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InstaNovo enables diffusion-powered 
de novo peptide sequencing in large-scale 
proteomics experiments
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Oliver Morell    2, Rachel Catzel    1, Esperanza Rivera-de-Torre2, 
Jakob Berg Jespersen3, Wesley Williams1, Sam P. B. van Beljouw4,5, 
Marcin J. Skwark    1, Andreas Hougaard Laustsen    2, Stan J. J. Brouns4,5, 
Anne Ljungars    2, Erwin M. Schoof    2, Jeroen Van Goey    1, 
Ulrich auf dem Keller2,7, Karim Beguir1, Nicolas Lopez Carranza1 & 
Timothy P. Jenkins    2 

Mass spectrometry-based proteomics focuses on identifying the peptide 
that generates a tandem mass spectrum. Traditional methods rely on 
protein databases but are often limited or inapplicable in certain contexts. 
De novo peptide sequencing, which assigns peptide sequences to spectra 
without prior information, is valuable for diverse biological applications; 
however, owing to a lack of accuracy, it remains challenging to apply. Here 
we introduce InstaNovo, a transformer model that translates fragment ion 
peaks into peptide sequences. We demonstrate that InstaNovo outperforms 
state-of-the-art methods and showcase its utility in several applications.  
We also introduce InstaNovo+, a diffusion model that improves performance 
through iterative refinement of predicted sequences. Using these models, 
we achieve improved therapeutic sequencing coverage, discover novel 
peptides and detect unreported organisms in diverse datasets, thereby 
expanding the scope and detection rate of proteomics searches. Our models 
unlock opportunities across domains such as direct protein sequencing, 
immunopeptidomics and exploration of the dark proteome.

Mass spectrometry (MS)-based proteomics has revolutionized the 
way we study proteins on a large scale1. Bottom-up proteomics, the 
main workflow used for system-wide proteomics experiments, relies 
on the identification of peptides by comparing recorded tandem 
mass (MS/MS) spectra containing fragment ions with theoretical 
peptide fragmentation spectra generated from in silico digestion of 
a protein database2–4. At present, the strategy of database search with 
target-decoy false discovery rate (FDR) estimation is almost exclusively 

used for both spectrum-centric and peptide-centric acquisition 
methods5,6. The database search approach allows for peptide scoring 
against acquired spectra and calculation of the FDR of the resulting 
peptide-spectrum matches (PSMs), which are also strictly controlled 
at the peptide and protein grouping level7–9. Although database search 
with target-decoy FDR estimation presents a convenient and proven way 
to reduce the computational search space and control FDR in MS-based 
proteomics, this approach has critical shortcomings10,11. Naturally, a 
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be readily adaptable and applicable for de novo peptide sequenc-
ing with MS data. This is further supported by work41 that builds on 
transformer-based de novo sequencing models, although there are 
other architectures that have also shown promising results42. We 
designed our neural network to take the mass spectrum embeddings 
as model inputs, encoding the intensities and their positions (m/z in 
the mass spectrum) in the fragmentation spectra. Recent research 
has shown that mass spectra vectors can be better represented with 
multi-scale sinusoidal embeddings33. To augment our autoregressive 
model, we implement knapsack-based beam search decoding, ensuring 
that the model always outputs a peptide sequence that matches m/z of 
the precursor. Together, this architecture constitutes our InstaNovo 
(IN) model (Fig. 1c and Supplementary Fig. 2a).

Iterative refinement of predictions improves performance. With 
recent literature showing diffusion models outperforming previous 
architectures43–46, we reasoned that probabilistic denoising models 
would be well suited for our spectrum to sequence prediction. In addi-
tion, we believed that the iterative refinement properties of denoising 
models match well with the way humans approach the problem of 
de novo sequencing, operating with an initial fuzzy prediction based 
on distinct, unambiguous elements of the spectrum, revisiting and 
refining the prediction in serial timesteps. On the basis of previous 
experience47, we adapted the denoising principles to suit our purpose, 
and introduced an iterative refinement model that takes an initial 
prediction (either random or from the IN model), refines and improves 
on it by revisiting the information encoded by the spectrum given the 
updated knowledge provided by the peptide sequence. The model con-
sists of an encoder similar in architecture to IN and a decoder that itera-
tively refines predictions in 20 steps. The decoder also cross-attends to 
an embedding of the current timestep, giving the model an indication 
on how far along the refinement is.

We termed this iterative refinement de novo sequencing model 
InstaNovo+ (IN+; Fig. 1d and Supplementary Fig. 2b). When the IN 
predictions were used as the starting input sequences to IN+, we saw 
a considerable improvement in model performance and recall in our 
validation sets. This indicates that IN+ is adept in recognizing errors 
in the initial predictions and correcting them through refinement of 
the predicted sequences in a series of steps.

Comparative performance evaluation
We conducted performance evaluation of IN by comparing it with the 
current state-of-the-art model, Casanovo29. This model was selected 
as it also used a transformer architecture and reported leading-edge 
performance, making it an ideal benchmark. We used two benchmark 
datasets: the high-resolution nine-species dataset30, which serves as 
a standard benchmark for evaluating deep learning de novo peptide 
sequencing tools, and the ProteomeTools36 dataset, which provides a 
more comprehensive collection of high-quality mass spectra derived 
from synthetic peptides. We implemented PointNovo48 but found 
that it never converged to a comparable level of performance when 
trained on high-confidence ProteomeTools (HC-PT), and so it was 
excluded. When we assessed the peptide-level precision–recall curve 
comparing the models trained only on HC-PT, and those trained on 
HC-PT and fine-tuned on the nine-species dataset, we see IN+ and 
IN outperforming Casanovo when trained on HC-PT, whereas Casa-
novo is comparable with IN when trained on HC-PT and fine-tuned 
on the nine-species dataset. IN+ outperforms Casanovo and IN when 
fine-tuned (Fig. 2a). We also evaluated the HC-PT trained models 
on HC-PT and all-confidence ProteomeTools (AC-PT), respectively 
(Fig. 2b,c). On HC-PT, the precision–recall curve of IN showed 
improved calibration compared with IN+, with higher peptide pre-
cision for the same recall values. We expect this is due to the way we 
estimated the lower bound of the diffusion model confidence, which is 
not as straightforward as autoregressive models. On the nine-species 

database search narrows the scope of the recorded raw data, and only 
yields identifications for protein sequences present in the supplied 
database. Therefore, the selection of the employed database is of great 
importance, and a poor choice of database can hinder identification of 
protein isoforms, alternative splicing events, coding single-nucleotide 
polymorphisms or elucidation of proteins from other organisms not 
considered for database inclusion. Similarly, database search cannot 
identify engineered sequences or evolved proteins of interest with-
out knowledge of their sequence, and are agnostic to transcription or 
translation errors. Another major limitation of database search is the 
skyrocketing cost in search space complexity and its impact on peptide 
and protein identification. Inclusion of even a relatively modest number 
of post-translational modifications (PTMs) exponentially increases the 
computational cost and processing time of database search12,13. This 
limits searches to only a few PTMs and makes semi-tryptic or open 
searches—which would allow for the identification of alternative start 
sites and proteolytically processed proteoforms—time-consuming 
and computationally expensive14,15. The expanded search space also 
results in an increased false-positive rate, which causes FDR hikes and 
therefore lower identification numbers16,17.

An alternative approach to database search is de novo peptide 
sequencing, which relies on peptide identification through precursor 
fragmentation and fragment ion fingerprinting. This approach is the 
method of choice for bottom-up proteomics when prior sequence 
information is absent18,19. Modern de novo sequencing algorithms have 
attempted to streamline and automate the process of manual fragment 
identification and peptide sequencing, achieving impressive results20,21. 
However, such algorithms still suffer from substantial computational 
costs and high FDRs, rendering de novo sequencing for large-scale 
experiments unattainable22,23. Recently, with the advent of deep learn-
ing and powerful neural network architectures, as well as the explosion 
in MS dataset generation and developments in instrumentation, we are 
experiencing a renaissance in the field of PSM inference24–26, rescoring 
and de novo sequencing peptide prediction27–31. Such approaches hold 
the promise of accurate peptide identification with linear increases 
in compute costs for inference, rather than the current exponential 
cost increases associated with database search. De novo approaches 
represent a powerful methodology for system-wide sequencing experi-
ments without the need for prior sequence information or additional 
downsides of database search32. By overcoming the limitations of 
database search, de novo sequencing opens the door to proteomics 
applications previously considered out of reach. However, so far, such 
de novo sequencing algorithms have not quite met the performance 
level required to truly leverage de novo protein sequencing, and their 
performance compared with database search remains underwhelming.

Here we introduce InstaNovo, a model that exceeds state-of-the-art 
performance on de novo peptide prediction with substantial increases 
in precision and recall rates compared with existing tools. InstaNovo is 
a transformer model that uses multi-scale sinusoidal embeddings33 to 
effectively encode MS peaks. These inputs are processed by nine trans-
former decoder layers, which cross-attend to the peak embeddings. 
We apply knapsack beam search decoding for candidate selection and 
peptide scoring. We also introduce InstaNovo+, an iterative refinement 
diffusion model inspired by manual human de novo sequencing, which 
further improves prediction accuracy.

Results
Training dataset selection and InstaNovo model architecture
Consistent with the literature34,35, we reasoned that our model 
architecture would benefit from training with a large, consistent, 
well-documented training dataset. Thus, we decided to train our model 
on the largest available proteomics dataset, the ProteomeTools36 data-
set (Fig. 1).

Inspired by recent developments in the de novo sequencing 
field29,31, we reasoned that the transformer architecture37–40 would 
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dataset, we evaluated the model accuracy on three species (Fig. 2d,e). 
We see that IN+ consistently outperforms both Casanovo and IN, for 
both peptide-level accuracy and amino acid recall. We found that 
although IN+ in itself marginally improves recall, it ends up predicting 
not only many of the same peptides as IN but also different ones. As 
such, IN+ does not merely constitute a refinement in our base model, 
but can be used in addition to IN, overall substantially increasing the 
number of peptides predicted with low FDR.

We next used the database search results to ground our search and 
derive a surrogate confidence threshold for FDR estimation. Compar-
ing the PSMs identified in database search with model predictions, we 
calculated the confidence threshold of the de novo peptide sequencing 
models that can yield the predictions with 5% FDR. We evaluated the 
predictions above this confidence threshold that are identical to the 

database search PSMs. In the nine-species yeast dataset, a database 
search identified 111,312 PSMs after filtering of a maximum peptide 
length of 30 and a maximum of 800 peaks in the spectrum. Within 
that PSM pool, we found that Casanovo predicted 39,659 PSMs at 
5% FDR with 2,530 not found in either IN or IN+; IN predicted 39,830 
PSMs (2,202 unique) and IN+ identified 52,633 PSMs (10,901 unique), 
32.71% more than Casanovo. Together IN and IN+ identified 56,230 
PSMs, 41.78% more than Casanovo, which constituted a substantially 
improved performance of both models when combined (Fig. 2f,g). 
This trend still held true for the other two datasets (HC-PT and AC-PT), 
although the improvement was smallest for HC-PT (Extended Data 
Fig. 2a–d). Error analysis indicated that IN and IN+ are incorrectly 
classifying predictions in the same categories as Casanovo (Extended 
Data Fig. 3).
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Fig. 1 | InstaNovo pipeline overview. a, ProteomeTools datasets and their  
PRIDE repository identifiers. Each dataset covers a unique set of synthetic 
peptides, derived from human protein sequences, which have been measured 
with MS. b, Overview of data extraction and preprocessing steps. Raw data  
were matched with the results of a database search with target-decoy FDR 
estimation (controlled at 1%) to create the training dataset of our models.  
c, IN model architecture. The model takes a mass spectrum as input, which is 
transformed to a latent embedding representation using multi-scale sinusoidal 
embeddings that encodes the intensity and m/z vectors. This is passed through L 
transformer encoder layers, each with multiple heads to derive a cross-attention 
representation of the peaks in the spectrum. Additional precursor information is 
included and concatenated to form the encoder output, which is cross-attended 

by L decoder layers. The precursor information may alternatively be encoded as 
the start-of-sequence token in the decoder. The decoder takes in an embedding 
of the partially decoded peptide sequence, and is responsible for predicting 
the next residue of the peptide. A knapsack beam search decoding is applied to 
ensure the model outputs a confident prediction that matches the precursor 
mass and charge. d, Overview over the iterative refinement model, IN+. The 
model features the IN encoder and a diffusion decoder, which iterates over 
sequence predictions in a series of timesteps, denoising and refining predictions 
using a multinomial probability distribution for discrete sequence prediction. t is 
the denoising timestep, xt is the noised sequence at timestep t, x0 is the denoised 
sequence where t = 0. p is the posterior distribution over xt−1 given xt.
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InstaNovo adds value and robustness to bottom-up 
proteomics
We evaluated IN and IN+ on eight validation datasets within major 
areas of interest, that is, including simple cell lysates (HeLa single 
shot), immune peptide identification (immunopeptidomics), the dark 
proteome (‘Candidatus Scalindua brodae’; snake venoms), antibody 
sequencing (nanobodies; IgG–herceptin), microbiome identification 
(human wound exudates) and the protease degradome (HeLa degra-
dome). Database search was applied to each, with the search results 
and number of spectra outlined in Extended Data Table 1. In a given 
dataset, IN achieved up to 72.4% peptide accuracy and IN+ achieved 

up to 73.6% peptide accuracy (‘Candidatus Scalindua brodae’ pro-
teome) without further fine-tuning on individual datasets, and only 
including the training evaluation rounds. The performance fluctuated 
depending on the dataset, resulting in an average of 48.3% peptide 
accuracy ± 19.4% s.d. for IN, and 51.5% peptide accuracy ± 21.1% s.d. 
for IN+ on these 8 biological application-oriented datasets (Fig. 3a 
and Extended Data Table 2). At 5% FDR, IN predicts a median of 4,014 
PSMs (Fig. 3b), or an average of 34% novel PSMs at 5% FDR compared 
with the total PSMs in database search results (Fig. 3c). Within the 
database search results, IN+ finds on average 3% more PSMs that were 
not covered by IN, while improving peptide accuracy by 1.5% on average 
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Fig. 2 | Comparative evaluation of Casanovo, InstaNovo and InstaNovo+.  
a, Peptide-level precision–recall curves on the nine-species dataset, excluding 
yeast. b, Peptide-level precision–recall curves on HC-PT. c, Peptide-level 
precision–recall curves on AC-PT. d, Peptide-level accuracy of each model on 
the high-resolution nine-species dataset, excluding yeast, bacillus and mouse. 
The model is trained on HC-PT, fine-tuned on the nine-species dataset and then 
evaluated on the holdout species. e, Amino acid-level accuracy of each model on 
the high-resolution nine-species dataset, excluding yeast, bacillus and mouse. 

f, Peptide-level UpSet plot illustrating the intersection of correct predictions 
made by the fine-tuned IN, IN+ and Casanovo models on the nine-species dataset, 
excluding yeast, when evaluated at an FDR of 0.05. g, Peptide-level Venn diagram 
illustrating the same intersections as f, but showing them as percentages (recall) 
of the database search ground-truth (ms_ninespecies_benchmark) dataset, which 
is illustrated by the area of the circle with the dotted edge. Areas in the Venn 
diagram are approximate, owing to the imperfection of the Venn algorithm.
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(Extended Data Table 3). Precision–recall curves in application-focused 
datasets show considerable variance depending on sample type and 
origin (Fig. 3d,e), while model precision as a function of confidence 
is generally conserved, especially for confidence values above 95%, 
with the exception of the snake venom proteomics and the nanobod-
ies dataset (Fig. 3f).

Additional evaluations on application-focused datasets
We further performed in depth characterization of the eight 
application-focused datasets to gain a deeper understanding of the 
biological insights gained by IN and IN+ analysis. Additional details 
can be found in Supplementary Note 9.

InstaNovo detects more than half of the human proteome from 
HeLa cells and expands the sequence coverage of novel biolog-
ics. First, we conducted a benchmark study on the lysate of HeLa cells. 
The results from this study (Fig. 4a–e and Extended Data Fig. 4) sug-
gested that IN generates high-confidence predictions that support 
and expand database search results even in the most comprehensively 
characterized proteomes. IN was able to achieve 49.6% recall in the HeLa 
single-shot dataset, assigning correct (identical to the database search) 
sequences for 8,774 PSMs. Using a confidence cut-off equivalent to 5% 
FDR for sequence predictions, IN increased the database search PSM 
identification rate by 7.5%, identifying 1,338 more PSMs in the MS/MS 
scans that did not result in any database search hits.
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Fig. 3 | Performance of InstaNovo and InstaNovo+ on the labelled application-
focused datasets. a, Peptide-level accuracy of IN and IN+ on each application-
focused dataset. b, Total number of PSMs for IN and IN+ models at 5% FDR. 
Overlap with database search PSMs is shown in grey. c, Novel PSMs at 5% FDR  
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proteome from human patient wound exudates as extracted from dressings. 
e, Comparison of peptide-level precision–recall curves for both models on 
the datasets where novel sequences were involved. These were HLA peptide-
enriched samples, nanobodies and the antibody herceptin, as well as a HeLa 
proteome dataset including semi-tryptic and open search peptides. f, Kernel-
smoothed precision of model confidence distributions across multiple  
datasets for IN.
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Next, we investigated our model’s performance in de novo 
sequencing of novel, engineered biomolecules (see Supplementary 
Note 9 for preparation details). Notably, we sequenced 13 nanobodies 
and obtained 7,536 matches mapping to 613 peptides when expanding 
the search to the full search space (all MS/MS spectra) of our runs, which 
presented a 6-fold peptide detection increase compared with the PSM 
space from database searches (Fig. 4h). The unique peptide sequences 
detected for a given nanobody increased from 5 to 40, a striking 8-fold 
increase in average unique sequences when contrasted with the data-
base search space. We also applied our model to a publicly available 
dataset evaluating MS-based antibody sequencing49, where the authors 
used nine different proteases and two fragmentation activation types 
to sequence herceptin. Importantly, it increases protein coverage to 
92.87% and 100% for heavy and light chains, respectively (Fig. 4i). The 
results from this study (Fig. 4f–i and Extended Data Fig. 6) indicated 
that our models are adept at novel protein sequencing with IN and IN+ 
matching database results, while simplifying the sequencing workflow.

InstaNovo finds novel proteins and pathogens in proteomes. Fol-
lowing the above results, we questioned how our model would perform 
in complex samples where the presence of multiple organisms is sus-
pected. For that, we utilized wound fluid exudates from human patients 
with venous leg ulcer50. We extended albumin mapping to 1,225 PSMs 
with 254 unique peptides (most semi- or non-tryptic), a 10-fold increase 
compared with the database search space, and observed analogous 
results in other proteins (Fig. 5a). Importantly, we mapped unique 
sequences to 5 of Pseudomonas aeruginosa, 23 of Escherichia coli and 
24 of Citrobacter sp. proteins, with a substantial number of sequences 
mapping to multiple proteomes. We validated the presence of E. coli 
and P. aeruginosa in both wound exudates by PCR of the 16S rRNA gene 
for these organisms (Extended Data Fig. 5).

We next looked into how IN performs in the field of metaproteom-
ics. We chose a co-culture of an enrichment reactor for the marine 
bacterium ‘Candidatus Scalindua brodae’. We examined the 1,937 
sequences that did not map to our protein databases by comparing 
them with sequences in genome databases. This revealed potential 
additional species present in our samples, such as Phototrophicales 
bacterium, ‘Candidatus Scalindua arabica’, Phycisphaerales bacterium, 
Bacteroidota bacterium and Gemmatimonadota bacterium (Fig. 5b,c). 
Our results demonstrate that IN is suitable for metaproteomics appli-
cations, with no prior knowledge about presence of these organisms 
required. Furthermore, we investigated the application of our models 
to samples where limited genomic information is available. We there-
fore picked a dataset that recently described the proteome composi-
tion of 26 medically relevant snake venoms from sub-Saharan Africa51, 
arguing that as not all genomes are available and these proteomes were 
searched against a pan-snake proteome database, we might detect 
potential novel sequences unique for some of these species. For exam-
ple, ‘SLGGVTTEDCPDGQNLCFK’ aligned with the isoform 1 sequence 
of MTLP-2 from Naja kaouthia, a snake species that was absent from 
our input dataset. Overall, these results (Fig. 5d) indicated that there 
were novel hits with undetected, or not included in the database, search 
sequences. These could provide insights into novel proteins, isoforms 
or single-nucleotide polymorphisms in these samples.

InstaNovo identifies peptides in immunopeptidome and degra-
dome. Subsequently, we asked whether our de novo sequencing 
models could be applied to the sequencing of human leukocyte 
antigens (HLA) peptides for the analysis of immunopeptidomics 
experiments. Remarkably, IN predicts 3,495 novel peptides compared 
with the target-decoy search, increasing the peptide identification 
rate by 41.53%. IN+ at 5% FDR detected 11,392 more PSMs from the 
target-decoy search and predicted 12,965 novel PSMs (Fig. 5e). The 
9-mer peptides identified with IN showed a motif consistent with 
major histocompatibility complex bound peptides, exhibiting prefer-
ences for certain residues in positions 2 and 9, supporting the model 
predictions (Fig. 5f). These results indicated that IN performs well in 
open searches, is adept in prediction of HLA peptide sequences and 
can substantially enhance identification rates in immunopeptidome 
datasets. Finally, we questioned our model’s performance in limited 
processing or degradomic samples, where proteolytic substrates and 
their discovery are of interest. We prepared and applied our model 
to a HeLa proteome incubated with the protease GluC. IN predicted 
4,635 new peptide sequences and improved the peptide detection rate 
by 11.29% (Extended Data Fig. 7a,b). Importantly, IN predicted 1,222 
new sequences that match the protease profile, that is, are preceded 
by glutamate residue in the respective protein sequences these pep-
tides map to (Extended Data Fig. 7c,d). Subsequently, we wondered 
whether these cleavages reflected bona fide peptide detections that 
were missed by database searches. We were able to identify several 
high-confidence, semi-tryptic or fully GluC-generated peptides with 
targeted proteomics. We monitored their fragmentation transitions 
in both conditions (Fig. 5g), and obtained a specificity profile with 
glutamate before the cleavage site significantly over-represented in 
statistically significant peptides (Fig. 5h). The results from this study 
confirmed our hypothesis that IN can be applied to the detection of 
protease substrates at a system-wide scale.

Discussion
By expanding the scope of proteomic applications and providing 
insights into previously inaccessible protein landscapes, de novo pep-
tide sequencing is a promising tool for advancing our understanding 
of a wide range of complex biological systems. Here we introduce the 
IN and IN+ models and analyse their predictive performance in several 
application domains, including the sequencing of engineered biomol-
ecules, immunopeptidomics and exploration of the dark proteome. 
We demonstrate improvements in peptide searches and computa-
tional costs, and benchmark against another tool used for de novo 
sequencing, Casanovo. To our knowledge, these results represent a 
notable improvement over other algorithms for de novo sequencing 
in bottom-up proteomics and constitute a promising step in replacing 
or complementing database searches.

Beyond the general improvements over state-of-the-art de novo 
peptide sequencing tools, we present applications of our model in sev-
eral questions in biology. We uncover novel biological findings across 
eight different datasets, including the identification of proteins in HeLa 
cells undetected by database search, the expansion of the immunopep-
tidomics dataset by 175% more peptides and the characterization of 
novel proteolytic cleavages. Given our results and the diversity of the 

Fig. 4 | InstaNovo achieves good accuracy on the established HeLa proteome 
and sequences therapeutics in different formats. a, Barplot of prediction 
distribution index with the highest confidence matching the precursor mass. 
NaN, not a number. b, Receiver operating characteristic (ROC) curve analysis 
for HeLa single-shot proteome IN predictions. Orange line: sensitivity as a 
function of false positive rate. Dashed line: true positive and false positive 
parity. c, IN+ prediction confidence in the HeLa single-shot proteome. d, IN and 
IN+ predictions and their overlap with database search PSMs at 5% FDR in the 
HeLa single-shot proteome. e, Mirror plot of experimental spectrum (top) and 
Prosit predicted spectrum (bottom), in a prediction sequence showing better 

correlation than the database search PSM. f, Barplot of total and unique peptides 
for the nanobodies analysed. g, Sequencing coverage for nanobodies (n = 13, 
median as centre line, 25th to 75th percentiles as bounds of the box, whiskers 
extending to 1.5 times the interquartile range from the bounds of the box, with 
minima and maxima beyond the whiskers plotted as individual points) analysed 
for database search, IN-predicted database search and IN-predicted full search 
at 5% FDR. h, Venn diagram for peptides sequences matching to herceptin in the 
six protease digests analysed with database search and IN predicted in the full 
search space. i, PSMs for database search results and IN-predicted peptides for 
the herceptin heavy chain.
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datasets explored in this study, we expect that the model may general-
ize with high accuracy and satisfactory performance across organisms 
and biological samples. We anticipate future applications of the model 
in several other research areas, such as proteogenomics52, gut microbi-
ome studies53 and studies aiming to explore unreported proteoforms54. 

We also hope that our models find suitable applications in the emerging 
field of single-cell proteomics, where increasing PSM detection rates 
from minute sample amounts is of paramount importance55,56.

We expect that by fine-tuning our models on specific tasks, such 
as big datasets or individual PTMs, they will learn to recognize novel 
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natural or induced chemical modifications of peptide sequences, 
expanding its applications in chemoproteomics, PTM detection and 
discovery, as well as multiplexed proteomics. We also expect our mod-
els to generalize well to lower-resolution spectra and various frag-
mentation techniques. However, further research is needed to assess 
the performance and generalization of IN and IN+ in different types 
of mass spectrometer (for example, instruments with time-of-flight 
or ion trap detectors), different resolution of MS/MS scans and their 
effect in performance and prediction confidence, as well as different 
fragmentation techniques for PTM discovery. We await investigation of 
different acquisition schemes, such as data-independent acquisition, 
and model input adaptation by the creation of pseudo-MS2 spectra57,58, 
facilitating higher detection rates even for applications requiring very 
high sensitivity.

Following recent trends59,60, we anticipate hybrid searches with 
multiple orthogonal methods of PSM predictions, downstream res-
coring algorithms and ensemble models to be increasingly useful in 
utilizing the full recorded spectrum space and maximize detection 
rates. It has to be noted that in our characterization and evaluation of 
the model, we consider database search PSMs as the ground truth for 
peptide detection in our dataset. This assumption might be flawed, 
as database search space PSMs and confidences might be incorrect 
or incomplete. We believe that our models can efficiently be used to 
corroborate, correct and/or disprove database search PSMs, increas-
ing detection rates and improving peptide prediction precision. 
We also speculate that comprehensive post-processing evaluation 
of model predictions and multivariate filtering based on peptide 
features and spectrum similarity will increase the sensitivity and 
fidelity of PSMs. Post-processing filters could also serve as a funnel 
for refinement of predictions with our IN+ model, further leveraging 
the iterative refinement of predictions with diffusion, which currently 
is only scratching the surface of its potential. We further believe that 
our models perform adequately well in prediction of non-tryptic 
peptides, especially if fine-tuned to allow for the use of different 
peptidases for proteolysis and thereby increasing protein coverage 
and sequencing. We predict that deep learning approaches will be 
critical in overcoming the complexity of database searches, and we 
expect reduced search times for ultrafast sequence predictions in 
digestion-agnostic proteomics searches.

Together, our results and those of others show that scale is the 
most determining factor in de novo peptide sequencing model per-
formance, as with other fields where the transformer architecture 
was employed35. We expect to further increase model performance 
by taking advantage of the vast amount of MS datasets available in 
repositories. We also anticipate widespread adoption by peers, and 
look forward to further exploration of fine-tuning, protein inference 
and assembly, as well as building applications on top of our base model 
for hybrid or de novo searches.

Methods
Data
Training dataset retrieval and preparation. IN was trained on the 
large-scale ProteomeTools36 dataset, which has been recorded with 
modern, state-of-the-art instrumentation, containing high-resolution 

spectra for peptides of human origin. This dataset comprises over 
700,000 synthetic tryptic peptides covering the entirety of canonical 
human proteins and isoforms, as well as encompassing peptides gener-
ated from alternative proteases and HLA peptides. We used the data 
from the first three parts of the ProteomeTools project, and split the 
database search results into two datasets. The first dataset is derived 
from the evidence results of the MaxQuant61 searches available in the 
repository, and contains the highest-confidence PSMs per peptide 
and is therefore referred to as the HC-PT dataset. The second dataset 
contains all PSMs regardless of quality (derived from the MS results of 
the searches), and is referred to as the AC-PT dataset. The HC-PT dataset 
contains 2.6 million unique spectra, and the unfiltered AC-PT data-
set contains 28 million total spectra. Both datasets contain 742,000 
unique peptides (Fig. 1a). Distributions of the dataset properties show 
expected behaviour in terms of m/z, charge, measurement error and 
so on (Extended Data Fig. 1). After obtaining the training data from the 
repository, we devised a pipeline to extract the spectrum information 
and associated metadata we believed were needed for model training 
(Fig. 1b and Supplementary Fig. 1).

In more detail, to ensure a consistent analysis, only the 3x high- 
energy collision-induced dissociation (HCD) data were utilized, as 
they provided an inclusion list and employed 3 different HCD frag-
mentation energies. The raw data files were converted to mzML format 
using the Proteowizard MSConvert tool62, with default settings. The 
result files obtained from MaxQuant61 (‘evidence.txt’ or ‘msms.txt’ for 
high-confidence or full dataset, respectively) were employed to extract 
scan indices for identified peptides, as well as the associated metadata 
(precursor mass, charge, measurement error, retention time) for each 
PSM. To facilitate further analysis, the pyOpenMS Python63 wrapper 
of the OpenMS C library was utilized. This tool enabled the reading of 
mzML files, extraction of scans and association of the scans with the 
PSM metadata. To refine the dataset and set a padding threshold for 
the model input features, PSMs were filtered based on specific criteria. 
Only peptides with a length of 30 or fewer residues and a maximum of 
800 peaks in the spectrum were included in the analysis. In all of our 
experiments, we used residues with the following PTMs: carbamido-
methylation for cysteine, oxidation for methionine, and deamidation 
for asparagine and glutamine.

Data splits. We did a 80:10:10 train/validation/test split for HC-PT 
and AC-PT based on the unique peptide sequences. When splitting, 
we ensured that there was no leakage between the HC-PT sets and the 
AC-PT sets (that is, no HC-PT train samples are present in the AC-PT test 
set, and so on). All models and hyperparameters were chosen based on 
their validation set performance. Test-set results were computed only 
when writing up the paper and used for the reported figures. All results 
shown in the paper are reported on the test set. For yeast, bacillus and 
mouse, we used the splits as defined in DeepNovo30 and PointNovo48.

Model implementations
Development of InstaNovo architecture. The IN architecture is based 
on the transformer encoder–decoder architecture64. Similar to Point-
Novo48 and Casanovo29, we represent our MS2 spectra as the set of N 
peaks (m, I), where m = m1, m2, …, mN and I = I1, I2, …, IN represent the sets 

Fig. 5 | InstaNovo increases protein coverage, identifies novel organisms, 
and detects semi- and non-tryptic peptides. a, Protein coverage and peptide 
sequences for UniProt ID P01859 - IGHG2 (immunoglobulin heavy constant 
gamma 2 chain) in human wound fluids, where database search peptides and 
novel predictions with IN are shown. b, Correct PSMs for different precision 
thresholds in the ‘Candidatus Scalindua brodae’ proteome. c, Phylogenetic 
tree of a representative sample of additional organisms identified in the co-
culture. d, Venn diagram of database search and novel IN predictions of peptide 
sequences at 5% FDR from snake venom proteomics that map to the proteomes 
database used. e, Venn diagram of database search, IN and IN+ predictions 

at 5% FDR peptide sequences matching the proteome database used from 
immunopeptidomics dataset. f, Shannon information content of residues in 
sequence positions of immunopeptidomics experiments. g, PRM monitoring of 
fully GluC-generated peptide ATVWIHGDNEENKE, and its abundance in the two 
conditions (n = 3, median as centre line, 25th to 75th percentiles as bounds of 
the box, whiskers extending to 1.5 times the interquartile range from the bounds 
of the box, with minima and maxima beyond the whiskers plotted as individual 
points). RT, retention time in minutes. h, GluC specificity profile from statistically 
significant predicted PSMs matching database search results.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | April 2025 | 565–579 574

Article https://doi.org/10.1038/s42256-025-01019-5

of m/z and intensity, respectively. To encode these peaks, we employ 
multi-scale sinusoidal embeddings33. We process these encoded peaks 
through a transformer encoder layer, allowing the model to self-attend 
and extract relative information between the peaks. The encoder out-
put is concatenated with a learnt latent spectrum and a representation 
of the encoding of the precursor. The precursor mass mprec and charge 
cprec are encoded with a sinusoidal encoding and embedding layer, 
respectively, after which they are summed to represent the precur-
sor embedding. This precursor may alternatively be encoded as the 
start-of-sequence token in the decoder, but we found no difference 
to model performance. The encoder has 9 layers, each with 16 heads, a 
hidden dimension of 768, and a feed-forward dimension of 1,024. This 
encoder allows the fragment ions and their intensities to self-attend to 
other ions present in the spectrum.

The transformer decoder, also consisting of 9 layers with 16 heads 
each, makes use of causal autoregressive decoding. This enables the 
model to take in the previous residues from the predicted sequence 
and autoregressively predict the next token. The partially decoded 
sequence is encoded through an embedding layer and a standard 
sinusoidal positional encoding is added. The input sequence is auto-
matically prepended with a start-of-sequence token. The decoder 
cross-attends over the encoder output, latent spectra and precursor 
encoding.

For the causal autoregressive decoding, we implement knapsack 
beam search decoding. This eliminates the need for multiple predic-
tions and retains performance while increasing model confidence 
and decreasing FDRs in the full search space. IN recall is marginally 
reduced across datasets (0.05–0.2%) compared with a standard beam 
search with 5 predictions per spectrum, and peptide inference takes 
longer compared with beam search, but reductions in almost all error 
types justify its use.

IN has 95 million parameters in total. To train IN, we implement 
the model in PyTorch65, with PyTorch Lightning66 being used to han-
dle the training loop. The loss function computes the cross-entropy 
between the predicted model logits and the ground-truth peptide. 
All training and model hyperparameters are provided in Supple-
mentary Table 1.

Iterative refinement with InstaNovo+. After our initial model train-
ing and promising results in sequence decoding, we speculated that 
next-token prediction is not the most optimal approach to mass spec-
trum sequence decoding.

Under HCD and collision-induced dissociation fragmentation, 
the most intense ions are the b and y ions67–70 of the peptide, with the 
y ions of tryptic peptides generally having better readout properties, 
potentially due to charge localization. For that reason, many de novo 
sequencing models start token prediction from the right-hand side 
of the sequence, as we also do for our base model IN. However, we 
argued that as internal y or even b ions are more intense, there might 
be an advantage in exploring approaches that decode the peptide 
sequence all at once instead of performing next-token prediction 
(Supplementary Fig. 5).

Hence, in addition to IN, we introduce IN+, based on a similar 
transformer architecture but with a different goal. Rather than autore-
gressive decoding, the IN+ model is trained to perform multinomial 
diffusion47,71. This means the model is trained to iteratively remove 
noise from a corrupted sequence (see Supplementary Note 2 for 
further details). The full model architecture is given in Supplemen-
tary Fig. 2b.

When decoding IN+, we decode five samples for each spectrum. 
The sequence that matches the precursor mass with the highest log 
probability under the model is selected as the IN+ prediction. In the case 
where we start with an IN prediction and none of the IN+ predictions 
satisfy the precursor mass, we instead fall back to the IN prediction 
used at t = 15 (which should always fit the precursor).

Metrics and benchmarks
We use peptide recall as our main benchmarking metric for testing 
and validation datasets. As this is the more stringent of metrics used in 
de novo sequencing algorithm evaluation, we believe that this metric 
reflects our model’s performance the best. We also report peptide 
precision, as well as amino acid residue precision, recall and error rates 
for our training and validation datasets. We formulate our metrics as 
done in ref. 49 (see Supplementary Note 4 for details). We further com-
pared our models with baselines using the entire receiver operating 
characteristic curve rather than just the precision and recall at a single 
confidence threshold. We obtained these by varying the confidence 
threshold from the highest to the lowest values obtained in an evalua-
tion dataset and plotting the resulting pairs of (amino acid or peptide 
level) precisions and recall values.

We decoded peptides from our models using beam search with 
knapsack filtering (Supplementary Note 5, Algorithm 1). This ensured 
that the system always found a peptide that fit the precursor mass, 
improving overall performance and reducing the frequency of almost 
all individual error types. Beam search (with beam width B) is a variant 
of breadth-first search where at each step, the frontier is pruned to the 
B highest scoring sequences. We use knapsack filtering in beam search 
to allow only amino acid sequences that can be continued so that their 
theoretical mass matches the precursor mass to a 50 ppm relative dif-
ference. See Supplementary Note 5 for further details.

Application-oriented datasets
Nanobodies. The nanobodies included in this study (Supplementary 
Table 2) were discovered using phage display technology (see Supple-
mentary Note 9 for further details). The nanobody concentration was 
determined by measuring the absorbance at 280 nm in a NanoDrop One 
(ThermoFisher Scientific). From each stock solution, 10 μg of nanobody 
was transferred, the buffer was exchanged and the volume was reduced 
with SP3 bead clean-up72 and following on-bead digestion. In brief, 
pure ethanol was added to a final concentration of 80%. Fifty micro-
grams of each hydrophobic and hydrophilic beads (Cytiva, Sera-Mag 
Carboxylate-Modified [E7] Magnetic Particles 24152105050250 and 
Sera-Mag SpeedBead Carboxylate-Modified [E3] Magnetic Particles 
65152105050250) were added to the solution, and incubated in a 
thermomixer at room temperature, at 800 rpm, for 15 min to allow 
binding. Samples were placed in a magnetic rack and the solvent was 
removed. The remaining beads and bound proteins were washed 3 
times with 90% ethanol, and were finally resuspended in 20 μl of 2.5 M 
guanidine hydrochloride (GuHCl; G3272 Sigma-Aldrich) and 250 mM 
HEPES solution (4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; 
7365-45-9 Sigma-Aldrich). Nanobodies were reduced and alkylated 
with 10 mM TCEP (tris(3-hydroxypropyl triazolyl methyl)amine; 
762342 Sigma-Aldrich) and 40 mM CAA (2-chloroacetamide; 79-07-2 
Sigma-Aldrich), incubated for 10 min at 95 °C. Samples were diluted 5 
times in MilliQ water, and 200 ng trypsin (V5280 Promega Gold) was 
added to a 1:50 protease:proteome ratio, assuming no losses. Samples 
were digested overnight, at 37 °C, 450 rpm. The next day, samples 
were placed on a magnetic rack and the solution was transferred to a 
new tube. Approximately 500 ng of peptides, assuming no losses, was 
acidified and loaded on EvoTips with the standard loading protocol73 
for MS analysis. The samples were analysed using the EvoSep One liquid 
chromatography platform, in line with an Orbitrap Exploris 480 mass 
spectrometer equipped with a FAIMSpro device.

Peptides were separated with a PepSep C18 column (15 cm × 75 μm, 
1.9 μm PepSep, 1893473), over 31 min, employing the Whisper100 
40SPD method. Peptides were ionized with nanospray ionization with 
a 10 μm emitter (PepSep, 1893527), and spray voltage of 2,300 V in 
positive-ion mode, and ion transfer tube of 240 °C. The total carrier gas 
flow was set to 3.6 l min−1, and FAIMS was operated at standard acquisi-
tion. Spectra were acquired in data-dependent resolution mode, under 
two different compensation voltages of −50 and −70 V, with identical 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | April 2025 | 565–579 575

Article https://doi.org/10.1038/s42256-025-01019-5

settings. The cycle time was set to 2 s, with MS1 spectra acquired with 
60,000 resolution, a scan range of 375–1,500, a normalized AGC target 
of 300%, a radio-frequency lens of 40% and an automatic injection 
time. Filters were set for peptide MIPS mode, inclusion of charge states 
2–6, dynamic exclusion of 60 s with 10 ppm tolerance and an intensity 
threshold of 10,000. MS2 spectra were acquired with an isolation win-
dow of 1.6 m/z, normalized HCD of 30%, Orbitrap resolution of 30,000, 
first mass at 120 m/z, normalized AGC target of 100% and an automatic 
injection time. Data analysis was performed in Proteome Discoverer74 
v2.4, with Sequest HT75 as the search engine. The database used was the 
E. coli reference proteome (Uniprot reviewed, UP000284592, 4,360 
sequences, accessed 1 December 2022) concatenated with the nano-
body sequences, and additional dynamic modifications of acetylation 
or methionine loss at the protein N-terminus, along with methionine 
oxidation, and static modification of carbamidomethylation. FDR con-
trol was performed with Percolator, at 1% and 5% target FDRs. Precursor 
quantification was performed with the Minora Feature Detector and 
Feature Mapper nodes in the processing and consensus workflows, 
respectively. Abundances were based on unique and razor peptides 
and above a signal-to-noise ratio of 5, and normalized based on total 
protein amount. PSMs at 1% FDR were exported for further processing, 
data extraction and model validation.

HeLa proteome. HeLa cells were cultured in T25 flasks with Dulbecco’s 
modified Eagle medium (10565018, ThermoFisher Scientific) until 
confluency. Cells were pelleted with centrifugation, and resuspended 
in 6 M GuHCl. Proteins were reduced, alkylated and digested as for 
nanobodies above, with an additional LysC digestion for 1 h at 1:100 
protease:protein ratio, before tryptic digestion. Two-hundred nano-
grams of peptides, assuming no losses, were acidified and analysed with 
a nLC E1200 in line with an Orbitrap Exploris 480 mass spectrometer 
equipped with a FAIMSpro device. Peptides were separated with an 
15 cm × 75 μm, 2 μm EASY-SpayTM column (ThermoFisher Scientific, 
ES904) over a 70 min gradient, starting at 6% buffer B (80% acetonitrile, 
0.1% formic acid), increasing to 23% for 43 min, then to 38% for 12 min, 
60% for 5 min, 95% for 3 min, and staying at 95% for 7 min. Peptides were 
ionized with electrospray ionization with a positive-ion spray voltage of 
2,000 V, and ion transfer tube of 275 °C. The rest of the method settings 
were as described above, with the difference of top-20 data-dependent 
scans, and normalized HCD of 28% for MS2 spectrum acquisition. Data 
analysis was performed as above, with the only differences being the 
use of human database (Uniprot reviewed, UP000005640, 20,518 
sequences, accessed 5 March 2023), and lack of normalization of pre-
cursor quantification in the consensus workflow.

‘Candidatus Scalindua brodae’ proteome. Cells were pelleted and 
lysed under native conditions with hypotonic buffer (10 mM HEPES, 
10 mM NaCl, 1.5 mM MgCl2, 2 mM EDTA, 0.1% NP-40, Roche Mini pro-
tease inhibitor) and a probe sonicator (20% power, 10 s with 1 s pulse, 
5 rounds) on ice. Lysates were upconcentrated and buffer exchanged 
with spin filters (Amicon, 3 kDa cut-off, UFC500324, Merck Millipore) 
to 50 mM HEPES pH 7.8, and their concentration was determined by 
Nanodrop. From then on, the standard proteomics sample prepara-
tion was followed, starting with 50 μg of proteome. Proteins were 
reduced, alkylated and digested as described above. Assuming no 
losses, 1 μg of peptides was acidified and loaded on EvoTips with the 
low-input protocol. The samples were analysed with EvoSep One liq-
uid chromatography platform, in line with an Orbitrap Eclipse mass 
spectrometer equipped with a FAIMSpro device. Peptides were sepa-
rated with a PepSep C18 15 cm × 150 μm, 1.9 μm (PepSep, 1893471), 
over 44 min with the standard 30SPD method. Peptides were ionized 
with nanospray ionization with an 10 μm emitter (PepSep, 1893527), 
and spray voltage of 2,300 V in positive-ion mode, and ion transfer 
tube of 240 °C. Spectra were acquired in data-dependent acquisition 
mode, under 2 different compensation voltages of −50 and −70 V, with 

identical settings. The cycle time was set to 1.2 s, with MS1 spectra 
acquired with 60,000 resolution, and a maximum injection time of 
118 s. MS2 spectra were acquired with an isolation window of 1.6 m/z, 
normalized HCD of 30%, with otherwise similar settings as above. Data 
analysis was performed as above, with the only differences being the 
use of the putative proteome ‘Candidatus Scalindua brodae’ database, 
assembled from metagenomics data (Uniprot Trembl, UP000030652, 
4,014 sequences, accessed 28 February 2023), and lack of normali-
zation of precursor quantification in the consensus workflow. In a 
secondary search, the raw data were searched against the ‘Candidatus 
Scalindua brodae’ proteome as above, along with the proteomes of 
Candidatus Kuenenia stuttgartiensis (UP000221734, 3,801 sequences, 
accessed 27 July 2023), Candidatus Scalindua rubra (UP000094056, 
5,207 sequences, accessed 27 July 2023) and the Candidatus Scalindua 
profunda metagenome from a previous study (23,834 sequences)76.

GluC degradome and PRM monitoring. HeLa cell lysates were 
extracted as in the HeLa proteome section. Six aliquots of 20 μg of 
lysate were resuspended in 100 mM HEPES, pH 7.8 to reduce the GuHCl 
concentration to 0.5 M. Two-hundred nanograms of GluC endopepti-
dase (V1651, Promega) was added to 3 out of the 6 samples to a protease 
to proteome ratio of 1:100 ratio, and all samples were incubated at 37 °C, 
450 rpm, for 20 min. Samples were reduced, alkylated and digested 
with trypsin as described previously. The next day, volume equivalent 
to 1 μg from each sample, assuming no losses, was loaded on EvoTips 
as described above, and samples were analysed using the EvoSep One 
liquid chromatography platform, in line with an Orbitrap Eclipse mass 
spectrometer equipped with a FAIMSpro device. Peptides were eluted 
from a PepSep C18 column (15 cm × 75 μm, 1.9 μm PepSep, 1893473) 
over 58 min with the Whisper100 20SPD method. Scans were acquired 
with the same settings as in the HeLa proteome single-shot analysis. 
Data analysis was performed as above, with use of the human database 
for the HeLa proteome searches, semi-tryptic search and precursor 
quantification normalized on the total peptide amount from each 
sample in the consensus workflow.

PRM assays were designed for representative peptides detected 
by IN with high confidence, but not with the database search. Peptide 
sequences were imported in Skyline77, and an inclusion list with the 
precursor masses was exported. The inclusion list was used to create 
a PRM monitoring method with a targeted mass inclusion filter for 
acquisition of MS/MS scans. GluC degradome samples were analysed 
with the same set-up as in shotgun proteomics and the same FAIMS 
compensation voltages. Scans were acquired with 60,000 resolution 
for MS1 and 15,000 resolution for MS2, and a cycle time of 1 s for each 
FAIMS compensation voltage, with otherwise similar settings with the 
shotgun proteomics experiment. Results were analysed and visualized 
with Skyline.

Wound exudate pathogen validation. The wound exudates were 
extracted from patient wound dressings as described in ref. 50. PCR 
amplification of the 16S rRNA gene was performed using MyTaq Red 
Mix (Bioline) in a final reaction volume of 20 μl, with 2 sets of prim-
ers: 1 specific for the 16S rRNA gene of E. coli (expected amplicon size 
544 bp; annealing temperature 60 °C)78 and another specific for the 
16S rRNA gene of Pseudomonas spp. (expected amplicon size 544 bp; 
Tm 54 °C)79. Each reaction contained 10 μl of MyTaq Red Mix, 1 μl of each 
primer, 2 μl of the sample, and nuclease-free water to adjust the final 
volume. As positive controls, 1 μl of a colony dilution prepared from 
fresh colonies of E. coli BL21(DE3) or P. aeruginosa PA01 was used. PCR 
was conducted with an initial denaturation at 95 °C for 3 min, followed 
by 35 cycles of 95 °C for 20 s, annealing at the primer-specific Tm (60 °C 
or 54 °C) for 20 s (Supplementary Table 3), and extension at 72 °C for 
20 s, with a final extension at 72 °C for 90 s. Post-PCR, 6 μl of each reac-
tion product was loaded onto a 1% (w/v) agarose gel prepared in 1X TAE 
buffer containing SYBR Safe (S33102, ThermoFisher). Electrophoresis 
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was carried out at 100 V for 45 min, and DNA bands were visualized 
under ultraviolet light using a gel documentation system, with a 1 kb 
Plus DNA ladder (ThermoFisher) as the molecular weight reference.

External dataset analysis. The raw data from a snake venom proteom-
ics dataset were downloaded and reanalysed using the Uniprot data-
base sequences for the serpentes order (331,759 sequences, accessed 
5 September 2022), similar to the original study. Data were analysed 
with Proteome Discoverer v2.4 and the Sequest HT search engine, 
with all files included in the same analysis, normalization on total 
peptide amount and precursor quantification, with other settings 
similar to other datasets. The herceptin dataset was downloaded and 
analysed similarly. However, the raw data from the six different pro-
teases were searched separately, and no precursor or normalization 
was performed. The same fasta database as in the original study was 
used for PSM detection. Search results were then combined for predic-
tion and evaluation.

The immunopeptidomics dataset was reprocessed with the same 
proteome database as in the original paper with MSFragger13 and the 
FragPipe v21.1 pipeline with the non-specific HLA workflow, and oth-
erwise default settings. MSBooster80 was used for rescoring with deep 
learning prediction, and Percolator was used for PSM FDR control, while 
no FDR control was used on the protein level.

The wound fluid dataset was downloaded and searched with the 
same human database as used for the HeLa proteome and GluC degra-
domics experiments. Both raw data files were analysed in the same 
search in Proteome Discoverer v2.4, with total peptide amount normali-
zation and precursor quantification. In the secondary search results, 
the same human proteome as well as protein sequences downloaded 
from the Uniprot database for the pathogens of interest Citrobacter 
sp. (UP000682339, 3,414 sequences), P. aeruginosa (UP000002438, 
5,564 sequences), S. aureus (UP000008816, 2,889 sequences) and E. 
coli (UP000000625, 4,403 sequences) were used for PSM detection.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw data and search results used for evaluation, and public datasets 
used or datasets generated in this study, have been deposited to the 
ProteomeXchange Consortium via the PRIDE81 partner repository 
with the dataset identifier PXD044934. Additional files relating to 
pre-processed results used for training and metric evaluation have also 
been uploaded in the same archive repository. Supplementary files 
supporting the data preprocessing, tool usage and analysis performed 
on eight different application-centric datasets have been depos-
ited on figshare at https://doi.org/10.6084/m9.figshare.24173889  
(ref. 82). The ProteomeTools datasets used to train the models in this 
study can be found in the PRIDE repository with identifiers PXD004732 
(Part I), PXD010595 (Part II) and PXD021013 (Part III). The nine-species 
dataset30 is available through the MassIVE repository with dataset 
identifier MSV000081382. The immunopeptidomics dataset83 used for 
model evaluation can be found in the PRIDE repository with identifier 
PXD006939. Snake venom files and search results51 can be found in 
the PRIDE repository with identifier PXD036161. The wound exudate 
files and search results50 are available in PanoramaWeb with dataset 
identifier PXD025748. The herceptin dataset49 is available on figshare 
at https://doi.org/10.6084/m9.figshare.21394143 (ref. 84).

Code availability
InstaNovo and InstaNovo+ are available at https://github.com/
instadeepai/InstaNovo and on Zenodo at https://doi.org/10.5281/
zenodo.14712453 (ref. 85) along with model checkpoints and a Google 
Colab notebook for easy experimentation, demonstration and 

integration into research workflows. In addition, a user-friendly website 
is linked from the GitHub repository where users can upload their data 
and receive predictions directly, making the models accessible without 
requiring local set-up. Furthermore, we have made the nine-species 
dataset30 also available at https://huggingface.co/datasets/InstaDee-
pAI/ms_ninespecies_benchmark (https://doi.org/10.57967/hf/3821)86, 
and the high-confidence ProteomeTools36 dataset available at https://
huggingface.co/datasets/InstaDeepAI/ms_proteometools (https://
doi.org/10.57967/hf/3822)87. Custom scripts used for data analysis 
and visualization are available on figshare (https://doi.org/10.6084/
m9.figshare.24173889.v1) (ref. 82).
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Extended Data Fig. 1 | ProteomeTools descriptive statistics for all-confidence 
PSMs (AC- PT) and high-confidence PSMs (HC-PT). a, Number of peaks per 
spectrum. b, Peptide length of PSM sequences. c, Distribution by peptide type, 

including tryptic, HLA-I, HLA-II, LysN, and AspN. d, Retention time distribution.  
e, Distribution of measurement error (ppm) in AC-PT. f, Ion matches for PSM 
scans distribution in AC-PT. g, Amino acid frequency in PSM sequences.
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Extended Data Fig. 2 | Overlaps between IN, IN+ and Casanovo’s correct 
predictions at 0.05 FDR for AC-PT and HC-PT. a, Peptide-level UpSet plot 
illustrating the intersection of correct predictions made by the IN, IN+, and 
Casanovo models on the AC-PT dataset, when evaluated at a false discovery rate 
(FDR) of 0.05. b, Peptide-level Venn Diagram illustrating the same intersections 

as figure a, but displaying them as percentages (recall) of the DB search ground 
truth dataset, which is illustrated by the area of the circle with the dotted edge. 
Areas in the Venn diagram are approximate, due to the imperfection of the Venn 
algorithm. c, Equivalent of figure a, for the HC-PT dataset d, Equivalent of figure 
b, for the HC-PT dataset.
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Extended Data Fig. 3 | Error analysis for a selection of evaluation datasets. Top left: Comparison of Casanovo, IN, and IN+ predictions errors in the nine- 
species dataset. Most errors are caused by a few errors in the overall amino acid sequence for all models. Bottom: Comparison of IN and IN+ errors in 4 out of the  
8 biological datasets.
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Extended Data Fig. 4 | Extended figure for HeLa proteome analysis. a, Human 
database vs artificially generated database peptide matches comparison, 
database search space. b, Peptide length distribution in human proteome 
mapped predictions. c, Length of prediction matches in 10 artificially and 
randomly generated databases. d, Distribution of missed cleavages in full space 

predictions at 5% FDR. e, Venn diagram of peptide sequences mapping to the 
human proteome, identified with database search and sequences predicted by 
Instanovo in the full search space. f, Proteins identified from peptide sequences 
of database search PSMs or InstaNovo predictions in the full search space at  
5% FDR.
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Extended Data Fig. 5 | 16s rRNA PCR of human pathogens in wound fluids. Escherichia coli and Pseudomonas aeruginosa primers were designed for the 16s rRNA 
genes, and a PCR amplification assay was performed to detect these organisms in the patient wound fluids, as a validation of our de novo peptide sequencing results.
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Extended Data Fig. 6 | Direct sequencing and conflict resolution with 
InstaNovo. a, Nanobody TPL0611 01 C09 coverage and sequencing depth with 
unique peptides predicted at 5% FDR. b, Alignment of three separate sequencing 
runs on cells expressing the C09 nanobody, annotated with unique peptide 

sequences predicted with InstaNovo, mapping to one of the areas where  
there was ambiguity in determination of the sequence with genome  
sequencing methods.
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Extended Data Fig. 7 | InstaNovo accurately predicts and expands detection 
rates in HeLa GluC degradome. a, Unique peptide sequences of database search 
and InstaNovo predicted peptides matching to the human reference proteome 
at 5% FDR. b, Proteins detected by predicted peptide sequences InstaNovo at 5% 

FDR. c, GluC candidate cleavages identified at 5% FDR (preceded by glutamate 
residue). d, Sequence length distribution for GluC generated peptides  
(preceded by glutamate residue).
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Extended Data Table 1 | Database search results

Database search results for the datasets used in this study at 1% FDR, except for immunopeptidomics (no protein FDR).
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Extended Data Table 2 | InstaNovo evaluation results on all datasets

Confidence intervals are calculated as ± 1.96 × ŝeB  where ŝeB  is a bootstrap standard error estimated from 10,000 replicates. *We do not calculate bootstrap standard errors for the 
ProteomeTools datasets because their size makes it prohibitively costly but also implies the standard errors would be very small. We exclude the bootstrap standard errors for the nine-species 
dataset on the same basis.
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Extended Data Table 3 | InstaNovo+ evaluation results on all datasets

Confidence intervals are calculated as ± 1.96 × ŝeB  where ŝeB  is a bootstrap standard error estimated from 10,000 replicates. *We do not calculate bootstrap standard errors for the 
ProteomeTools datasets because their size makes it prohibitively costly but also implies the standard errors would be very small. We exclude the bootstrap standard errors for the nine-species 
dataset on the same basis.
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