

Urban inequalities and sustainability

This editorial introduces a special collection on urban inequalities and sustainability, encompassing thirteen papers across continents and disciplines. Using Zipf's Law to analyze recurring themes, it highlights the centrality of population, poverty, climate, housing, and digital divides in shaping urban disparities. The collection underscores cities' dual role as engines of growth and sites of inequality, offering evidence and reflections to guide policies for more equitable and sustainable urban futures.

Setting the scene

The pervasive global process of urbanization has been found to be inextricably associated with economic growth¹. Urban economics explains this process through the lens of agglomeration economies: cost savings or productivity increases associated with denser populations, and accruing (to different extents) to firms and consumers alike². Yet, increasing population densities are also associated with rising income inequalities within urban areas³, as well as with rising urban-rural gaps⁴; in their turn, within-city inequalities are also associated with the uneven distribution of skills⁵, and give rise to phenomena of discontent⁶.

At the same time, despite representing an engine of growth, cities also contribute decisively to global pollution⁷, and often offer unpleasant environments to live, due to warmer temperatures (urban heat island effect⁸), racial segregation⁹, and gender disparities¹⁰.

Within this complex framework of rising within- and between-cities inequalities along so many dimensions, the guest editors of this collection set out to invite contributions from different disciplines, focusing on the common element of urban inequalities: their determinants, as well as their effects on sustainability. With the last article accepted for publication in July 2025,

the special collection launched on *npj Urban Sustainability* on Oct. 22, 2022 has come to an end, and we can now take stock of the evidence collected.

The main results of this collection

The collection comprises 13 papers on various issues associated with cities and their internal and external inequalities. Papers cover many disciplinary approaches and present evidence collected for all continents (Table 1).

Given the complexity of the topics addressed in these papers, we will offer a more synthetic and critical review of the results discussed in this special collection, rather than going through each single paper's conclusions as often done in other editorials. To this end, we resort to the original use of the Zipf's Law (also known as the rank-size distribution; henceforth, RS), often forgotten in Urban Economics studies, which typically use it to describe the regularity linking a city's positioning in a Country's population distribution and its size¹¹. In fact, Zipf's law was originally conceived as a means to uncover regularities in the frequency with which words are used in spoken language: "Zipf's law states that given a vocabulary of word types, the frequency of occurrence of a word type is inversely correlated with the rank r of that word type in an ordered frequency distribution"¹² [p. 77].

Zipf's law¹³ posits that, in a Zipf distribution, the log of the frequency of words in a book or complex speech should depend on the log of the rank in the words' distribution, with a correlation equal to -1 . To verify this hypothesis in our special collection, we first pooled all words in the thirteen papers collected, and then calculated their relative frequency. We then tested the following specification (Eq. (1)) on the basis of a simple OLS regression:

$$\ln(Freq) = \alpha + \beta \ln(Rank) \quad (1)$$

where $Freq$ is the relative frequency with which words appear in the special collection, and $Rank$ their positioning in the cardinal order of the words. Results of these estimates are presented in Table 2.

Table 2 suggests that the average slope of the Zipf's Law in the case of the special collection is equal to -0.71 (Column 1 in Table 2); hence, slightly less steep than theoretically expected. This testifies to a rather homogeneous distribution of topics addressed by the papers in the collection. As many of the words included in the special collection include technical terms (such as conjunctions), or generic terms (such as "city"), Column 2 in Table 2 shows the results of running the same regression on the subset of words that are deemed to be more specific.

Results suggest a further decrease in the slope of the RS distribution, suggesting the recurrency of several concepts that draw the attention of many papers included in the collection. The RS distribution is graphically represented in Fig. 1.

Top ten recurring words in the published papers include population, energy, poverty, climate, housing, income, social, transport, digital, and risk. Taken together, these depict the portrait of inequalities affecting cities in numerous dimensions: from more traditional features (income, internal and external accessibility) to social, technological, and climate risk exposure traits.

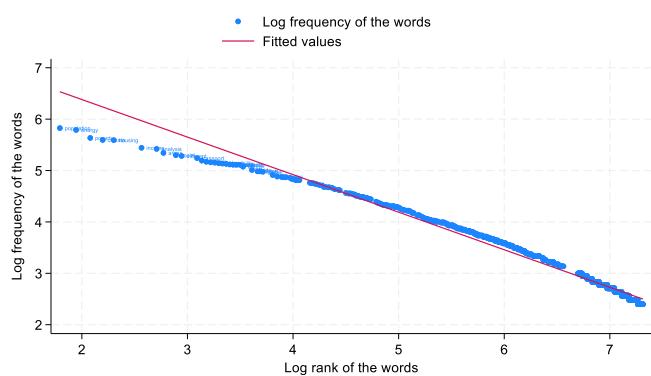
Concluding remarks

The articles included in this collection offer a broad view of the many elements making life in cities unequal and calling for sound policies. At the same time, they testify to the capacity of cities to attract population from rural areas, with a consequent increase in internal inequalities that the papers published in this collection document for all institutional contexts.

The evidence presented in the articles of this collection provide food for thought for addressing the costs associated with the pervasive process of urbanization characterizing the first urban century¹⁴. Far from providing a gloomy view of cities, they are the result of the love of the authors of the papers for cities, and the goal to offer solutions to open questions¹⁵.

The guest editors of this collection hope the readers will enjoy these papers as much as they did!

Table 1 | List of SI papers, continental context for which evidence was collected, and Google Scholar citations received as of Sep. 12, 2025


Special collection paper	Evidence collected for	Cumulative citations as of Sep. 12, 2025
16	Africa	15
17	Asia	19
18		3
19	Europe	8
20		59
21		23
22		—
23	North America	25
24		5
25		6
26	Oceania	4
27	Global	55
28		30

Total number SI papers were cited as of Sep. 12, 2025: 252.

Table 2 | Rank-size rules estimates

Model	(1) All words	(2) Only non-technical words
Log rank of the word	−0.709*** (−82.65)	−0.636*** (−48.84)
Constant term	7.719*** (138.26)	7.337*** (91.41)
N	1500	420
Adj. R ²	0.977	0.984

* = significant at the 90% level. ** = significant at the 95% level. *** = significant at the 99% level.

Fig. 1 | Rank-size rule for the words of the special issue.

Andrea Caragliu¹✉, Chiara F. Del Bo² & Sumana Bandyopadhyay³

¹Politecnico di Milano, ABC Department, Milan, MI, Italy. ²Università degli Studi di Milano, DEMM

Department, Milan, MI, Italy. ³University of Calcutta, Department of Geography, Kolkata, West Bengal, India.
✉e-mail: andrea.caragliu@polimi.it

Received: 12 September 2025; Accepted: 14 October 2025

Published online: 10 November 2025

References

1. Davis, J. C. & Henderson, J. V. Evidence on the political economy of the urbanization process. *J. Urban Econ.* **53**, 98–125 (2003).
2. Caragliu, A., Smit, M. & Van Oort, F. Who's right, Weber or Glaeser? In *Online ASSA Conference*. <https://www.aeaweb.org/conference/2022/preliminary/paper/KR35TY1B> (2022).
3. Yorukoglu, M. The decline of cities and inequality. *Am. Econ. Rev.* **92**, 191–197 (2002).
4. Loras-Gimeno, D., Gómez-Bengoechea, G. & Díaz-Lanchas, J. Fiscal redistribution and the narrowing urban-rural incomegap. *Reg. Sci. Policy Pract.* **16**, 100045 (2024).
5. Glaeser, E. L., Resseger, M. & Tobio, K. Inequality in cities. *J. Reg. Sci.* **49**, 617–646 (2009).
6. García, T. F., Torre, A. & Morollón, F. R. We'll always have Paris? Spatial inequalities and the rise of political discontent in the metropolitan region of Paris. *Reg. Sci. Policy Pract.* **17**, 100157 (2025).
7. Khoromenko, S. et al. Spatial and sector-specific contributions of emissions to ambient air pollution and mortality in European cities: a health impact assessment. *Lancet Public Health* **8**, e546–e558 (2023).
8. Cheval, S. et al. A systematic review of urban heat island and heat waves research (1991–2022). *Clim. Risk Manag.* **44**, 100603 (2024).
9. Martínez, U., Barbosa, V. & Thoene, U. Urban transformations in intermediate cities under the logic of neoliberal urbanism: the case of Monteria, Colombia. *Reg. Sci. Policy Pract.* **16**, 100058 (2024).
10. Fuchs, M., Jost, R. & Weyh, A. How many gaps are there? Investigating the regional dimension of the gender commuting gap. *Pap. Reg. Sci.* **103**, 100005 (2024).
11. Gabai, X. Zipf's law for cities: an explanation. *Q. J. Econ.* **114**, 739–767 (1999).
12. Linders, G. M. & Louwerse, M. M. Zipf's law revisited: spoken dialog, linguistic units, parameters, and the principle of least effort. *Psychon. Bull. Rev.* **30**, 77–101 (2023).
13. Zipf, G. K. *Human Behavior and the Principle of Least Effort* (Addison-Wesley, 1949).
14. Gilbert, R., Stevenson, D., Girardet, H. & Stren, R. *Making Cities Work: Role of Local Authorities in the Urban Environment* (Routledge, 2013).
15. Verma, R. & Ukkusuri, S. V. A link criticality approach for pedestrian network design to promote walking. *npj Urban Sustain.* **3**, 48 (2023).
16. Abascal, A. et al. AI perceives like a local: predicting citizen deprivation perception using satellite imagery. *npj Urban Sustain.* **4**, 20 (2024).
17. Lee, Y. & Han, S. Exploring urban housing disadvantages and economic struggles in Seoul, South Korea. *npj Urban Sustain.* **4**, 21 (2024).
18. Xu, Y. et al. Work-family interference in urban China: gender discrimination and the effects of work-family balance policies. *npj Urban Sustain.* **4**, 1 (2024).
19. Capello, R. & Lenzi, C. Automation and labour market inequalities: a comparison between cities and non-cities. *npj Urban Sustain.* **3**, 56 (2023).
20. Caragliu, A. & Del Bo, C. F. Smart cities and the urban digital divide. *npj Urban Sustain.* **3**, 43 (2023).
21. Lenzi, C. & Perucca, G. Economic inequalities and discontent in European cities. *npj Urban Sustain.* **3**, 26 (2023).
22. Michelangeli, A., Östh, J., Toger, M. & Türk, U. Inequality in access to urban amenities. *npj Urban Sustain.* **5**, 54 (2025).
23. Caggiano, H., Kocakusak, D., Kumar, P. & Tier, M. O. US cities' integration and evaluation of equity considerations into climate action plans. *npj Urban Sustain.* **3**, 50 (2023).
24. Li, C., Su, X., Fan, C. & Han, H. Behavior-encoded models reveal differentiated access to public cooling environment by race and income. *npj Urban Sustain.* **4**, 19 (2024).
25. Park, S., Yao, T. & Ukkusuri, S. V. Spatiotemporal heterogeneity reveals urban-rural differences in post-disaster recovery. *npj Urban Sustain.* **4**, 2 (2024).

26. Leishman, C., Liang, W. & Sim, N. The impact of urban population on housing cost: the case of Australia. *npj Urban Sustain.* **3**, 57 (2023).
27. Chen, M. et al. Rising vulnerability of compound risk inequality to ageing and extreme heatwave exposure in global cities. *npj Urban Sustain.* **3**, 38 (2023).
28. Fursyfer Del Rio, D. D., Sovacool, B. K., Griffiths, S., Foley, A. M. & Fursyfer Del Rio, J. A cross-country analysis of sustainability, transport and energy poverty. *npj Urban Sustain.* **3**, 41 (2023).

Author contributions

All three authors (A. Caragliu, C.F. Del Bo, and S. Bandyopadhyay) are equally responsible for all stages of this editorial. All authors have read and approved the manuscript.

Competing interests

A.C., C.F.D.B., and S.B. are Guest Editors of *npj Urban Sustainability*. The authors declare no other competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025