curated and expanded training set of 651,237 unique 
HLA-I ligands across 205 HLA-I alleles. We validated MUNIS in silico on 
immunopeptidomic data and achieved superior performance com-
pared with existing HLA-I epitope predictors. Distinct from previ-
ous work13–16, we evaluated immunogenicity prediction using several 
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Fig. 1 | Characteristics of the deep learning model and the training and 
evaluation datasets for prediction of HLA-I epitopes. a, Datasets used for 
training and evaluation were curated by combining data from several previous 
studies as well as a recent download of the IEDB. Eluted ligand data were used as 
positives and randomly sampled decoys from Swiss-Prot26 served as negatives. 
For evaluation, data from an immunopeptidomic study involving 24 monoallelic 
cell lines were used27. To evaluate immunogenicity, five studies28–30 that measure 
the immunogenicity of influenza epitopes identified via mass spectrometry were 
used. b–e, Peptide length distribution of the HLA-I binders (b,c) and pie chart of 
the proportion of epitopes per HLA-I allele (d,e) in the presentation training (b,d) 
and evaluation (c,e) datasets. All alleles present in the dataset with a frequency 
<1% are denoted as ‘other’. f, The binding module takes as input the amino acid 
sequences of the major histocompatibility complex and peptide in the form: [cls] 

mhc [sep] pep [eos], where [cls], [sep] and [eos] are special tokens that separate 
the two sequences. This new sequence is fed to the Evolutionary Scale Modeling-2 
(ESM-2) Transformer protein language model, and the vector representation 
for the [cls] token is used to represent the complex. The ligand elution module 
combines the binding vector with a long short-term memory (LSTM) recurrent 
neural network encoding of the peptide that includes its left and right flanks in 
the parent protein of origin. The model can be used when trained with or without 
flanking residues. These combined features are then concatenated and used to 
compute a ligand presentation score. The model is first trained on the ligand 
presentation task. Then, the model is trained with five different random seeds 
and their scores are averaged to create an ensemble score. pHLA: peptide-human 
leukocyte antigen complex; TCR: T cell receptor. Panel f created with BioRender.
com.
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Deep learning model development for CD8+ T cell 
epitope identification
To develop a robust model of immunogenic CD8+ T cell epitope pre-
diction, we constructed a training dataset composed of mass spec-
trometry data from immunopeptidomic experiments used for the 
MixMHCpred2.216, NetMHCpan4.113 and MHCflurry2.014 training sets 
and data obtained from the Immune Epitope Database (IEDB: iedb.
org)29. We supplemented these HLA-I-binding peptides with randomly 
sampled decoy peptides (non-binders) from Swiss-Prot30 at a ratio 
of 1:5 HLA-I binders to non-binders. Importantly, all epitopes used 
in model evaluation were removed from training sets, regardless of 
HLA-I restriction. This is a far stricter approach to data filtering than 
previous methodologies where only matched HLA-I–peptide pairs 
were removed from the training set, resulting in substantial overlap 
between test set epitopes and training sets. We show the sources of 
these datasets (Fig. 1a), the peptide length distributions (Fig. 1b,c) and 
the frequencies at which peptides bind HLA-I molecules (Fig. 1d,e).

The architecture of the model is composed of two submodules 
(Fig. 1f). First, the binding module takes as input the sequences of 
the HLA-I molecule and peptide and learns a numerical vector repre-
sentation, which we refer to as binding features, to produce the final 
prediction score. Our second module augments the binding features 
with a signal relevant to antigen processing. This is accomplished by 
encoding the peptide and five N-terminal and C-terminal flanking resi-
dues from its parent protein of origin, similar to MHCflurry2.014. Using 
this approach, we train five models and combine them in an ensemble 
by taking the average score on any given input. The score of the model 
for HLA-I–peptide pairs ranges between 0 and 1 and indicates the prob-
ability of a peptide binding that particular HLA-I allele.

Previous work has frequently relied on area under the receiver 
operating characteristic curve (ROC-AUC) and precision (that is, 
positive predictive value) as evaluation metrics. However, given the 
abundance of negatives, it is possible that for a given threshold, the 
proportion of positives is dominated by false positives even with a low 
false-positive rate. Thus, we primarily use the area under the precision–
recall curve, known as average precision score, to describe the model 
performance. This score ranges from 0 to 1, with a random predictor 
having a value equal to the percentage of positives in the data. For 
datasets of sufficient size, we also show the ROC-AUC.

MUNIS outperforms existing predictors in 
classifying HLA-I binders
We first evaluated the presentation model on a published immunopep-
tidomic dataset31 that contains 41,725 positive HLA-I–peptide pairs 
and 208,625 randomly sampled decoys across 24 HLA-I alleles. We 
calculated the average precision scores and ROC-AUC of classifying 
binders and non-binders on a per-allele basis and compared our scores 
with the existing tools MixMHCpred2.2, NetMHCpan4.1, MHCflurry2.0, 
TransPHLA32 and BigMHC33, which predicts both presented peptides 
(BigMHC-EL) and immunogenic epitopes (BigMHC-IM). On this data-
set, our model achieves a median average precision of 0.952, which 
corresponds to a 21% reduction in error compared with existing tools, 
with MixMHCpred2.2 scoring 0.924, NetMHCpan4.1 scoring 0.925, 
MHCflurry2.0 scoring 0.938, TransPHLA scoring 0.854 and BigMHC 
scoring 0.939 (Fig. 2a). The median ROC-AUC of MUNIS is 0.980, which 
corresponds to a 31% reduction in error compared with MHCflurry2.0 
at 0.971, NetMHCpan4.1 at 0.962, MixMHCpred2.2 at 0.956, TransPHLA 
at 0.948 and BigMHC at 0.969 (Fig. 2b). Importantly, over 65% of posi-
tive epitopes in the evaluation dataset are also present in the training 
sets of existing predictors, excluding MUNIS where we ensure a 0% 
overlap. Despite this overlap, MUNIS still outperforms these prediction 
algorithms on 22/24 HLA-I alleles tested in average precision (Fig. 2c).

Evaluation of these various predictors suggests that differences 
in model performance could be due to each model’s ability to encode 
peptide length16. We therefore evaluated model performance across 

HLA-I alleles stratified by peptide length (Fig. 2d,e). This revealed that 
MUNIS outperforms for 9-mer, 10-mer and 11-mer peptides, indicating 
that encoding of peptide lengths is unlikely to be a key discriminator 
of model predictive capability.

To further evaluate predictive capabilities, we compared MUNIS 
with existing predictors using the identical evaluation dataset as above 
but with most peptides included in the tool training sets removed. In 
this setting, we observed a wider gap in performance for several HLA-I 
alleles, with MUNIS achieving a median average precision score of 
0.894, MixMHCpred2.2 scoring 0.854, NetMHCpan4.1 scoring 0.868, 
MHCflurry2.0 scoring 0.867, TransPHLA scoring 0.795 and BigMHC 
scoring 0.891 (Extended Data Fig. 1a). MUNIS outperforms existing 
tools on 18/24 HLA-I alleles tested in average precision and 21/24 in 
ROC-AUC (Extended Data Fig. 1b), and a larger performance gap was 
observed for several HLA-I alleles on this cleaned evaluation set against 
all tools, except for BigMHC which retains 30% overlap with positive 
epitopes in the clean test set and TransPHLA which retains 14% overlap 
(Extended Data Fig. 1c). These data reveal that MUNIS can identify pre-
sented peptides from mass spectrometry data with greater accuracy 
than existing tools across several source proteins, HLA-I alleles and 
peptide lengths.

MUNIS predicts fewer false positives by using 
canonical HLA-I motifs
Given the improved performance of MUNIS in predicting 
HLA-I-presented peptides, we evaluated peptide-binding motifs for 
several alleles. Interestingly, we found that existing tools assign high 
individual model scores to non-HLA-I-binding peptides and thereby 
predict an increased number of false positives (Fig. 3a). We there-
fore evaluated the HLA-I-binding motifs for correctly classified pep-
tides (true positives) versus misclassified peptides (false positives) 
for all HLA-I alleles in the evaluation set, with HLA-B*40:01 shown as 
a representative example (Fig. 3b). While all predictors were capa-
ble of correctly identifying peptides with canonical binding motifs,  
MixMHCpred2.2, NetMHCpan4.1 and MHCflurry2.0 also classified 
peptides with non-canonical anchor residue motifs as binders as well. 
The binding motifs of the false positives across these three predictors 
did not have a dominant amino acid at HLA anchor residue positions 
(Fig. 3b, highlighted in yellow) as observed for true positives. In addi-
tion, falsely classified binders have significantly greater entropy at 
HLA anchor residues compared with true binders (Fig. 3c). In contrast, 
MUNIS largely avoids classifying peptides without expected HLA anchor 
residues as positives and, consequently, false positives were extremely 
low for MUNIS with fewer than 25 misclassified peptides per HLA-I allele.

MUNIS predicts epitope immunogenicity and 
immunodominance
Given that only a fraction of HLA-I-presented peptides elicit CD8+ T cell 
responses, we next measured the ability of MUNIS to predict immuno-
genic epitopes. To avoid biases from existing prediction algorithms 
in peptide selection, we constructed a test set of peptides using five 
immunopeptidomic datasets from the influenza viruses A and B that 
bind to HLA-A*02:01, HLA-A*11:01 and HLA-A*24:02 (524 presented 
peptides across the five datasets)34–36. Each of these datasets comprises 
a list of HLA-I-presented peptides identified via mass spectrometry that 
were subsequently evaluated for immunogenicity using interferon-γ 
(IFNγ) enzyme-linked immunospot (ELISpot) assays, where 36 of the 524 
peptides were reported as immunogenic in the IEDB. For each dataset, 
we ranked positive (that is, immunogenic) peptides against all other 
peptides in the viral proteome. When compiling the set of negatives, 
we considered only proteins with at least one immunogenic peptide 
to prevent confounding by inherent levels of protein immunogenicity.

We benchmarked MUNIS against immunogenicity predictors 
PRIME2.014 and BigMHC_IM and the HLA presentation prediction 
tools (MixMHCpred2.2, NetMHCpan4.1, MHCflurry2.0, TransPHLA 

http://www.nature.com/natmachintell
https://iedb.org/
https://iedb.org/


Nature Machine Intelligence | Volume 7 | February 2025 | 232–243 235

Article https://doi.org/10.1038/s42256-024-00971-y

a
Av

er
ag

e 
pr

ec
is

io
n

1.00

0.95

0.90

0.85

0.80

0.75

0.70 M
U

N
IS

 a
ve

ra
ge

 p
re

ci
si

on

MixMHCpred2.2

NetMHCpan4.1

MHCflurry2.0

1.0
0.9
0.8
0.7
0.6

1.00.80.6

Model average precision

1.0
0.9
0.8
0.7
0.6

1.0
0.9
0.8
0.7
0.6

b

d

RO
C

-A
U

C

1.00

0.98

0.94

0.90

0.86

0.88

e

8-mers 9-mers 10-mers 11-mers

RO
C

-A
U

C
cComparison of ROC-AUC Average precision correlations

0.96

0.92

0.0150
0.0021

****

Comparison of average precision

TransPHLA

BigMHC-EL

0.0392
0.0187

****

1.00.80.6

1.00

0.80

0.60

0.40

0.20

1.00

0.90

0.80

0.70

0.60Av
er

ag
e 

pr
ec

is
io

n

1.00

0.98

0.94

0.90

0.86

0.96

0.92

0.88

1.00

0.90

0.80

0.70

0.60

Test/train epitope
overlap (%):

0.0026

0.0373

0.0004

****
0.0606

0.0606
0.0635

****
0.0635

****

1.00

0.95

0.85

0.65

0.60

0.70

0.75

0.80

0.90

1.00

0.92

0.94

0.96

0.98

1.00

0.95

0.90

0.80

0.85

0.75

1.00

0.98

0.96

0.92

0.94

0.90

0.88

0.0047
0.0069

0.0012
0.0198

0.0044
0.0047

0.0001
0.0112

0.0392

0.0020****

****
0.0455

0.0246
0.0665

0.0478

8-mers 9-mers 10-mers 11-mers

1.0
0.9
0.8
0.7
0.6

1.0
0.9
0.8
0.7
0.6

Test/train epitope
overlap (%):71 72 75  67  77.5  0 71 72 75  67  77.5  0

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

MixM
HCpred2.2

NetM
HCpan

4.1

MHCflu
rry

2.0

Tra
nsP

HLA

BigMHC-EL

MUNIS

Fig. 2 | MUNIS outperforms existing predictors in classifying HLA-I binders 
across 8–11mers. a,b, Average precision (a) and ROC-AUC (b) of MUNIS and 
current state-of-the-art tools MixMHCpred 2.2, NetMHCpan 4.1, MHCflurry 
2.0, TransPHLA and BigMHC on predicting eluted ligands (binders) from mass 
spectrometry experiments from Pyke et al.27 against decoy peptides (non-
binders), n = 24 HLA-I alleles. Percentages of overlap with the training datasets 
of each tool across all epitopes in the presentation benchmark are shown below 
the plots. c, Per-allele pairwise comparisons of MUNIS and other predictors in 

classifying HLA-I binders. Each point is the model performance on one allele.  
d,e, Average precision (d) and ROC-AUC (e) of all predictors on classifying 
binders versus non-binders binned by epitope length, n = 24 HLA-I alleles.  
P values for pairwise comparisons between MUNIS and each predictor were 
calculated using the two-sided Wilcoxon rank sums test (not shown if P > 0.1; 
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and BigMHC_EL). PRIME2.0 was benchmarked on immunogenicity 
test sets by running each allele–peptide pair independently using 
‘%Rank_bestAllele’ as a readout of prediction strength. We found that 
MUNIS outperforms all other prediction algorithms in identifying 
presented epitopes across the 5 datasets, with a median average pre-
cision of 0.289, which is a 26% relative improvement in performance 
compared with the next-best tool (MHCflurry2.0; Fig. 4a). However, all 
tools showed a similar predictive capability across HLA-I alleles when 
predicting immunogenic epitopes against decoy peptides (Fig. 4b). Of 
note, the tools with higher median average precision scores than MUNIS 
were the tools with substantial overlap between evaluation and train-
ing sets. To further understand this result, we measured performance 
with only non-immunogenic HLA-I binders as negatives (Extended Data 
Fig. 2a). This resulted in increased average precision over several alleles, 
indicating the tendency of models to rank presented, immunogenic 
epitopes higher than presented, non-immunogenic ones. These results 
highlight the intricate relationship between an increased likelihood of 
presentation and downstream T cell recognition and also underscore 
the unresolved gap to achieve high accuracy for immunogenicity when 
filtered on known HLA-I binders.

While notable differences in immunogenicity prediction for indi-
vidual epitopes were not observed, we explored whether MUNIS could 
predict immunodominance hierarchies, as effective T cell vaccines 
would ideally elicit immune responses across many individuals. We 
therefore leveraged T cell response data for HIV given known immu-
nodominance hierarchies for multiple HLA-I alleles37. Specifically, 
we used a dataset where 119 HIV epitopes were tested for CD8+ T cell 
responses in 527 individuals with HIV split across acute and chronic 
infection groups18,24, with each peptide eliciting a CD8+ T cell response 
in up to 81% of corresponding individuals with HLA-I+.

We evaluated our model by computing the Spearman rank 
correlation coefficient between the MUNIS-predicted score and 

response frequency for each epitope. MUNIS had a Spearman  
correlation coefficient of 0.35 compared with 0.34 and 0.295 for the 
next-best-performing tools (BigMHC_IM and NetMHCpan4.1) for 
epitopes targeted in the acutely infected HIV+ subgroup (Fig. 4c) and 
0.33 compared with 0.34 and 0.28 (BigMHC and MixMHCpred 2.2) for 
epitopes targeted in the chronically infected HIV+ subgroup (Fig. 4d). Of 
note, three tools used for comparison (NetMHCpan4.1, MHCflurry2.0, 
BigMHC) were enriched for HIV epitopes in their training dataset, 
whereas these were excluded from the MUNIS training set. We also 
stratified performance on a per-allele basis and found that MUNIS 
outperforms in both the acute (Extended Data Fig. 2b) and chronic 
(Extended Data Fig. 2c) subgroups. Overall, these data demonstrate 
that MUNIS is competitive in identifying immunodominant CD8+ T cell 
epitopes despite not having been explicitly trained for this task.

Because of the numerous false-positive binders predicted by 
other tools, we hypothesized that the superior capability of MUNIS to 
recapitulate immunodominance hierarchies could be due to predic-
tion scores that reflect the targeting frequency of epitopes. When we 
binned epitopes by targeting frequency, we again observed that more 
conservative prediction scores from MUNIS discriminate between 
subdominant and immunodominant epitopes in HIV (Fig. 4e,f), 
with BigMHC being the only other tool to share this property. Col-
lectively, these data demonstrate that MUNIS can identify epitopes 
with higher likelihoods of eliciting CD8+ T cell responses broadly  
across individuals.

To deconvolute which features contribute to enhanced model 
performance, we performed an extensive ablation analysis with com-
peting models (Extended Data Fig. 3). We selectively ablated indi-
vidual features to query the impact of the pretrained Evolutionary 
Scale Modeling-2 (ESM-2) Transformer protein language model, size 
of the language model, flanking residues, negative sampling logic 
and model score versus percentage rank score, which attempts to 

b c

H
LA

 a
nc

ho
r r

es
id

ue
po

si
tio

n 
2

Sh
an

no
n 

en
tr

op
y

TPFP

MixMHCpred
2.2

NetMHCpan
4.1

MHCflurry
2.0

TPFP TPFP

TPFP TPFP TPFP

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

0

**** **** ****

**** **** ****

False positive

Representative HLA allele (HLA-B*40:01)
True positive

N = 670N = 1,558

N = 675N = 1,683

N = 382N = 2,593

M
ix

M
H

C
pr

ed
2.

2
N

et
M

H
C

pa
n

4.
1

M
H

C
flu

rr
y

2.
0

N = 1,453

M
U

N
IS

a

H
LA

 a
nc

ho
r r

es
id

ue
po

si
tio

n 
9

Sh
an

no
n 

en
tr

op
y

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

0

M
od

el
 s

co
re

MixMHCpred
2.2

NetMHCpan
4.1

MHCflurry
2.0

MUNIS

1.00

0.80

0.60

0.40

0

0.20

Decoy peptide (non-binder)

Eluted ligand (binder)

************

Comparison of model score

N

1 2 3 4 5 6 7 8 9

C

N

1 2 3 4 5 6 7 8 9

C N

1 2 3 4 5 6 7 8 9

C

N

1 2 3 4 5 6 7 8 9

CN

1 2 3 4 5 6 7 8 9

C

N

1 2 3 4 5 6 7 8 9

C N

1 2 3 4 5 6 7 8 9

C

Fig. 3 | Motif analysis of misclassified binders reveals inconsistent reliance of 
existing models on canonical HLA-I-binding motifs. a, Box plots of model score 
for eluted ligands (binders) from mass spectrometry experiments from  
Pyke et al.27 and decoy peptides (non-binders) for each predictor (41,724 binders 
and 208,609 non-binders). Box plots are presented with medians as centre 
lines, 25th and 75th percentiles as lower and upper quartiles, and 1.5 times the 
interquartile range from the quartiles as whiskers (outliers not shown).  
b, Binding motifs for 9-mers for all correctly classified binders (true positives) 
and misclassified non-binders (false positives) by each tool for representative 

allele HLA-B*40:01. HLA anchor residues are highlighted in yellow. Binding  
motifs are not shown for MUNIS false positives as there were fewer than  
25 incorrectly labelled binders per allele. Model scores >0.90 were used as 
cut-offs for true positives and false negatives. c, Shannon entropy at HLA anchor 
residues (positions two and nine in a 9-mer) for true-positive (TP) and false-
positive (FP) HLA-I binders predicted by each tool. Each point represents the 
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normalize model scores across HLA-I alleles (Extended Data Fig. 3b). 
A larger ESM-2 model (35 million parameters) improved performance 
slightly over a smaller model (8 million parameters), with an average 
precision of 0.959 compared with 0.953, respectively. Pretraining the 
model also improved the prediction of HLA-I–peptide presentation 
from an average precision of 0.946 to 0.953. Introducing flanking 

residues enhanced HLA-I–peptide presentation prediction from an 
average precision of 0.947 to 0.953. Interestingly, many of these fea-
tures (namely, pretraining and incorporating flanking residues) slightly 
reduced the average precision on immunogenicity prediction. With 
regards to immunodominance, where the results are not stratified 
by allele, we compared the performance of MUNIS using the native 
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Fig. 4 | MUNIS outperforms existing tools in predicting epitope 
immunodominance hierarchies. a, Per-dataset performance of MUNIS against 
existing tools MixMHCpred 2.2, NetMHCpan 4.1, MHCflurry 2.0, TransPHLA, 
BigMHC and Prime 2.0 on predicting eluted ligands (binders) from five 
influenza immunopeptidome experiments against ‘decoy’ peptides (non-
binders). Positives are all mass spectrometry-eluted ligands and negatives are 
all other peptides (‘decoys’) in the viral proteome. Only proteins with at least 
one eluted ligand are considered. b, Per-dataset performance when positives 
are conditioned on immunogenic peptides and negatives contain both the 
‘decoys’ and the eluted ligands that were not immunogenic. In a and b, each 
point represents performance on one dataset (that is one HLA-I allele). Bar plots 

show median performance across datasets and error bars show the standard 
error across the five datasets. Percentages of epitope overlap with the training 
datasets of each tool across all positive epitopes in the five influenza benchmarks 
are shown below the plots. No pairwise comparisons between MUNIS and other 
predictors had a P value <0.05. c,d, Spearman correlation of each model’s score 
and frequency of response to an epitope across all epitope–allele pairs in acute 
(c) and chronic (d) HIV infection. Percentages of epitope overlap with the training 
datasets of each tool across all epitopes in the HIV benchmark are shown below 
the plots. e,f, Median model score ± standard error of the median for epitopes 
with binned frequencies of responses across all epitope–allele pairs in acute (e) 
and chronic (f) HIV infection.
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score and the percentage rank for any given peptide and found that 
both methods perform similarly on the HIV acute and chronic immu-
nodominance datasets. Finally, we observed that sampling decoys 
from Swiss-Prot was generally equivalent to sampling solely from the  
human proteome.

MUNIS discriminates between HLA-I-binding and 
non-binding EBV peptides
To evaluate the practical utility of MUNIS, we experimentally assessed 
predictions of epitope binding and immunogenicity within the EBV 
proteome for several HLA-I alleles, given its relevance to immuno-
compromised populations38, linkage to multiple sclerosis39,40 and 
>90% prevalence in the human population41. For this evaluation, we 
made EBV a de novo virus by excluding epitopes from the EBV pro-
teome from the MUNIS training set. We first scanned all 8–15mers 
from 5 immunogenic EBV proteins (BRLF1, B2LF1, EBNA1, LMP2 and 
EBNA3a) and selected 337 peptides predicted to bind 17 HLA-I alleles 
using an earlier iteration of MUNIS. All of these peptides had scores 
>0.01 upon model finalization (Fig. 5a). Predicted binders for one allele 
were used as predicted non-binders for another allele if the MUNIS 

score was less than 0.01, contributing to a robust immunogenicity 
evaluation set. Each peptide was evaluated for HLA-I binding using an 
established HLA-I–peptide stability assay27 and subsequently tested 
for T cell immunogenicity by IFNγ ELISpot assays in peripheral blood 
mononuclear cells (PBMCs) obtained from HLA-haplotyped human  
participants (Fig. 5b).

For each HLA-I allele, we evaluated the HLA-I-binding and sta-
bilization capacity of 9–52 predicted peptide binders and 3–5 pre-
dicted non-binders. When normalized to the HLA-I stabilizing mean 
fluorescence intensity (MFI) of a corresponding immunodominant 
HLA-I-restricted HIV epitope37, the predicted binders have a signifi-
cantly higher MFI than predicted non-binders (Fig. 5c–e and Extended 
Data Figs. 4 and 5). For the selected top-337 ranked peptides used in the 
HLA-I–peptide stability assay, the median MUNIS score for a predicted 
binder was 0.96, with 318 HLA-I–peptide pairs scoring ≥0.50, 285 pairs 
≥0.70, 219 pairs ≥0.90 and 187 pairs ≥0.95. This provided the opportu-
nity to assess the relationship between quantitative MUNIS score and 
experimental HLA-I–peptide stabilization, revealing that higher MUNIS 
score thresholds for classifying peptides led to increased discrimina-
tion between binders and non-binders (Fig. 5f).
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Fig. 5 | Experimental HLA-I–peptide stability assay confirms the ability of 
MUNIS to discriminate between binding and non-binding peptides within 
EBV. a, Schematic showing the epitope prioritization pipeline for experimental 
validation. The top-337 ranked peptides from the BRLF1, B2LF1, EBNA1, LMP2 
and EBNA3a proteins from EBV predicted to bind 1 of 17 different HLA-I alleles 
were chosen for downstream analysis. b, Schematic showing experimental 
validation of MUNIS performance on EBV epitope prediction. Stability assays 
on HLA-I–peptide pairs were performed using TAP-deficient monoallelic HLA-I 
cell lines to identify peptides that bind and are presented by HLA-I molecules. 
IFNγ ELISpot assays were performed on each peptide predicted to bind an HLA 
molecule presented by 30 HLA-haplotyped individuals to identify immunogenic 
peptides (data shown in Fig. 6). c, Representative data of the relative stabilization 
of HLA-B*35:01 by two EBV peptides predicted to bind the allele. The MFI 
for the DMSO negative control shown in light grey, the B*3501-specific HIV 
immunodominant peptide in light blue, the two predicted binders from the EBV 
proteome in blue and a predicted non-binder from the EBV proteome in dark 

grey. The higher the MFI, the greater stabilized the allele by a given peptide. 
d, Summary data for all predicted binders and non-binders for HLA-B*35:01. 
All MFIs were normalized to the HIV immunodominant peptide for the given 
HLA-I allele as denoted by the dashed line. Blue circles are predicted binders 
and grey circles are predicted non-binders. e, Summary data for all 17 HLA-I 
alleles evaluated for the 337 predicted peptides. Box plots are presented with 
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and 1.5 times the interquartile range from the quartiles as whiskers (outliers not 
shown). f, Normalized anti-HLA MFI for binders versus non-binders conditioned 
on predicted binders with a MUNIS score greater than or equal to the given 
threshold score. Each point represents the median normalized anti-HLA MFI 
across all peptides predicted to bind or not bind a particular HLA-I allele (n = 17 
HLA-I alleles). P values for pairwise comparisons between predicted binders and 
non-binders were calculated using the two-sided Wilcoxon rank sums test.  
Panels a and b created with BioRender.com.

http://www.nature.com/natmachintell
https://BioRender.com


Nature Machine Intelligence | Volume 7 | February 2025 | 232–243 239

Article https://doi.org/10.1038/s42256-024-00971-y

MUNIS identifies established and novel 
immunogenic EBV epitopes
To assess the ability of MUNIS to identify immunogenic epitopes from 
EBV proteins (BRLF1, B2LF1, EBNA1, LMP2 and EBNA3a), we performed 
IFNγ ELISpot assays on PBMCs from 30 HLA-I-typed individuals using 
overlapping 15mer peptide pools from each protein. This demonstrated 
that all individuals had non-zero IFNγ ELISpot responses to at least 
one of the five overlapping EBV peptide pools (Extended Data Fig. 5), 
providing strong rationale for testing individual predicted peptides 
within these individuals. We therefore assessed T cell reactivity using 
an IFNγ ELISpot by matching individual peptides to participants with 
the requisite restricting HLA-I allele (Fig. 6a). Given the HLA-I haplo-
types of our cohort, we expanded the set of HLA-I–peptide pairs to 370 
to include HLA-A*11:01-, B*44:02- and C*08:02-peptide pairs, which 
were not present in HLA-I–peptide stability assessments. Of these 370 
unique HLA-I–peptide pairs tested, we identified 27 HLA-I–peptide 
pairs and 25 unique peptides that elicited detectable T cell responses. 
Interestingly, 12 immunogenic peptides predicted by our model had not 
previously been identified or deposited in the IEDB (Fig. 6b), illustrating 
the ability of MUNIS to predict novel CD8+ T cell epitopes, even for an 
extensively studied pathogen such as EBV. Using ex vivo IFNγ ELISpot 
and proliferation assays, we further confirmed that one of the novel 
HLA-A*02:01-restricted EBV epitopes (SIIPRTPDV, BZLF1: 229–237) 
as well as a MUNIS-predicted, known immunodominant EBV epitope 

(YVLDHLIVV, BRLF1: 109–117) are capable of eliciting both effector 
(Fig. 6c) and memory (Fig. 6d) CD8+ T cell responses across multiple 
individuals, illustrating the ability of MUNIS to identify broadly reac-
tive epitopes.

Because our cohort was limited to 30 individuals, we supple-
mented our list of IFNγ ELISpot-confirmed immunogenic epitopes 
with CD8+ T cell reactivity data from the IEDB. Thus, in addition to the 
27 pairs found to be immunogenic, we included any peptide with a 
positive frequency of response reported in the IEDB via an established 
T cell assay (for example, tetramer staining, IFNγ ELISpot or intracel-
lular cytokine staining). This revealed an additional 18 HLA-I–peptide 
pairs, for a total of 45 pairs with 42 unique peptides. Compared with 
other computational epitope prediction algorithms, MUNIS showed 
enhanced identification of immunogenic EBV epitopes. MUNIS ranked 
four immunogenic epitopes in the top 5 and 20 in the top-60 ranked 
peptides. When compared with other tools, MUNIS and BigMHC-IM 
perform best, with an average precision of 0.3 (Fig. 6e). In terms of novel 
immunogenic epitopes (that is, those not currently in the IEDB), MUNIS 
outperforms all other tools (Fig. 6f). While these comparisons are  
performed on epitopes with lengths of 8–14 residues (the peptide 
length training range for several tools), one of the highly ranked immu-
nogenic peptides for HLA-A*02:01 is a 15mer (HSDYQPLGTQDQSLY, 
LMP2A: 71-85), illustrating the ability of MUNIS to predict longer 
epitopes. Notably, without restriction on peptide length, MUNIS 
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Fig. 6 | MUNIS identifies established and novel EBV CD8+ T cell epitopes.  
a, Representative IFNγ ELISpot assays for HLA-A*02:01- and HLA-B*35:01-
restricted peptides from the EBV proteome within individuals who express these 
HLA-I alleles. DMSO was used as a negative control and soluble CD3 and CD28 
antibodies were used as a positive control. TNTC, too numerous to count. All 
peptides were tested as technical duplicates. b, List of all 25 unique immunogenic 
epitopes from EBV identified by IFNγ ELISpot as well as 12 epitopes not currently 
deposited in the IEDB as HLA binders or immunogenic peptides. c, IFNγ ELISpot 
assays for immunogenic HLA-A*02:01 peptides from the EBV proteome  
for three individuals who are HLA-A*02:01+. DMSO was used as a negative 
control and soluble CD3 and CD28 antibodies were used as a positive control. 
d, Proliferation of CD8+ T cells from the 3 individuals above when stimulated for 
5 days with an immunogenic HLA-A*02:01 epitope. All peptides were tested as 
technical duplicates. e,f, Average precision of MUNIS and current 

 state-of-the-art tools MixMHCpred 2.2, NetMHCpan 4.1, MHCflurry 2.0, 
TransPHLA, BigMHC and PRIME in predicting all experimentally determined 
immunogenic epitopes and those derived from the IEDB (8–14mers) (e) or 
solely restricted to those novel epitopes that were experimentally confirmed 
(f). g,h, Percentage of experimentally determined and known immunogenic EBV 
epitopes in the top-n ranked tested peptides as predicted by MUNIS or the HLA-I 
stability assay (g) and further stratified by HLA-I allele with no restriction on 
epitope length (8–15mers) (h). N = 15, 14, 12, 8, 4, 2, 1, 1 and 1 alleles with sufficient 
data to calculate the fraction of immunogenic epitopes in the top-5, -10, -15, 
-20, -25, -30, -35, -40 and -45 ranked peptides per allele, respectively. Data are 
presented as mean values ± standard error of the mean. Four of the immunogenic 
epitopes were excluded from the analyses in g and h given the absence of 
corresponding monoallelic TAP-deficient HLA-I cell lines and HLA-I–peptide 
stability measurements.
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outperformed the HLA-I–peptide stability assay in immunogenicity 
prediction (Fig. 6g) and had comparable results when stratified by 
HLA-I allele (Fig. 6h). Collectively, these results confirm that MUNIS 
can identify not only binders but also immunogenic epitopes from a 
de novo pathogen with high accuracy.

Discussion
In this study, we report the development of MUNIS, a deep learn-
ing model for CD8+ T cell epitope prediction within foreign patho-
gens. We utilized a deep learning architecture and curated dataset 
for HLA-I epitope presentation and implemented the encoding of 
HLA-I–peptide sequences with a protein language model, utilized as 
a deep transformer model24. These models are trained on millions of 
protein sequences and learn features that are broadly applicable to 
property-prediction tasks24, making them well suited for accurate 
immunogenic epitope prediction. Similar to MHCflurry2.014, we used 
context from the parent protein to capture epitope processing. This 
composite of characteristics led to improved performance in the pre-
diction of HLA-I-presented peptides with increased probability of being 
targeted by multiple individuals.

Despite notable improvements in predicting epitope presentation, 
we did not observe substantial discrimination between immunogenic 
and non-immunogenic epitopes when conditioned on peptides pre-
sented by HLA-I in influenza immunopeptidomic datasets. This may 
be due to the ability of MUNIS to enhance prediction of peptide pres-
entation itself and not necessarily predict immunogenicity of filtered 
HLA-I binders. Similarly, this may explain its improved performance 
ranking immunogenic epitopes in EBV when seen as a de novo virus, 
where all aspects of the model could be leveraged. In addition, we also 
found that MUNIS showed noticeable improvement compared with 
contemporary tools in predicting immunodominance hierarchies in 
acute and chronic HIV infection. Immunodominance hierarchies can 
be partially dictated by the dependence of HLA-I alleles on the protein 
tapasin42 by aligning hierarchical responses with HLA-I–peptide sta-
bility43. Because MUNIS ranks immunogenic epitopes comparably to 
experimental HLA-I–peptide stability, this may explain its increased 
efficacy in recapitulating immunodominance hierarchies. Notably, we 
find that BigMHC (when using both its eluted ligand EL and immuno-
genicity IM models) is the only predictor comparable to MUNIS across 
different evaluation settings. However, MUNIS performs consistently 
on all metrics using a single output score, making it broadly useful for 
presentation and immunodominance prediction.

An extensive ablation analysis revealed that the pretrained ESM-2 
model and incorporation of flanking residues contribute to the out-
performance of MUNIS on HLA-I–peptide prediction. As the model 
pretrained on 8 million parameters performed similarly to the one 
pretrained on 35 million parameters, we opted for the smaller model 
to increase efficiency. Given that the prediction task focuses on a single 
protein family, the benefits of deconvoluting underlying structural 
features across the full protein landscape by a larger language model 
may be lesser. Using percentage rank and the native score of the model 
to predict HLA-I–peptide binding partners performed similarly on 
immunodominance datasets, highlighting that MUNIS has learned 
to compare scores across HLA-I alleles despite inherent differences 
in sample sizes across alleles within the training data. Finally, abla-
tion analysis on the decoy sampling method revealed similar results 
whether decoys were derived from Swiss-Prot or the human proteome. 
Overall, this analysis showed that while modelling features selectively 
benefit presentation prediction, some subtly detract from immuno-
genicity prediction. Thus, we offer versions of MUNIS trained with and 
without flanking residues.

Importantly, we note limitations to this work. First, the train-
ing and evaluation data of 205 prominent HLA-I alleles only partially  
captures the extent of HLA polymorphism in the population. In addi-
tion, while MUNIS captures features of immunogenic peptides, it does 

not substantially improve immunogenicity prediction when peptides 
are filtered on HLA-I binding. This would benefit from conditioning pre-
dictions based on the likelihood of HLA-I–peptide complexes engaging 
specific T cell receptors. However, the lack of available data29,44–46 for 
T cell receptor–peptide–HLA-I binding makes this task challenging. 
We also note that our model is largely trained on mass spectrometry 
data, which may contain potential biases such as under-representation 
of cysteine residues47. In addition, while we find that our architecture 
decisions result in improved presentation prediction, some features 
resulted in weaker immunogenicity prediction. This suggests that  
the transfer between the two tasks, although positive, is not completely 
linear.

Nonetheless, the ability of MUNIS to accurately predict immu-
nogenic peptides and identify new epitopes has several implications. 
Rationally designing immunogens that will elicit robust T cell responses 
is pivotal to vaccine design, and MUNIS could therefore greatly accel-
erate this process. Surprisingly, we found that MUNIS outperformed 
an experimental HLA-I–peptide stability assay in predicting immuno-
genic epitopes. Thus, it may be possible to substantially reduce the 
experimental burden that accompanies binding and stability assays 
and directly perform immunogenicity studies on MUNIS-predicted 
peptides. Lastly, MUNIS was able to identify several novel CD8+ 
T cell epitopes in EBV, highlighting the potential of deep learning 
for epitope discovery. We envision that future efforts with expanded 
training datasets of immunogenic peptides will further improve model 
performance.

Methods
Datasets
The eluted ligand (that is, presentation) training set consists of four 
different datasets: the eluted ligand data deposited in the IEDB20 as 
well as data from the NetMHCpan4.113, MHCflurry2.014 and MixMH-
Cpred2.216 studies. The final dataset after filtering out epitopes in the 
evaluation dataset is composed of 651,237 positive peptide–HLA-I 
pairs and 3,701,209 negative decoys with peptide lengths between 
8 and 15. Five-amino-acid-long N- and C-terminal flanking sequences 
for each peptide were fetched from the parent protein sequence anno-
tated in the IEDB. When not available, we attempted to find a matching 
sequence by searching the Swiss-Prot sequences using MMSeqs248. The 
dataset was filtered to data points where the parent protein could be 
identified. Sequences for the HLA alleles were obtained from the IMGT 
database49. Contrary to previous work that uses pseudo-sequences, 
that is, sequences of HLA molecules that are within peptide-binding 
range50, our model takes as input the full α1 and α2 domains of the 
HLA sequence, specifically the 180 residues ranging from positions 
27 to 207.

Model architecture
The binding module uses the ESM-2 protein language model of 6 mil-
lion parameters51. Language models are trained on millions of protein 
sequences and have been shown to implicitly learn various structural 
features of proteins from sequence alone. The language model takes 
as input the HLA and peptide sequences in the form: [CLS] HLA [SEP] 
PEPTIDE [EOS], where the [CLS], [SEP] and [EOS] tokens indicate the 
start, separator and end of the sequence, respectively. After encoding 
the sequence with the language model, we use the representation of the 
[CLS] token as sequence representation, which is then fed to a two-layer 
feed-forward network. The loss is the binary cross entropy between 
the output scores and the ground-truth labels. As opposed to using 
only the output embeddings from the language model as features, we 
fine-tune the full ESM-2 language model during training.

The processing module uses a bidirectional long short-term 
memory (LSTM) recurrent neural network52, which is fed the peptide 
sequence as one-hot encoded amino acids, including its left and right 
flanks, corresponding to five amino acids on the N- and C-terminal ends 
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of the peptide in its parent protein of origin. To allow the network to 
determine which of the amino acids belong to the peptide sequence 
and not to the flanks, we include a binary feature at each amino acid 
position. The output of the LSTM is a sequence of vectors that we pool 
into a single vector representation for the sequence by averaging along 
the sequence length dimension. Finally, we concatenate this feature 
vector with one from the binding module and feed it into a two-layer 
feed-forward network to produce the presentation score.

Model training
We train our models using the PyTorch framework on 4× A6000 
graphic processing units for 75,000 steps with a total batch size of 256 
(2 hours of total training time). The binding model is initialized using 
the pretrained ESM-2 8 million parameter model and all the weights are 
fine-tuned during training. The LSTM used to model flanking residues 
is randomly initialized at the start of training. Our models are trained 
using half mixed-precision (fp16) using the Adam optimizer, with a 
learning rate of 1 × 10−4 that is constant throughout training.

Peptide synthesis reagents
Fmoc-protected amino acids and synthesis resin, 2-chlorotrityl 
chloride, were purchased from Akaal Organics. Dimethylforma-
mide (DMF), N-methyl pyrrolidone (NMP), acetonitrile and methyl 
tert-butyl ether (MTBE) were purchased from Fisher Bioreagents. 
2-(6-Chloro-1-H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hex-
afluorophosphate (HCTU) was purchased from AAPPTEC. Piperidine 
and dichloromethane (DCM) were from EMD-Millipore. Diisopropyl-
ethylamine (DIEA), N-methyl-morpholine (NMM), triisoprpopyl-silane, 
3,6-dioxa-1,8-octanedithiol (DODT) and trifluoroacetic acid (TFA) were 
purchased from Sigma-Aldrich.

Peptide synthesis and analysis
Peptides were synthesized on an automated robotic peptide synthe-
sizer (AAPPTEC, Model 396 Omega) by using Fmoc solid-phase chem-
istry53 on 2-chlorotrityl chloride resin54. The C-terminal amino acids 
were loaded using the respective Fmoc amino acids in the presence 
of DIEA. Unreacted sites on the resin were blocked using methanol, 
DIEA and DCM (15:5:80 v/v). Subsequent amino acids were coupled 
using optimized (to generate peptides containing more than 90% of 
the desired full-length peptides) cycles consisting of Fmoc removal 
(deprotection) with 25% piperidine in NMP followed by coupling of 
Fmoc amino acids using HCTU/NMM activation. Each deprotection or 
coupling was followed by several washes of the resin with DMF to remove 
excess reagents. After the peptides were assembled and the final Fmoc 
group removed, peptide resin was then washed with DMF, DCM and 
methanol three times each and air-dried. Peptides were cleaved from 
the solid support and deprotected using odour-free cocktail (TFA/
triisopropyl silane/water/DODT; 94/2.5/2.5/1.0 v/v) for 2.5 h at room 
temperature55. Peptides were precipitated using cold MTBE. The pre-
cipitate was washed 2 times in MTBE, dissolved in a solvent (0.1% TFA in 
30% acetonitrile/70% water) followed by freeze-drying. Peptides were 
characterized by ultra-performance liquid chromatography and matrix 
assisted laser desorption/ionization mass spectrometry. All peptides 
were dissolved initially in 100% DMSO at a concentration of 40 mM, 
before dilution at the appropriate concentration in RPMI-1640 medium.

HLA-I–peptide stability assay
HLA-I–peptide stability assays were performed as previously 
described27. In brief, 5 × 104 Transporter Associated with Antigen Pro-
cessing (TAP)-deficient monoallelic HLA-I-expressing 721.221 cells were 
incubated with 100 μM of peptide and 3 μg ml−1 of β2-microglobulin 
(Sino Biological) in RPMI-1640 medium overnight at 26 °C/5% CO2 
for 18 h. Controls without peptide but with DMSO were performed 
in parallel. Following overnight incubation, cells were incubated at 
37 °C/5% CO2 for 2 h before staining with live/dead violet viability dye 

(Life Technologies) and pan-HLA-ABC-APC antibody (Clone W6/32, 
BioLegend, 1:100 dilution). HLA-I surface expression was analysed by 
flow cytometry.

Calculation of Shannon entropy
Shannon entropy (that is, sequence conservation scores) at each HLA 
anchor residue position was calculated using the following formula:

S = −∑
n
i P (xi) log2 P (xi) ,

where n is the number of unique amino acids at any given position, xi is 
the ith unique amino acid, and P(xi) is the probability of amino acid xi 
at that given position, calculated by dividing the number of peptides 
with amino acid xi at the position of interest by the total number of 
peptides in the dataset.

Study participants
Study participants were recruited from outpatient clinics at local  
Boston area clinics and from outside Boston. The Institutional Review 
Board of Massachusetts General Hospital approved the studies of cells 
derived from human blood samples. PBMCs from HIV+ individuals with 
viral loads below 2,000 copies either on or off suppressive anti-retroviral 
therapy were collected by Ficoll gradient separation from acid citrate 
dextrose tubes or leukapheresis samples. They were then cryopre-
served and stored in liquid nitrogen for future use. High-resolution 
HLA-I typing was performed for all patients as described previously56. 
In brief, locus-specific PCR primers were used to amplify polymorphic 
exons of HLA-A, HLA-B and HLA-C genes with the Fluidigm Access Array 
(Fluidigm). PCR amplicons were pooled and sequenced on an Illumina 
MiSeq platform (Illumina). HLA alleles and genotypes were called using 
the Omixon HLA Explore (beta version) software (Omixon). Ambiguous 
calls were resolved by Sanger sequencing.

Ex vivo IFNγ ELISpot assay
IFNγ ELISpot assays were performed according to the manufacturer’s 
instructions (Mabtech). PBMCs were incubated with individual pep-
tides from EBV at a final concentration of 0.5 μg ml−1 for 16–18 h. Positive 
controls were anti-human CD3 (Clone OKT3, BioLegend, 0.5 μg ml−1) 
and anti-human CD28 (Clone CD28.2, BioLegend, 0.5 μg ml−1) anti-
bodies. The number of spot-forming units in the highest-value DMSO 
control well was subtracted from each experimental well. Responses 
were considered positive if both replicates had greater than or equal 
to five spot-forming units per well above background.

Ex vivo proliferation assay
PBMCs were suspended at 1 × 106 cells per ml in 1 μM CellTrace Far Red 
dye (ThermoFisher) in PBS and incubated at 37 °C for 20 min. Cells were 
protected from light and mixed every 5 min during the incubation. 
RPMI supplemented with 10% fetal bovine serum was added to quench 
the reaction for 5 min, followed by centrifugation at 1,500 rpm for 3 min 
before resuspension in culture media. Cells were plated into 96-well 
U-bottom plates (Corning) (200,000 cells per well in 200 μl of culture 
media) and incubated with individual EBV peptides at a concentration 
of 0.5 μg ml−1 for 5 days. Cells were washed with PBS supplemented with 
2% fetal bovine serum and stained with anti-human CD3-BUV395 (Clone 
UCHT1, BD Biosciences, 1:100 dilution), anti-human CD4-PE-Cy7 (Clone  
OKT4, BioLegend, 1:100 dilution), anti-human CD8-BV605  
(Clone SK1, BioLegend, 1:100 dilution) and live/dead violet viability 
dye (Life Technologies). Cells were washed and fixed in 2% paraform-
aldehyde and flow cytometric analysis was performed on a BD LSR 
Fortessa (BD Biosciences).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
All data required to train and evaluate the models, HLA-I–peptide 
stability assay and ELISpot data are deposited in the Mendeley Data 
repository57. Sequences for the major histocompatibility complex 
alleles were obtained from the IMGT49 and can also be found alongside 
the released code. Full viral protein sequences, including accession 
codes, are also available in the Mendeley Data repository.

Code availability
The code used to train the model and run predictions using our trained 
model weights is available via Zenodo at https://doi.org/10.5281/
zenodo.14219509 (ref. 58).
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Extended Data Fig. 1 | MUNIS outperforms state-of-the-art predictors in 
classifying HLA-I binders using a test set with no overlap with the training set. 
(a) Average precision and (b) ROC-AUC of all predictors on classifying binders 
versus non-binders using the subset of the data with no epitope overlap with  
any of the tools’ training datasets (“cleaned evaluation set”), n = 24 alleles.  
Box plots are presented with medians as center lines, 25th and 75th percentiles 

as lower and upper quartiles, and 1.5 x interquartile range from the quartiles as 
whiskers (outliers not shown). (c) Per allele pairwise comparisons of MUNIS and 
other predictors in classifying HLA-I binders using the cleaned evaluation set. 
Each point is model performance on one allele. P values for pairwise comparisons 
between MUNIS and each predictor were calculated using the two-sided 
Wilcoxon rank sums test (not shown if p > 0.1).
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Extended Data Fig. 2 | Performance of all algorithms in predicting 
epitope immunogenicity conditioned on HLA-I-peptide binders and 
immunodominance stratified by HLA-I allele. (a) Per-dataset performance 
of our model, MUNIS, against existing tools MixMHCpred2.2, NetMHCpan4.1, 
MHCFlurry2.0, TransPHLA, BigMHC and PRIME2.0 in predicting eluted ligands 
from the five influenza immunopeptidomic experiments against decoy peptides. 

Positives are all immunogenic epitopes and negatives are all eluted ligands (i.e 
binders) in the viral proteome. Error bars show the standard error across the five 
datasets. Bar plots show median values. Spearman correlation of each model’s 
score and the frequency of response across all epitope-allele pairs in (b) acute 
(n = 33 alleles) and (c) chronic (n = 33 alleles) HIV. Bar plots show medians and 
error bars show the standard error across alleles.
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Extended Data Fig. 3 | Flow cytometry gating strategies for HLA class I-peptide stability and proliferation assays. (a) TAP-deficient monoallelic HLA class 
I-expressing 721.221 cells were stained with viability dye and pan-HLA antibody W6/32. (b) Representative gating strategy for identification of proliferating CD3+ CD8+ 
CellTrace Far Redl° T cells in response to peptides of interest.
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Extended Data Fig. 4 | HLA class I-peptide stability assay data of predicted binder and non-binder peptides for each allele. MFI is normalized to the MFI of the 
known HIV immunodominant peptide (dashed line) for each allele. Blue circles indicate predicted binders and gray circles indicate predicted non-binders.
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Extended Data Fig. 5 | Response of individuals in cohort to overlapping 
peptide pools from Epstein-Barr Virus (EBV) proteins. (a) Representative IFN-γ 
ELISpot assays for representative HLA-haplotyped individuals in cohort using 
overlapping peptide pools from EBV proteins BRLF1, B2LF1, EBNA1, LMP2 and 
EBNA3a. DMSO was used as a negative control and phytohemagglutinin-L (PHA) 

was used as a positive control. TNTC: Too Numerous To Count. (b) Summary data 
for ELISpot data for all individuals in cohort (n = 50 peptides per protein). Box 
plots are presented with medians as center lines, 25th and 75th percentiles as lower 
and upper quartiles, and 1.5 x interquartile range from the quartiles as whiskers 
(outliers not shown).
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Extended Data Table 1 | Features of MUNIS and competing predictive models

Table showing the differences between MUNIS and other models. Models in the literature differ based on several factors, including the sampling of negatives, model architecture and the use 
of flanking residues.
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Extended Data Table 2 | Ablation analysis of MUNIS deconvolutes features contributing to enhanced prediction of 
HLA-I-peptide binders and immunogenic epitopes compared to competing models

Ablation analysis showing the performance of MUNIS as a function of various modifications. All numbers are provided as median average precision stratified per allele, except for HIV 
immunodominance which is given as spearman coefficient. All ablated models were trained as an ensemble of five models to match the original MUNIS training schema.
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Extended Data Table 3 | Characteristics of patient cohort utilized for assessment of immunogenicity of EBV peptides

N/A
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