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InstaNovo enables diffusion-powered
denovo peptidesequencinginlarge-scale
proteomics experiments
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Mass spectrometry-based proteomics focuses on identifying the peptide
that generates atandem mass spectrum. Traditional methods rely on
protein databases but are often limited or inapplicable in certain contexts.
De novo peptide sequencing, which assigns peptide sequences to spectra
without priorinformation, is valuable for diverse biological applications;
however, owingto alack of accuracy, it remains challenging to apply. Here
we introduce InstaNovo, a transformer model that translates fragmention
peaksinto peptide sequences. We demonstrate that InstaNovo outperforms
state-of-the-art methods and showcase its utility in several applications.

We also introduce InstaNovo+, a diffusion model thatimproves performance
throughiterative refinement of predicted sequences. Using these models,
we achieve improved therapeutic sequencing coverage, discover novel
peptides and detect unreported organisms in diverse datasets, thereby
expanding the scope and detection rate of proteomics searches. Our models
unlock opportunities across domains such as direct protein sequencing,
immunopeptidomics and exploration of the dark proteome.

Mass spectrometry (MS)-based proteomics has revolutionized the
way we study proteins on a large scale'. Bottom-up proteomics, the
main workflow used for system-wide proteomics experiments, relies
on the identification of peptides by comparing recorded tandem
mass (MS/MS) spectra containing fragment ions with theoretical
peptide fragmentation spectra generated from in silico digestion of
aprotein database”*. At present, the strategy of database search with
target-decoy false discovery rate (FDR) estimation is almost exclusively

used for both spectrum-centric and peptide-centric acquisition
methods®®. The database search approach allows for peptide scoring
against acquired spectra and calculation of the FDR of the resulting
peptide-spectrum matches (PSMs), which are also strictly controlled
atthe peptide and proteingroupinglevel”’. Although database search
withtarget-decoy FDR estimation presentsaconvenient and proven way
toreduce the computational search space and control FDR in MS-based
proteomics, this approach has critical shortcomings'®". Naturally, a
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database search narrows the scope of the recorded raw data, and only
yields identifications for protein sequences present in the supplied
database. Therefore, the selection of the employed databaseis of great
importance, anda poor choice of database can hinder identification of
proteinisoforms, alternative splicing events, coding single-nucleotide
polymorphisms or elucidation of proteins from other organisms not
considered for database inclusion. Similarly, database search cannot
identify engineered sequences or evolved proteins of interest with-
out knowledge of their sequence, and are agnostic to transcription or
translation errors. Another major limitation of database search is the
skyrocketing costinsearch space complexity and itsimpact on peptide
and proteinidentification. Inclusion of even arelatively modest number
of post-translational modifications (PTMs) exponentially increases the
computational cost and processing time of database search'>'>. This
limits searches to only a few PTMs and makes semi-tryptic or open
searches—which would allow for the identification of alternative start
sites and proteolytically processed proteoforms—time-consuming
and computationally expensive*", The expanded search space also
resultsinanincreased false-positive rate, which causes FDR hikes and
therefore lower identification numbers'®".

An alternative approach to database search is de novo peptide
sequencing, whichrelies on peptide identification through precursor
fragmentation and fragment ion fingerprinting. This approachis the
method of choice for bottom-up proteomics when prior sequence
information is absent'®". Modern de novo sequencing algorithms have
attempted to streamline and automate the process of manual fragment
identification and peptide sequencing, achieving impressive results*?.,
However, suchalgorithms still suffer from substantial computational
costs and high FDRs, rendering de novo sequencing for large-scale
experiments unattainable?”*, Recently, with the advent of deep learn-
ingand powerful neural network architectures, as well as the explosion
inMS dataset generation and developmentsininstrumentation, we are
experiencingarenaissance in the field of PSMinference® 2, rescoring
and de novo sequencing peptide prediction” . Such approaches hold
the promise of accurate peptide identification with linear increases
in compute costs for inference, rather than the current exponential
cost increases associated with database search. De novo approaches
represent a powerful methodology for system-wide sequencing experi-
ments without the need for prior sequence information or additional
downsides of database search®’. By overcoming the limitations of
database search, de novo sequencing opens the door to proteomics
applications previously considered out of reach. However, so far, such
de novo sequencing algorithms have not quite met the performance
level required to truly leverage de novo protein sequencing, and their
performance compared with database search remains underwhelming.

HereweintroducelInstaNovo,amodel that exceeds state-of-the-art
performance on de novo peptide prediction with substantial increases
inprecisionand recall rates compared with existing tools. InstaNovo is
atransformer model that uses multi-scale sinusoidal embeddings™ to
effectively encode MS peaks. These inputs are processed by nine trans-
former decoder layers, which cross-attend to the peak embeddings.
We apply knapsack beam search decoding for candidate selection and
peptide scoring. We alsointroduce InstaNovo+, aniterative refinement
diffusion modelinspired by manual human de novo sequencing, which
further improves prediction accuracy.

Results
Training dataset selection and InstaNovo model architecture
Consistent with the literature®**, we reasoned that our model
architecture would benefit from training with a large, consistent,
well-documented training dataset. Thus, we decided to train our model
onthelargest available proteomics dataset, the ProteomeTools* data-
set (Fig.1).

Inspired by recent developments in the de novo sequencing
field**', we reasoned that the transformer architecture® *° would

be readily adaptable and applicable for de novo peptide sequenc-
ing with MS data. This is further supported by work* that builds on
transformer-based de novo sequencing models, although there are
other architectures that have also shown promising results*>. We
designed our neural network to take the mass spectrum embeddings
as model inputs, encoding the intensities and their positions (m/zin
the mass spectrum) in the fragmentation spectra. Recent research
has shown that mass spectra vectors can be better represented with
multi-scale sinusoidal embeddings®. To augment our autoregressive
model, weimplementknapsack-based beam search decoding, ensuring
that the model always outputs a peptide sequence that matches m/z of
the precursor. Together, this architecture constitutes our InstaNovo
(IN) model (Fig. 1c and Supplementary Fig. 2a).

Iterative refinement of predictions improves performance. With
recent literature showing diffusion models outperforming previous
architectures®*, we reasoned that probabilistic denoising models
would be well suited for our spectrumto sequence prediction. Inaddi-
tion, we believed that the iterative refinement properties of denoising
models match well with the way humans approach the problem of
de novo sequencing, operating with an initial fuzzy prediction based
on distinct, unambiguous elements of the spectrum, revisiting and
refining the prediction in serial timesteps. On the basis of previous
experience*’, we adapted the denoising principles to suit our purpose,
and introduced an iterative refinement model that takes an initial
prediction (either randomor from the INmodel), refines and improves
onitbyrevisitingtheinformation encoded by the spectrumgiventhe
updated knowledge provided by the peptide sequence. The model con-
sistsof an encoder similarin architecture to INand a decoder thatitera-
tively refines predictionsin 20 steps. The decoder also cross-attends to
anembedding of the current timestep, giving the model anindication
on how far along the refinement is.

We termed this iterative refinement de novo sequencing model
InstaNovo+ (IN+; Fig. 1d and Supplementary Fig. 2b). When the IN
predictions were used as the starting input sequences to IN+, we saw
a considerable improvement in model performance and recall in our
validation sets. This indicates that IN+ is adept in recognizing errors
in the initial predictions and correcting them through refinement of
the predicted sequencesin a series of steps.

Comparative performance evaluation

We conducted performance evaluation of IN by comparing it with the
currentstate-of-the-art model, Casanovo®. This model was selected
asitalsousedatransformerarchitectureand reported leading-edge
performance, makingit anideal benchmark. We used two benchmark
datasets: the high-resolution nine-species dataset®®, which serves as
astandard benchmark for evaluating deep learning de novo peptide
sequencing tools, and the ProteomeTools* dataset, which provides a
more comprehensive collection of high-quality mass spectra derived
from synthetic peptides. We implemented PointNovo*® but found
that it never converged to a comparable level of performance when
trained on high-confidence ProteomeTools (HC-PT), and so it was
excluded. Whenwe assessed the peptide-level precision-recall curve
comparing the models trained only on HC-PT, and those trained on
HC-PT and fine-tuned on the nine-species dataset, we see IN+ and
IN outperforming Casanovo when trained on HC-PT, whereas Casa-
novo is comparable with IN when trained on HC-PT and fine-tuned
onthenine-species dataset. IN+ outperforms Casanovo and IN when
fine-tuned (Fig. 2a). We also evaluated the HC-PT trained models
on HC-PT and all-confidence ProteomeTools (AC-PT), respectively
(Fig. 2b,c). On HC-PT, the precision-recall curve of IN showed
improved calibration compared with IN+, with higher peptide pre-
cision for the same recall values. We expect this is due to the way we
estimated the lower bound of the diffusion model confidence, whichis
notasstraightforward as autoregressive models. On the nine-species
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Fig.1|InstaNovo pipeline overview. a, ProteomeTools datasets and their

PRIDE repository identifiers. Each dataset covers a unique set of synthetic
peptides, derived from human protein sequences, which have been measured
with MS. b, Overview of data extraction and preprocessing steps. Raw data

were matched with the results of a database search with target-decoy FDR
estimation (controlled at 1%) to create the training dataset of our models.

¢, INmodel architecture. The model takes a mass spectrum as input, which s
transformed to alatent embedding representation using multi-scale sinusoidal
embeddings thatencodes the intensity and m/z vectors. This is passed through L
transformer encoder layers, each with multiple heads to derive a cross-attention
representation of the peaks in the spectrum. Additional precursor information is
included and concatenated to form the encoder output, which is cross-attended
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by L decoder layers. The precursor information may alternatively be encoded as
the start-of-sequence token in the decoder. The decoder takes in anembedding
of the partially decoded peptide sequence, and is responsible for predicting

the next residue of the peptide. A knapsack beam search decodingis applied to
ensure the model outputs a confident prediction that matches the precursor
mass and charge. d, Overview over the iterative refinement model, IN+. The
model features the IN encoder and a diffusion decoder, which iterates over
sequence predictions in a series of timesteps, denoising and refining predictions
using a multinomial probability distribution for discrete sequence prediction. tis
the denoising timestep, X, is the noised sequence at timestep ¢, X, is the denoised
sequence where t=0. pis the posterior distribution over x,, given x,.

dataset, we evaluated the model accuracy on three species (Fig. 2d,e).
We see that IN+ consistently outperforms both Casanovo andIN, for
both peptide-level accuracy and amino acid recall. We found that
although IN+initself marginally improves recall, it ends up predicting
not only many of the same peptides as IN but also different ones. As
such, IN+ does not merely constitute arefinement in our base model,
butcanbeusedinadditiontoIN, overall substantially increasing the
number of peptides predicted with low FDR.

We next used the database search results to ground our search and
derive asurrogate confidence threshold for FDR estimation. Compar-
ing the PSMsidentified in database search withmodel predictions, we
calculated the confidence threshold of the de novo peptide sequencing
models that can yield the predictions with 5% FDR. We evaluated the
predictions above this confidence threshold that are identical to the

database search PSMs. In the nine-species yeast dataset, a database
search identified 111,312 PSMs after filtering of a maximum peptide
length of 30 and a maximum of 800 peaks in the spectrum. Within
that PSM pool, we found that Casanovo predicted 39,659 PSMs at
5% FDR with 2,530 not found in either IN or IN+; IN predicted 39,830
PSMs (2,202 unique) and IN+ identified 52,633 PSMs (10,901 unique),
32.71% more than Casanovo. Together IN and IN+ identified 56,230
PSMs, 41.78% more than Casanovo, which constituted a substantially
improved performance of both models when combined (Fig. 2f,g).
Thistrend still held true for the other two datasets (HC-PT and AC-PT),
although the improvement was smallest for HC-PT (Extended Data
Fig. 2a-d). Error analysis indicated that IN and IN+ are incorrectly
classifying predictions in the same categories as Casanovo (Extended
DataFig.3).
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Fig. 2| Comparative evaluation of Casanovo, InstaNovo and InstaNovo+.
a, Peptide-level precision-recall curves on the nine-species dataset, excluding
yeast. b, Peptide-level precision-recall curves on HC-PT. ¢, Peptide-level
precision-recall curves on AC-PT. d, Peptide-level accuracy of each model on
the high-resolution nine-species dataset, excluding yeast, bacillus and mouse.
The modelis trained on HC-PT, fine-tuned on the nine-species dataset and then
evaluated on the holdout species. e, Amino acid-level accuracy of each model on
the high-resolution nine-species dataset, excluding yeast, bacillus and mouse.
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f, Peptide-level UpSet plot illustrating the intersection of correct predictions
made by the fine-tuned IN, IN+ and Casanovo models on the nine-species dataset,
excluding yeast, when evaluated at an FDR of 0.05. g, Peptide-level Venn diagram
illustrating the same intersections as f, but showing them as percentages (recall)
of the database search ground-truth (ms_ninespecies_benchmark) dataset, which
isillustrated by the area of the circle with the dotted edge. Areas in the Venn
diagram are approximate, owing to the imperfection of the Venn algorithm.

InstaNovo adds value and robustness to bottom-up
proteomics

We evaluated IN and IN+ on eight validation datasets within major
areas of interest, that is, including simple cell lysates (HeLa single
shot),immune peptide identification (immunopeptidomics), the dark
proteome (‘Candidatus Scalindua brodae’; snake venoms), antibody
sequencing (nanobodies; IgG-herceptin), microbiome identification
(humanwound exudates) and the protease degradome (HeLa degra-
dome). Database search was applied to each, with the search results
and number of spectra outlined in Extended Data Table 1. In a given
dataset, IN achieved up to 72.4% peptide accuracy and IN+ achieved

up to 73.6% peptide accuracy (‘Candidatus Scalindua brodae’ pro-
teome) without further fine-tuning on individual datasets, and only
including the training evaluation rounds. The performance fluctuated
depending on the dataset, resulting in an average of 48.3% peptide
accuracy +19.4% s.d. for IN, and 51.5% peptide accuracy + 21.1% s.d.
for IN+ on these 8 biological application-oriented datasets (Fig. 3a
and Extended Data Table 2). At 5% FDR, IN predicts amedian of 4,014
PSMs (Fig. 3b), or an average of 34% novel PSMs at 5% FDR compared
with the total PSMs in database search results (Fig. 3¢). Within the
database searchresults, IN+finds onaverage 3% more PSMs that were
not covered by IN, whileimproving peptide accuracy by 1.5% on average

Nature Machine Intelligence | Volume 7 | April 2025 | 565-579

568


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-025-01019-5

— Hela single shot — Snake venomics
a IN BN+ d —— Candidatus Scalindua — Wound exudates
brodae proteome
70 - 100
= 60 - . 90
& &
: < 804
O 50 - <
@ [} ]
e 2 70
3 40 - 9
g @ 601 \
o \
3 30 - o 50 i
g 2 \
o 20~ 5 401 !
o & \
10 - 30 1 :
20 { i — N
-- IN+
10 - - - - - - - |
b IN [ IN+ [l Target-decoy search overlap 0 10 20 30. 40 50 60 70 80
Peptide recall (%)
80,000 -
e — Immunopeptidomics ~ — Nanobodies
g 70,000 - — Hela degradome — Herceptin
™
© 22 60,000 - 100
S = 90
% © 50,000 - .
2z X 80
T = =
40,000 -
5% 5 70
© ]
Z 30,000 - 8 60 -
o
20,000 - S 501
il
B 101
" e Bl = = i
— 30
o- -- I -— -= -— —— I e o
20 — W
c -- N+
o, 175 10 —_—
gE O 10 20 30 40 50 60 70 80
25 i o
§& 150 - f Peptide recall (%)
58
o
o 1
o £ 125 - g 10
T O Q9
g B 08
E $ 100 - g .
2 >
] 3 06
=8 75- 2 -
© 3 k=
o T
28 o 8 041
2R 5
Ee T 021
iz =
]
o —mm W S 0 N o W @ . 000N
o o @ < ]
Q}m N > 0@ > é‘%\ é\@f} PPN o@ > é\@a 1.0 0.8 0.6 0.4 0.2 0]
I FE OF 0@° Qo& S ‘.\\o"’b@& @bbo@ &SF Confidence
N @ Q0 ENGRN L @ O S &
& ¥ L NS N S IS & @ &
S F & o L@ & © @ & S £ &
o & S PN NN S R > S
&S &F PF PF pE S 2 F B
NN N > 2 ° £3 @ 7 NN
oL S & S RO L N
< & 3 & FSEE S
& S SIS
S @ IS
& N
’bQ
O

Fig. 3 | Performance of InstaNovo and InstaNovo+ on the labelled application-
focused datasets. a, Peptide-level accuracy of IN and IN+on each application-
focused dataset. b, Total number of PSMs for IN and IN+ models at 5% FDR.
Overlap with database search PSMs is shownin grey. ¢, Novel PSMs at 5% FDR

for INand IN+, expressed as a percentage of database search total PSMs.

d, Peptide-level precision-recall curves for proteomes explored in this study.
These consist of HeLa cell lysate proteome, ‘Candidatus Scalindua brodae’
proteome from a co-enrichment culture, snake venom proteomes and the

proteome from human patient wound exudates as extracted from dressings.
e, Comparison of peptide-level precision-recall curves for both models on
the datasets where novel sequences were involved. These were HLA peptide-
enriched samples, nanobodies and the antibody herceptin, as well asa HeLa
proteome dataset including semi-tryptic and open search peptides. f, Kernel-
smoothed precision of model confidence distributions across multiple
datasets for IN.

(Extended Data Table 3). Precision-recall curvesinapplication-focused
datasets show considerable variance depending on sample type and
origin (Fig. 3d,e), while model precision as a function of confidence
is generally conserved, especially for confidence values above 95%,
with the exception of the snake venom proteomics and the nanobod-
ies dataset (Fig. 3f).

Additional evaluations on application-focused datasets

We further performed in depth characterization of the eight
application-focused datasets to gain a deeper understanding of the
biological insights gained by IN and IN+ analysis. Additional details
can be found in Supplementary Note 9.

InstaNovo detects more than half of the human proteome from
Hela cells and expands the sequence coverage of novel biolog-
ics. First, we conducted abenchmark study on the lysate of HeLa cells.
The results from this study (Fig. 4a-e and Extended Data Fig. 4) sug-
gested that IN generates high-confidence predictions that support
and expand database searchresults evenin the most comprehensively
characterized proteomes. INwas able to achieve 49.6%recallinthe HeLa
single-shot dataset, assigning correct (identical to the database search)
sequences for 8,774 PSMs. Using a confidence cut-offequivalent to 5%
FDR for sequence predictions, IN increased the database search PSM
identification rate by 7.5%, identifying 1,338 more PSMs in the MS/MS
scans that did not result in any database search hits.
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Next, we investigated our model’s performance in de novo
sequencing of novel, engineered biomolecules (see Supplementary
Note 9 for preparation details). Notably, we sequenced 13 nanobodies
and obtained 7,536 matches mapping to 613 peptides when expanding
thesearchto the full search space (all MS/MS spectra) of our runs, which
presented a 6-fold peptide detectionincrease compared with the PSM
space fromdatabase searches (Fig. 4h). The unique peptide sequences
detected foragivennanobodyincreased from 5t0 40, astriking 8-fold
increase in average unique sequences when contrasted with the data-
base search space. We also applied our model to a publicly available
dataset evaluating MS-based antibody sequencing®, where the authors
used nine different proteases and two fragmentation activation types
to sequence herceptin. Importantly, it increases protein coverage to
92.87%and 100% for heavy and light chains, respectively (Fig. 4i). The
results from this study (Fig. 4f-i and Extended Data Fig. 6) indicated
that our models are adept at novel protein sequencing with INand IN+
matching database results, while simplifying the sequencing workflow.

InstaNovo finds novel proteins and pathogens in proteomes. Fol-
lowing the aboveresults, we questioned how our model would perform
in complex samples where the presence of multiple organisms is sus-
pected. For that, we utilized wound fluid exudates from human patients
with venous leg ulcer*™®, We extended albumin mapping to 1,225 PSMs
with 254 unique peptides (most semi- or non-tryptic),al0-foldincrease
compared with the database search space, and observed analogous
results in other proteins (Fig. 5a). Importantly, we mapped unique
sequences to 5 of Pseudomonas aeruginosa, 23 of Escherichia coli and
24 of Citrobacter sp. proteins, with a substantial number of sequences
mapping to multiple proteomes. We validated the presence of E. coli
and P, aeruginosainbothwound exudates by PCR of the 16S rRNA gene
for these organisms (Extended Data Fig. 5).

We nextlooked into how IN performsin the field of metaproteom-
ics. We chose a co-culture of an enrichment reactor for the marine
bacterium ‘Candidatus Scalindua brodae’. We examined the 1,937
sequences that did not map to our protein databases by comparing
them with sequences in genome databases. This revealed potential
additional species present in our samples, such as Phototrophicales
bacterium,‘CandidatusScalinduaarabica’, Phycisphaerales bacterium,
Bacteroidota bacterium and Gemmatimonadota bacterium (Fig. 5b,c).
Our results demonstrate that IN is suitable for metaproteomics appli-
cations, with no prior knowledge about presence of these organisms
required. Furthermore, we investigated the application of our models
tosamples where limited genomic informationis available. We there-
fore picked a dataset that recently described the proteome composi-
tion of 26 medically relevant snake venoms from sub-Saharan Africa’,
arguingthatasnotallgenomes are available and these proteomes were
searched against a pan-snake proteome database, we might detect
potential novel sequences unique for some of these species. For exam-
ple, ‘'SLGGVTTEDCPDGQNLCFK’ aligned with the isoform 1sequence
of MTLP-2 from Naja kaouthia, a snake species that was absent from
our input dataset. Overall, these results (Fig. 5d) indicated that there
were novel hits with undetected, or notincludedinthe database, search
sequences. These could provide insightsinto novel proteins, isoforms
or single-nucleotide polymorphisms in these samples.

InstaNovo identifies peptides in immunopeptidome and degra-
dome. Subsequently, we asked whether our de novo sequencing
models could be applied to the sequencing of human leukocyte
antigens (HLA) peptides for the analysis of immunopeptidomics
experiments. Remarkably, IN predicts 3,495 novel peptides compared
with the target-decoy search, increasing the peptide identification
rate by 41.53%. IN+ at 5% FDR detected 11,392 more PSMs from the
target-decoy search and predicted 12,965 novel PSMs (Fig. 5e). The
9-mer peptides identified with IN showed a motif consistent with
major histocompatibility complex bound peptides, exhibiting prefer-
ences for certain residues in positions 2 and 9, supporting the model
predictions (Fig. 5f). These results indicated that IN performs well in
open searches, is adept in prediction of HLA peptide sequences and
cansubstantially enhance identification ratesinimmunopeptidome
datasets. Finally, we questioned our model’s performance in limited
processing or degradomic samples, where proteolytic substrates and
their discovery are of interest. We prepared and applied our model
to a HelLa proteome incubated with the protease GIuC. IN predicted
4,635 new peptide sequences and improved the peptide detectionrate
by 11.29% (Extended Data Fig. 7a,b). Importantly, IN predicted 1,222
new sequences that match the protease profile, thatis, are preceded
by glutamate residue in the respective protein sequences these pep-
tides map to (Extended Data Fig. 7c,d). Subsequently, we wondered
whether these cleavages reflected bona fide peptide detections that
were missed by database searches. We were able to identify several
high-confidence, semi-tryptic or fully GluC-generated peptides with
targeted proteomics. We monitored their fragmentation transitions
in both conditions (Fig. 5g), and obtained a specificity profile with
glutamate before the cleavage site significantly over-represented in
statistically significant peptides (Fig. 5h). The results from this study
confirmed our hypothesis that IN can be applied to the detection of
protease substrates at a system-wide scale.

Discussion

By expanding the scope of proteomic applications and providing
insightsinto previously inaccessible protein landscapes, de novo pep-
tide sequencing is a promising tool for advancing our understanding
of awide range of complex biological systems. Here we introduce the
IN and IN+ models and analyse their predictive performancein several
applicationdomains, including the sequencing of engineered biomol-
ecules,immunopeptidomics and exploration of the dark proteome.
We demonstrate improvements in peptide searches and computa-
tional costs, and benchmark against another tool used for de novo
sequencing, Casanovo. To our knowledge, these results represent a
notable improvement over other algorithms for de novo sequencing
inbottom-up proteomics and constitute a promisingstepinreplacing
or complementing database searches.

Beyond the general improvements over state-of-the-art de novo
peptide sequencing tools, we present applications of our modelinsev-
eral questionsin biology. We uncover novel biological findings across
eight different datasets, including the identification of proteinsin HeLa
cells undetected by database search, the expansion of theimmunopep-
tidomics dataset by 175% more peptides and the characterization of
novel proteolytic cleavages. Given our results and the diversity of the

Fig. 4 |InstaNovo achieves good accuracy on the established HeLa proteome
and sequences therapeutics in different formats. a, Barplot of prediction
distribution index with the highest confidence matching the precursor mass.
NaN, not anumber. b, Receiver operating characteristic (ROC) curve analysis
for HeLa single-shot proteome IN predictions. Orange line: sensitivity as a
function of false positive rate. Dashed line: true positive and false positive
parity. ¢, IN+ prediction confidence in the HeLa single-shot proteome. d, IN and
IN+ predictions and their overlap with database search PSMs at 5% FDR in the
HelLasingle-shot proteome. e, Mirror plot of experimental spectrum (top) and
Prosit predicted spectrum (bottom), in a prediction sequence showing better

correlation than the database search PSM. f, Barplot of total and unique peptides
for the nanobodies analysed. g, Sequencing coverage for nanobodies (n =13,
median as centre line, 25th to 75th percentiles as bounds of the box, whiskers
extending to 1.5 times the interquartile range from the bounds of the box, with
minima and maxima beyond the whiskers plotted as individual points) analysed
for database search, IN-predicted database search and IN-predicted full search
at 5% FDR. h, Venn diagram for peptides sequences matching to herceptinin the
six protease digests analysed with database search and IN predicted in the full
search space. i, PSMs for database search results and IN-predicted peptides for
the herceptin heavy chain.
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datasets exploredinthis study, we expect that the model may general-
izewithhighaccuracy and satisfactory performance across organisms
and biological samples. We anticipate future applications of the model
inseveral other research areas, such as proteogenomics™, gut microbi-
omestudies® and studies aiming to explore unreported proteoforms*.

Wealso hope that our models find suitable applicationsin the emerging
field of single-cell proteomics, where increasing PSM detection rates
from minute sample amounts is of paramount importance*-°,

We expect that by fine-tuning our models on specific tasks, such
as big datasets or individual PTMs, they will learn to recognize novel
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Fig. 5| InstaNovo increases protein coverage, identifies novel organisms,
and detects semi- and non-tryptic peptides. a, Protein coverage and peptide
sequences for UniProt ID PO1859 - IGHG2 (immunoglobulin heavy constant
gamma 2 chain) in human wound fluids, where database search peptides and
novel predictions with IN are shown. b, Correct PSMs for different precision
thresholds in the ‘Candidatus Scalindua brodae’ proteome. ¢, Phylogenetic
tree of arepresentative sample of additional organisms identified in the co-
culture. d, Venn diagram of database search and novel IN predictions of peptide
sequences at 5% FDR from snake venom proteomics that map to the proteomes
database used. e, Venn diagram of database search, IN and IN+ predictions

at 5% FDR peptide sequences matching the proteome database used from
immunopeptidomics dataset. f, Shannon information content of residuesin
sequence positions ofimmunopeptidomics experiments. g, PRM monitoring of
fully GluC-generated peptide ATVWIHGDNEENKE, and its abundance in the two
conditions (n =3, median as centre line, 25th to 75th percentiles as bounds of

the box, whiskers extending to 1.5 times the interquartile range from the bounds
ofthe box, with minima and maxima beyond the whiskers plotted as individual
points). RT, retention time in minutes. h, GluC specificity profile from statistically
significant predicted PSMs matching database search results.

natural or induced chemical modifications of peptide sequences,
expanding its applications in chemoproteomics, PTM detection and
discovery, as well as multiplexed proteomics. We also expect our mod-
els to generalize well to lower-resolution spectra and various frag-
mentation techniques. However, further research is needed to assess
the performance and generalization of IN and IN+ in different types
of mass spectrometer (for example, instruments with time-of-flight
orion trap detectors), different resolution of MS/MS scans and their
effect in performance and prediction confidence, as well as different
fragmentation techniques for PTM discovery. We await investigation of
differentacquisition schemes, such as data-independent acquisition,
and modelinput adaptation by the creation of pseudo-MS2 spectra®$,
facilitating higher detection rates even for applications requiring very
high sensitivity.

Following recent trends**®°, we anticipate hybrid searches with
multiple orthogonal methods of PSM predictions, downstream res-
coring algorithms and ensemble models to be increasingly useful in
utilizing the full recorded spectrum space and maximize detection
rates. It has to be noted thatin our characterization and evaluation of
the model, we consider database search PSMs as the ground truth for
peptide detection in our dataset. This assumption might be flawed,
as database search space PSMs and confidences might be incorrect
orincomplete. We believe that our models can efficiently be used to
corroborate, correct and/or disprove database search PSMs, increas-
ing detection rates and improving peptide prediction precision.
We also speculate that comprehensive post-processing evaluation
of model predictions and multivariate filtering based on peptide
features and spectrum similarity will increase the sensitivity and
fidelity of PSMs. Post-processing filters could also serve as a funnel
for refinement of predictions with our IN+ model, further leveraging
theiterative refinement of predictions with diffusion, which currently
isonly scratching the surface of its potential. We further believe that
our models perform adequately well in prediction of non-tryptic
peptides, especially if fine-tuned to allow for the use of different
peptidases for proteolysis and thereby increasing protein coverage
and sequencing. We predict that deep learning approaches will be
critical in overcoming the complexity of database searches, and we
expect reduced search times for ultrafast sequence predictions in
digestion-agnostic proteomics searches.

Together, our results and those of others show that scale is the
most determining factor in de novo peptide sequencing model per-
formance, as with other fields where the transformer architecture
was employed®. We expect to further increase model performance
by taking advantage of the vast amount of MS datasets available in
repositories. We also anticipate widespread adoption by peers, and
look forward to further exploration of fine-tuning, protein inference
and assembly, as well as building applications on top of our base model
for hybrid or de novo searches.

Methods

Data

Training dataset retrieval and preparation. IN was trained on the
large-scale ProteomeTools*® dataset, which has been recorded with
modern, state-of-the-artinstrumentation, containing high-resolution

spectra for peptides of human origin. This dataset comprises over
700,000 synthetic tryptic peptides covering the entirety of canonical
human proteins andisoforms, as well as encompassing peptides gener-
ated from alternative proteases and HLA peptides. We used the data
from the first three parts of the ProteomeTools project, and split the
database search results into two datasets. The first dataset is derived
from the evidence results of the MaxQuant® searches available in the
repository, and contains the highest-confidence PSMs per peptide
and is therefore referred to as the HC-PT dataset. The second dataset
contains all PSMs regardless of quality (derived from the MS results of
thesearches), andisreferred to asthe AC-PT dataset. The HC-PT dataset
contains 2.6 million unique spectra, and the unfiltered AC-PT data-
set contains 28 million total spectra. Both datasets contain 742,000
unique peptides (Fig. 1a). Distributions of the dataset properties show
expected behaviour in terms of m/z, charge, measurement error and
soon (Extended DataFig.1). After obtaining the training datafromthe
repository, we devised apipeline to extract the spectruminformation
and associated metadatawe believed were needed for model training
(Fig.1b and Supplementary Fig.1).

In more detail, to ensure a consistent analysis, only the 3x high-
energy collision-induced dissociation (HCD) data were utilized, as
they provided an inclusion list and employed 3 different HCD frag-
mentation energies. The raw datafiles were converted to mzML format
using the Proteowizard MSConvert tool®’, with default settings. The
result files obtained from MaxQuant® (‘evidence.txt’ or ‘msms.txt’ for
high-confidence or full dataset, respectively) were employed to extract
scanindicesforidentified peptides, as well as the associated metadata
(precursor mass, charge, measurementerror, retention time) foreach
PSM. To facilitate further analysis, the pyOpenMS Python®® wrapper
ofthe OpenMS C library was utilized. This tool enabled the reading of
mzML files, extraction of scans and association of the scans with the
PSM metadata. To refine the dataset and set a padding threshold for
themodelinputfeatures, PSMswere filtered based on specific criteria.
Only peptides withalength of 30 or fewer residues and amaximum of
800 peaks in the spectrum were included in the analysis. In all of our
experiments, we used residues with the following PTMs: carbamido-
methylation for cysteine, oxidation for methionine, and deamidation
for asparagine and glutamine.

Data splits. We did a 80:10:10 train/validation/test split for HC-PT
and AC-PT based on the unique peptide sequences. When splitting,
we ensured that there was no leakage between the HC-PT sets and the
AC-PT sets (thatis,no HC-PT trainsamples are presentin the AC-PT test
set,and soon). Allmodels and hyperparameters were chosen based on
their validation set performance. Test-set results were computed only
whenwriting up the paper and used for the reported figures. All results
showninthe paperarereported on the test set. For yeast, bacillus and
mouse, we used the splits as defined in DeepNovo®® and PointNovo*®,

Model implementations

Development of InstaNovo architecture. The INarchitecture is based
onthetransformer encoder-decoder architecture®. Similar to Point-
Novo*® and Casanovo®, we represent our MS2 spectra as the set of N
peaks(m, I),wherem=m,, m,, ..., myandl=1,1,, ..., Iyrepresent the sets
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of m/z and intensity, respectively. To encode these peaks, we employ
multi-scale sinusoidal embeddings®. We process these encoded peaks
throughatransformer encoder layer, allowing the model to self-attend
and extractrelative information between the peaks. The encoder out-
putis concatenated with alearntlatent spectrumand arepresentation
of theencoding of the precursor. The precursor mass m,,,..and charge
Corec are encoded with a sinusoidal encoding and embedding layer,
respectively, after which they are summed to represent the precur-
sor embedding. This precursor may alternatively be encoded as the
start-of-sequence token in the decoder, but we found no difference
tomodel performance. The encoder has 9 layers, each with 16 heads, a
hidden dimension of 768, and a feed-forward dimension of 1,024. This
encoder allows the fragmentions and their intensities to self-attend to
otherions presentinthe spectrum.

The transformer decoder, also consisting of 9 layers with 16 heads
each, makes use of causal autoregressive decoding. This enables the
model to take in the previous residues from the predicted sequence
and autoregressively predict the next token. The partially decoded
sequence is encoded through an embedding layer and a standard
sinusoidal positional encoding is added. The input sequence is auto-
matically prepended with a start-of-sequence token. The decoder
cross-attends over the encoder output, latent spectra and precursor
encoding.

For the causal autoregressive decoding, we implement knapsack
beam search decoding. This eliminates the need for multiple predic-
tions and retains performance while increasing model confidence
and decreasing FDRs in the full search space. IN recall is marginally
reduced across datasets (0.05-0.2%) compared withastandard beam
search with 5 predictions per spectrum, and peptide inference takes
longer compared with beam search, but reductionsinalmostall error
typesjustifyits use.

IN has 95 million parametersintotal. To train IN, we implement
the modelin PyTorch®, with PyTorch Lightning®® being used to han-
dle the training loop. The loss function computes the cross-entropy
between the predicted model logits and the ground-truth peptide.
All training and model hyperparameters are provided in Supple-
mentary Table 1.

Iterative refinement with InstaNovo+. After our initial model train-
ing and promising results in sequence decoding, we speculated that
next-token predictionis not the most optimal approach to mass spec-
trum sequence decoding.

Under HCD and collision-induced dissociation fragmentation,
the most intense ions are the b and y ions®7° of the peptide, with the
y ions of tryptic peptides generally having better readout properties,
potentially due to charge localization. For that reason, many de novo
sequencing models start token prediction from the right-hand side
of the sequence, as we also do for our base model IN. However, we
argued that asinternal y or even b ions are more intense, there might
be an advantage in exploring approaches that decode the peptide
sequence all at once instead of performing next-token prediction
(Supplementary Fig. 5).

Hence, in addition to IN, we introduce IN+, based on a similar
transformer architecture but witha different goal. Rather than autore-
gressive decoding, the IN+ modelis trained to perform multinomial
diffusion*””’. This means the model is trained to iteratively remove
noise from a corrupted sequence (see Supplementary Note 2 for
further details). The full model architecture is given in Supplemen-
tary Fig. 2b.

When decoding IN+, we decode five samples for each spectrum.
The sequence that matches the precursor mass with the highest log
probability under the modelis selected as the IN+ prediction. Inthe case
where we start with an IN prediction and none of the IN+ predictions
satisfy the precursor mass, we instead fall back to the IN prediction
used at £ =15 (which should always fit the precursor).

Metrics and benchmarks

We use peptide recall as our main benchmarking metric for testing
and validation datasets. As thisis the more stringent of metrics usedin
de novo sequencing algorithm evaluation, we believe that this metric
reflects our model’s performance the best. We also report peptide
precision, aswell asamino acid residue precision, recall and error rates
for our training and validation datasets. We formulate our metrics as
doneinref. 49 (see Supplementary Note 4 for details). We further com-
pared our models with baselines using the entire receiver operating
characteristic curverather thanjust the precisionandrecallatasingle
confidence threshold. We obtained these by varying the confidence
threshold fromthe highest to the lowest values obtained inan evalua-
tion dataset and plotting the resulting pairs of (amino acid or peptide
level) precisions and recall values.

We decoded peptides from our models using beam search with
knapsack filtering (Supplementary Note 5, Algorithm1). This ensured
that the system always found a peptide that fit the precursor mass,
improving overall performance and reducing the frequency of almost
allindividual error types. Beam search (with beam width B) is a variant
ofbreadth-first searchwhere at each step, the frontier is pruned to the
Bhighest scoring sequences. We use knapsack filteringinbeam search
to allow only amino acid sequences that canbe continued so that their
theoretical mass matches the precursor mass toa 50 ppmrelative dif-
ference. See Supplementary Note 5 for further details.

Application-oriented datasets
Nanobodies. The nanobodiesincluded in this study (Supplementary
Table 2) were discovered using phage display technology (see Supple-
mentary Note 9 for further details). The nanobody concentration was
determined by measuring the absorbance at 280 nminaNanoDrop One
(ThermoFisher Scientific). Fromeach stock solution, 10 pg of nanobody
was transferred, the buffer was exchanged and the volume was reduced
with SP3 bead clean-up” and following on-bead digestion. In brief,
pure ethanol was added to a final concentration of 80%. Fifty micro-
grams of each hydrophobic and hydrophilic beads (Cytiva, Sera-Mag
Carboxylate-Modified [E7] Magnetic Particles 24152105050250 and
Sera-Mag SpeedBead Carboxylate-Modified [E3] Magnetic Particles
65152105050250) were added to the solution, and incubated in a
thermomixer at room temperature, at 800 rpm, for 15 min to allow
binding. Samples were placed in a magnetic rack and the solvent was
removed. The remaining beads and bound proteins were washed 3
times with90% ethanol, and were finally resuspendedin 20 pl of 2.5 M
guanidine hydrochloride (GuHCI; G3272 Sigma-Aldrich) and 250 mM
HEPES solution (4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid;
7365-45-9 Sigma-Aldrich). Nanobodies were reduced and alkylated
with 10 mM TCEP (tris(3-hydroxypropyl triazolyl methyl)amine;
762342 Sigma-Aldrich) and 40 mM CAA (2-chloroacetamide; 79-07-2
Sigma-Aldrich), incubated for 10 min at 95 °C. Samples were diluted 5
times in MilliQ water, and 200 ng trypsin (V5280 Promega Gold) was
added toal:50 protease:proteome ratio, assuming no losses. Samples
were digested overnight, at 37 °C, 450 rpm. The next day, samples
were placed on a magnetic rack and the solution was transferred to a
new tube. Approximately 500 ng of peptides, assuming no losses, was
acidified and loaded on EvoTips with the standard loading protocol”
for MS analysis. The samples were analysed using the EvoSep One liquid
chromatography platform, inline withan Orbitrap Exploris 480 mass
spectrometer equipped with a FAIMSpro device.

Peptides were separated with aPepSep C18 column (15 cm x 75 pm,
1.9 um PepSep, 1893473), over 31 min, employing the Whisper100
40SPD method. Peptides were ionized with nanospray ionization with
a10 pm emitter (PepSep, 1893527), and spray voltage of 2,300 V in
positive-ionmode, and ion transfer tube of 240 °C. The total carrier gas
flowwasset to 3.6 | min™, and FAIMS was operated at standard acquisi-
tion. Spectrawere acquired indata-dependent resolution mode, under
two different compensation voltages of =50 and -70 V, with identical
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settings. The cycle timewas setto 2 s, with MS1 spectra acquired with
60,000 resolution, ascanrange of 375-1,500, anormalized AGC target
of 300%, a radio-frequency lens of 40% and an automatic injection
time. Filters were set for peptide MIPS mode, inclusion of charge states
2-6,dynamicexclusionof 60 s with 10 ppm tolerance and anintensity
threshold 0f10,000. MS2 spectra were acquired with anisolation win-
dow of 1.6 m/z, normalized HCD of 30%, Orbitrap resolution of 30,000,
first mass at120 m/z, normalized AGC target of 100% and an automatic
injection time. Data analysis was performed in Proteome Discoverer”™
v2.4,withSequest HT” as the search engine. The database used was the
E. coli reference proteome (Uniprot reviewed, UP000284592, 4,360
sequences, accessed 1 December 2022) concatenated with the nano-
body sequences, and additional dynamic modifications of acetylation
or methionine loss at the protein N-terminus, along with methionine
oxidation, and static modification of carbamidomethylation. FDR con-
trol was performed with Percolator, at 1% and 5% target FDRs. Precursor
quantification was performed with the Minora Feature Detector and
Feature Mapper nodes in the processing and consensus workflows,
respectively. Abundances were based on unique and razor peptides
and above a signal-to-noise ratio of 5, and normalized based on total
proteinamount. PSMs at 1% FDR were exported for further processing,
dataextraction and model validation.

HelLa proteome. Hela cells were cultured in T25 flasks with Dulbecco’s
modified Eagle medium (10565018, ThermoFisher Scientific) until
confluency. Cells were pelleted with centrifugation, and resuspended
in 6 M GuHCI. Proteins were reduced, alkylated and digested as for
nanobodies above, with an additional LysC digestion for 1 h at 1:100
protease:protein ratio, before tryptic digestion. Two-hundred nano-
grams of peptides, assuming nolosses, were acidified and analysed with
anLCEI1200 in line with an Orbitrap Exploris 480 mass spectrometer
equipped with a FAIMSpro device. Peptides were separated with an
15cm x 75 pm, 2 um EASY-SpayTM column (ThermoFisher Scientific,
ES904) over a70 mingradient, starting at 6% buffer B (80% acetonitrile,
0.1% formicacid), increasing to 23% for 43 min, then to 38% for 12 min,
60%for 5 min, 95% for 3 min, and staying at 95% for 7 min. Peptides were
ionized with electrospray ionization withapositive-ion spray voltage of
2,000V, andion transfer tube of 275 °C. The rest of the method settings
were as described above, with the difference of top-20 data-dependent
scans, and normalized HCD of 28% for MS2 spectrum acquisition. Data
analysis was performed as above, with the only differences being the
use of human database (Uniprot reviewed, UPO00005640, 20,518
sequences, accessed 5March 2023), and lack of normalization of pre-
cursor quantification in the consensus workflow.

‘Candidatus Scalindua brodae’ proteome. Cells were pelleted and
lysed under native conditions with hypotonic buffer (10 mM HEPES,
10 mM NacCl, 1.5 mM MgCl,, 2 mM EDTA, 0.1% NP-40, Roche Mini pro-
tease inhibitor) and a probe sonicator (20% power, 10 s with 1s pulse,
5Srounds) onice. Lysates were upconcentrated and buffer exchanged
with spinfilters (Amicon, 3 kDa cut-off, UFC500324, Merck Millipore)
to 50 mM HEPES pH 7.8, and their concentration was determined by
Nanodrop. From then on, the standard proteomics sample prepara-
tion was followed, starting with 50 pg of proteome. Proteins were
reduced, alkylated and digested as described above. Assuming no
losses, 1 ug of peptides was acidified and loaded on EvoTips with the
low-input protocol. The samples were analysed with EvoSep One lig-
uid chromatography platform, in line with an Orbitrap Eclipse mass
spectrometer equipped with a FAIMSpro device. Peptides were sepa-
rated with a PepSep C18 15 cm x 150 pm, 1.9 pm (PepSep, 1893471),
over 44 min with the standard 30SPD method. Peptides were ionized
with nanospray ionization with an 10 pm emitter (PepSep, 1893527),
and spray voltage of 2,300 V in positive-ion mode, and ion transfer
tube of 240 °C. Spectra were acquired in data-dependent acquisition
mode, under 2 different compensation voltages of =50 and -70 V, with

identical settings. The cycle time was set to 1.2 s, with MS1 spectra
acquired with 60,000 resolution, and a maximum injection time of
118 s. MS2 spectra were acquired with an isolation window of 1.6 m/z,
normalized HCD of 30%, with otherwise similar settings as above. Data
analysis was performed as above, with the only differences being the
use of the putative proteome ‘Candidatus Scalindua brodae’ database,
assembled from metagenomics data (Uniprot Trembl, UPO00030652,
4,014 sequences, accessed 28 February 2023), and lack of normali-
zation of precursor quantification in the consensus workflow. In a
secondary search, the raw data were searched against the ‘Candidatus
Scalindua brodae’ proteome as above, along with the proteomes of
Candidatus Kueneniastuttgartiensis (UP000221734, 3,801 sequences,
accessed 27 July 2023), Candidatus Scalindua rubra (UP000094056,
5,207 sequences, accessed 27]July 2023) and the Candidatus Scalindua
profunda metagenome from a previous study (23,834 sequences)”.

GluC degradome and PRM monitoring. Hela cell lysates were
extracted as in the HeLa proteome section. Six aliquots of 20 pg of
lysate were resuspendedin100 mM HEPES, pH 7.8 to reduce the GuHCI
concentration to 0.5 M. Two-hundred nanograms of GluC endopepti-
dase (V1651, Promega) was added to 3 out of the 6 samples to a protease
to proteomeratio of1:100 ratio, and all samples wereincubated at 37 °C,
450 rpm, for 20 min. Samples were reduced, alkylated and digested
with trypsinas described previously. The next day, volume equivalent
to1pg from each sample, assuming no losses, was loaded on EvoTips
asdescribed above, and samples were analysed using the EvoSep One
liquid chromatography platform, inline with an Orbitrap Eclipse mass
spectrometer equipped witha FAIMSpro device. Peptides were eluted
from a PepSep C18 column (15 cm x 75 pm, 1.9 pum PepSep, 1893473)
over 58 min with the Whisper100 20SPD method. Scans were acquired
with the same settings as in the HeLa proteome single-shot analysis.
Dataanalysis was performed as above, with use of the human database
for the HeLa proteome searches, semi-tryptic search and precursor
quantification normalized on the total peptide amount from each
sample in the consensus workflow.

PRM assays were designed for representative peptides detected
by IN with high confidence, but not with the database search. Peptide
sequences were imported in Skyline”’, and an inclusion list with the
precursor masses was exported. The inclusion list was used to create
a PRM monitoring method with a targeted mass inclusion filter for
acquisition of MS/MS scans. GluC degradome samples were analysed
with the same set-up as in shotgun proteomics and the same FAIMS
compensation voltages. Scans were acquired with 60,000 resolution
for MS1and 15,000 resolution for MS2, and a cycle time of 1s for each
FAIMS compensation voltage, with otherwise similar settings with the
shotgun proteomics experiment. Results were analysed and visualized
with Skyline.

Wound exudate pathogen validation. The wound exudates were
extracted from patient wound dressings as described in ref. 50. PCR
amplification of the 16S rRNA gene was performed using MyTaq Red
Mix (Bioline) in a final reaction volume of 20 pl, with 2 sets of prim-
ers: 1specific for the 16S rRNA gene of E. coli (expected amplicon size
544 bp; annealing temperature 60 °C)’® and another specific for the
16S rRNA gene of Pseudomonas spp. (expected amplicon size 544 bp;
T.,54 °C)”.Each reaction contained 10 pl of MyTaq Red Mix, 1 pl of each
primer, 2 pl of the sample, and nuclease-free water to adjust the final
volume. As positive controls, 1 pl of a colony dilution prepared from
fresh colonies of E. coli BL21(DE3) or P. aeruginosa PAO1 was used. PCR
was conducted with aninitial denaturation at 95 °C for 3 min, followed
by35cycles of 95 °Cfor 20 s, annealing at the primer-specific T, (60 °C
or 54 °C) for 20 s (Supplementary Table 3), and extension at 72 °C for
20 s, with afinal extensionat 72 °Cfor 90 s. Post-PCR, 6 pl of eachreac-
tion product was loaded onto a1% (w/v) agarose gel prepared in 1X TAE
buffer containing SYBR Safe (S33102, ThermoFisher). Electrophoresis
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was carried out at 100 V for 45 min, and DNA bands were visualized
under ultraviolet light using a gel documentation system, with alkb
Plus DNA ladder (ThermoFisher) as the molecular weight reference.

External dataset analysis. The raw data from a snake venom proteom-
ics dataset were downloaded and reanalysed using the Uniprot data-
base sequences for the serpentes order (331,759 sequences, accessed
5 September 2022), similar to the original study. Data were analysed
with Proteome Discoverer v2.4 and the Sequest HT search engine,
with all files included in the same analysis, normalization on total
peptide amount and precursor quantification, with other settings
similar to other datasets. The herceptin dataset was downloaded and
analysed similarly. However, the raw data from the six different pro-
teases were searched separately, and no precursor or normalization
was performed. The same fasta database as in the original study was
used for PSM detection. Search results were then combined for predic-
tion and evaluation.

Theimmunopeptidomics dataset was reprocessed with the same
proteome database as in the original paper with MSFragger” and the
FragPipe v21.1 pipeline with the non-specific HLA workflow, and oth-
erwise default settings. MSBooster® was used for rescoring with deep
learning prediction, and Percolator was used for PSM FDR control, while
no FDR control was used on the protein level.

The wound fluid dataset was downloaded and searched with the
same human database as used for the HeLa proteome and GluC degra-
domics experiments. Both raw data files were analysed in the same
searchinProteome Discoverer v2.4, with total peptide amount normali-
zation and precursor quantification. In the secondary search results,
the same human proteome as well as protein sequences downloaded
from the Uniprot database for the pathogens of interest Citrobacter
sp. (UP000682339, 3,414 sequences), P. aeruginosa (UP000002438,
5,564 sequences), S. aureus (UPO00008816, 2,889 sequences) and E.
coli (UP000000625, 4,403 sequences) were used for PSM detection.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw data and search results used for evaluation, and public datasets
used or datasets generated in this study, have been deposited to the
ProteomeXchange Consortium via the PRIDE® partner repository
with the dataset identifier PXD044934. Additional files relating to
pre-processed results used for training and metric evaluation have also
been uploaded in the same archive repository. Supplementary files
supportingthe data preprocessing, tool usage and analysis performed
on eight different application-centric datasets have been depos-
ited on figshare at https://doi.org/10.6084/m9.figshare.24173889
(ref. 82). The ProteomeTools datasets used to train the models in this
study canbe found inthe PRIDE repository withidentifiers PXD004732
(Partl), PXD010595 (PartIl) and PXD021013 (Part Ill). The nine-species
dataset® is available through the MassIVE repository with dataset
identifier MSV000081382. Theimmunopeptidomics dataset® used for
model evaluation canbe found in the PRIDE repository with identifier
PXD006939. Snake venom files and search results™ can be found in
the PRIDE repository with identifier PXD036161. The wound exudate
files and search results® are available in PanoramaWeb with dataset
identifier PXD025748. The herceptin dataset*’ is available on figshare
at https://doi.org/10.6084/m9.figshare.21394143 (ref. 84).

Code availability

InstaNovo and InstaNovo+ are available at https://github.com/
instadeepai/InstaNovo and on Zenodo at https://doi.org/10.5281/
zenodo.14712453 (ref. 85) along with model checkpoints and a Google
Colab notebook for easy experimentation, demonstration and

integrationintoresearch workflows. Inaddition, auser-friendly website
islinked fromthe GitHub repository where users canupload their data
andreceive predictions directly, making the models accessible without
requiring local set-up. Furthermore, we have made the nine-species
dataset™ also available at https://huggingface.co/datasets/InstaDee-
pAl/ms_ninespecies_benchmark (https://doi.org/10.57967/hf/3821)%¢,
and the high-confidence ProteomeTools* dataset available at https://
huggingface.co/datasets/InstaDeepAl/ms_proteometools (https://
doi.org/10.57967/hf/3822)%. Custom scripts used for data analysis
and visualization are available on figshare (https://doi.org/10.6084/
m9.figshare.24173889.v1) (ref. 82).
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Sequence range, protein coverage: 94.19%

Sequencel|M_TPLO611_01_CO9 QVQLQESGGGLVQPGGSLRLSCAASGNIFSINYMKWYRQAPGKQRELVAVIT-DGGRTNY
Sequence2|M_TPLO611_01_C09 QVQLQESGGGLVQAGGSLRLSCAASGRTFSMRNMGWFRQAPGKEREIVATISRSGGSTDY
Sequence3|M_TPLO611_01_C09 QVQLQESGGGLVQAGGSLRLSCAASGRTFSMRNMGWFRQAPGKEREIVATISRSGGSTDY
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Sequencel|M_TPLO611_01_C09 ADSVKGRFAISRDNAKNTTYLQMSDLQPEDTAVYYCYADLRVVDGRHLPRGDYWGQGTQV

Sequence2|M_TPL@611_01_C09 GDSVKGRFTISTDNAKNTAYLLMNSLKPEDTAVYYCAADLFGTRQADLLIYNFRGQGTQV
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Extended DataFig. 6 | Direct sequencing and conflict resolution with sequences predicted with InstaNovo, mapping to one of the areas where
InstaNovo. a, Nanobody TPL0611 01 CO9 coverage and sequencing depth with there was ambiguity in determination of the sequence with genome
unique peptides predicted at 5% FDR. b, Alignment of three separate sequencing sequencing methods.

runs on cells expressing the C09 nanobody, annotated with unique peptide
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Extended Data Table 1| Database search results

Dataset MS/MS TD-search PSMs TD-search Peptides TD-search Proteins

HeLa single shot 463,777 25,107 21,104 3,783

Nanobodies 257,701 23,147 5,897 924
Herceptin 58,609 1,796 129 2

Wound fluids 100,054 20,699 8,307 1,096

Candidatus “Scalindua brodae” 26,099 9,068 7,881 1,694

Snake venoms 558,247 21,257 3,446 610

Immunopeptidome 404,062 99,178 20,904 5,948

HeLa degradomics 204,831 115,470 41,483 4,438

Database search results for the datasets used in this study at 1% FDR, except for immunopeptidomics (no protein FDR).
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Extended Data Table 2 | InstaNovo evaluation results on all datasets

AA-level performance Peptide-level performance
Dataset Error rate Precision Accuracy Accuracy AUC
HeLa single-shot 0.330 + 0.005 0.609 + 0.007 0.608 4+ 0.007 0.503 4+ 0.007 0.465 + 0.008
Immunopeptidomics 0.211 + 0.012 0.778 + 0.020 0.779 4+ 0.020 0.581 4+ 0.036 0.532 + 0.045
Candidatus “Scalindua brodae” 0.204 + 0.004 0.815 4+ 0.008 0.815 4+ 0.008 0.724 4+ 0.010 0.697 £+ 0.011
Snake Venoms 0.494 + 0.006 0.396 + 0.008 0.398 4+ 0.008 0.196 4+ 0.008 0.167 + 0.009
Nanobodies 0.339 + 0.004 0.597 + 0.006 0.595 + 0.006 0.447 4+ 0.007 0.412 + 0.007
Wound Fluids 0.467 + 0.009 0.411 4+ 0.012 0.406 + 0.012 0.225 + 0.014 0.190 + 0.014
HeLa degradome 0.178 + 0.001 0.798 + 0.002 0.798 4+ 0.002 0.695 4+ 0.003 0.676 + 0.003
Herceptin 0.215 + 0.015 0.659 + 0.029 0.658 + 0.029 0.494 4+ 0.035 0.472 + 0.037
Yeast 0.279 0.709 0.626 0.559 0.528
Bacillus 0.197 0.762 0.721 0.624 0.595
Mouse 0.224 0.695 0.692 0.466 0.428
HC-PT* 0.279 0.687 0.685 0.573 0.550
AC-PT* 0.193 0.794 0.794 0.685 0.666
‘mean 0.278 0.670 0.660 0.521 0.491
std 0.104 0.138 0.136 0.163 0.166

Confidence intervals are calculated as +1.96 x s€; where S€; is a bootstrap standard error estimated from 10,000 replicates. *We do not calculate bootstrap standard errors for the
ProteomeTools datasets because their size makes it prohibitively costly but also implies the standard errors would be very small. We exclude the bootstrap standard errors for the nine-species
dataset on the same basis.
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Extended Data Table 3 | InstaNovo+ evaluation results on all datasets

AA-level performance Peptide-level performance
Dataset Error rate Precision Accuracy Accuracy AUC
HeLa single-shot 0.321 + 0.004 0.617 4+ 0.007 0.616 + 0.007 0.517 4+ 0.007 0.477 + 0.008
Immunopeptidomics 0.161 + 0.012 0.839 + 0.022 0.839 4+ 0.022 0.697 4+ 0.036 0.644 + 0.044
Candidatus “Scalindua brodae” 0.187 + 0.004 0.821 4+ 0.008 0.820 4+ 0.008 0.736 4+ 0.009 0.697 £+ 0.011
Snake Venoms 0.493 + 0.006 0.393 4+ 0.008 0.395 4+ 0.008 0.198 4+ 0.008 0.137 + 0.009
Nanobodies 0.329 + 0.004 0.608 + 0.006 0.606 + 0.006 0.464 4+ 0.007 0.417 + 0.008
Wound Fluids 0.467 + 0.009 0.412 + 0.012 0.406 + 0.012 0.229 4+ 0.013 0.166 + 0.014
HeLa degradome 0.163 + 0.001 0.811 4+ 0.002 0.810 4+ 0.002 0.719 4+ 0.003 0.689 + 0.003
Herceptin 0.192 + 0.014 0.710 4+ 0.028 0.709 4+ 0.028 0.562 4+ 0.034 0.526 + 0.038
Yeast 0.256 0.755 0.667 0.624 0.598
Bacillus 0.180 0.796 0.753 0.674 0.650
Mouse 0.209 0.726 0.722 0.490 0.431
HC-PT* 0.268 0.696 0.694 0.589 0.542
AC-PT* 0.178 0.809 0.809 0.710 0.680
mean 0.262 0.692 0.680 0.555 0.512
std 0.112 0.148 0.145 0.176 0.186

Confidence intervals are calculated as + 1.96 x s€; where S€; is a bootstrap standard error estimated from 10,000 replicates. *We do not calculate bootstrap standard errors for the
ProteomeTools datasets because their size makes it prohibitively costly but also implies the standard errors would be very small. We exclude the bootstrap standard errors for the nine-species
dataset on the same basis.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
X| Antibodies [] chip-seq
] Eukaryotic cell lines |:| Flow cytometry
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Antibodies
Antibodies used No reagent antibodies were used in this study. The nanobodies included in this study were discovered using phage display
technology. Briefly, camelids were immunised with whole venoms from either 8 viperid snake species or 18 elapid snake species,
followed by the construction of immune nanobody displaying phage libraries (VIB Nanobody Core, Brussels). A detailed description of
how they were discovered can be found in the methods section.
Validation N/A

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The Hela cell line was purchased from Thermo Fisher Scientific (lot. no. in manuscript). The S. brodae pelleted co-culture was
obtained from S.v.B. and S.J.J.B, who acquired it from collaborators as mentioned in the acknowledgements.

Authentication Hela cell lines were tested for mycoplasma and have been determined negative. No such test was performed in the S.
brodae co-culture.

Mycoplasma contamination Hela cell lines were tested for mycoplasma and have been determined negative. No such test was performed in the S.
brodae co-culture.

Commonly misidentified lines  Not applicable.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals No laboratory animals were used in this study.
Wild animals Not applicable.
Reporting on sex Not applicable.

Field-collected samples  Not applicable.

Ethics oversight XXXXXXXXXXXX

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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