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Unsupervised learning has become an essential building block of artifical
intelligence systems. The representations it produces, for example,

infoundation models, are critical to awide variety of downstream
applications. Itis therefore important to carefully examine unsupervised
models to ensure not only that they produce accurate predictions onthe
available data but also that these accurate predictions do not arise froma
Clever Hans (CH) effect. Here, using specially developed explainable artifical
intelligence techniques and applying them to popular representation
learning and anomaly detection models forimage data, we show that CH
effects are widespread in unsupervised learning. In particular, through use
cases on medical and industrialinspection data, we demonstrate that CH
effects systematically lead to significant performance loss of downstream
models under plausible dataset shifts or reweighting of different data
subgroups. Our empirical findings are enriched by theoretical insights,
which point to inductive biases in the unsupervised learning machine as a
primary source of CH effects. Overall, our work sheds light on unexplored
risks associated with practical applications of unsupervised learning

and suggests ways to systematically mitigate CH effects, thereby making
unsupervised learning more robust.

Unsupervised learning is a subfield of machine learning (ML) that
has gained prominence in recent years' . It addresses fundamental
limitations of supervised learning, such as the lack of labels in the
data or the high cost of acquiring them. Unsupervised learning has
achieved successes inmodelling the unknown, such as uncovering new
cancer subtypes*’ or extracting novel insights from large historical
corpora®. Furthermore, the fact that unsupervised learning does not
rely on task-specific labels makes it a good candidate for core artifi-
cal intelligence (Al) infrastructure: unsupervised anomaly detection
provides the basis for various quality or integrity checks on the input
data’'®. Unsupervised learning s also akey technology behind ‘founda-
tion models™" ™, which extract representations upon which various

downstream models (for example, classification, regression, ‘genera-
tive AI’and so on) can be built.

The growing popularity of unsupervised learning models creates
an urgent need to carefully examine how they arrive at their predic-
tions. This is essential to ensure that potential flaws in the way these
models process and represent theinput dataare not propagated to the
many downstream supervised models that build upon them.

Inthis study, through conducting multiple investigations of popu-
lar unsupervised ML models of image data, we show that unsupervised
learning models largely suffer from Clever Hans (CH) effects'. Spe-
cifically, we find that unsupervised learning models often produce
representations from which instances can be correctly predicted to
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Fig.1| The CH effect in unsupervised learning. The unsupervised model
correctly predicts datainstances as similar or anomalous, but does so using
features that do not generalize well outside the available data. The CH effect
typically goes undetected in a classical validation scheme and manifests
itselfin the form of prediction errors only after deployment. The problem is
critical because the flaw can be inherited by potentially many downstream
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tasks. Our explainable Al approach allows CH effects to be detected directly
inthe unsupervised model and, in some cases, corrected. Pos, positive; pred,
predicted; neg, negative. X-ray images reproduced from: left, middle, ref. 79
under a Creative Commons licence CC 1.0; right, ref. 90 under a Creative
Commons licence CCBY-3.0.

be, for example, similar or anomalous, although largely supported by
dataquality artefacts. The flawed prediction strategy is not detectable
by common evaluation benchmarks such as cross-validation, but may
manifestitself muchlater in ‘downstream’ applications in the form of
unexpected errors, for example, if subtle changes in the input data
occur after deployment (Fig. 1). While CH effects have been studied
quite extensively for supervised learning'®?, the lack of similar stud-
ies in the context of unsupervised learning, together with the fact
that unsupervised models supply many downstream applications, is
acause for concern.

For example, in image-based industrial inspection, which often
relies on unsupervised anomaly detection®, we find that a CH deci-
sion strategy can systematically miss a wide range of manufacturing
defects, resulting in potentially high costs. As another example, unsu-
pervised foundation models of image data, advocated in the medical
domain to provide robust features for various specialized diagnostic
tasks, can potentially introduce CH effects into many of these tasks,
with the prominent risk of large-scale misdiagnosis. These scenarios
(illustrated in Fig. 1) highlight the practical implications of an unsu-
pervised CH effect, which, unlike its supervised counterpart, may not
be limited to malfunctioning in a single specific task, but potentially
inall downstream tasks.

Touncover and understand unsupervised CH effects, we propose
to use explainable AI”**? (here techniques that build on the layer-wise
relevance propagation (LRP) explanation framework®°). Our pro-
posed use of these techniques allows us to identify at scale which input
features are used (or misused) by the unsupervised ML model, without
havingto formulate specific downstream tasks. We use an extension of
LRP called BiLRP* to reveal input patterns that are jointly responsible
for similarity in the representation space. We also combine LRP with
‘virtual layers”** to reveal pixel and frequency components that are
jointly responsible for predicted anomalies.

Furthermore, our explainable Al-based analysis allows us to
pinpoint more formal causes for the emergence of unsupervised CH
effects. In particular, they are due not so much to the data, but to the
unsupervised learning machine, which hinders the integration of
the true task-supporting features into the model, even though vast

amounts of data points are available. Our findings provide a novel
direction for developing targeted strategies to mitigate CH effects and
increase model robustness.

Overall, our work sheds light on the presence, prominence and
distinctiveness of CH effects in unsupervised learning, calling for
increased scrutiny of this essential component of modern Al systems.

Results

The CH effect can be defined as the property of a model to rely on
features that are predictive in a particular setting (due to a spurious
correlation between them and the true signal), but fail to remain so
on new data, causing a significant drop in performance. (See also
Supplementary Note D for a formal characterization and distinc-
tion from related concepts such as shortcut learning” or human-Al
alignment®**.) Through experiments on two representative families of
unsupervised models, representation learning and anomaly detection,
and using explainable Al as our main analysis tool, we demonstrate the
widespread presence of CH effects in unsupervised learning models,
theiradverse consequences and possible strategies to mitigate them.

CH effects in representation learning

Wefirstinvestigate the CH effectin the context of using arecent medi-
cal foundation model to solve a COVID-19 detection task. Simulating
anearly pandemic phase characterized by data scarcity, we aggregate,
similar toref. 19, a large, well-established non-COVID-19 dataset with
amore recent and smaller COVID-19 dataset. Specifically, we aggre-
gate 2,597 instances of the National Institute of Health (NIH) CXR8
dataset™, collected between 1992 and 2015, with the 535 instances of
the GitHub-hosted ‘COVID-19 image data collection’”, which contains
COVID-19 instances from multiple sources. We refer to them as the ‘NIH’
and ‘GitHub’ subsets, respectively.

Further motivated by the need to accommodate the critically
small number of COVID-19 instances and to avoid overfitting, we
choosetorely ontherepresentations provided by unsupervised foun-
dation models™***°, Specifically, we feed our data into a pretrained
PubMedCLIP model*’, which has builtits representation in an unsuper-
vised manner fromavery large collection of X-ray scans. Ontop of the
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Table 1| Performance of unsupervised models on various
downstream tasks, evaluated on different data subgroups

COVID-19 ImageNet:truck  ImageNet: fish
Original  GitHub Original Logo  Original Human
PubMedCLIP 875 817V - - - -
(FPR18%) (FPR 51%)
CLIP - - 84.7 80.3¢ 854 841
CLIP+CH - - 84.4 8361 - -
mitigation
SimCLR - - 74.8 74.8 81.4 74.8
2
Barlow - - 79.2 787 83.2 75.8
Twins v
Supervised - - 82.4 82.3 85.9 81.0 v

We report PubMedCLIP’s accuracy scores and FPRs on the aggregate COVID-19 dataset
(original) and the more difficult GitHub subgroup. We repeat the analysis for generic
unsupervised models on two ImageNet superclasses, both on the original data and on
the difficult subgroups (logo and human). ¥/4 ¥ denote a substantial accuracy decrease
(exceeding 3/6 percentage points) on the difficult subgroups and 1 denotes a substantial
accuracy increase (of 3 percentage points or more) after CH mitigation. Upward and
downward effects are statistically significant under a two-sided t-test (P<0.001).

PubMedCLIP model, we train a downstream classifier that separates
COVID-19 from non-COVID-19 instances. It achieves a class-balanced
accuracy of 87.5% onthe test set (Table1). However, a closer look at the
structure of this performance score reveals astrong disparity between
the NIH and GitHub subgroups, with all NIH instances being correctly
classified and the GitHub instances having a lower class-balanced
accuracy of 81.7%, and, more strikingly, a false positive rate (FPR) of
51%, as presented in Table 1. Considering that the higher heterogeneity
ofinstancesin the GitHub dataset is more characteristic of real-world
conditions, this higher error estimate is more realistic. In particular, the
high FPR of 51% precludes any practical use of the modeliin a hospitali-
zation setting, where the model’s prediction should reliably and with
low risk assist in the selection of appropriate medical treatment. We
emphasize that this flaw inthe model could have beeneasily overlooked
ifone had not paid close attention to (or known about) the datasources
andinstead relied only on the overall accuracy score.

To proactively detect this heterogeneous, non-robust predic-
tion behaviour, we propose to use explainable Al. Specifically, to test
whether the flaw has its sources in the unsupervised PubMedCLIP
component, we use the BiLRP explanation technique™. BiLRP operates
directly on similarity in the representation space without the need to
formulate a specific downstream task. It is illustrated in Fig. 2 and its
mathematical formulation is given in Methods. The output of BiLRP
for two exemplary pairs of COVID-19-positive instances is shown in
Fig.3 (left). It shows that the modelled similarity comes from text-like
annotations thatappearinbothimages. This allows us to attribute the
observed heterogeneity in performance to a CH effect and in turn to
highlight broad risks for downstream applications (see Supplemen-
tary Note A for further analysis). We note that, unlike the per-group
accuracy analysis above, our explainable Al analysis based on BiLRP
did notrequire provenance metadata (GitHub or NIH) nor did it focus
onaspecific downstream task with its specific labels.

To test whether representation learning has a general tendency
to evolve CH strategies beyond the above use case, we downloaded
three generic foundation models, namely the original CLIP model®,
SimCLR** and Barlow Twins*% CLIP consists of animage encoder and
atext encoder, and it aligns images to their associated text in repre-
sentation space by minimizing a contrastive loss. SimCLR and Barlow
Twins generate augmented views of the inputimage through random
resized crops and colour augmentation, and maximize the similarity
of these two views in representation space. As a downstream task, we
consider the classification, using linear-softmax classifiers, of the 8
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Fig. 2| Illustration of the BiLRP method for explaining similarity predictions
of arepresentation learning model. The output of BiLRP is a decomposition
ofthe predicted similarity onto pairs of features from the two input images. It is
typically displayed as a weighted bipartite graph connecting the contributing
feature pairs.

classes from ImageNet* that share the WordNet ID ‘truck’ and of the
16 ImageNet classes that share the WordNet ID ‘fish’ (see Methods for
details). The test accuracy of eachmodel on these two tasksis givenin
Table 1 (columns ‘original’). On the truck classification task, the CLIP
model performs best, with anaccuracy of 84.7%. On the fish classifica-
tiontask, the CLIP and supervised models perform best, with accuracies
of 85.4% and 85.9%, respectively.

We use BiLRP to examine the representations of these unsuper-
vised models. InFig. 3 (centre), we observe that CLIP-based similarities,
asinPubMedCLIP, alsorely ontext. Here, a textual logo in the lower-left
corner of two garbage truck images is used to support the similarity,
suggesting a CH effect (see ref. 20 for a similar finding in supervised
learning). SimCLR and Barlow Twins ignore the text and rely instead
ontheactual garbage truck. In the fish classification task (Fig. 3, right),
we observe that all unsupervised models amplify humans over fish
features, again suggesting a CH effect.

To establish the CH nature of the logo and human detectionstrate-
giesidentified by BiLRP, we proceed to test the models on specific data
subgroupsthat may be more prevalent under operational conditions.
Theresults are presentedin Table 1. We observe a systematic degrada-
tion in performance when moving from the original data to some of
these data subsets. For example, when we break the spurious correla-
tion between logo and truck class by inserting alogo on each truck
image, we observe adropinthe accuracy of the CLIP model from 84.7%
t080.3% (column‘logo’in Table 1). Sharper dropsin performance canbe
observed whenlooking atindividual classes, such as tow trucks, which
aregenerally difficult to separate from garbage trucks (Supplementary
Note B). For the fish case, a similar drop in accuracy is observed for
SimCLR and Barlow Twins from 81.4% and 83.2% to 74.8% and 75.8%,
respectively, when only images containing humans are retained and
class rebalancing is performed. In the case of CLIP, its lack of focus on
fishis surprisingly not associated with a similar drop in performance,
leaving open the question of what exact strategy allows CLIP to gen-
eralize well on this data. A detailed analysis of the structure of the
predictionerrors for each model and classification task, supported by
confusion matrices, is given in Supplementary Note B.

Tobetter assess therisk of CH effectsin unsupervised learning, it
is necessary to reflect on the more abstract factors that contribute to
their occurrence. The heterogeneity of strategies revealed by BiLRP
for models otherwise trained on similar large datasets suggests that
the unsupervised learning machine, more than the data, is crucial in
shaping the data representation strategy. In the case of SImCLR and
Barlow Twins, the systematic amplification of humansinthe centre of
theimage canbeattributed to their random crop matching objective,
where those features in the centre of theimage carry the most mutual
information across random crops (for further studies of amplification/
suppression effects in these models, we refer to refs. 44-47). When

Nature Machine Intelligence | Volume 7 | March 2025 | 412-422

114


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-025-01000-2

COVID-19
(pos-pos)

ImageNet
(gtruck-gtruck)

ImageNet
(coho-coho)

PubMedCLIP
CLIP

CLIP

COVID-19
(pos-pos)

SimCLR

SimCLR

PubMedCLIP
Barlow Twins

7 > N4
Yz = S \, I

Barlow Twins

Fig. 3| Explainable Al analysis of the predictions of the PubMedCLIP
unsupervised model and the general-purpose CLIP, SimCLR and Barlow
Twins unsupervised models. We show pairs of X-ray images from the GitHub
subset, and pairs of natural images resembling ImageNet images from the classes
garbage truck (gtruck) and coho, respectively. Explanations are generated using
BiLRP. They highlight unexpected strategies used by the unsupervised models:
forexample, for X-ray data, similarity between instances arises from shared

spurious textual annotations. For ImageNet data, similarity arises from logo
artefacts or the presence of humans in the background. X-ray images reproduced
fromref. 90 under a Creative Commons license CC BY-3.0. Credit: truck (left),
Pixnio under a Creative Commons licence CC 1.0; truck (right), Pexels under a
Creative Commons licence CC 1.0; fish (left), iStock.com/christiannafzger; fish
(right), iStock.com/BrandyTaylor.

considering the CLIP and PubMedCLIP models, the systematic amplifi-
cation of textual logos, faces or other identifying features can be attrib-
uted to their image-text matching objective, which tends to amplify
any features from the two modalities that carry mutual information.

In summary, while the matching tasks defined in, for example,
CLIP,SimCLR and Barlow Twinsintuitively aim tointroduce useful prior
knowledge and invariance into the representation, they can, on certain
data subsets, lead to strong imbalances in the expression of different
features. Theseimbalances are prone to cause CH effectsand, inturn,
loss of accuracy in downstream tasks.

CH effects in anomaly detection
Extending our investigation of the CH effect to another area of unsu-
pervised learning, namely anomaly detection, we consider an indus-
trialinspection use case based on the popular MVTec-AD dataset’. The
dataset consists of 15 product categories, each consisting of a training
set of images without manufacturing defects and a test set of images
with and without defects. Since manufacturing defects are infrequent
and heterogeneous in nature, the problem is typically approached
using unsupervised anomaly detection®’. These models map each
instance toan anomaly score, fromwhich threshold-based downstream
models can be built to classify between instances with and without
manufacturing defects. Unsupervised anomaly detection has received
considerable attention, with sophisticated approaches based on deep
neural networks such as PatchCore*® or EfficientAD* showing excellent
performance in detecting a wide range of industrial defects.
Somewhat surprisingly, simpler approaches based on distances
in pixel space show competitive performance for selected tasks”. We
consider one such approach, which we call‘D2Neighbors’, where anom-
alies are predicted according to the distance to neighbours in the
training data. Specifically, the anomaly score of a new instance x is

computed as f(x) = softmin,{||x - u;||*} where (uj):.vzlis thesetofavailable
inlier instances (see Methods for details on the model and data pre-
processing). This anomaly model belongs to the broader class of
distance-based models**~?, and connections can be made to kernel
density estimation®*** and one-class support vector machines®. Using
D2Neighbors, we are able to build downstream models that classify
industrial defects of the MVTec data with F1scores above 0.9 for five
categories (bottle, capsule, pill, toothbrush and wood).

To shed light on the prediction strategy associated with these
unexpectedly high F1scores, we make use of explainable Al. Specifically,
we consider an extension of LRP for anomaly detection®*** and further
equip the explanation technique with ‘virtual layers”>*, The technique
of ‘virtuallayers’ (Fig. 4) is to map the input to an abstract domain and
back, leaving the prediction function unchanged, but providing anew
representation in terms of which the prediction can be explained. We
constructsuchalayer by applying the discrete cosine transform (DCT)”,
shown in Fig. 4 (bottom right), followed by its inverse. This allows us
to explainthe predictions jointly in terms of pixels and frequencies.

Theresultof our proposed analysisis shownin Fig. 4 for twowood
instances (see Supplementary Note C for instances of different catego-
ries). Explanations at the pixel level show that D2Neighbors supports
its anomaly predictions largely based on pixels containing the actual
industrial defect. The squared difference in its distance function
(Il A||2 = Z,-A,-z) encourages asparse pixel-wise response of the model,
efficiently discarding regions of the image where the new instance
shows no difference from instances in the training data. However, we
also seein the pixel-wise explanation that a non-negligible part of the
anomaly prediction comes from irrelevant background pixels. Joint
pixel-frequency explanations shed light on these unresolved contribu-
tions, showing that they arise mostly from the high-frequency part of
the model’s decision strategy (Fig. 4b,c).
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Fig. 4| Explainable Al analysis of D2Neighbors anomaly predictions. a, Images
synthesized to resemble MVTec-AD (class wood) and pixel-wise LRP explanations
ofthe anomaly predictions. The explanations for other MVTec-AD categories are
givenin Supplementary Note C. b, Frequency domain explanations. The x axis
represents the frequencies (on a power scale) and the y axis is the contribution
ofthe corresponding frequencies to the anomaly prediction. ¢, Pixel-wise
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contributions filtered by frequency band. d, A schematic of the virtual inspection
layer used to explain anomalies in the joint pixel-frequency domain. e, Pixel-wise
contributions are filtered by blocking frequency contributions within the virtual
layer. f, The basis elements of the DCT, which we use to map pixels to frequencies
and back.

The high exposure of the D2Neighbors model to theseirrelevant
high-frequency features, as detected by our LRP analysis, raises the
suspicionthat we are againin the presence of a CH effect. We simulate
an innocuous postdeployment perturbation of the data preprocess-
ing by changing the image resizing algorithm from OpenCV’s nearest
neighbour resizing to a more sophisticated resizing method that
includes antialiasing, aprocedure that cuts high frequencies to elimi-
nate resizing artefacts. In practice, such a change may result from a
software update, for example. Resizing techniques have been shown
in some cases to substantially affect image quality and image gen-
eration metrics®®, but their effect on general ML models, especially
unsupervised ones, has been little studied. The performance of the
D2Neighbors model before and after changing the resizing algorithm
is presented in Table 2 (columns ‘original’ and ‘deployed’, respec-
tively). The F1score performance of D2Neighbors degrades by almost
10 percentage points. This performance degradation, along with
D2Neighbors’ reliance on high frequencies revealed by LRP, exposes
the CH nature of the model: when antialiasing is introduced into the
resizing procedure, the high frequencies that the D2Neighbors model
uses to support its prediction disappear from the data, significantly
reducing eachinstance’s anomaly score and causing the performance
degradation. This performance degradation of D2Neighbors under
postdeployment conditions is particularly surprising given that the
data quality has actually improved. Looking more closely at the struc-
ture of the performance degradation, we see that the false negative rate
(FNR) rises sharply from 4% to 23% (Table 2), which can be explained by
the absence of anomaly-contributing high frequencies after deploy-
ment. In anindustrial inspection setting, an increase in FNR can have
serious consequences, in particular, many defective instances may
be missed and propagated through the production chain. This can
resultin wasted resources in subsequent production stages and high
recall costs.

Table 2 | Performance of different anomaly detection
models on simulated original and postdeployment data
conditions

Original Deployed
D2Neighbors 0.91 (FNR 4%) 0.82 ¥ (FNR 23%)
D2Neighbors + CH mitigation 0.92 0.92 1
D2Neighbors (¢;) 0.92 0.83 ¢
D2Neighbors (¢,) 0.91 0.84 4
PatchCore 0.92 0.86

These conditions correspond to standard and antialiased resizing, respectively. Performance
is reported in terms of F1score and FNR, averaged over the five MVTec-AD categories retained
for analysis. ¥ Shows a substantial F1 score decrease (of 3 percentage points or more) after
deployment and 1 shows a substantial F1score increase (of 3 percentage points or more)
after CH mitigation. Upwards and downwards effects are statistically significant under a
two-sided t-test (P<0.001).

As in the case of representation learning, it is useful to ask what
factors contribute to the CH effect. We trace the D2Neighbors CH strat-
egy to the distance functions it relies on. Unlike the linear layers com-
monly used in supervised learning, distances cannot inherently build
invariance to specific directions in the input space, exposing models
to amanifold of irrelevant data perturbations. Despite this tendency
to overexposure, distance functions (including the usual Euclidean
distance as well as £, variants) are a building block of many popular
unsupervised anomaly models, their primary advantage being that
they generate adecisionboundary without requiring a representative
set of anomalous instances to contrast against. Distance functions also
appear in the more advanced PatchCore model* where they are com-
puted ontop of more abstract visual features (Methods). As presented
in Table 2, they also suffer a significant drop in performance after
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deployment, suggesting that they are affected by a similar CH effect.
Overall, our analysis highlights the challenge of creating anomaly mod-
els that are both general enough not to miss unexpected anomalies,
but also not overexposed so as not to increase the risk of CH effects.

Alleviating CH in unsupervised learning

Leveraging the explainable Al analysis above, we aim to build mod-
els that are more robust across different data subgroups and in post-
deployment conditions. Unlike previously proposed CH removal
techniques®*?, we aim to operate on the unsupervised model rather
than the downstream tasks. This allows us to potentially achieve broad
robustness improvements while leaving the downstream learning
machines (training supervised classifiers or adjusting detection thresh-
olds) untouched. Wefirst consider the CLIP model, which our explain-
able Alanalysis hasshowntoincorrectly rely on textlogos, and proceed
by removing CLIP activations whose response differs most between
images of the logo and non-logo subgroups (details in Methods). We
also experiment with a CH mitigation approach for anomaly detection,
where we prune the high frequencies spuriously used by the model by
inserting ablur layer at the input of the model (detailsin Methods). In
both cases, the proposed CH mitigation technique improves model
robustness, largely reversing the performance degradation observed
in simulated postdeployment conditions (Tables 1 and 2, rows ‘CH
mitigation’). Our CH mitigation experiments, which effectively modify
the structure of the model, again underscore the primary role of the
learning machine in allowing or preventing CH effects.

Discussion

Unsupervised learningis an essential category of ML thatis increasingly
being used in core Alinfrastructure to power a variety of downstream
tasks, including classification, regression and also ‘generative Al.Much
research so far has focused onimproving the performance of unsuper-
visedlearning algorithms, for example, to maximize downstream classi-
ficationaccuracy. These evaluations often pay little attention to the exact
strategy used by the unsupervised model to achieve the reported high
performance, in particular whether these models rely on CH strategies.

Using advanced explainable Al techniques such as BiLRP or LRP
in the frequency domain, we have shown that CH strategies are wide-
spread in unsupervised learning. These strategies can take several
forms, such as predicting correctly but based on features such as text
that are spuriously amplified in the unsupervised representation, or
based on high-frequency features to which unsupervised anomaly mod-
elsare overexposed. These flawed prediction strategies nolonger work
well when the data distribution changes after deployment. As shown
intwo use cases, this can have important practical consequences such
as widespread misdiagnosis of patients or systematic failure to recall
manufacturing defects. Importantly, the same flawed unsupervised
representation can produce CH effects in any of its potentially many
downstream models.

Addressing these CH effects is therefore crucial to apply unsu-
pervised learning more reliably. However, compared with CH effects
in supervised learning, another dimension of complexity is added to
the problem: one has to decide whether to handle CH effects in the
downstream models or directly in the unsupervised model part. Revis-
ing downstream models (for example, with human feedback***-*° or
in response to changing conditions®***) may help to maintain high
accuracy onthegiven task. However, itis not sustainable if we consider
that the procedure would have to be repeated for every single down-
stream task. This may be necessary even after a flaw in the foundation
model becomes known (for example, refs. 64,65) since building a
new unsupervised model is computationally expensive and requires
extensive testing. Instead, we have proposed in this paper to address
CH effects directly in the design of the unsupervised model, with the
goal of achieving persistent robustness that benefits all existing and
future downstream applications.

However, this requires a better formal understanding of the rea-
sons for CH effects in unsupervised learning. We found that they dif-
fer substantially from those in supervised learning in that they arise
less from data quality issues and more from flaws in the design of the
unsupervised learning machine. For example, our study showed that
unsupervised anomaly detection is structurally unable to reduce its
exposure to high frequencies and thus also fails to reproduce com-
mon filtering mechanisms found in supervised learning®® %, with
D2Neighbors being a prominent example. The high risk of generali-
zation error caused by feature overexposure led us to ask the more
fundamental question of ‘what are appropriate model selection criteria
for unsupervised learning’. D2Neighbors, with its apparent simplic-
ity, would probably fare well under Occam’s razor or other classical
modelselection criteria, although our experiments have shown that it
clearly lacks generalizability and robustness. Thus, it seems essential
to refine these criteria to include overexposure or feature balancing
asadditional factors.

Having shed light on reasons for the emergence of CH effects in
unsupervised learning, we have experimented with CH mitigation
strategies based on feature rebalancing or exposure reduction, and
have beenabletoachieve performance improvements ondifficult data
subgroups orinsimulated postdeployment conditions. In doing so, we
have demonstrated the actionability of our analysis, showing that it
can guide the process of identifying and subsequently correcting the
faulty components of an unsupervised learning model.

While our investigation of unsupervised CH effects and their
consequences has focused on image data, extension to other data
modalities seems straightforward. Explainable Al techniques such as
LRPoperateindependently of the type of input data. LRP has recently
been extended to recurrent neural networks®, graph neural networks’®,
transformers” and state space models’, which represent the state
of the art for large language models and other models of structured
data. Thus, our analysis could be extended in the future to analyse
other instances of unsupervised learning, such as anomaly detection
intime series or the representations learned by large language models
(forexample, refs. 73,74).

Overall, through the application of recent explainable Al tech-
niques, our work has contributed to highlighting the pervasiveness of
CH effects in unsupervised learning, the multiple factors that lead to
them, the resulting loss of accuracy on new data and possible ways to
mitigate these CH effects. We believe that the CH effect in unsupervised
learning, and the uncontrolled risks associated withiit, isa question of
general importance, and that explainable Al and its recent develop-
ments provide an effective way to tackle it.

Methods

This section first introduces the unsupervised ML models studied
in this work, the datasets on which they are applied and the consid-
ered CH mitigation techniques. It then presents the LRP method for
explaining predictions, its BiLRP extension for explaining similarity
andthetechnique of ‘virtual layers’ for generatingjoint pixel-frequency
explanations.

ML models and data for representation learning

Representation learning experiments were performed on the PubMed-
CLIP*, CLIP®, SimCLR"* and Barlow Twins**models. PubMedCLIPisa
representation learning model specialized for X-ray data. Itisbased on
apretrained CLIP model (described below) and fine tuned on the ROCO
dataset”, a collection of radiology and image caption pairs. In our
experiments, we chose the variant based onthe ResNet-50 architecture
and downloaded the weights fromref. 76. CLIP learns representations
using alarge collection of image-text pairs from the internet. Images
aregiventoanimage encoder and the corresponding texts are given to
atextencoder. The similarity of the two resulting embeddings is then
maximized witha contrastive loss. In our experiments, we again chose
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the ResNet-50 variant with weights fromref. 77.SimCLR augments the
inputimages withresized crops, colour jitter and Gaussian blur to cre-
atetwo different views of the sameimage. These views are then used to
create positive and negative pairs, where the positive pairs represent
the same image from two different perspectives and the negative pairs
are created by pairing differentimages. The contrastive loss objective
maximizes the similarity between the representations of the positive
pairs while minimizing the similarity between the representations of
the negative pairs. Inour experiments, we used the ResNet-50 architec-
ture and weights from the vissl library (https://vissl.ai/). Barlow Twins
is similar to SImCLR in that it also generates augmented views of the
inputimage through randomly resized crops and colour augmentation,
and maximizes their similarity in representation space. However, it
differs from SimCLR in the exact mechanisms used to prevent repre-
sentation collapse. In our experiments, we again used the ResNet-50
architecture and took the weights fromref. 78. For our representation
learning experiments, we also considered asupervised baseline, with
the same ResNet-50 architecture, but trained in a purely supervised
fashion using backpropagation. We used the default model weights
fromthe torchvisionlibrary.

Downstream classifiers. To establish the CH effect in these unsu-
pervised models, specifically its manifestation in downstream tasks,
we built linear classifiers (readouts) on top of the unsupervised
representations. For binary detection tasks, specifically detection
of COVID-19 instances, we trained a linear support vector machine
classifier (details in Supplementary Note A), with the slack param-
eter Cset to 0.01through a hold-out validation procedure. For multi-
class classification problems (classifying among the 8 types of trucks
andamongthel6 types of fishes), weinstead used alogistic regression
classifier (sklearn) with the Ibfgs solver, 12 regularization (C=1.0), no
bias term, a maximum of 1,000 iteration steps and class-balanced
sampling.

Datasets. The analysis and training of these models were performed
ondifferent datasets. For the X-ray experiments, we combined the NIH
ChestX-ray8 (CXR8) dataset®*’° and the GitHub-hosted ‘COVID-19 image
data collection””®, The GitHub dataset contains 342 COVID-19-positive
and 193 COVID-19-negative images. We split the data 80:20 into train-
ingand test sets. Thisresulted in272 positive and 168 negative images
inthetrainingsetand 70 positive and 25 negative imagesin the test set.
Thetraining split was consolidated by adding 2,552 randomly selected
negative images from the NIH dataset. We also expanded the test set
by adding another 45 randomly selected negative images from NIH to
obtain a class-balanced test set. The selection was made so that the
same patient IDs did not appear in both the training and test sets. All
images wereresized and centre-cropped to 224 x 224 pixels. The Ima-
geNet experiments were performed on two ImageNet subsets. First,
the ‘truck’ subset, consisting of the eight classes sharing the WordNet
ID ‘truck’ (minivan, moving van, police van, fire engine, garbage truck,
pickup, tow truck and trailer truck), resulting in a dataset of 10,259
training and 400 test examples. Thenthe ‘fish’ subset, consisting of the
16 classes sharing the WordNet ID ‘fish’ (tench, barracouta, coho,
sturgeon, gar, stingray, great white shark, hammerhead, tiger shark,
puffer, electric ray, goldfish, eel, anemone fish, rock beauty and
lionfish), resulting in 20,334 training and 800 test examples.

ML models and data for anomaly detection

The D2Neighbors model used in our experimentsis aninstance of the
family of distance-based anomaly detectors, which encompasses a
variety of methods from the literature>*°*%%2, The D2Neighbors
model computes anomaly scores as o(x) = M! {|| x — w;[|7} where x is
theinput, (uj)',i1 are the training data and MY is a generalized f-mean,
with f(¢) = exp(—yt). The predicted anomaly scores can be interpreted
as a soft minimum over distances to data points, that is, a distance to

the nearest neighbours. Inour experiments, the datareceived asinput
areimages of size 224 x 224 with pixel values encoded between-1and
1, downsized from their original high resolution using OpenCV’s fast
nearest neighbour interpolation. We set y so that the average perplex-
ity®* equals 25% of the training set size for each model.

We also considered the PatchCore*® anomaly detection model,
which uses mid-level patch features from a fixed pretrained network.
It constructs amemory bank of these features from nominal example
images during training. Anomaly scores for testimages are computed
by finding the maximum distance between each test patch feature and
its nearest neighbour in the memory bank. Distances are computed
between patch features ¢,(x) and a memory bank of
location-independent prototypes (uj)szl. The overall outlier scoring
function of PatchCore can be written as o(x) = max,min; || gx(X) — u; |-
The function ¢, is the feature representation aggregated from two
consecutive layers at spatial patch location k, extracted from a pre-
trained WideResNet50. The features from consecutive layers are aggre-
gated by rescaling and concatenating the feature maps. The difference
betweenour reported F1scoresandthoseinref.48ismainly duetothe
method used to resize the images. We used the authors’ reference
implementation® as the basis for our experiments.

Datasets. All models above were trained on the MVTec-AD dataset.
The MVTec-AD dataset consists of 15image categories (‘bottle’, ‘cable’,
‘capsule’, ‘carpet’, ‘grid’, ‘hazelnut’, ‘leather’, ‘metal nut’, ‘pill’, ‘screw’,
‘tile’, ‘toothbrush’, ‘transistor’,‘wood’ and ‘zipper’) of industrial objects
and textures, with good and defective instances for each category. For
the experiments based on D2Neighbors, we simulated different data
preprocessing conditions before and after deployment by chang-
ing the way images are resized from their original high resolution to
224 x 224 pixels. We first used a resizing algorithm found in OpenCV
v.4.9.0 (ref. 85) that is based on nearest neighbour interpolation.
We then simulated postdeployment conditions using an improved
resizing method, specifically a bilinear interpolation implemented
in Pillow v.10.3.0 and used by default in torchvision v.0.17.2 (ref. 86).
This improved resizing method includes antialiasing, which has the
effect of smoothing the transitions between adjacent pixels of the
resized image.

Details of CH mitigation techniques

We describe in detail the CH mitigation techniques we use to mitigate
thereliance of ML models on spurious features. To prune textual logos
inthe CLIP model, we computed responsiveness by measuring the dif-
ferenceinactivation between aset of randomly selected truck images
withand without awatermarklogo, and then pruning (that s, setting to
zero) the top kfilters in the bottom of the image (we pruned five such
filters in the main paper and experimented with different values of k
inthe Supplementary Information). We looked at multiple layers, and
chose an early layer of the CLIP model (encoder.relu3) as it showed a
large difference onjust a few filters compared to more abstract layers
laterinthe network. In our anomaly detection experiments, where our
analysis revealed a spurious use of high frequencies, we proposed to
address the CH effect by pruning those high frequencies, specifically
by adding a low-pass filter at the input of the model, which convolves
the red, green and blue channels individually with Gaussian filters of
size11 x 11.

Explanations for representation learning

Our experiments examined dot product similaritiesin representation
space, thatis, y = (®(x), ®(x")), where ® denotes the function that maps
the input features to the representation, typically a deep neural net-
work. To explain similarity scores in terms of input features, we used
the BiLRP technique® which extends the LRP technique®****%” for this
specific purpose. The conceptual starting point of BILRPis the observa-
tion that a dot product is a bilinear function of its input. BiLRP then
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proceeds by reverse propagating the terms of the bilinear function to
pairs of activations from the layer below and iterating down to the
input. Denoting by R the contribution of neurons kand k' to the simi-
larity score in some intermediate layer in the network, BiLRP extracts
the contributions of pairs of neuronsjand j in the layer below via the
propagation rule

ZjkGk

Rir = ; Y2 ke e W
In this formula, z; denotes the contribution of neuron, to the activa-
tionofneuronk. In practice, the reverse propagation procedure above
can be implemented equivalently, but more efficiently and easily, by
computing a collection of standard LRP explanations (one for each
neuron in the representation layer) and recombining them in a mul-
tiplicative manner

BiLRP() = Y LRP (®4(X)) ® LRP (®;(x)). %))
k

Overall, assuming the input consists of d features, BiLRP produces an
explanation of size d x d, whichis typically represented as aweighted
bipartite graph between the set of features of the two input images.
Due to the large number of terms, pixel-to-pixel contributions are
aggregated into patch-to-patch contributions, and elements of the
BiLRP explanations that are close to zero are omitted in the final
explanationrendering. In our experiments, we computed BiLRP expla-
nations using the Zennit implementation of LRP*®, which handles
the ResNet-50 architecture, and set Zennit’s LRP parameters to their
default values.

Explanations for the D2Neighbors model

The D2Neighbors model we investigate for anomaly detectionis a
composition of adistance layer and a soft min-pooling layer. To handle
these layers, we use the purposely designed LRP rules of refs. 30,56.
Propagation in the softmin layer (M}) is given by the formula

P
j= Mo(x), (3)
S x—wlp)

a‘min-take-most’redistribution, where fis the same function asin m).
Each score R; can be interpreted as the contribution of the training
pointu;totheanomaly of x. To further propagate these scoresinto the
pixel-frequency domain, we adopt the framework of “virtual layers®**
and adapt it to the D2Neighbors model. As a frequency basis, we use
the DCT*, shown in Fig. 4 (bottom right), which we denote by its col-
lection of basis elements (vy),. Since the DCT forms an orthogonal basis,
we have the property 3, v,v; =/, and multiplication by the identity
matrix can be interpreted as a mapping to the frequencies and back.
For the special case where p = 2, the distance terms in D2Neighbors
reduce to the squared Euclidean norm ||x - u;||>. These terms can be
developed to identify pixel-pixel-frequency interactions:
X —w® = (x - uj)T(ZkaVZ)(X —u) =3, X X =Wl IX =Wl [Vl [ Vi, -
From there, one can construct an LRP rule that propagates the
instance-wise relevance R; to the pixel-pixel-frequency features:

Rk = Z [x— uj]i[x - uj]i’ [Vk]i[vk]ir

2
J e+l x—ul

R}, )

where the variable e is asmall positive term that handles the case where
xand u;overlap. Areduction of this propagation rule can be obtained
by marginalizing over interacting pixels (Ry = Y}, Ri). Further reduc-
tions can be obtained by marginalizing over pixels (R, =Y ;R;) or fre-
quencies (R;= Y (R;). These reductions are used to generate the heat
mapsinFig. 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldatausedin this paper, in particular the NIH CXR8 (ref. 36), ‘COVID-
19image data collection™’, ImageNet* and MVTec-AD’ datasets, as well
as the pretrained models, are publicly available. The URLs for these
datasets and models are given in Methods.

Code availability
The full code for reproducing our results is available via Zenodo at
https://doi.org/10.5281/zenodo0.14186119 (ref. 89).
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