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Vision AI reveals waste-safety perception
relationships in urban environments
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The perception of safety plays a crucial role in fostering sustainable urban communities, as it
influences the willingness of citizens to engage in community activities and their residential choices.
Understanding the factors associated with safety perception is, therefore, critical for community
development. While previous studies focus on static built environmental features, this research
leverages artificial intelligence (AI) to examine how street-level waste management shapes safety
perceptions in metropolitan areas. Through computer vision and machine learning approaches, we
quantify safety perception levels and identify various types of street-level waste in New York City. Our
analysis reveals a strong negative relationship between uncontrolled waste (particularly widespread
litter) and perceived safety, while properly managed waste shows weaker associations with safety
perception. These findingsdemonstrate that dynamic environmentalmanagement factors, rather than
just static infrastructure, are critically associated with urban safety perceptions. The study advances
both theoretical understanding andpractical strategies for enhancing urban safety perception through
improved waste management services.

Visual safety perception in urban environments refers to how individuals
evaluate the safety of their surroundings based on visual environmental
cues, distinct from actual crime experiences1. This assessment focuses on
perceived risk of criminal victimization (e.g., theft, assault, harassment),
which is interpreted through environmental cues such as physical disorder,
poor maintenance, and incivilities in the urban space. This distinct psy-
chological construct differs from objective safety measures, as it specifically
captures residents’ interpretations of environmental cues that signal
potential crime risk in their urban surroundings2. This psychological
dimension of urban experience has gained increasing attention as research
demonstrates that environmental impacts on mental well-being are as
crucial as physical health outcomes in urban settings3. Moreover, the
influence of safety perception transcends individual experiences to funda-
mentally shape community dynamics, including social cohesion, civic
participation, and urban vitality, thus serving as a critical determinant of
sustainable urban development. The significance of urban perception of
safety is further emphasized in global frameworks, notably the United
Nations Sustainable Development Goals (SDGs), particularly Goal 11:
Sustainable Cities and Communities, which explicitly aims to “make cities
and human settlements inclusive, safe, resilient, and sustainable4.” Within
this framework, ensuring safety and fostering a sense of safety are crucial to
achieving urban inclusivity and sustainability5.

Safety perception analysis from a human-centered perspective offers
valuable insights into residents’ subjective experiences, informing urban
design and municipal management practices6,7. Previous studies have

extensively examined various factors that shape urban perception, with
particular emphasis on static built environment characteristics, such as
urban greenery8, architectural design9, public space configuration10, and
street layouts11. However, the potential impact of dynamic management
practices, particularly ongoing maintenance and operational interventions,
remains relatively unexplored. This research gap warrants attention, given
that urban environments are complex adaptive systems that require sys-
tematic maintenance and management interventions to sustain their
intended functions and qualities.

Among various dynamic urban management practices, street
waste management serves as a fundamental indicator of urban service
quality and operational effectiveness. Street waste manifests in two
primary forms: controlled waste, which includes waste properly
disposed of through formal collection systems and designated facil-
ities, and uncontrolled waste, which encompasses unauthorized dis-
posal, littering, and informal dumping practices12,13. The effective
management of urban waste not only ensures daily urban operations
but also contributes to the global sustainability agenda. Specifically,
waste management is identified as a key target under SDG 11, par-
ticularly Target 11.6, which addresses the reduction of cities’ adverse
environmental impact through municipal waste management14.
Furthermore, SDG 12 reinforces this priority by emphasizing waste
reduction through prevention, recycling, and reuse15. These inter-
national frameworks establish waste management as a critical com-
ponent in achieving sustainable urban development.
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While urban waste management represents a visible and immediate
measure of service quality that residents encounter daily, current literature
exhibits some research gaps. First, there is insufficient research on the
accurate detection and classificationof streetwaste presencepatterns, aswell
as a limited understanding of their spatial distribution in urban environ-
ments. Second, despite the prominence of waste management in urban
operations, limited empirical evidence exists on how varying forms of street
waste presence influence residents’ perception of safety, further leaving
unexploredwhether such dynamicmanagement practices have comparable
importancewith static built environment characteristics as demonstrated in
previous studies.

In this study, we aim to explore how the presence of various forms
of street waste influences perceived safety and analyze the relative
importance of different factors in shaping safety perception. We
selected New York City as our study area, considering its representa-
tiveness as amajor global metropolis with diverse urban landscapes and
complex waste management issues16. To systematically address these
objectives, we integrate street view imagery (SVI), computer vision
techniques, andmachine learning approaches. Specifically, our analysis
comprises three main components: (1) We employ computer vision
algorithms to quantify and map perceived safety across the urban
landscape, establishing baseline spatial patterns of safety perception. (2)
We develop deep learningmodels for detecting and classifying different
types of street waste accumulation, enabling the systematic mapping
and analysis of their spatial distribution patterns. (3)We investigate the
relationship between waste presence and safety perception through
multiple analytical approaches, examining the relative contribution of
dynamic management practices and static built environment char-
acteristics. Through explainable machine learning techniques, we fur-
ther analyze the importance and directional effects of these
environmental and management factors in shaping urban safety
perception.

This study advances both theoretical understanding and methodolo-
gical approaches while offering practical implications for urban manage-
ment. From an academic perspective, our research makes two main
contributions. Theoretically, through analyzing the associations between
different types of street waste and safety perception, our study explores how
street management services relate to community safety perceptions. This
extends existing frameworks beyond static built environment characteristics
to encompass dynamic management factors. Methodologically, we develop
a novel analytical framework that integrates visual AI, computer vision
technology, and explainable machine learning with SVI data. Through
analyzing the associations between different types of street waste and safety
perception, our study explores how street management services relate to
community safety perceptions.

In terms of practical implications, our findings identify deficiencies in
current waste management practices and their negative impacts on safety
perception, providing evidence-based guidance for policymakers to develop
targeted management strategies. Furthermore, this research highlights a
broader insight into urban governance: the creation of safe and sustainable
communities dependsnot only on initial planning and constructionbut also
on the effectiveness of long-term management practices. This emphasizes
the crucial role of sustainable urban management in shaping urban
experiences.

Results
This study explores the relationships between different categories of urban
street waste and safety perception, while examining waste presence as an
indicator of dynamicurbanmanagement effectiveness in relation tobroader
factors shaping urban safety perceptions.

Our analysis unfolds in four interconnected stages. First, we demon-
strate the performance of our computer vision model for safety perception
calculation (Table 1), followed bymapping the predicted perceptions across
NYC (Fig. 1) and presenting relevant statistical analyses. Second, we
examine various categories of street waste, encompassing both controlled
and uncontrolled waste (Fig. 3) while validating our computer vision
model’s capability in waste identification (Table 2). The spatial distribution
and statistical characteristics of waste presence across the city are then
presented (Fig. 4). Third, we investigate the statistical relationships between
waste presence and safety perception, examining the correlation patterns
and magnitude across different waste types (Fig. 5). Finally, we explore the
relative importance of waste presence as a contributing factor to safety
perception, identifying the dominant waste types that influence perceived
safety. To investigate these dominant factors, we employmultiple analytical
methods in the final section, utilizing explainable machine learning tech-
niques alongside Class Activation Mapping (CAM) visualization
(Figs. 6 and 7).

Urban safety perception: model performance, spatial distribu-
tion, and statistical analysis
Based on comprehensive experimental evaluations of four main-
stream CNN architectures (Table 1), we selected ResNet-50 as our
primary model architecture. ResNet-50 demonstrated superior
overall performance with the highest accuracy (0.748) and con-
sistently balanced metrics across safe and unsafe classifications (F1
scores of 0.746 and 0.750, respectively). While MobileNet-V2
achieved comparable accuracy (0.745), it showed notable disparities
between safe and unsafe categories (precision: 0.719 vs 0.775; recall:
0.789 vs 0.702), indicating potential classification bias. EfficientNet-
B0 and ShuffleNet-V2, despite their computational efficiency,
exhibited lower overall accuracy (0.738 and 0.678) and less consistent
performance across evaluation metrics. The balanced precision-recall
trade-off and robust F1 scores of ResNet-50, combined with its well-
established architecture in computer vision tasks, made it the optimal
choice for our safety perception model.

The trained model was applied to infer safety perceptions from street-
view images across the study area. We adopted a confidence-based scoring
methodology, following established approaches in urban perception
studies17,18, to transform binary classifications into continuous safety scores.
Specifically, locations classified as safe were assigned positive values while
those classified as unsafe received negative values, with the magnitude
proportional to the model’s prediction confidence. This quantitative
transformation enables more nuanced differentiation of safety perceptions,
capturing subtle variations between locations that share the same binary
classification but exhibit different degrees of perceived safety.

The spatial analysis of perceived safety across New York City reveals
distinct geographical patterns. Ourmodel-inferred safety perception scores,
as visualized in Fig. 1, show a core-periphery pattern in each borough,
particularly evident in Manhattan and Brooklyn, where central areas

Table 1 | Performance comparison of deep learning models for street-level safety perception assessment

Model Precision Recall F1 score Accuracy

Safe Unsafe Safe Unsafe Safe Unsafe

ResNet-50 0.739 0.757 0.753 0.743 0.746 0.750 0.748

MobileNet-V2 0.719 0.775 0.789 0.702 0.753 0.737 0.745

EffcientNet-B0 0.723 0.754 0.757 0.720 0.740 0.736 0.738

ShuffleNet-V2 0.723 0.754 0.757 0.720 0.740 0.736 0.678
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consistently exhibit higher safety perception compared to their peripheral
counterparts. Notable concentrations of high safety perception are observed
inMidtownManhattan, central Brooklyn, and easternQueens, as indicated
by the pronounced blue regions in Fig. 1.

The relationship between safety perception and socioeconomic indi-
cators (population density, education level, and income level, shown in
Supplementary Figs. 2–4) exhibits complex spatial variations across bor-
oughs. In Manhattan and Brooklyn, areas of high population density
strongly correlate with elevated safety perception scores. However, this
relationship does not persist uniformly across all boroughs. Eastern Queens
presents a notable exception, displaying high safety perception scores
despite relatively lower population density, suggesting that population
density alone cannot fully explain the variations in perceived safety. Income

level distributions show strong spatial correspondence with safety percep-
tion patterns, most notably in Queens and the Bronx, where communities
with higher income levels consistently report higher levels of perceived
safety. Additionally, areas with higher educational attainment exhibit ele-
vated safety perception scores across all boroughs, indicating a robust
relationship between education level and perceived environmental safety.

Statistical analysis of the safety perception scores yields amean value of
−0.047, indicating a neutral perception baseline, with a standard deviation
of 0.668. Based on these parameters, we established four distinct safety
perception categories based on the statistical distribution of scores, using
standard deviation (σ) thresholds from the mean (μ =−0.047, σ = 0.668).
Areas were classified as follows: low safety perception (x < μ− σ, or
x <−0.715), moderately low safety perception (μ− σ ≤ x < μ, or

Fig. 1 | Spatial distribution of safety perception across New York City.Themap shows perceived safety levels derived from street-level imagery analysis, revealing distinct
patterns between central and peripheral areas. Safety scores are categorized from unsafe (orange) to safe (blue).
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−0.715 ≤ x <−0.047), moderately high safety perception (μ ≤ x < μ+ σ, or
−0.047 ≤ x < 0.621), and high safety perception (x ≥ μ+ σ, or x ≥ 0.621),
where x represents the safety perception score. Representative street view
images (SVIs) from each category are presented in Fig. 2.

Further analysis of SVI across these safety categories reveals distinct
environmental characteristics. Areas classified as safe consistently exhibit
well-maintained streetscapes featuring abundant greenery, organized
parking infrastructure, and well-preserved building facades, as evidenced in
Fig. 2. Conversely, areas categorized as unsafe frequently display vacant lots,
active construction sites, and deteriorating infrastructure. The moderately
safe category comprises areas with mixed urban features, characterized by
intermediate levels of maintenance and organization that contribute to
moderate safety perception scores.

Urban street waste: waste categories, model performance, and
spatial distribution
In this study, we focus on street waste, defined as waste accumulation
occurring on urban streets outside of designated waste containers. To
minimize the impact of random noise on our research findings, we speci-
fically concentrate on identifiable waste clusters while excluding randomly
scattered single pieces of litter. Based on extensive observations of urban
street conditions, we identified distinct patterns in waste manifestation
across the urban landscape. These patterns vary significantly in their spatial
distribution and formation mechanisms. Consequently, we categorized
street waste into two primary classifications: controlled and uncon-
trolled waste.

Controlled waste refers to temporarily placed, properly contained
waste (suchas securely baggedgarbageor systematically stacked recyclables)
positioned at designated collection points along streets in accordance with
municipal collection schedules and regulations (Fig. 3A). Uncontrolled
waste refers to improperly disposed materials that deviate from municipal
waste management guidelines, encompassing three distinct subtypes:
(1) Construction waste: this category includes improperly disposed con-

struction materials, scattered demolition debris, and abandoned con-
struction supplies that are not contained within designated storage
areas or proper disposal containers. Such waste often accumulates
beyond designated construction zones, encroaching upon public
spaces and walkways, indicating inadequate construction site waste
management practices and non-compliance with municipal waste
disposal regulations. (Fig. 3B).

(2) Widespread litter: distinguished by dispersed debris covering sig-
nificant surface areas without substantial vertical accumulation.While
less severe than uncontrolled dumpsites, this category nevertheless
indicates deficiencies in local waste management practices and repre-
sents a crucial category for urban waste management assessment
(Fig. 3C).

(3) Uncontrolled litter dumpsites: characterized by substantial accumu-
lations of mixed waste, predominantly composed of household litter
but also containing other waste types. These sites typically indicate
prolonged inadequacies in waste management practices (Fig. 3D).

Based on our waste categorization, we developed specialized deep
learning models for each waste type. The waste identification models,
implemented using the Swin Transformer architecture, demonstrated
robust performance across all waste categories, validating our approach’s
effectiveness in real-world urban waste detection scenarios. The detailed
performance metrics are presented in Table 2.

Themodel achieved notable accuracy across different waste categories,
with particularly strong performance in controlled waste detection (92.01%
accuracy for bagged waste) and widespread litter identification (93.17%
accuracy). The latter demonstratedhighprecision indistinguishingbetween
areas with and without widespread litter, effectively capturing varying
degrees of litterpresence.Overallmodel performance remainedconsistently
strong across all waste categories, with accuracies ranging from 90.43
to 96.14%.

We observed relatively lower performance in detecting uncontrolled
dumpsites and construction waste categories. This pattern largely reflects
their natural occurrencepatterns in urban environments, as these categories
constitute relatively smaller proportions of our dataset (3.8% and 7.7%
respectively). To address this class distribution characteristic, we imple-
mented targeted data augmentation techniques, which helped maintain
model performance while preserving the authentic representation of waste
distribution patterns in urban settings. While acknowledging these per-
formance limitations, we implemented rigorous quality control measures.
During the inference phase, we conducted thorough manual verification of
all positive detections to ensure classification accuracy. Although our
approach may have resulted in conservative waste counts due to their
inherent sparsity, all detected cases underwent carefulmanual verification to
ensure high reliability. This verification process effectively minimizes
potential classification bias, strengthening the robustness of our subsequent
relationship analysis between waste presence and perceived safety, and
providing a solid foundation for our analytical conclusions.

Utilizing our developed waste classification models, we systematically
identified and mapped the spatial distribution of distinct waste categories
across the study area, as visualized in Fig. 4. Our detection system revealed
2351 instances of baggedwaste (controlledwaste), 1771 cases of widespread
litter, 614 uncontrolled litter dumpsites, and 358 locations with construc-
tion waste.

The spatial analysis revealed distinct distribution patterns between
controlled and uncontrolled waste categories. Controlled waste, primarily
represented by bagged waste, showed the highest concentration in Man-
hattan compared to other boroughs. In contrast, uncontrolled waste cate-
gories exhibited markedly different spatial patterns, with a notably lower
presence in Manhattan and a significant concentration in the Rockaway
Peninsula area of southern Queens. Among the uncontrolled waste cate-
gories, widespread litter emerged as the most prevalent issue, while con-
struction waste showed a relatively modest presence throughout the city.

Relationship between safety perception and waste distribution
We analyzed the cumulative distribution of safety perception scores across
different waste categories, as illustrated in Fig. 5. In our analysis, safety
perception scores range from−1 to 1, where higher scores indicate greater
perceived safety. The median score (at cumulative proportion = 0.5) indi-
cates the safety perception value where 50% of locations within each cate-
gory are concentrated, providing a representative measure of the overall

Table 2 | Performance metrics of waste classification models
across different categories

Precision Recall F1-score

(1) Controlled waste category: bagged waste

Bagged waste 84.51% 75.23% 79.63%

Non-bagged waste 94.02% 96.13% 95.06%

Accuracy 92.01%

(2) Uncontrolled waste category: widespread litter

Widespread litter 82.53% 91.84% 86.92%

Non-widespread litter 97.42% 94.46% 95.92%

Accuray 93.17%

(3) Uncontrolled waste category: uncontrolled litter dumpsite

Litter dumpsite 38.42% 42.81% 40.52%

Non-litter dumpsite 94.87% 93.84% 94.35%

Accuracy 90.43%

(4) Uncontrolled waste category: construction waste

Construction waste 37.24% 43.52% 40.13%

Non-construction waste 98.53% 97.85% 98.19%

Accuracy 96.14%
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safety perception level for that specific waste category. The analysis reveals
distinct patterns in how safety perception varies between areas with and
without waste presence, and among different waste types.

Out of the total 295,189 sampling points in NYC, only 4697 points
(approximately 1.6%) contained waste in any form. The baseline distribu-
tion across all points in NYC (yellow line) shows that safety perception
scores are approximately normally distributed, with a median score of
−0.04, indicating a relatively neutral overall safety perception in the city.
However, when examining areas where any type of waste is present (purple
line), the distribution shifts notably toward lower safety scores, with the
median dropping to −0.53, suggesting a substantial negative association
between waste presence and perceived safety.

Further analysis of specific waste categories reveals a marked distinc-
tion between controlled and uncontrolled waste types. Controlled waste,
represented by baggedwaste (green line), shows a relativelymodest negative
association with safety perception, with a median score of −0.128. The
gradual slope of its cumulative distribution curve indicates considerable
variation in safety perceptions in areaswith baggedwaste, suggesting that its
presence does not consistently correspond to negative safety perceptions.

In contrast, uncontrolled waste categories demonstrate a remarkably
stronger negative relationship with perceived safety. Areas with construc-
tion waste, widespread litter, and uncontrolled litter dumpsites exhibit
substantially lower median safety scores of −0.923, −0.921, and −0.896,
respectively. The cumulative distribution curves for these uncontrolled
waste categories display steeper slopes and closely aligned patterns, indi-
cating a more consistent and pronounced negative relationship with safety
perception. The similarity in both the median values and distribution pat-
terns amonguncontrolledwaste types suggests that thepresence of any form
of uncontrolled waste corresponds strongly with reduced safety perception,
regardless of the specific type.

Key factors shaping safety perception
To systematically investigate the underlying mechanisms driving these
correlations, we employed two analytical methods to examine the rela-
tionships. For statistical analysis, we utilized explainable machine learning
techniques to assess the relative importance and directional effects (positive
or negative) of various environmental factors on safety perception. These
factors encompass both static environmental characteristics, such as road

Fig. 2 | Representative street-level imagery showing the safety perception in New
York City. The visual images typically range from areas perceived as unsafe
(top row), often characterized by vacant lots and deteriorating infrastructure,
through moderately unsafe and moderately safe neighborhoods (middle rows)

generally showing mixed residential developments, to areas perceived as safe
(bottom row), commonly distinguished by tree-lined streets and well-
maintained residential environments.
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and wall surface areas, and dynamic management indicators, such as waste
presence, extracted from SVI. Additionally, we implemented CAM as a
visual interpretation technique to identify and highlight specific regions
within SVI that significantly influence the model’s safety judgments. This
visualization approach provides insights into the spatial attention patterns

of the model, helping us understand how environmental features are
weighted in the algorithmic assessment of safety perception.

To analyze the determinants of visual safety perception, we employed
four regression models: Ordinary Least Squares (OLS), Random Forest,
XGBoost, and Gradient Boosting Decision Tree (GBDT). These models

Fig. 3 | Representative street-level imagery depicting street waste morphologies
in New York City. The images illustrate four distinct categories: A controlled waste
areas, typically characterized by organized bagged waste awaiting collection;
B construction waste zones, often marked by building materials and debris;

C widespread litter areas, commonly showing scattered refuse across public spaces;
and D uncontrolled dumping sites, frequently exhibiting accumulated waste in
unauthorized locations. These patterns reflect varying levels of waste management
practices and enforcement across urban neighborhoods.
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incorporated sociodemographic factors, visual environmental character-
istics, and waste-related variables. To assess the specific impact of waste-
related variables on model performance, we conducted parallel analyses
with and without these variables for each model architecture. The com-
parative results are presented in Table 3.

The GBDT regression model demonstrated superior predictive per-
formance, achieving the highest R² (69.47%) and lowest Mean Squared
Error (0.101) among all tested models. Notably, the inclusion of waste-
related variables consistently enhanced model performance across all
architectures. Specifically, the GBDT model with waste-related variables

showed a 4.0% point improvement in R² compared to its counterpart
without these variables (65.48%). This pattern of improvement was con-
sistent across all models, with performance gains ranging from 3.5 to 6.0%
points in R², underscoring the significant contribution of waste-related
factors to safety perception prediction.

Based on these results, we selected the GBDT model for subsequent
analysis. To further elucidate the complex relationships between environ-
mental factors and safety perception, we employed SHapley Additive
exPlanations (SHAP) value analysis. This approach enabled us to quantify
both the relative importance and directional effects of individual

Fig. 4 | Spatial distribution of urban waste across New York City. The maps show four distinct waste categories: a controlled bagged waste; b construction waste sites;
c widespread litter; and d uncontrolled dumping sites. Each point represents an observed instance identified through street-level imagery analysis.
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environmental factors on safety perception, providing interpretable insights
into the model’s decision-making process.

TheSHAPvalue analysis (Fig. 6) reveals the complex interplaybetween
visual environmental features and sociodemographic characteristics in
shaping visual safety perception. The results demonstrate diverse patterns of
influence, varying in both magnitude and direction. Notably, while both
physical environmental characteristics and socioeconomic factors sig-
nificantly influence safety perception, their relative importance differs
substantially.

Among the analyzed features, environmental elements demonstrate
the strongest influence on safety perception. Sky visibility and tree coverage
emerge as the most influential factors, exhibiting notable non-linear rela-
tionships with safety perception. Higher tree coverage is consistently asso-
ciated with enhanced safety perception, suggesting that abundant urban
vegetation contributes to a visual safety perception. Conversely, increased
sky visibility correlates with decreased perceived safety, potentially indi-
cating that more enclosed urban spaces, with limited sky exposure, are
perceived as safer environments. This finding aligns with urban design

theories about human-scale spaces and the role of natural surveillance in
safety perception.

Notably, waste-related factors, as binary variables (0,1), demonstrate
substantial negative impacts on safety perception. Both widespread litter
and uncontrolled litter dumpsites showdistinct binary distributions in their
effects, confirming their categorical nature in the environment. Both
widespread litter and uncontrolled litter dumpsites demonstrate strong
negative relationshipswith safety perception. Themagnitude of these effects
positions waste-related factors among the top influential features, suggest-
ing that wastemanagement issues serve as powerful environmental cues for
visual safety assessment. This finding emphasizes the critical role of
municipal waste management in urban safety perception.

Built environment features and human activity indicators display
moderate but consistent effects. Houses demonstrate positive associations
with safety perception, while walls show a negative correlation. Notably,
higher volumes of vehicles and pedestrians are associated with increased
safety perception, suggesting thatmore developedurban environmentswith
greater human activity generally foster stronger safety perception.

Regarding demographic and socioeconomic indicators, population
density shows a positive correlation with safety perception, supporting the
notion that more densely developed urban areas tend to evoke stronger
perceptions of safety. Other socioeconomic indicators, including household
income and educational attainment, show relatively modest influences on
visual safety perception, suggesting their impact is less pronounced com-
pared to physical environmental features.

These findings highlight the multifaceted nature of environmental
safety perception, with particular emphasis on the significant impact of
waste-related issues and urban vitality. The results suggest that urban visual
safety enhancement strategies should prioritize effectivewastemanagement
whilemaintaining active, well-populated spaces, alongside traditional urban
design elements such as green space and built environment features.

To provide an interpretable visualization of our findings, we employed
CAM to reveal the model’s attention patterns in safety assessment. As
illustrated in Fig. 7, the heatmaps reveal regions ofmodel attention through
color intensity, with red areas indicating zones of highest attention. In
images classified as unsafe, the model’s attention predominantly

Fig. 5 | Cumulative distribution of safety percep-
tion scores across different waste categories in
New York City. The plot shows the relationship
between safety perception scores (−1 to 1) and
cumulative proportions (0 to 1) for six waste-related
categories. Vertical dashed line at x = 0 represents
neutral safety perception, with negative values
indicating perceived unsafe conditions and positive
values indicating perceived safe conditions. Median
values and intersection points at neutral perception
(y@0) are shown for each category, demonstrating
varying degrees of safety concerns associated with
different waste types.

Table 3 | Comparison of model performance with and without
waste-related variables

Model Include waste-related
variables

R2 MSE

OLS Regression Yes 58.51% 0.137

No 52.54% 0.156

Random Forest
Regression

Yes 68.09% 0.105

No 64.03% 0.119

XGBoost Regression Yes 69.11% 0.102

No 65.65% 0.113

GBDT Regression Yes 69.47% 0.101

No 65.48% 0.114
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concentrated on areas containing scattered litter, construction debris, and
illegal dumping sites. This focused attention pattern suggests that themodel
identified these uncontrolled waste elements as key visual indicators of
unsafe environments, aligning with human perceptual patterns.

In the analysis of scenes classified as safe, an intriguing pattern
emerged: despite the presence of controlled waste (i.e., bagged waste) in
some scenes, the model’s attention primarily focused on surrounding
architectural features rather than the waste itself. This selective attention
suggests that controlled waste plays a less prominent role in safety per-
ception, particularly when situated within well-maintained urban envir-
onments with established waste management systems.

These CAM-based visual interpretations provide strong supporting
evidence for our findings: while uncontrolled waste serves as a primary
visual indicator for unsafe environment perception, controlled waste
demonstrates substantially less influence in shaping safety perceptions. This
complementary relationship between the two analyses offers a more com-
prehensive understanding of how different waste management practices
influence perceived safety in urban landscapes.

Discussion
Our study reveals three key findings that advance understanding of urban
safety perception through the lens of environmentalmanagement. First, our
analysis reveals strong associations betweenuncontrolledwaste, particularly
widespread litter, and perceived safety in urban environments, where areas
with higher presence of litter correspond to lower safety perception scores.
In contrast, controlled waste exhibits only a minimal influence on safety

perception, suggesting that properly managed waste systems have a limited
negative impact on residents’ perception of safety. Second, our analysis
mapped the visual safety perception distribution, which reveals that safety
perception is shaped by a complex interplay of spatial, social, and economic
factors. Third, we identify distinct spatial patterns in waste distribution that
reflect underlying urban socio-economic dynamics: controlled waste is
predominantly concentrated in areas with established infrastructure and
robust management systems, while uncontrolled waste is prevalent in
peripheral locations with limited-service accessibility.

These findings provide novel insights into the relationship between
environmental management and urban safety perception, particularly by
quantifying the impacts of different forms of waste presence and accumu-
lation in urban spaces. While previous research has predominantly focused
on static physical features such as building design and street layout, our
results demonstrate that dynamic environmental factors play a crucial role
in shaping safety perceptions. Specifically, the stark contrast between con-
trolled and uncontrolled waste’s impact on safety perception (with bagged
waste showing negligible impact while uncontrolled waste is strongly
associated with negative safety perception) suggests that the manner of
waste management, rather than the mere presence of waste, fundamentally
influences community perceptions.

Our findings further reveal the dual importance of waste management
and urban greening in shaping safety perceptions, with tree presence
enhancing safety perception while uncontrolled waste diminishing it. To
validate these statistical findings and explore potential interventions, we
conducted simulation analyses using generative AI (detailed in

Fig. 6 | Feature importance analysis showing the
impact of environmental elements on safety per-
ception using SHAP values. The violin plots
visualize both the distribution patterns and impact
magnitude of each urban feature’s contribution to
safety perception. The width of each violin repre-
sents the density of observations at different con-
tribution levels. Positive values (right side) indicate
features that enhance perceived safety, while nega-
tive values (left side) represent features that diminish
safety perception. The color gradient from blue to
red corresponds to the magnitude of feature values,
where blue indicates lower feature values and red
signifies higher feature values.
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Supplementary Note 3). These simulations demonstrate that combined
interventions—removing uncontrolled waste and increasing tree coverage
—can effectively transform environments with critically low safety per-
ception scores into spaces with moderate safety ratings. This synergistic
effect underscores the importance of implementing comprehensive envir-
onmentalmanagement strategies that address bothwaste control andurban
greening simultaneously, rather than treating them as separate initiatives.
Such integrated approaches offer promising pathways for improving per-
ceived safety in urban environments, particularly in areas currently
experiencing low safety perception scores.

This strong relationship between uncontrolled waste and visual
safety perception aligns with insights from “broken windows” theory,
which posits that visible signs of disorder can trigger a cascade of
negative behavioral responses19. Our findings demonstrate that the
presence of uncontrolled waste significantly correlates with decreased
safety perception, suggesting its role as a visible indicator of envir-
onmental disorder. This relationship resonates with the theory’s core
premise about environmental cues and perception, though our study
specifically focuses on the perceptual dimension rather than beha-
vioral outcomes. While we cannot directly validate the full behavioral
cascade proposed by the theory, our results highlight how visible
environmental disorder, particularly uncontrolled waste, may

contribute to decreased perceptions of neighborhood safety, which
could potentially create conditions conducive to further deterioration
of community well-being.

Our findings have important implications for urban policy and man-
agement. First, our analysis reveals significant spatial disparities in waste
management service distribution, with lower-income areas experiencing
substantially reduced service coverage compared to more economically
developed, densely populated districts. This service disparity significantly
contributes to lower safety perceptions in marginal areas, suggesting an
urgent need for more equitable distribution of urban environmental ser-
vices. Second, while major infrastructure projects are important, our results
reveal associations between dynamic management practices, particularly
waste collection and vegetation maintenance, and urban safety perception.
Our analysis shows correlations between well-maintained environments
and higher safety perception scores, with waste-related features demon-
strating significant relationships with how residents perceive safety in their
neighborhoods. These findings contribute to our understanding of the
relationship between environmental management practices and residents’
perceptions of their urban environment.

Based on these findings, we recommend that city planners and pol-
icymakers: (1) implement systematic monitoring systems to identify and
rapidly respond to uncontrolled waste hotspots, particularly in areas

Fig. 7 | Visual attention analysis of urban safety perception using CAM
heat maps. Street-level images and their corresponding attention maps illustrate
how the model interprets environmental features associated with different safety
perceptions. The upper panel shows scenes typically perceived as less safe, where
attention often focuses on elements such as vacant lots, scattered debris, and

deteriorating infrastructure. The lower panel displays environments generally per-
ceived as safer, where themodel typically highlights features such aswell-maintained
buildings, organized parking, and street trees. Heat map colors range from blue (low
attention) to red (high attention), indicating regions most influential in the model’s
safety assessment.
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characterized by persistent litter accumulation and uncontrolled domestic
waste sites; (2) develop targeted programs to address service disparities; and
(3) prioritize regular maintenance of green spaces and waste management
services over large-scale infrastructure modifications. These strategies offer
an efficient, equitable, and sustainable approach to enhancing urban safety
perception while promoting environmental justice across all urban areas.

This study makes two contributions to urban research. First, we shift
the paradigm from static infrastructure analysis to dynamic environmental
management by demonstrating how day-to-day waste management prac-
tices fundamentally shape urban safety perceptions. This complementary
perspective extends the traditional focus on fixed urban features and reveals
that dynamic factors account for a substantial portion of variation in safety
perception, addressing a critical gap in environmental psychology literature.
Second, we establish an innovative methodological framework that levera-
ges artificial intelligence for urban safety analysis. By integrating computer
vision with explainable AI techniques (SHAP values and CAM), our
approach provides comprehensive analytical insights into the relationship
between environmental features and safety perception. This methodology
not only offers amore nuanced understanding of urban safety dynamics but
also demonstrates the potential of AI applications to transform urban
research and practice.

Our study has one key limitation: the reliance on Google SVI provides
only snapshots of urban conditions. While we ensured annual consistency
in our analysis by using images from the same years, these single-time-point
observations cannot fully capture the variations in waste distribution and
their associations with safety perception across different times of day,
weather conditions, and seasons.

Several temporal aspects warrant consideration. Our SVI collection
period (2019–2021) coincided with the COVID-19 pandemic, which
introduced unique temporal patterns. During this period, reduced human
mobility likely altered waste generation and distribution patterns, while
pandemic-related disruptions may have affected waste management ser-
vices and collection frequencies. Seasonal variations could also influence
waste visibility anddetection.Winter snow coveragemight partially obscure
ground-level waste, especially widespread litter, while different seasonal
lighting conditions and vegetation coverage could affect waste visibility.
Furthermore, diurnal variations in waste patterns present another temporal
consideration, as the timing of Street View image capture relative to
scheduled waste collection could affect the observed presence of controlled
waste, particularly bagged waste.

However, it’s important to note that our methodology analyzes both
waste presence and safety perception based on the same SVI. This simul-
taneous assessment means that while temporal variations might affect the
absolute levels of observed waste or general safety perceptions, the rela-
tionship between these two factors within each image remains valid and
reliable.

For future research aiming to capture more comprehensive temporal
patterns of both waste distribution and safety perception, we suggest
expanding beyond commercial SVI through a two-pronged approach. First,
incorporating alternative data sources such as crowdsourced street-level
imagery (e.g., Mapillary, OpenStreetCam) could provide broader temporal
coverage and capture variations across different times of day, seasons, and
urban conditions. Second, establishing focused monitoring programs in
priority areas through systematic longitudinal data collection would enable
a deeper understanding of persistent problem areas and the dynamic rela-
tionship between waste patterns and safety perception. This integrated
approach would not only advance our understanding of urban safety
dynamics but also support the development of more effective, evidence-
based waste management strategies, contributing to the creation of sus-
tainable and safe communities.

Beyond its immediate findings, our research has broader implications
for urban sustainability and social equity. The relationship between envir-
onmental management and residents’ management and residents’ safety
perception suggests that effective waste management strategies could
simultaneously address multiple urban challenges, from how residents

perceive their environment’s safety to environmental quality. This under-
standing contributes to developing more sustainable and livable urban
environments that foster community well-being and enhanced quality of
life, particularly relevant as cities worldwide grapple with growing envir-
onmental and social challenges.

Methods
Study areas
NewYorkCity, one of themost densely populated anddynamic urban areas
globally, is selected as the study site due to its diverse built environment, high
pedestrian activity, and significant variation in neighborhood character-
istics. To systematically examine the relationship between street waste dis-
tribution and safety perception, we focus on four boroughs: Manhattan,
Brooklyn, Queens, and the Bronx. Staten Island is excluded from this study
due to its lower population density, suburban land use patterns, and distinct
wastemanagement practices, which differ significantly from the denser and
more urbanized boroughs20.

The selected boroughs face substantial waste management challenges
that may influence public perception of safety. Systematically, New York
State generated 42.2million tons of total waste in 2018, withNewYork City
contributing 8.16 million tons that required processing or disposal21. At the
operational level, service coverage disparities exist across neighborhoods,
particularly in terms of collection frequency and street cleaning services,
leading to uncontrolled waste issues and public complaints, with over
40,464,714 improper street waste-related complaints recorded in the city’s
311 data from 2010 to 202522. From a policy perspective, despite the
Department of Sanitation of New York’s expanding budget—which is
projected to increase from $1.9 billion in the Fiscal 2025 Preliminary
Financial Plan to $2 billion by the end of the plan period with an annual
growth rate of 4.5%—the rising operational demands and cost pressures
continue to necessitate strategic allocation of cleaning services23. These
challenges underscore the importance of identifying critical locations for
targeted intervention, particularly in areas where waste accumulation may
impact perceived safety.

Research design
A comprehensive methodological framework was developed to address the
problem, incorporating a systematic stepwise approach. As illustrated in
Fig. 8, the methodology consists of four interconnected analytical phases:

Step 1. Safety perception distribution analysis: the Place Pulse 2.0
Dataset was utilized to train a deep learning model for safety perception
score prediction.The trainedmodelwas subsequently employed tocompute
and spatially map safety perception scores across four boroughs of New
York City.

Step 2. Waste location identification and mapping: using the Street-
Level Waste Classification Dataset, we developed four specialized classifi-
cationmodels to detect distinctwaste categories: baggedwaste, construction
waste, accumulated litter dumpsites, and widespread litter. These models
were subsequently deployed to analyze the comprehensive image collection
spanning four boroughs, facilitating the spatial mapping of waste dis-
tribution. It is worth emphasizing that individual locations may exhibit
multiple waste categories simultaneously.

Step 3. Correlation analysis: to examine the relationship between
roadside waste presence and safety perception, cumulative proportion
analyses were conducted. This analytical approach enabled the assessment
ofwhether locationswithwaste presence exhibiteddisproportionately lower
safety perception scores compared to the city-wide averages.

Step 4. Factor analysis: to investigate whether the presence of street-
level waste significantly influences safety perception, we employed two
complementary analytical approaches. For statistical assessment,we utilized
explainablemachine learning techniques to evaluate the relative importance
of various factors and their positive or negative contributions to safety
perception. The visualization analysis leveraged CAM to intuitively illus-
trate the key attention areas that the safety perception model focuses on
when simulating human judgment processes.
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Through the systematic implementation of these four analytical steps,
this study establishes a comprehensiveunderstandingof howcontrolled and
uncontrolled roadside waste influences residents’ safety perceptions in
urban environments. This methodological framework enables a compre-
hensive interpretation of the relationship between waste presence and
perceived safety.

Dataset
In this research, “Place Pulse 2.0 dataset”, collected through an internet-
based platform devised by MIT, was utilized to train the safety perception
model. Theplatformdisplayedpairs of SVIs selected randomly fromvarious
international cities to the participants. These participants were prompted to
either select one of two images or state if they viewed themas comparable, in
response to evaluative queries such as “which place looks safer?” along with
other attributes including “beautiful,” “depressing,” “lively,” “wealthy,” and
“boring”18,24. The resulting dataset, which is downloadable from https://
centerforcollectivelearning.org/urbanperception, encompasses the SVIs
and a document detailing each image’s ID, the posed question, and the
participants’ responses. This study specifically concentrated on analyzing
safety perceptions derived from the query “which place looks safer?“

Following this focus, we developed a dedicated sub-database of SVIs for
training safety perception prediction models. A comprehensive description
of the sub-dataset and its characteristics is presented in Supplementary
Note 1.

The road network data utilized in this study is sourced from the NYC
StreetCenterline dataset25, which offers detailed andup-to-date information
on street networks. To systematically sample the street environment, sam-
pling points were generated along road segments at 50m intervals, which
has been widely adopted in street-level urban environment studies18,26–28.
This sampling interval enables comprehensive coverage of the urban
streetscapewhilemaintaining computational efficiency. The temporal scope
for SVI collection was set to 2019–2021. These spatial and temporal para-
meterswere then utilized as input parameters for theGoogleMaps Platform
API to retrieve street-level imagery at each sampling location (https://
developers.google.com/maps). Four SVIs were captured at 90° horizontal
intervals for comprehensive environmental coverage at each sampling
point, with the vertical anglemaintained at 0° to ensure a consistent viewing
perspective. We used four directional images rather than panoramic views
to avoid geometric distortions that could affect subsequent analyses, parti-
cularly in panoptic segmentation, where accurate area ratio calculations are

Fig. 8 | Methodological framework for analyzing urban safety perception and
waste patterns. The workflow comprises four main steps: Step 1 implements a
ResNet-50-based safety perception model trained on Place Pulse 2.0 dataset to

calculate safety perception score; Step 2 employs a Swin Transformer for street-level
waste classification; Step 3 conducts spatial relationship analysis between safety and
waste distributions; and Step 4 utilizes SHAP values to interpret feature importance.
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crucial. Additionally, this approach maintains consistency with the “Place
Pulse 2.0”dataset’s image perspective,which is essential for ensuring reliable
perception evaluation results. This systematic sampling approach resulted
in the successful collection of SVI for 295,189 sampling points in the study
area, yielding a total of 1,180,756 images. This extensive image dataset was
subsequently utilized for safety perception evaluation and roadside waste
detection analyses.

To develop a comprehensive roadside waste classification model for
New York City, we constructed a specialized street-view image dataset that
distinguishes between controlled and uncontrolled waste patterns. This
distinction is crucial for understanding spatial distribution patterns and
supporting urbanwastemanagement strategies.While existing studies have
developed street-view-based waste classification models, they primarily
focus on developing regions with significantly different waste patterns from
Westernmetropolitan areas. Given that urbanwastemanifestation patterns
are heavily influenced by local waste management policies, cultural prac-
tices, and urban infrastructure, we recognized the need for a dataset speci-
fically tailored to capture New York City’s unique waste distribution
characteristics.

Our dataset development followed a systematic two-phase approach.
Initially, we collected 1,180,756 SVI across New York City. To efficiently
identify waste-containing images from this extensive collection, we first
employed an EfficientNet-based binary classification model pre-trained on
the UrbanDumpSight dataset12. Despite this existing dataset’s focus on
Shenzhen dumpsites, the model’s fundamental capability in detecting
waste-related features proved effective for our initial screening. The pre-
liminary model demonstrated robust performance metrics (precision: 0.93,
recall: 0.97, F1-score: 0.95) on the UrbanDumpSight dataset and was
optimized to prioritize recall, ensuring comprehensive capture of potential
waste instances while accepting some false positives. This screening phase
effectively reduced the candidate pool to 56,031 images (4.74% of the ori-
ginal dataset). This filtering significantly reduced the number of images
requiring annotation while maintaining high sensitivity to waste-relevant
scenes. The remaining filtered images then proceeded to detailed manual
annotation.

The filtered images then underwent a detailed manual annotation
process conducted by two trained annotators working independently. Our
structured hierarchical annotation protocol involved a two-stage assess-
ment: first verifying waste presence, then categorizing confirmed waste into
four distinct categories—bagged waste (controlled waste), construction
waste, widespread litter, and uncontrolled litter dumpsites. Multiple cate-
gories could be assigned when different types of waste co-existed in a single
image. To ensure annotation reliability and consistency, we established a
rigorous quality control procedure. The author reviewed all annotated data,
focusing particularly on cases where the two annotators’ assessments dif-
fered. When disagreements occurred, all team members jointly reviewed

these cases and discussed until reaching a consensus on the appropriate
classification.

Through this systematic process, we identified 4071 images containing
various types ofwaste.To create a balanceddataset,we randomly selected an
equal numberof verifiedwaste-free street views, resulting in afinal dataset of
8142 images. Some locations may contain multiple types of waste simul-
taneously, and in such cases, the corresponding images were labeledwith all
applicable waste categories. Table 4 illustrates the distribution of waste
categories across the dataset, showing the frequency of different waste
classifications. All annotations were systematically recorded in a structured
database format across five binary classification fields: waste presence,
bagged waste presence, construction waste presence, widespread litter
presence, and uncontrolled litter dumpsite presence.

Safety perception analysis
This study implements a binary image classification model leveraging SVIs
to quantify safety perception. The model generates confidence scores that
are subsequently utilized to compute safety perception scores for each
sampling point within the study area. The model development framework
encompasses three key components: label classification schema in the
training dataset, neural network architecture, and model evaluation, which
are detailed in the subsequent sections.

Given that the original dataset comprises comparative assessments, a
transformation methodology was implemented to convert the relative
comparisons into absolute safety indices for individual images. This trans-
formation enables each Street View Image to be assigned a standardized
safety level score within the complete dataset. Following established meth-
odologies from previous studies17,18, we employed the Q-score metric to
quantify absolute safety perception levels. The computational process
consists of three main steps:
(1) Win-loss ratio computation. The initial step involves calculating the

win ratios (Wi) and loss ratios (Li) for each image i, expressed as:

Wi ¼
wi

wi þ li þ ei

Li ¼
li

wi þ li þ ei
ð1Þ

Where wi, li and ei represent the number of instances where image i wins,
loses, or equals its paired counterpart, respectively.
(2) Q-score calculation. The Q-score, normalized to a range of 0–10, is

then computed using the following equation:

Qi ¼
10
3
ðWi þ

1
wi

Xwi

j1¼1

Wj1 �
1
li

Xli

j2¼1

Lj2 þ 1Þ ð2Þ

Where j1 and j2 denote images lose to or win image i in the comparison.
(3) Binary classification threshold. To mitigate potential noise and sub-

jective bias in human perception, we established robust classification
thresholds for binary safety labels using the following criteria:

Qhigh ¼ �Qþ δσ

Qlow ¼ �Q� δσ

Label ¼ fpositive ðsafeÞ; if Q >Qhighnegative ðunsafeÞ; if Q <Qlowg ð3Þ

To establish a robust classification framework, we implemented a
thresholdingmechanism using two boundaries: �Q+ δσ and �Q− δσ, where
σ represents the standard deviation and δ controls the bandwidth of the gap
between thresholds. This approach allows us to identify and remove noise
samples lying between the thresholds, while retaining clear positive (labeled

Table 4 | Distribution of waste categories in street-view
images (N = 8142)

Waste category Image count Image percentagea

No waste 4071 50%

Controlled waste 1500 18.4%

Bagged waste 1500 18.4%

Uncontrolled waste 2714 33.3%

Construction waste 306 3.8%

Widespread litter 1912 23.5%

Uncontrolled litter
dumpsite

629 7.7%

Total 8142 100%
aTotal number of images = 8142. Each image can have multiple labels. Percentages are calculated
based on the total number of images (N = 8142).
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as “1”) and negative (labeled as “0”) samples. To optimize the bandwidth
parameter δ, we conducted extensive experiments examining the trade-off
between noise reduction and maintaining sufficient training samples for
model generalization18.

We selected ResNet50 as our baseline model for parameter optimiza-
tion experiments due to its proven stability and widespread adoption in
computer vision tasks. To determine the optimal bandwidth parameter (δ),
we conducted experiments with different δ values (0.5, 0.7, 1.0, 1.2, and 1.5)
using a 7:3 train-test split ratio. As shown in Supplementary Fig. 1, there is a
clear trade-off between sample size and model accuracy across different δ
values. At δ = 0.5, the dataset retained the largest number of samples (34,083
positive and 30,685negative), but yielded lower accuracy. As δ increased, we
observed a consistent decrease in sample size alongwith an improvement in
model accuracy. The accuracy plateaued at δ = 1.2 (with 11,004 positive and
11,371 negative samples) and showed only marginal improvement at
δ = 1.5, despite further reduction in sample size (8073 positive and 7673
negative samples).

Based on the experimental results (shown in Supplementary Fig. 1), we
selected δ = 1.2 as the optimal bandwidth parameter, which effectively
balances noise minimization while preserving an adequate number of
training samples to ensure model generalizability and performance. Fol-
lowing this process, the final dataset comprises 11,371 images classified as
unsafe and 11,004 images classified as safe, providing a relatively balanced
dataset for subsequent model development.

To develop an efficient and deployable safety perception model, we
conducted a comparative study of four lightweight CNN architectures:
ResNet50, MobileNetV2, EfficientNetB0, and ShuffleNetV2. The focus on
lightweight architecturewasmotivatedby thepractical requirements of edge
deployment, where computational resources and memory constraints are
significant considerations. All models were pre-trained on ImageNet and
fine-tunedonour safety perceptiondataset. The trainingprocess utilized the
Adam optimizer with a learning rate of 0.0001 and a cross-entropy loss
function. Models were trained for 20 epochs with a batch size of 32, using a
7:3 train-test split ratio to ensure robust evaluation of model performance.
We modify the output layer into a binary classification head.

Accuracy is used as the evaluation metric, which is formulated as:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð4Þ

where TP, FP, FN , TN represent the number of true positive, false positive,
false negative and true negative instances.

The trained model was deployed to evaluate safety perception across
the study areas inNewYorkCity using the collected SVIs. For each location,
safety perception was assessed through the following process: First, the
model generates confidence scores for eachSVI, indicating theprobability of
the image being classified as either safe or unsafe. To maintain directional
consistency in the safetymetrics, confidence scores for unsafe classifications
were assigned negative values, while safe classifications retained positive
values. The comprehensive safety perception score for each sampling point
was computed by aggregating themodel’s predictions from all four cardinal
directions where SVIs were captured. Specifically, the overall safety level (S)
at location i can be expressed as:

Si ¼
X

j¼1to4ð Þ
Cij ð5Þ

where Cij represents the confidence score of the j-th directional view at
location i, with its signdeterminedby the classificationoutcome (positive for
safe, negative for unsafe).

This aggregation method provides a holistic assessment of safety per-
ception by considering the environmental characteristics from multiple
viewpoints at each location, thereby capturing the complete visual context of
the street environment.

Waste location identification and mapping
This section presents a framework for waste location identification and
mapping, encompassing both the development of neural network archi-
tecture and subsequent inference processes. The proposed methodology
addresses the challenges of accuratewaste detectionwhile ensuring practical
applicability in real-world urban environments.

We implement a binary classification approach for waste detection,
developing separatemodels for eachof the fourwaste categories identified in
the Street-Level Classification Dataset. The architecture employs Swin
Transformer (base model, patch size 4, window size 7) as the backbone for
image feature extraction and classification29. This architectural choice is
motivated by the complex nature of waste presentation in urban environ-
ments, where traditional CNN models, despite their effectiveness in local
feature detection, often fail to capture the contextual relationships between
waste objects and their surroundings. The transformer-based approach
enables more comprehensive environmental context modeling, facilitating
more accurate waste classification decisions.

The Swin Transformer architecture, characterized by its hierarchical
structure, efficiently models long-range dependencies while maintaining
computational efficiency. We initialize the model using pretrained Ima-
geNet weights and modify the final fully connected layer to accommodate
binary classification tasks. To ensure consistent model performance, we
implement a standardized preprocessing pipeline. The process begins with
image resizing to 224 × 224 pixels, matching the Swin Transformer’s input
requirements. Subsequently, pixel normalization is performed using Ima-
geNet mean and standard deviation values, facilitating improved model
convergence.

The training process utilizes cross-entropy loss, optimized specifically
for binary classification tasks. We employ the Adam optimizer with an
initial learning rate of 0.0001, enabling adaptive parameter updates
throughout the training process. To enhance convergence characteristics, a
cosine learning rate scheduler is implemented, providing gradual learning
rate reduction over the training period. Model selection is guided by accu-
racy metrics, with the highest-performing models retained for subsequent
waste detection processes.

The inference and mapping phase implements a systematic approach
to identify and geographically visualizewaste presence across the study area.
Each specializedwaste classificationmodel is applied to the image collection
in the study area to detect potential waste instances. To ensure detection
accuracy and mitigate the impact of misclassification on subsequent cor-
relation analyses, we implemented a two-stage verification procedure.
Initially, the trained models identify candidate images containing specific
waste categories through positive predictions. These preliminary results
then undergo manual verification to minimize false positives and enhance
detection reliability. The geographical coordinates associated with each
verified positive detection are extracted and recorded, enabling the spatial
mapping of waste distribution across different categories.

Factor analysis
To investigate the relationship betweenwaste presence and perceived safety
in urban environments, we conduct a two-faceted analysis. The statistical
analysis examines key factors shaping safety perception, with particular
focus on identifying which waste categories most significantly influence
perceived safety levels. Complementing this statistical approach, our
visualization analysis employs advanced mapping techniques to illustrate
the critical areas that inform safety perception decisions, providing inter-
pretable evidence of how waste presence affects residents’ sense of safety.

To systematically analyze the relationships between environ-
mental features and safety perception in urban environments, we
employed explainable machine learning as our primary statistical
analysis approach. This approach enables the identification and
quantification of how various environmental features influence resi-
dents’ safety perceptions. Our analytical framework incorporates
both static environmental elements, sociodemographic variables, and
waste-related variables extracted from SVIs. The complete set of
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feature variables utilized in the machine learning analysis is pre-
sented in Table 5. For feature extraction, we utilized a pre-trained
Detectron2 panoptic segmentation model to identify and quantify
static environmental elements from SVIs. A detailed description of
the Detectorn2 panoptic model architecture and implementation is
provided in Supplementary Note 2. The feature set was also sup-
plemented with binary indicators representing the presence or
absence of four distinct waste categories. These features constitute
the input space for our analysis, with the binary safety perception
score (safe/unsafe) serving as the target variable.

We evaluated the performance of four regression models: OLS,
Random Forest, GBDT, and XGBoost. The model demonstrating
superior performance was selected for subsequent variable inter-
pretation. To interpret the model’s decision-making process and
quantify feature contributions, we utilized SHAP values30. This
interpretability technique provides both global feature importance
rankings and local explanations for individual predictions. SHAP
values enable the determination of not only the magnitude of each
feature’s influence but also the directionality of their contributions to
safety perception. This comprehensive analytical framework offers
insights into how different environmental elements, including var-
ious waste types, collectively shape safety perception in urban spaces.

In addition to statistical modeling, we applied CAM as a visualization
technique to interpret how the safety perception model simulates human

judgment31. This visualization technique illuminates the areaswithin images
that contribute most substantially to the classification decisions, providing
insights into themodel’s attentionmechanisms during the safety perception
assessment process. CAM operates by highlighting regions in images that
are most influential in the model’s decision-making process. The technique
extracts featuremaps from thefinal convolutional layer and combines them
with the weights from the fully connected layer to generate a heatmap. This
heatmap effectively visualizes the model’s focus areas, emphasizing regions
that are particularly relevant to specific classification decisions.

In our implementation, the perception model utilizes the ResNet-50
architecture as the backbone. The feature maps from the final convolutional
layer (layer4) are selected forCAMgeneration, as this layer captureshigh-level
semantic information crucial for identifying significant image regions. The
process involvesweighing these featuremapsusing the correspondingweights
fromthe fullyconnected layerdedicated to safetyperceptionclassification.The
CAM generation process encompasses several key computational steps.
Initially, we extract theweights corresponding to the target class from the fully
connected layer. Theseweights are then applied to the featuremaps generated
by layer 4 through a weighted summation process. The resulting activation
map undergoes ReLU activation to eliminate negative values, ensuring focus
on positively contributing features. The final visualization is achieved through
normalization to a 0–1 range, followed by the application of a jet colormap for
enhancedvisual interpretation.The resultingheatmap is then resized tomatch
the original image dimensions and overlaid on the input image, creating an
interpretable visualization of the model’s attention patterns.

This visualization approach enables comprehensive analysis of the
model’s decision-making process by revealing the global features and critical
regions that influence safety perception assessment. The resulting visualiza-
tionsprovidevaluable insights into themodel’sbehaviorandvalidate its ability
to focus on relevant environmental features when evaluating urban safety.

Data availability
The urban perception data used in this study are available from the "Place
Pulse 2.0" dataset (https://centerforcollectivelearning.org/urbanperception).
Street-level imagery of New York City was obtained through the Google
Maps Platform Street View Static API (https://developers.google.com/
maps). The waste image classification dataset used in this study is available
from the authors upon request.
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Table 5 | Feature variables for urban safety perception
analysis: built environmental indicators, waste indicators, and
sociodemographic indicators

Category Variables Type

Built environmental view
index-area

- Roads
- Bridge
- Fences
- Pavements
- Houses
- Dirt
- Skies
- Buildings
- Trees
- Grasses
- Walls
- Wall bricks
- Railroads
- People

Continuous
variable

Urban infrastructure and
activity index-count

- People
- Bicycles
- Cars
- Buses
- Trucks
- Traffic lights
- Stop signs

Continuous
variable

Sociodemographic index - Population
- Household income
- POI density (100m radius)
- Number of residents with
Bachelor’s degrees

- Percentage of residents
with Bachelor's degrees

Continuous
variable

- Census blocks with Asian
majority
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