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Explainable AI reveals Clever Hans effects in 
unsupervised learning models
 

Jacob Kauffmann1,2, Jonas Dippel1,2,3, Lukas Ruff    1,3, Wojciech Samek    1,2,4, 
Klaus-Robert Müller    1,2,5,6,7   & Grégoire Montavon    1,2,8 

Unsupervised learning has become an essential building block of artifical 
intelligence systems. The representations it produces, for example, 
in foundation models, are critical to a wide variety of downstream 
applications. It is therefore important to carefully examine unsupervised 
models to ensure not only that they produce accurate predictions on the 
available data but also that these accurate predictions do not arise from a 
Clever Hans (CH) effect. Here, using specially developed explainable artifical 
intelligence techniques and applying them to popular representation 
learning and anomaly detection models for image data, we show that CH 
effects are widespread in unsupervised learning. In particular, through use 
cases on medical and industrial inspection data, we demonstrate that CH 
effects systematically lead to significant performance loss of downstream 
models under plausible dataset shifts or reweighting of different data 
subgroups. Our empirical findings are enriched by theoretical insights, 
which point to inductive biases in the unsupervised learning machine as a 
primary source of CH effects. Overall, our work sheds light on unexplored 
risks associated with practical applications of unsupervised learning 
and suggests ways to systematically mitigate CH effects, thereby making 
unsupervised learning more robust.

Unsupervised learning is a subfield of machine learning (ML) that 
has gained prominence in recent years1–3. It addresses fundamental 
limitations of supervised learning, such as the lack of labels in the 
data or the high cost of acquiring them. Unsupervised learning has 
achieved successes in modelling the unknown, such as uncovering new 
cancer subtypes4,5 or extracting novel insights from large historical 
corpora6. Furthermore, the fact that unsupervised learning does not 
rely on task-specific labels makes it a good candidate for core artifi-
cal intelligence (AI) infrastructure: unsupervised anomaly detection 
provides the basis for various quality or integrity checks on the input 
data7–10. Unsupervised learning is also a key technology behind ‘founda-
tion models’1,11–15, which extract representations upon which various 

downstream models (for example, classification, regression, ‘genera-
tive AI’ and so on) can be built.

The growing popularity of unsupervised learning models creates 
an urgent need to carefully examine how they arrive at their predic-
tions. This is essential to ensure that potential flaws in the way these 
models process and represent the input data are not propagated to the 
many downstream supervised models that build upon them.

In this study, through conducting multiple investigations of popu-
lar unsupervised ML models of image data, we show that unsupervised 
learning models largely suffer from Clever Hans (CH) effects16. Spe-
cifically, we find that unsupervised learning models often produce 
representations from which instances can be correctly predicted to 
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amounts of data points are available. Our findings provide a novel 
direction for developing targeted strategies to mitigate CH effects and 
increase model robustness.

Overall, our work sheds light on the presence, prominence and 
distinctiveness of CH effects in unsupervised learning, calling for 
increased scrutiny of this essential component of modern AI systems.

Results
The CH effect can be defined as the property of a model to rely on 
features that are predictive in a particular setting (due to a spurious 
correlation between them and the true signal), but fail to remain so 
on new data, causing a significant drop in performance. (See also 
Supplementary Note D for a formal characterization and distinc-
tion from related concepts such as shortcut learning17 or human–AI 
alignment34,35.) Through experiments on two representative families of 
unsupervised models, representation learning and anomaly detection, 
and using explainable AI as our main analysis tool, we demonstrate the 
widespread presence of CH effects in unsupervised learning models, 
their adverse consequences and possible strategies to mitigate them.

CH effects in representation learning
We first investigate the CH effect in the context of using a recent medi-
cal foundation model to solve a COVID-19 detection task. Simulating 
an early pandemic phase characterized by data scarcity, we aggregate, 
similar to ref. 19, a large, well-established non-COVID-19 dataset with 
a more recent and smaller COVID-19 dataset. Specifically, we aggre-
gate 2,597 instances of the National Institute of Health (NIH) CXR8 
dataset36, collected between 1992 and 2015, with the 535 instances of 
the GitHub-hosted ‘COVID-19 image data collection’37, which contains 
COVID-19 instances from multiple sources. We refer to them as the ‘NIH’ 
and ‘GitHub’ subsets, respectively.

Further motivated by the need to accommodate the critically 
small number of COVID-19 instances and to avoid overfitting, we 
choose to rely on the representations provided by unsupervised foun-
dation models15,38–40. Specifically, we feed our data into a pretrained  
PubMedCLIP model39, which has built its representation in an unsuper-
vised manner from a very large collection of X-ray scans. On top of the 

be, for example, similar or anomalous, although largely supported by 
data quality artefacts. The flawed prediction strategy is not detectable 
by common evaluation benchmarks such as cross-validation, but may 
manifest itself much later in ‘downstream’ applications in the form of 
unexpected errors, for example, if subtle changes in the input data 
occur after deployment (Fig. 1). While CH effects have been studied 
quite extensively for supervised learning16–22, the lack of similar stud-
ies in the context of unsupervised learning, together with the fact 
that unsupervised models supply many downstream applications, is 
a cause for concern.

For example, in image-based industrial inspection, which often 
relies on unsupervised anomaly detection9,10, we find that a CH deci-
sion strategy can systematically miss a wide range of manufacturing 
defects, resulting in potentially high costs. As another example, unsu-
pervised foundation models of image data, advocated in the medical 
domain to provide robust features for various specialized diagnostic 
tasks, can potentially introduce CH effects into many of these tasks, 
with the prominent risk of large-scale misdiagnosis. These scenarios 
(illustrated in Fig. 1) highlight the practical implications of an unsu-
pervised CH effect, which, unlike its supervised counterpart, may not 
be limited to malfunctioning in a single specific task, but potentially 
in all downstream tasks.

To uncover and understand unsupervised CH effects, we propose 
to use explainable AI23–27 (here techniques that build on the layer-wise 
relevance propagation (LRP) explanation framework28–30). Our pro-
posed use of these techniques allows us to identify at scale which input 
features are used (or misused) by the unsupervised ML model, without 
having to formulate specific downstream tasks. We use an extension of 
LRP called BiLRP31 to reveal input patterns that are jointly responsible 
for similarity in the representation space. We also combine LRP with 
‘virtual layers’32,33 to reveal pixel and frequency components that are 
jointly responsible for predicted anomalies.

Furthermore, our explainable AI-based analysis allows us to 
pinpoint more formal causes for the emergence of unsupervised CH 
effects. In particular, they are due not so much to the data, but to the 
unsupervised learning machine, which hinders the integration of 
the true task-supporting features into the model, even though vast 
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Fig. 1 | The CH effect in unsupervised learning. The unsupervised model 
correctly predicts data instances as similar or anomalous, but does so using 
features that do not generalize well outside the available data. The CH effect 
typically goes undetected in a classical validation scheme and manifests 
itself in the form of prediction errors only after deployment. The problem is 
critical because the flaw can be inherited by potentially many downstream 

tasks. Our explainable AI approach allows CH effects to be detected directly 
in the unsupervised model and, in some cases, corrected. Pos, positive; pred, 
predicted; neg, negative. X-ray images reproduced from: left, middle, ref. 79  
under a Creative Commons licence CC 1.0; right, ref. 90 under a Creative 
Commons licence CC BY-3.0.
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PubMedCLIP model, we train a downstream classifier that separates 
COVID-19 from non-COVID-19 instances. It achieves a class-balanced 
accuracy of 87.5% on the test set (Table 1). However, a closer look at the 
structure of this performance score reveals a strong disparity between 
the NIH and GitHub subgroups, with all NIH instances being correctly 
classified and the GitHub instances having a lower class-balanced 
accuracy of 81.7%, and, more strikingly, a false positive rate (FPR) of 
51%, as presented in Table 1. Considering that the higher heterogeneity 
of instances in the GitHub dataset is more characteristic of real-world 
conditions, this higher error estimate is more realistic. In particular, the 
high FPR of 51% precludes any practical use of the model in a hospitali-
zation setting, where the model’s prediction should reliably and with 
low risk assist in the selection of appropriate medical treatment. We 
emphasize that this flaw in the model could have been easily overlooked 
if one had not paid close attention to (or known about) the data sources 
and instead relied only on the overall accuracy score.

To proactively detect this heterogeneous, non-robust predic-
tion behaviour, we propose to use explainable AI. Specifically, to test 
whether the flaw has its sources in the unsupervised PubMedCLIP 
component, we use the BiLRP explanation technique31. BiLRP operates 
directly on similarity in the representation space without the need to 
formulate a specific downstream task. It is illustrated in Fig. 2 and its 
mathematical formulation is given in Methods. The output of BiLRP 
for two exemplary pairs of COVID-19-positive instances is shown in 
Fig. 3 (left). It shows that the modelled similarity comes from text-like 
annotations that appear in both images. This allows us to attribute the 
observed heterogeneity in performance to a CH effect and in turn to 
highlight broad risks for downstream applications (see Supplemen-
tary Note A for further analysis). We note that, unlike the per-group 
accuracy analysis above, our explainable AI analysis based on BiLRP 
did not require provenance metadata (GitHub or NIH) nor did it focus 
on a specific downstream task with its specific labels.

To test whether representation learning has a general tendency 
to evolve CH strategies beyond the above use case, we downloaded 
three generic foundation models, namely the original CLIP model13, 
SimCLR12,41 and Barlow Twins42. CLIP consists of an image encoder and 
a text encoder, and it aligns images to their associated text in repre-
sentation space by minimizing a contrastive loss. SimCLR and Barlow 
Twins generate augmented views of the input image through random 
resized crops and colour augmentation, and maximize the similarity 
of these two views in representation space. As a downstream task, we 
consider the classification, using linear-softmax classifiers, of the 8 

classes from ImageNet43 that share the WordNet ID ‘truck’ and of the 
16 ImageNet classes that share the WordNet ID ‘fish’ (see Methods for 
details). The test accuracy of each model on these two tasks is given in 
Table 1 (columns ‘original’). On the truck classification task, the CLIP 
model performs best, with an accuracy of 84.7%. On the fish classifica-
tion task, the CLIP and supervised models perform best, with accuracies 
of 85.4% and 85.9%, respectively.

We use BiLRP to examine the representations of these unsuper-
vised models. In Fig. 3 (centre), we observe that CLIP-based similarities, 
as in PubMedCLIP, also rely on text. Here, a textual logo in the lower-left 
corner of two garbage truck images is used to support the similarity, 
suggesting a CH effect (see ref. 20 for a similar finding in supervised 
learning). SimCLR and Barlow Twins ignore the text and rely instead 
on the actual garbage truck. In the fish classification task (Fig. 3, right), 
we observe that all unsupervised models amplify humans over fish 
features, again suggesting a CH effect.

To establish the CH nature of the logo and human detection strate-
gies identified by BiLRP, we proceed to test the models on specific data 
subgroups that may be more prevalent under operational conditions. 
The results are presented in Table 1. We observe a systematic degrada-
tion in performance when moving from the original data to some of 
these data subsets. For example, when we break the spurious correla-
tion between logo and truck class by inserting a logo on each truck 
image, we observe a drop in the accuracy of the CLIP model from 84.7% 
to 80.3% (column ‘logo’ in Table 1). Sharper drops in performance can be 
observed when looking at individual classes, such as tow trucks, which 
are generally difficult to separate from garbage trucks (Supplementary 
Note B). For the fish case, a similar drop in accuracy is observed for 
SimCLR and Barlow Twins from 81.4% and 83.2% to 74.8% and 75.8%, 
respectively, when only images containing humans are retained and 
class rebalancing is performed. In the case of CLIP, its lack of focus on 
fish is surprisingly not associated with a similar drop in performance, 
leaving open the question of what exact strategy allows CLIP to gen-
eralize well on this data. A detailed analysis of the structure of the 
prediction errors for each model and classification task, supported by 
confusion matrices, is given in Supplementary Note B.

To better assess the risk of CH effects in unsupervised learning, it 
is necessary to reflect on the more abstract factors that contribute to 
their occurrence. The heterogeneity of strategies revealed by BiLRP 
for models otherwise trained on similar large datasets suggests that 
the unsupervised learning machine, more than the data, is crucial in 
shaping the data representation strategy. In the case of SimCLR and 
Barlow Twins, the systematic amplification of humans in the centre of 
the image can be attributed to their random crop matching objective, 
where those features in the centre of the image carry the most mutual 
information across random crops (for further studies of amplification/
suppression effects in these models, we refer to refs. 44–47). When 

Table 1 | Performance of unsupervised models on various 
downstream tasks, evaluated on different data subgroups

COVID-19 ImageNet: truck ImageNet: fish

Original GitHub Original Logo Original Human

PubMedCLIP 87.5  
(FPR 18%)

81.7 ↓ 
(FPR 51%)

– – – –

CLIP – – 84.7 80.3 ↓ 85.4 84.1

CLIP + CH 
mitigation

– – 84.4 83.6 ↑ – –

SimCLR – – 74.8 74.8 81.4 74.8 
↓↓

Barlow 
Twins

– – 79.2 78.7 83.2 75.8 
↓↓

Supervised – – 82.4 82.3 85.9 81.0 ↓

We report PubMedCLIP’s accuracy scores and FPRs on the aggregate COVID-19 dataset 
(original) and the more difficult GitHub subgroup. We repeat the analysis for generic 
unsupervised models on two ImageNet superclasses, both on the original data and on 
the difficult subgroups (logo and human). ↓/↓↓ denote a substantial accuracy decrease 
(exceeding 3/6 percentage points) on the difficult subgroups and ↑ denotes a substantial 
accuracy increase (of 3 percentage points or more) after CH mitigation. Upward and 
downward effects are statistically significant under a two-sided t-test (P < 0.001).
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Fig. 2 | Illustration of the BiLRP method for explaining similarity predictions 
of a representation learning model. The output of BiLRP is a decomposition 
of the predicted similarity onto pairs of features from the two input images. It is 
typically displayed as a weighted bipartite graph connecting the contributing 
feature pairs.
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considering the CLIP and PubMedCLIP models, the systematic amplifi-
cation of textual logos, faces or other identifying features can be attrib-
uted to their image–text matching objective, which tends to amplify 
any features from the two modalities that carry mutual information.

In summary, while the matching tasks defined in, for example, 
CLIP, SimCLR and Barlow Twins intuitively aim to introduce useful prior 
knowledge and invariance into the representation, they can, on certain 
data subsets, lead to strong imbalances in the expression of different 
features. These imbalances are prone to cause CH effects and, in turn, 
loss of accuracy in downstream tasks.

CH effects in anomaly detection
Extending our investigation of the CH effect to another area of unsu-
pervised learning, namely anomaly detection, we consider an indus-
trial inspection use case based on the popular MVTec-AD dataset9. The 
dataset consists of 15 product categories, each consisting of a training 
set of images without manufacturing defects and a test set of images 
with and without defects. Since manufacturing defects are infrequent 
and heterogeneous in nature, the problem is typically approached 
using unsupervised anomaly detection2,9. These models map each 
instance to an anomaly score, from which threshold-based downstream 
models can be built to classify between instances with and without 
manufacturing defects. Unsupervised anomaly detection has received 
considerable attention, with sophisticated approaches based on deep 
neural networks such as PatchCore48 or EfficientAD49 showing excellent 
performance in detecting a wide range of industrial defects.

Somewhat surprisingly, simpler approaches based on distances 
in pixel space show competitive performance for selected tasks2. We 
consider one such approach, which we call ‘D2Neighbors’, where anom-
alies are predicted according to the distance to neighbours in the 
training data. Specifically, the anomaly score of a new instance x is 

computed as f(x) = softminj{∥x − uj∥2} where (uj)
N
i=1 is the set of available 

inlier instances (see Methods for details on the model and data pre-
processing). This anomaly model belongs to the broader class of 
distance-based models50–52, and connections can be made to kernel 
density estimation53,54 and one-class support vector machines55. Using 
D2Neighbors, we are able to build downstream models that classify 
industrial defects of the MVTec data with F1 scores above 0.9 for five 
categories (bottle, capsule, pill, toothbrush and wood).

To shed light on the prediction strategy associated with these 
unexpectedly high F1 scores, we make use of explainable AI. Specifically, 
we consider an extension of LRP for anomaly detection30,56 and further 
equip the explanation technique with ‘virtual layers’32,33. The technique 
of ‘virtual layers’ (Fig. 4) is to map the input to an abstract domain and 
back, leaving the prediction function unchanged, but providing a new 
representation in terms of which the prediction can be explained. We 
construct such a layer by applying the discrete cosine transform (DCT)57, 
shown in Fig. 4 (bottom right), followed by its inverse. This allows us 
to explain the predictions jointly in terms of pixels and frequencies.

The result of our proposed analysis is shown in Fig. 4 for two wood 
instances (see Supplementary Note C for instances of different catego-
ries). Explanations at the pixel level show that D2Neighbors supports 
its anomaly predictions largely based on pixels containing the actual 
industrial defect. The squared difference in its distance function 
(∥ ∆∥2 = ∑i∆

2
i ) encourages a sparse pixel-wise response of the model, 

efficiently discarding regions of the image where the new instance 
shows no difference from instances in the training data. However, we 
also see in the pixel-wise explanation that a non-negligible part of the 
anomaly prediction comes from irrelevant background pixels. Joint 
pixel-frequency explanations shed light on these unresolved contribu-
tions, showing that they arise mostly from the high-frequency part of 
the model’s decision strategy (Fig. 4b,c).
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Fig. 3 | Explainable AI analysis of the predictions of the PubMedCLIP 
unsupervised model and the general-purpose CLIP, SimCLR and Barlow 
Twins unsupervised models. We show pairs of X-ray images from the GitHub 
subset, and pairs of natural images resembling ImageNet images from the classes 
garbage truck (gtruck) and coho, respectively. Explanations are generated using 
BiLRP. They highlight unexpected strategies used by the unsupervised models: 
for example, for X-ray data, similarity between instances arises from shared 

spurious textual annotations. For ImageNet data, similarity arises from logo 
artefacts or the presence of humans in the background. X-ray images reproduced 
from ref. 90 under a Creative Commons license CC BY-3.0. Credit: truck (left), 
Pixnio under a Creative Commons licence CC 1.0; truck (right), Pexels under a 
Creative Commons licence CC 1.0; fish (left), iStock.com/christiannafzger; fish 
(right), iStock.com/BrandyTaylor.
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The high exposure of the D2Neighbors model to these irrelevant 
high-frequency features, as detected by our LRP analysis, raises the 
suspicion that we are again in the presence of a CH effect. We simulate 
an innocuous postdeployment perturbation of the data preprocess-
ing by changing the image resizing algorithm from OpenCV’s nearest 
neighbour resizing to a more sophisticated resizing method that 
includes antialiasing, a procedure that cuts high frequencies to elimi-
nate resizing artefacts. In practice, such a change may result from a 
software update, for example. Resizing techniques have been shown 
in some cases to substantially affect image quality and image gen-
eration metrics58, but their effect on general ML models, especially 
unsupervised ones, has been little studied. The performance of the 
D2Neighbors model before and after changing the resizing algorithm 
is presented in Table 2 (columns ‘original’ and ‘deployed’, respec-
tively). The F1 score performance of D2Neighbors degrades by almost 
10 percentage points. This performance degradation, along with 
D2Neighbors’ reliance on high frequencies revealed by LRP, exposes 
the CH nature of the model: when antialiasing is introduced into the 
resizing procedure, the high frequencies that the D2Neighbors model 
uses to support its prediction disappear from the data, significantly 
reducing each instance’s anomaly score and causing the performance 
degradation. This performance degradation of D2Neighbors under 
postdeployment conditions is particularly surprising given that the 
data quality has actually improved. Looking more closely at the struc-
ture of the performance degradation, we see that the false negative rate 
(FNR) rises sharply from 4% to 23% (Table 2), which can be explained by 
the absence of anomaly-contributing high frequencies after deploy-
ment. In an industrial inspection setting, an increase in FNR can have 
serious consequences, in particular, many defective instances may 
be missed and propagated through the production chain. This can 
result in wasted resources in subsequent production stages and high 
recall costs.

As in the case of representation learning, it is useful to ask what 
factors contribute to the CH effect. We trace the D2Neighbors CH strat-
egy to the distance functions it relies on. Unlike the linear layers com-
monly used in supervised learning, distances cannot inherently build 
invariance to specific directions in the input space, exposing models 
to a manifold of irrelevant data perturbations. Despite this tendency 
to overexposure, distance functions (including the usual Euclidean 
distance as well as ℓp variants) are a building block of many popular 
unsupervised anomaly models, their primary advantage being that 
they generate a decision boundary without requiring a representative 
set of anomalous instances to contrast against. Distance functions also 
appear in the more advanced PatchCore model48 where they are com-
puted on top of more abstract visual features (Methods). As presented 
in Table 2, they also suffer a significant drop in performance after 
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Fig. 4 | Explainable AI analysis of D2Neighbors anomaly predictions. a, Images 
synthesized to resemble MVTec-AD (class wood) and pixel-wise LRP explanations 
of the anomaly predictions. The explanations for other MVTec-AD categories are 
given in Supplementary Note C. b, Frequency domain explanations. The x axis 
represents the frequencies (on a power scale) and the y axis is the contribution 
of the corresponding frequencies to the anomaly prediction. c, Pixel-wise 

contributions filtered by frequency band. d, A schematic of the virtual inspection 
layer used to explain anomalies in the joint pixel-frequency domain. e, Pixel-wise 
contributions are filtered by blocking frequency contributions within the virtual 
layer. f, The basis elements of the DCT, which we use to map pixels to frequencies 
and back.

Table 2 | Performance of different anomaly detection 
models on simulated original and postdeployment data 
conditions

Original Deployed

D2Neighbors 0.91 (FNR 4%) 0.82 ↓ (FNR 23%)

D2Neighbors + CH mitigation 0.92 0.92 ↑

D2Neighbors (ℓ1) 0.92 0.83 ↓

D2Neighbors (ℓ4) 0.91 0.84 ↓

PatchCore 0.92 0.86 ↓

These conditions correspond to standard and antialiased resizing, respectively. Performance 
is reported in terms of F1 score and FNR, averaged over the five MVTec-AD categories retained 
for analysis. ↓ Shows a substantial F1 score decrease (of 3 percentage points or more) after 
deployment and ↑ shows a substantial F1 score increase (of 3 percentage points or more) 
after CH mitigation. Upwards and downwards effects are statistically significant under a 
two-sided t-test (P < 0.001).
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deployment, suggesting that they are affected by a similar CH effect. 
Overall, our analysis highlights the challenge of creating anomaly mod-
els that are both general enough not to miss unexpected anomalies, 
but also not overexposed so as not to increase the risk of CH effects.

Alleviating CH in unsupervised learning
Leveraging the explainable AI analysis above, we aim to build mod-
els that are more robust across different data subgroups and in post-
deployment conditions. Unlike previously proposed CH removal 
techniques20,21, we aim to operate on the unsupervised model rather 
than the downstream tasks. This allows us to potentially achieve broad 
robustness improvements while leaving the downstream learning 
machines (training supervised classifiers or adjusting detection thresh-
olds) untouched. We first consider the CLIP model, which our explain-
able AI analysis has shown to incorrectly rely on text logos, and proceed 
by removing CLIP activations whose response differs most between 
images of the logo and non-logo subgroups (details in Methods). We 
also experiment with a CH mitigation approach for anomaly detection, 
where we prune the high frequencies spuriously used by the model by 
inserting a blur layer at the input of the model (details in Methods). In 
both cases, the proposed CH mitigation technique improves model 
robustness, largely reversing the performance degradation observed 
in simulated postdeployment conditions (Tables 1 and 2, rows ‘CH 
mitigation’). Our CH mitigation experiments, which effectively modify 
the structure of the model, again underscore the primary role of the 
learning machine in allowing or preventing CH effects.

Discussion
Unsupervised learning is an essential category of ML that is increasingly 
being used in core AI infrastructure to power a variety of downstream 
tasks, including classification, regression and also ‘generative AI’. Much 
research so far has focused on improving the performance of unsuper-
vised learning algorithms, for example, to maximize downstream classi-
fication accuracy. These evaluations often pay little attention to the exact 
strategy used by the unsupervised model to achieve the reported high 
performance, in particular whether these models rely on CH strategies.

Using advanced explainable AI techniques such as BiLRP or LRP 
in the frequency domain, we have shown that CH strategies are wide-
spread in unsupervised learning. These strategies can take several 
forms, such as predicting correctly but based on features such as text 
that are spuriously amplified in the unsupervised representation, or 
based on high-frequency features to which unsupervised anomaly mod-
els are overexposed. These flawed prediction strategies no longer work 
well when the data distribution changes after deployment. As shown 
in two use cases, this can have important practical consequences such 
as widespread misdiagnosis of patients or systematic failure to recall 
manufacturing defects. Importantly, the same flawed unsupervised 
representation can produce CH effects in any of its potentially many 
downstream models.

Addressing these CH effects is therefore crucial to apply unsu-
pervised learning more reliably. However, compared with CH effects 
in supervised learning, another dimension of complexity is added to 
the problem: one has to decide whether to handle CH effects in the 
downstream models or directly in the unsupervised model part. Revis-
ing downstream models (for example, with human feedback20,21,59 or 
in response to changing conditions60–63) may help to maintain high 
accuracy on the given task. However, it is not sustainable if we consider 
that the procedure would have to be repeated for every single down-
stream task. This may be necessary even after a flaw in the foundation 
model becomes known (for example, refs. 64,65) since building a 
new unsupervised model is computationally expensive and requires 
extensive testing. Instead, we have proposed in this paper to address 
CH effects directly in the design of the unsupervised model, with the 
goal of achieving persistent robustness that benefits all existing and 
future downstream applications.

However, this requires a better formal understanding of the rea-
sons for CH effects in unsupervised learning. We found that they dif-
fer substantially from those in supervised learning in that they arise 
less from data quality issues and more from flaws in the design of the 
unsupervised learning machine. For example, our study showed that 
unsupervised anomaly detection is structurally unable to reduce its 
exposure to high frequencies and thus also fails to reproduce com-
mon filtering mechanisms found in supervised learning66–68, with 
D2Neighbors being a prominent example. The high risk of generali-
zation error caused by feature overexposure led us to ask the more 
fundamental question of ‘what are appropriate model selection criteria 
for unsupervised learning’. D2Neighbors, with its apparent simplic-
ity, would probably fare well under Occam’s razor or other classical 
model selection criteria, although our experiments have shown that it 
clearly lacks generalizability and robustness. Thus, it seems essential 
to refine these criteria to include overexposure or feature balancing 
as additional factors.

Having shed light on reasons for the emergence of CH effects in 
unsupervised learning, we have experimented with CH mitigation 
strategies based on feature rebalancing or exposure reduction, and 
have been able to achieve performance improvements on difficult data 
subgroups or in simulated postdeployment conditions. In doing so, we 
have demonstrated the actionability of our analysis, showing that it 
can guide the process of identifying and subsequently correcting the 
faulty components of an unsupervised learning model.

While our investigation of unsupervised CH effects and their 
consequences has focused on image data, extension to other data 
modalities seems straightforward. Explainable AI techniques such as 
LRP operate independently of the type of input data. LRP has recently 
been extended to recurrent neural networks69, graph neural networks70, 
transformers71 and state space models72, which represent the state 
of the art for large language models and other models of structured 
data. Thus, our analysis could be extended in the future to analyse 
other instances of unsupervised learning, such as anomaly detection 
in time series or the representations learned by large language models 
(for example, refs. 73,74).

Overall, through the application of recent explainable AI tech-
niques, our work has contributed to highlighting the pervasiveness of 
CH effects in unsupervised learning, the multiple factors that lead to 
them, the resulting loss of accuracy on new data and possible ways to 
mitigate these CH effects. We believe that the CH effect in unsupervised 
learning, and the uncontrolled risks associated with it, is a question of 
general importance, and that explainable AI and its recent develop-
ments provide an effective way to tackle it.

Methods
This section first introduces the unsupervised ML models studied 
in this work, the datasets on which they are applied and the consid-
ered CH mitigation techniques. It then presents the LRP method for 
explaining predictions, its BiLRP extension for explaining similarity 
and the technique of ‘virtual layers’ for generating joint pixel-frequency 
explanations.

ML models and data for representation learning
Representation learning experiments were performed on the PubMed-
CLIP39, CLIP13, SimCLR12,41 and Barlow Twins42 models. PubMedCLIP is a 
representation learning model specialized for X-ray data. It is based on 
a pretrained CLIP model (described below) and fine tuned on the ROCO 
dataset75, a collection of radiology and image caption pairs. In our 
experiments, we chose the variant based on the ResNet-50 architecture 
and downloaded the weights from ref. 76. CLIP learns representations 
using a large collection of image–text pairs from the internet. Images 
are given to an image encoder and the corresponding texts are given to 
a text encoder. The similarity of the two resulting embeddings is then 
maximized with a contrastive loss. In our experiments, we again chose 
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the ResNet-50 variant with weights from ref. 77. SimCLR augments the 
input images with resized crops, colour jitter and Gaussian blur to cre-
ate two different views of the same image. These views are then used to 
create positive and negative pairs, where the positive pairs represent 
the same image from two different perspectives and the negative pairs 
are created by pairing different images. The contrastive loss objective 
maximizes the similarity between the representations of the positive 
pairs while minimizing the similarity between the representations of 
the negative pairs. In our experiments, we used the ResNet-50 architec-
ture and weights from the vissl library (https://vissl.ai/). Barlow Twins 
is similar to SimCLR in that it also generates augmented views of the 
input image through randomly resized crops and colour augmentation, 
and maximizes their similarity in representation space. However, it 
differs from SimCLR in the exact mechanisms used to prevent repre-
sentation collapse. In our experiments, we again used the ResNet-50 
architecture and took the weights from ref. 78. For our representation 
learning experiments, we also considered a supervised baseline, with 
the same ResNet-50 architecture, but trained in a purely supervised 
fashion using backpropagation. We used the default model weights 
from the torchvision library.

Downstream classifiers. To establish the CH effect in these unsu-
pervised models, specifically its manifestation in downstream tasks,  
we built linear classifiers (readouts) on top of the unsupervised  
representations. For binary detection tasks, specifically detection 
of COVID-19 instances, we trained a linear support vector machine 
classifier (details in Supplementary Note A), with the slack param-
eter C set to 0.01 through a hold-out validation procedure. For multi-
class classification problems (classifying among the 8 types of trucks  
and among the 16 types of fishes), we instead used a logistic regression 
classifier (sklearn) with the lbfgs solver, l2 regularization (C = 1.0), no 
bias term, a maximum of 1,000 iteration steps and class-balanced 
sampling.

Datasets. The analysis and training of these models were performed 
on different datasets. For the X-ray experiments, we combined the NIH 
ChestX-ray8 (CXR8) dataset36,79 and the GitHub-hosted ‘COVID-19 image 
data collection’37,80. The GitHub dataset contains 342 COVID-19-positive 
and 193 COVID-19-negative images. We split the data 80:20 into train-
ing and test sets. This resulted in 272 positive and 168 negative images  
in the training set and 70 positive and 25 negative images in the test set. 
The training split was consolidated by adding 2,552 randomly selected 
negative images from the NIH dataset. We also expanded the test set 
by adding another 45 randomly selected negative images from NIH to 
obtain a class-balanced test set. The selection was made so that the 
same patient IDs did not appear in both the training and test sets. All 
images were resized and centre-cropped to 224 × 224 pixels. The Ima-
geNet experiments were performed on two ImageNet subsets. First, 
the ‘truck’ subset, consisting of the eight classes sharing the WordNet 
ID ‘truck’ (minivan, moving van, police van, fire engine, garbage truck, 
pickup, tow truck and trailer truck), resulting in a dataset of 10,259 
training and 400 test examples. Then the ‘fish’ subset, consisting of the  
16 classes sharing the WordNet ID ‘fish’ (tench, barracouta, coho,  
sturgeon, gar, stingray, great white shark, hammerhead, tiger shark, 
puffer, electric ray, goldfish, eel, anemone fish, rock beauty and  
lionfish), resulting in 20,334 training and 800 test examples.

ML models and data for anomaly detection
The D2Neighbors model used in our experiments is an instance of the 
family of distance-based anomaly detectors, which encompasses a 
variety of methods from the literature2,50–52,81,82. The D2Neighbors 
model computes anomaly scores as o(x) = 𝕄𝕄γ

j {∥ x − uj∥
p
p}  where x is  

the input, (uj)
N
j=1 are the training data and 𝕄𝕄γ is a generalized f-mean, 

with f(t) = exp(−γt). The predicted anomaly scores can be interpreted 
as a soft minimum over distances to data points, that is, a distance to 

the nearest neighbours. In our experiments, the data received as input 
are images of size 224 × 224 with pixel values encoded between −1 and 
1, downsized from their original high resolution using OpenCV’s fast 
nearest neighbour interpolation. We set γ so that the average perplex-
ity83 equals 25% of the training set size for each model.

We also considered the PatchCore48 anomaly detection model, 
which uses mid-level patch features from a fixed pretrained network. 
It constructs a memory bank of these features from nominal example 
images during training. Anomaly scores for test images are computed 
by finding the maximum distance between each test patch feature and 
its nearest neighbour in the memory bank. Distances are computed 
between patch features ϕ p(x) and a memor y bank of 
location-independent prototypes (uj)

N
j=1. The overall outlier scoring 

function of PatchCore can be written as o(x) = maxkminj ∥ ϕk(x) − uj ∥. 
The function ϕk is the feature representation aggregated from two 
consecutive layers at spatial patch location k, extracted from a pre-
trained WideResNet50. The features from consecutive layers are aggre-
gated by rescaling and concatenating the feature maps. The difference 
between our reported F1 scores and those in ref. 48 is mainly due to the 
method used to resize the images. We used the authors’ reference 
implementation84 as the basis for our experiments.

Datasets. All models above were trained on the MVTec-AD dataset. 
The MVTec-AD dataset consists of 15 image categories (‘bottle’, ‘cable’, 
‘capsule‘, ’carpet’, ‘grid’, ‘hazelnut’, ‘leather’, ‘metal nut’, ‘pill’, ‘screw’, 
‘tile’, ‘toothbrush’, ‘transistor’, ‘wood’ and ‘zipper’) of industrial objects 
and textures, with good and defective instances for each category. For 
the experiments based on D2Neighbors, we simulated different data 
preprocessing conditions before and after deployment by chang-
ing the way images are resized from their original high resolution to 
224 × 224 pixels. We first used a resizing algorithm found in OpenCV 
v.4.9.0 (ref. 85) that is based on nearest neighbour interpolation. 
We then simulated postdeployment conditions using an improved 
resizing method, specifically a bilinear interpolation implemented 
in Pillow v.10.3.0 and used by default in torchvision v.0.17.2 (ref. 86). 
This improved resizing method includes antialiasing, which has the 
effect of smoothing the transitions between adjacent pixels of the 
resized image.

Details of CH mitigation techniques
We describe in detail the CH mitigation techniques we use to mitigate 
the reliance of ML models on spurious features. To prune textual logos 
in the CLIP model, we computed responsiveness by measuring the dif-
ference in activation between a set of randomly selected truck images 
with and without a watermark logo, and then pruning (that is, setting to 
zero) the top k filters in the bottom of the image (we pruned five such 
filters in the main paper and experimented with different values of k 
in the Supplementary Information). We looked at multiple layers, and 
chose an early layer of the CLIP model (encoder.relu3) as it showed a 
large difference on just a few filters compared to more abstract layers 
later in the network. In our anomaly detection experiments, where our 
analysis revealed a spurious use of high frequencies, we proposed to 
address the CH effect by pruning those high frequencies, specifically 
by adding a low-pass filter at the input of the model, which convolves 
the red, green and blue channels individually with Gaussian filters of 
size 11 × 11.

Explanations for representation learning
Our experiments examined dot product similarities in representation 
space, that is, y = ⟨ΦΦΦ(x),ΦΦΦ(x′)⟩, where Φ denotes the function that maps 
the input features to the representation, typically a deep neural net-
work. To explain similarity scores in terms of input features, we used 
the BiLRP technique31 which extends the LRP technique26,28,29,87 for this 
specific purpose. The conceptual starting point of BiLRP is the observa-
tion that a dot product is a bilinear function of its input. BiLRP then 
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proceeds by reverse propagating the terms of the bilinear function to 
pairs of activations from the layer below and iterating down to the 
input. Denoting by Rkk′ the contribution of neurons k and k′ to the simi-
larity score in some intermediate layer in the network, BiLRP extracts 
the contributions of pairs of neurons j and j′ in the layer below via the 
propagation rule

R jj′ = ∑
kk′

z jkzj′k′
∑jj′z jkzj′k′

Rkk′ . (1)

In this formula, zjk denotes the contribution of neuron j to the activa-
tion of neuron k. In practice, the reverse propagation procedure above 
can be implemented equivalently, but more efficiently and easily, by 
computing a collection of standard LRP explanations (one for each 
neuron in the representation layer) and recombining them in a mul-
tiplicative manner

BiLRP( y) = ∑
k
LRP (ΦΦΦk(x)) ⊗ LRP (ΦΦΦk(x′)). (2)

Overall, assuming the input consists of d features, BiLRP produces an 
explanation of size d × d, which is typically represented as a weighted 
bipartite graph between the set of features of the two input images. 
Due to the large number of terms, pixel-to-pixel contributions are 
aggregated into patch-to-patch contributions, and elements of the 
BiLRP explanations that are close to zero are omitted in the final 
explanation rendering. In our experiments, we computed BiLRP expla-
nations using the Zennit implementation of LRP88, which handles 
the ResNet-50 architecture, and set Zennit’s LRP parameters to their 
default values.

Explanations for the D2Neighbors model
The D2Neighbors model we investigate for anomaly detection is a 
composition of a distance layer and a soft min-pooling layer. To handle 
these layers, we use the purposely designed LRP rules of refs. 30,56. 
Propagation in the softmin layer (𝕄𝕄γ

j ) is given by the formula

R j =
f (∥ x − uj∥

p
p)

∑j f (∥ x − uj∥
p
p)

o(x), (3)

a ‘min-take-most’ redistribution, where f is the same function as in 𝕄𝕄γ
j . 

Each score Rj can be interpreted as the contribution of the training 
point uj to the anomaly of x. To further propagate these scores into the 
pixel-frequency domain, we adopt the framework of ‘virtual layers’32,33 
and adapt it to the D2Neighbors model. As a frequency basis, we use 
the DCT57, shown in Fig. 4 (bottom right), which we denote by its col-
lection of basis elements (vk)k. Since the DCT forms an orthogonal basis, 
we have the property ∑kvkv

⊤
k = I , and multiplication by the identity 

matrix can be interpreted as a mapping to the frequencies and back. 
For the special case where p = 2, the distance terms in D2Neighbors 
reduce to the squared Euclidean norm ∥x − uj∥2. These terms can be 
developed to identify pixel–pixel-frequency interactions: 
∥ x − uj∥

2 = (x − uj)
⊤(∑kvkv

⊤
k )(x − uj)  = ∑k∑ii′ [x − uj]i[x − uj]i′ [vk]i[vk]i′ . 

From there, one can construct an LRP rule that propagates the 
instance-wise relevance Rj to the pixel–pixel-frequency features:

Rii′k = ∑
j

[x − uj]i[x − uj]i′ [vk]i[vk]i′
ϵ+ ∥ x − uj∥

2 R j, (4)

where the variable ϵ is a small positive term that handles the case where 
x and uj overlap. A reduction of this propagation rule can be obtained 
by marginalizing over interacting pixels (Rik = ∑i′Rii′k). Further reduc-
tions can be obtained by marginalizing over pixels (Rk = ∑iRik) or fre-
quencies (Ri = ∑kRik). These reductions are used to generate the heat 
maps in Fig. 4.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this paper, in particular the NIH CXR8 (ref. 36), ‘COVID-
19 image data collection’37, ImageNet43 and MVTec-AD9 datasets, as well 
as the pretrained models, are publicly available. The URLs for these 
datasets and models are given in Methods.

Code availability
The full code for reproducing our results is available via Zenodo at 
https://doi.org/10.5281/zenodo.14186119 (ref. 89).
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