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Socio-economic factors constrain climate 
change adaptation in a tropical export crop
 

Varun Varma    1,2, Jonathan R. Mosedale    3, José Antonio Guzmán Alvarez    4 & 
Daniel P. Bebber    2,5 

Climate change will alter the geographical locations most suited for crop 
production, but adaptation to these new conditions may be constrained by 
edaphic and socio-economic factors. Here we investigate climate change 
adaptation constraints in banana, a major export crop of Latin America and 
the Caribbean. We derived optimal climatic, edaphic and socio-economic 
conditions from the distribution of intensive banana production across 
Latin America and the Caribbean, identified using remote sensing imagery. 
We found that intensive banana production is constrained to low-lying, 
warm aseasonal regions with slightly acidic soils, but is less constrained 
by precipitation, as irrigation facilitates production in drier regions. 
Production is limited to areas close to shipping ports and with high human 
population density. Rising temperatures, coupled with requirements for 
labour and export infrastructure, will result in a 60% reduction in the area 
suitable for export banana production, along with yield declines in most 
current banana producing areas.

Climate is a major determinant of global vegetation distributions1. 
As climate changes, the geographical regions suitable for different 
vegetation types will follow2. The influence of climate extends to the 
geographical distributions of agricultural crops3 and how these may 
change in future4. There are several key differences between the climate 
change responses of natural plant populations and those of agricultural 
crops. Humans alter both the climatic niche of crop plants through 
breeding5 and the suitability of habitat through technologies such as 
irrigation6. Socio-economic factors such as local market preferences, 
export market access and government subsidies also influence farmer 
choice in selecting crops for production7. Adaptation of agriculture 
to climate change must therefore also consider social, economic and 
cultural constraints to crop production.

The capacity for climate change adaptation may be particularly 
limited in the tropics, for several reasons. First, unlike higher latitudes, 
which may become suitable for warm-adapted crops over time8, equa-
torial regions already experience the warmest temperatures and thus 
lack regions from which novel crops could be sourced. Plant breeding 
for heat tolerance9, increased reliance on the most heat-tolerant crops 
and increased deployment of technologies such as irrigation could 

mitigate this limitation to some degree. Second, warming in the tropics 
may not enhance yields10 or extend the growing season of crops already 
present11, as expected in extratropical regions. Third, the global latitu-
dinal trend in wealth and technological capacity12 means that farmers 
in the Global South may be less able to adapt agricultural practices 
to cope with changing climate than their counterparts in wealthier 
countries13. Understanding and preparing for the impacts of climate 
change on tropical crops is therefore of central concern in ensuring 
global food security and sustainable development, particularly where 
populations are expected to grow rapidly14.

Here we analyse the potential impact of climate change on the 
production of a major tropical export crop, banana. Bananas and 
closely related plantains are the fruit of various hybrids and cultivars of  
Musa species15. While banana species were domesticated in Southeast 
Asia to produce a huge diversity of edible varieties, the international 
banana trade relies on a single cultivar, Cavendish16. Around 50 million 
tonnes of Cavendish bananas (comprising a number of somaclonal cul-
tivars) are produced each year, approximately half of global banana pro-
duction. Of this, 20 million tonnes are internationally traded. Europe 
and the United States are the biggest importers, sourcing the majority 
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temporal signal in satellite data. These spatio-temporal attributes have 
enabled detailed mapping of hurricane impacts on banana plantation 
production in the Dominican Republic using a combination of synthetic 
aperture radar (SAR) and multi-spectral remote sensing24. An impor-
tant caveat is that a large fraction of global banana production is by 
smallholders, often in sparser, mixed cropping systems in which the 
banana canopy is difficult to distinguish from surrounding vegetation 
except at very high spatial resolution25. Hence, we restrict our analysis 
to high-density export banana production, as in previous research21. 
Because of the reliance of export banana production on manual labour, 
access to shipping ports and irrigation in drier areas16, we quantify 
the degree to which banana plantation distributions are restricted 
to areas with high population density, near ports and equipped for 
irrigation. We project future suitability for banana production under 
climate change and assess the influence of socio-economic factors in 
constraining potential responses to climate change through reloca-
tion of production.

Results
Banana map BM19
Our classifier proved adept at identifying banana plantations (Supple-
mentary Table 2). All 500 plantation grid cells in the test dataset were 
correctly identified, and only 20 of the remaining 2,500 grid cells of 
other land-use classes were misclassified as banana, of which 17 were 
mangrove. Young and developing plantations with sparse canopies 
were not identified as banana plantations.

of their bananas from Latin America. This global trade is worth around 
US$11 billion, exceeding that of any other exported fruit17. Banana 
exports are therefore an important source of revenue for certain low- 
and middle-income countries. In Colombia, for example, the industry 
accounts for around 5% of agricultural gross domestic product and 
employs nearly 300,000 workers directly or indirectly18. As a tropical 
species, bananas are able to grow under hot conditions but are highly 
sensitive to water deficits19. Bananas are therefore potentially vulner-
able to climate change where temperatures exceed optima and where 
water is limiting, but they may benefit where warming approaches 
growth optima and water is sufficient20,21. Unfortunately, detailed 
ecophysiological information on banana productivity in relation to 
climate is scarce19,22, and the available geographical distribution data 
are based on probabilistic estimates rather than observation23, hamper-
ing efforts to understand how climate change might affect this crop.

To facilitate our analysis, we developed a high-resolution map of 
banana production for Latin America and the Caribbean for the year 
2019. We refer to this dataset as BM19 (Banana Map 2019) hereafter. 
Previous studies of banana production have employed subnational 
production data20 or visual identification of banana plantations in 
Google Earth images21 to infer climatic tolerances for this crop. The 
latter approach is possible because of certain characteristics of bananas 
in comparison with other crops and vegetation types: banana plants 
are tall with very large leaves and uniform canopies, and tend to be 
planted with quasi-regular spacing. Furthermore, bananas for export 
are grown in a continuous production cycle that leaves a characteristic 
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Fig. 1 | Banana distribution maps. a, Sentinel-1 median SAR VH (vertical transmit, 
horizontal receive polarization) for 2019 over the Caribbean coast of Costa 
Rica, aggregated to 100-m resolution. b, BM19 banana presence (black) over 
the same region, 50-m resolution. c, BM19 for Latin America and the Caribbean, 
aggregated to ha per 0.5° grid cell. The colour scale is log-transformed. The axes 

are in degrees. The red square indicates Costa Rica. d, BM19 banana area in Costa 
Rica aggregated to ha per five-arcminute grid cell. The purple square outlines 
the Caribbean coast region in a and b. e, SPAM banana area in Costa Rica. f, GAEZ 
banana area in Costa Rica.
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High levels of Sentinel-1 SAR backscatter were associated with 
banana (Fig. 1a,b). The classifier identified 360,662 ha of banana planta-
tions >0.5 ha within the region of interest (ROI) (Fig. 1c). The detected 
area of plantations equates to 24.4% of the total harvested banana area 
listed by FAOSTAT in countries within the ROI for 2019 (Supplementary 
Table 3). The total BM19 banana area is closest to FAOSTAT estimates 
for Central American countries, Mexico, Ecuador, Colombia and the 
Dominican Republic (Extended Data Fig. 1a). However, the BM19 classi-
fier detected no banana plantations >0.5 ha in several Caribbean states 
that report large banana production areas, including Haiti, St. Vincent 
and the Grenadines, Dominica, and Trinidad and Tobago (Supplemen-
tary Table 3). Banana area in Haiti is reported to be slightly larger than 
that in Costa Rica and is concentrated in the Archahaie Arrondisse-
ment to the northwest of Porte-au-Prince26. We were unable to obtain 
ground-truth verification of banana production in Haiti. Inspection of 
aerial imagery and expert opinion (T. Lescot, personal communication) 
suggests a far sparser production system in Haiti than in commercial 
export plantations (Extended Data Fig. 2), though this interpretation 
is uncertain (R. Yudin, personal communication).

BM19 area is strongly correlated with banana export quantity for 
Central American countries, Mexico, Belize, Colombia, the Dominican 
Republic, Bolivia and Peru (Extended Data Fig. 1b). Some Caribbean 
islands including St. Vincent and the Grenadines have high export 
quantities though no banana production was detected by the BM19 
classifier, while Argentina, Cuba, Puerto Rico and El Salvador report 
no exports but have substantial banana production. BM19 banana 
area tends to have a more spatially restricted distribution than both 
the Spatial Production Allocation Model (SPAM) 2010 and the Global 
Agro-Ecological Zones (GAEZ+ 2015) harvested area estimates derived 
from the spatial downscaling of national and subnational production 
statistics (Fig. 1d–f and Extended Data Fig. 3). Of the two derived prod-
ucts, BM19 more closely resembles the SPAM distribution with more 
localized and intensely cultivated areas than GAEZ.

Climatic, edaphic and socio-economic limits of banana 
plantations
Banana plantations tended to be restricted to particular climatic, 
edaphic and socio-economic conditions (Fig. 2 and Supplementary 

Table 3). Banana plantations were found at lower elevations  
(95th percentile of area below 440 m above sea level) and in more  
acidic soils (90th percentile of area between pH 5.0 and 6.7) than  
croplands in general. The latitudinal range was narrower than crop-
lands, with somewhat greater annual precipitation, much narrower 
and higher annual mean and minimum temperatures, and much nar-
rower and lower temperature seasonality. Precipitation seasonality 
and maximum temperature distributions were similar to but somewhat 
higher than those for other croplands. Banana was far more likely to be 
grown in areas equipped for irrigation than other crops, in areas with 
higher population density and much closer to ports: three quarters of 
mapped banana area lies within 86 km of the nearest port.

The requirement for irrigation tends to be greater in hotter, 
drier regions (Fig. 3a). Irrigation provision increases below 1,500 mm 
annual precipitation and above 25 °C mean annual temperature. An 
exception to this pattern is seen at around 25 °C and 1,700 mm pre-
cipitation, which has a very high (60%) area equipped for irrigation. 
This anomalously high irrigation provision is found near Guayaquil, 
Ecuador. Median irrigation provision, weighted by banana area per 
grid cell, is around 5% (Supplementary Table 4). Banana production 
area for low-irrigation areas (<5%) is concentrated at around 26 °C and 
3,500 mm precipitation, while production in high-irrigation areas (≥5%) 
occurs above 25 °C and below 2,000 mm (Fig. 3b). The 90th percentile 
range (R90) of climatic variables for banana production differed by irri-
gation provision level (Supplementary Table 5). The median and R90 of 
mean annual temperatures (26.1, 22.9 and 27.9 °C) were similar to the 
optimum, minimum and maximum annual temperatures (26.8, 20.0 
and 29.4 °C) estimated for Latin America and the Caribbean derived 
from a global banana yield analysis20. Total annual precipitation dif-
fered most strongly by irrigation, with nearly twice the rainfall found 
in low-irrigation versus high-irrigation areas (median 2,473 versus 
1,210 mm).

Climate change impacts on export banana production area
We used the observed distributions of banana plantations in relation to 
climatic, edaphic and socio-economic variables to estimate the poten-
tial geographical distributions under historical (1970–2000) and future 
(Shared Socio-economic Pathway (SSP) 2-4.5, 2061–2080) climates. 
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Fig. 2 | Banana plantation distributions in relation to climatic, edaphic and 
socio-economic variables. The boxes show the area interquartile range (with 
the median), and the whiskers show R90 of banana-area-weighted grid cells for 
the entire ROI (all), croplands (crops) and BM19 (banana) for elevation, area 
equipped for irrigation, latitude, soil pH at 0–5 cm, population density, distance 

to nearest port (Port), annual precipitation (P), precipitation seasonality (Psea), 
mean annual temperature (Tavg), temperature diurnal range (Tdir), temperature 
isothermality (Tiso), maximum temperature of the warmest month (Tmax), 
minimum temperature of the coldest month (Tmin) and temperature seasonality 
(Tsea). The sample size (the number of land area grid cells) is 261,871.
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For low-irrigation regions, we used the observed R90 for precipitation 
(912–3,690 mm). For high-irrigation regions, we lowered the minimum 
rainfall to 543 mm (the 5th percentile of the precipitation distribu-
tion for high-irrigation regions) but retained the upper limit at the 
low-irrigation value. The logic here is that banana production could 
occur under high precipitation in high-irrigation areas but that irriga-
tion infrastructure tends not to be established where rainfall is plentiful.

Optimal regions for banana production were estimated using the 
R90 for total precipitation, mean annual temperature and temperature 
seasonality, each adjusted for irrigation level. Other climatic variables 
were omitted either because they were not strongly restricted for 
banana in relation to other land-use classes or because they were highly 
correlated with other climatic variables (Extended Data Fig. 4). Eleva-
tion, soil pH, population density and distance to port were also included 
to define the optimal region for banana. We arbitrarily restricted the 
potential area for banana to grid cells with at least 1% crop cover to avoid 
largely undeveloped protected and wilderness areas.

Considering climatic and edaphic factors (elevation and soil pH), 
Central America, the northern and southern borders of the Amazon 
basin, and coastal Brazil are currently the most suitable (that is, optimal)  

for banana production (Fig. 4a and Extended Data Fig. 5). Banana 
plantations currently occupy only 9.0% of the area (on the basis of 
five-arcminute grid cells) that is predicted to be suitable under the 
recent historical climate (Fig. 4b and Supplementary Table 6). Both 
the total suitable area and the current production area that is suitable 
shrink dramatically (by 60% overall) under the SSP2-4.5 climate change 
scenario when considering both climatic and socio-economic con-
straints (Fig. 4b). In particular, Colombia and Venezuela are predicted 
to become almost entirely suboptimal for export production. Ecuador, 
a major exporter, is the only nation to see a small increase in suitable 
area and to maintain suitability for areas that currently have banana 
production. Suitable area is maintained primarily on the Atlantic coast 
of Brazil, with smaller areas in Nicaragua, Bolivia, Ecuador and Mexico 
(blue in Fig. 4b). Southern Brazil (the states of Mato Grosso do Sul,  
São Paulo, Paraná and Rio de Janeiro) and parts of the Atlantic coast  
are the only regions that are likely to become substantially more  
suitable for production in the future (green in Fig. 4b). Banana was 
detected in some areas, mainly in central Brazil, deemed to be unsuit-
able (orange in Fig. 4b). Overall, the suitable area considering only cur-
rent climatic and edaphic factors (pH and elevation) is 3.34 × 106 km2, 
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reduced to 0.99 × 106 km2 when population density, distance to port 
and crop cover are considered. Under future climate and edaphic con-
straints, the suitable area is 1.07 × 106 km2, reduced to 0.40 × 106 km2 
when socio-economic factors are included (Supplementary Table 7).

Increasing temperature is the sole climatic driver of suitable area 
loss (Fig. 5). Considering the current suitable area, the distribution of 
mean annual temperature lies within the R90 for low- and high-irrigation 
areas (by definition). Under the future climate scenario, much of the 
currently suitable area becomes too warm, with mean annual tem-
peratures exceeding 30 °C in some areas. In contrast, the annual pre-
cipitation distribution for currently suitable areas does not change 
noticeably. The establishment of irrigation where required across the 
region could expand the future suitable area by 45% compared with 
future climate under current irrigation, other factors being equal 
(Supplementary Table 8 and Extended Data Fig. 6). The total suitable 
area would shrink by 41% compared with current climate and irrigation 
provision, substantially less than the 60% loss under current irriga-
tion. The dry Atlantic coast of Brazil would benefit the most in terms 
of absolute area, while Venezuela, Cuba and Mexico would benefit in 
relative terms. The trajectory of future population distributions under 
different SSPs has little influence on the area most suitable for banana 
(Extended Data Figs. 7 and 8a). However, the maximum temperature in 
the warmest month increases significantly (from mean 30.9 to 33.4 °C) 
under climate change (Extended Data Fig. 8b).

Climate-dependent relative yield in current banana producing 
areas declined for most countries between historical and projected 
future climate (Fig. 6). Ecuador and Brazil are the only major produc-
ers expected to see yield increases in current banana production areas 
due to climate change.

Discussion
We have presented a high-resolution map of intensive banana produc-
tion for Latin America and the Caribbean, BM19, showing that this major 

export crop is produced within narrow climatic limits associated with 
high levels of irrigation and close to areas of high population density 
and shipping ports. Under the assumption of no future labour migra-
tion and no expansion of irrigation or transport infrastructure to ports, 
we found that the most suitable area for export banana production 
under climate change is strongly restricted. Substantial adaptation 
measures will be needed to facilitate production in future optimal 
production areas.

The classifier developed for BM19 showed high accuracy and pre-
cision. High SAR backscatter due to the physical structure of banana 
plants, and low variability in backscatter over time as a consequence 
of intensive-production practices, enabled discrimination of banana 
plantations from other vegetation types. However, other landscape 
features, particularly bare slopes in hilly areas, could potentially intro-
duce classification errors. Such artefacts were largely corrected for by 
augmenting the SAR data with multi-spectral (Normalized Difference 
Vegetation Index, NDVI) and topographical (slope) information. As in 
previous studies25, we were unable to distinguish banana or plantain 
grown in less intensive or mixed cropping systems, which are common 
in Haiti (T. Lescot, personal communication) and other Caribbean 
islands.

Our classifier relied on data from the ESA Sentinel missions. Training  
of a random forest classifier for Sentinel-1 SAR data using the LUCAS 
2018 land-use survey enabled identification of 18 crop classes (and 
three non-crop classes) across Europe at 10-m resolution, though 
with variable accuracy27. These classifiers benefited from intensive 
ground-truth surveys, with LUCAS contributing 87,853 data points to 
the European Union crop map. Such extensive ground-truth informa-
tion is not currently available for Latin America, although field data 
have been used to develop distribution maps for some other crops such 
as soybean28. The stature and distinctive hexagonal planting arrange-
ment of commercial oil palm plantations have facilitated mapping 
of this export crop by enabling training datasets to be developed by 
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inspection of high-resolution aerial imagery29. The high spatial reso-
lution (minimum area 0.5 ha) obtainable using the Sentinel data has 
enabled detailed analysis of spatio-temporal dynamics—for example, 
the loss and recovery of banana plantations after extreme weather 
events24. However, in the present study, we aggregated the banana 
distribution to match other spatial datasets required for our analyses.

We found that the BM19 distribution was closer to that predicted 
by the SPAM algorithm30 than by GAEZ31. SPAM downscales official 
crop production statistics for national or subnational administra-
tive units to gridded cropland datasets using GAEZ crop suitability 
estimates and gridded estimates of irrigation provision. GAEZ uses 
similar datasets to SPAM, but the algorithm results in substantially dif-
ferent spatial crop allocation32. GAEZ models agroclimatic suitability 
for crops using a combination of climatic and edaphic tolerances. For 
banana, optimal conditions occur when more than one third of the 
growing season has a mean temperature of 20–30 °C, less than half the 
growing season between 10 and 15 °C, and no periods above 30 °C or 
below 10 °C. Suboptimal conditions allow temperatures above 30 °C 
for up to one sixth of the growing season, but no periods below 10 °C. 
Though not directly comparable, our R90 for mean annual temperature 
(22.9–27.9 °C without considering irrigation) is consistent with the 
GAEZ temperature profile. GAEZ models the effect of water availability 
on yield by comparing actual crop evapotranspiration with maximum 
crop evapotranspiration; hence, the relationship with precipitation is 
indirect. The approximate range of seasonal evapotranspiration for 
banana is estimated as 700–1,700 mm (ref. 33), which spans the 5th 
percentile for low-irrigation banana area in BM19 (953 mm), suggest-
ing a sufficient level of rainfall to maximize yields across most of the 
distribution. We found that total precipitation could be lower, and 
precipitation seasonality could be greater, in high-irrigation areas, 
confirming that irrigation is associated with a wider climatic niche 
for this crop.

Our models suggest that future climate change will severely 
restrict the area most suitable for export banana production, particu-
larly due to rising temperature. Temperature change was also found to 
be the dominant driver of yield trends in a historical analysis of global 
banana production20. In contrast, changing precipitation has less 
influence on future suitability as the precipitation range for banana 
is relatively wide. Investment in irrigation could extend the suitable 

area substantially, particularly in Brazil, where the area equipped for 
irrigation has increased greatly (though sustainably) in recent years34. 
A potential limitation in our analysis is the reliability of CMIP6 global 
circulation model precipitation projections, which in certain regions of 
South America tend to overestimate the frequency of dry periods rela-
tive to observations35. The absence of a strong effect of precipitation 
is partly due to the presence of irrigation; hence, the maintenance of 
irrigation water supplies in the future will be key, along with breeding 
of drought-tolerant banana varieties36. Currently, the banana industry 
is fighting a devastating fungal pathogen, Fusarium wilt Tropical Race 
4 (caused by the fungus Fusarium oxysporum f.sp. cubense), which 
was first reported in Colombia in 2019 and has since been detected in 
Peru37. Efforts are underway to develop Cavendish cultivars resistant 
to this disease38, but our results suggest that climate change will lead 
to extreme temperatures that will severely reduce suitable production 
areas and yields in many important exporting countries and expose 
banana workers to greater risk of heat stress, with negative impacts 
on health and productivity39,40. The reduction and redistribution of 
highly productive areas across Central America, Latin America and the 
Caribbean would require the global banana value chain to adapt. This 
could stimulate a larger reorganization of international trade flows, 
with as yet unexplored consequences for local agricultural economies 
in producer countries to maintain demands for nutritional diversity in 
non-producing countries.

Methods
Except where specified, all analyses were performed using Google Earth 
Engine (https://earthengine.google.com/) and R41 v.4.3.2. R package  
terra42 v.1.7-55 was used for raster data manipulation. Vectors of  
countries were obtained from the Database of Global Administrative 
Areas (GADM) using R package geodata43 v.0.5-9. The figures were made 
using R packages ggplot2 (ref. 44) v.3.5.1, tidyterra45 v. 0.7.0, ggspatial46 
v.1.1.9 and ggcorplot47 v.0.1.4.1.

Our ROI includes North America, Central America, South America  
and the Caribbean islands between the latitudes 35° N and 37° S.  
The data sources used in the analysis are given in Supplementary 
Table 1.

Ground-truth data
We sourced polygons of banana plantations that were active in 2019 
from the Dominican Republic (source: BANELINO banana producers 
association, Santa Cruz de Mao, Dominican Republic) and Costa Rica 
(source: CORBANA national banana corporation, San José, Costa Rica). 
These polygons were digitized from ground surveys and represent 
a subset of the active plantation area in each country. In addition, a 
digitized paper map of banana plantation area for Belize (valid for 
2012–2014) (source: Banana Growers Association, Big Creek, Belize) 
was updated using visual interpretation of high-resolution aerial 
imagery for 2019 available from Google Earth’s timeline feature. Large 
banana plantations are visually distinguishable from the surrounding 
landscape in such high-resolution images21. Hence, we have high con-
fidence that these modified polygons represent active plantations in 
Belize for 2019. Preliminary runs of our classification method (detailed 
below) suggested some misclassification of banana plantations as 
non-banana plantations, which were most apparent in southern Brazil. 
We therefore augmented the banana plantation training data from 
this region. Using training polygons from the Dominican Republic, 
Costa Rica and Belize, we identified the characteristic distribution 
of Sentinel-1 vertical polarization (VV) backscatter values (median 
annual value for 2019) for plantations. We widened the bounds of this 
distribution and used it as a threshold (for the median annual Sentinel-1 
VV backscatter for 2019) to generate a binary image of southern Brazil. 
This binary image was overlaid with high-resolution aerial imagery 
for 2019 available from Google Earth to manually digitize additional 
plantation polygons in the region. In total, the banana ground-truth 
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Fig. 6 | Projected relative yield change. The black points show the 
banana-area-weighted median climate-dependent yield change between recent 
historical and projected future (SSP2-4.5, 2061–2080) climate. The width of the 
coloured bars indicates the banana-area-weighted interquartile range; the height 
is proportional to the total banana area in BM19. The colours indicate median 
change. The number of grid cells per country is given in parentheses. Individual 
values are shown for countries with fewer than ten grid cells.
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dataset contained 156 polygons spread over Belize, the Dominican 
Republic, Costa Rica and Brazil.

In addition to the banana plantation polygons, we included five 
other land-cover classes in our classification process. These were 
generic classes of forest, undulating terrain with sparse vegetation, 
built-up areas, other crops and mangroves. The choice of including 
these generic classes was through an iterative trial-and-error process of 
preliminary classification runs and identifying the potential land-cover 
types that reduced the accuracy of the banana plantation class (primar-
ily through false positives). For example, plants in commercial banana 
plantations tend to show high backscatter values in SAR imagery due to 
their large leaves and upright stature strongly reflecting the incident 
SAR signal. As commercial plantations operate on a continuous pro-
duction schedule (to meet weekly export schedules), a low variation in 
backscatter values can be expected over time (that is, a weak seasonal 
signature). However, these characteristics are logically also shared 
by buildings and ridges, which can reflect the incident SAR signal to a 
large extent, and the intensity of the reflection would vary little over 
time. Training polygons for these generic classes were also digitized 
using high-resolution aerial imagery for 2019 available through Google 
Earth’s timeline feature.

Mapping of banana plantations
Classification and mapping of banana plantations was carried out in 
Google Earth Engine. The study region was divided into 2° × 2° tiles 
in Earth Engine to facilitate efficient data processing and storage. We 
created an image collection for all Sentinel-1 and Sentinel-2 images for 
2019 that covered the study region. The Sentinel-1 image collection was 
used to derive four data layers—annual median VV backscatter, annual 
median VH backscatter, annual VV standard deviation and annual VH 
standard deviation. Images in the Sentinel-2 image collection were 
first passed through a function that masks cloud-contaminated pixels 
using each image’s QA60 band. Band 4 and band 8 were then used to 
derive an annual median NDVI layer. A slope layer was derived using the 
90-m-resolution Shuttle Radar Topography Mission Digital Elevation 
Model. Slope was included in the classification as commercial banana 
cultivation is carried out on relatively flat terrain. These six derived lay-
ers were concatenated or stacked and formed the dataset (henceforth 
referred to as the data stack) to build a classifier and thence to map 
plantations over the study extent.

Random sampling points were generated within the polygons of 
the six training classes. Values from the data stack were extracted to 
these sampling points. This represents the training dataset. The num-
ber of points generated within each class were n = 1,000 for banana, 
n = 1,000 for forest, n = 1,000 for undulating terrain with sparse veg-
etation, n = 100 for built-up areas, n = 200 for other crops and n = 200 
for mangroves. The differences in the number of sampling points 
for each class reflect the severity of banana plantation classification 
inaccuracies that the respective generic land-cover classes gener-
ated, as well as the memory restrictions imposed by Google Earth 
Engine on the size of the training dataset. We used the random forest 
algorithm with 50 decision trees to build the classifier, which we then 
used to predict the presence of banana plantation pixels across the 
study extent. To reduce fine-scale artefacts of the classification, we 
enumerated the contiguity of the classified banana pixels and only 
retained patches of pixels that were ≥50 pixels. As the native resolu-
tion of the classification was 10 m, mapped plantations were ≥0.5 ha. 
Our method is therefore not capable of mapping the production area 
of smallholders and should be used exclusively for mapping larger 
commercial plantations.

To evaluate the overall accuracy of our classification, we generated 
a fresh set of 500 points per land-cover class, to which we extracted 
values from the data stack and calculated a confusion matrix48  
after running this validation dataset through the classifier. To  
assess banana-plantation-specific measures of classifier performance, 

we extracted values from the validation error matrix and calculated 
the following:

Accuracy = (TP + TN)/(TP + FP + FN + TN)

Precision = (TP)/(TP + FP)

Recall = (TP)/(TP + FN)

F1 = 2×((precision×recall)/(precision + recall))

where TP are true positives, TN are true negatives, FP are false positives 
and FN are false negatives.

Comparison of BM19 with existing crop distribution estimates 
and production statistics
Total BM19 plantation areas by country were compared with  
available FAO harvested area data for the categories ‘banana’ and  
‘plantain and cooking bananas’ for the year 2019. BM19 aggregated to 
a five-arcminute grid was compared with harvested area in SPAM 2010 
v.2.0 (ref. 49) and the GAEZ+ 2015 harvested area estimate50.

Banana plantation occupancy of climatic, edaphic and 
socio-economic space
We employed bioclimatic (rectilinear surface range) envelope model-
ling51 to obtain the R90 for a set of climatic and socio-economic variables 
that we hypothesized would influence the selection of areas for banana 
production. Our predictors (detailed below) were bioclimatic vari-
ables, elevation, area equipped for irrigation, latitude, soil pH, human 
population density and distance to shipping port.

The rectilinear surface range method simply calculates the lower 
and upper bounds of a variable within which a certain fraction (here, 
90%) of the area of a species is found. We interpret the R90 envelopes as 
those regions most desirable or suitable for export banana production, 
rather than the conditions under which banana could be grown. Hence, 
we refer to ‘optimal’ or ‘suitable’ areas while recognizing that banana 
can be grown under a wider range of conditions. BM19 and the predic-
tors were aggregated to five-arcminute resolution where necessary, and 
R90 was estimated by weighting grid cells by banana area. R90 values for 
BM19 banana area were compared with R90 for all cropland and R90 for 
the ROI land surface, to determine which predictors were restrictive 
to the observed distribution of banana. Cropland extent was obtained 
from the Global Land and Discovery project52 at 0.025° resolution.

Recent historical (1970 to 2000) bioclimatic variables were 
obtained from WorldClim at five-arcminute resolution53. To mini-
mize redundancy among climatic predictors, correlations among 
bioclimatic variables in WorldClim were used to identify a suitable 
subset: mean annual temperature (bioclimatic variable BIO1), mean 
diurnal temperature range (BIO2), temperature seasonality (BIO4) 
and annual precipitation (BIO12). This subset was used to predict the 
region most suitable for banana production under recent historical 
and future climate (see below).

Irrigation is used to extend the range of crop species into  
chronically and seasonally drier, as well as potentially hotter, areas than 
would be possible under rainfed agriculture alone. We estimated R90 
for selected bioclimatic predictors in two groups determined by area 
equipped for irrigation54: low-irrigation production with irrigation 
area of 0–5% and high-irrigation production with irrigation >5%. The 
5% boundary between low- and high-irrigation areas was determined 
by the median area equipped for irrigation in banana-producing grid 
cells. Little published information is available regarding optimal soil 
properties for banana production, though in Australia banana tends 
to be grown in slightly acidic soils55. We therefore estimated R90 for 
soil pH at 0–5 cm using SoilGrids250m data56. Given that Cavendish 
bananas are exported by sea, we included distance from the centre of 
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each grid cell to the nearest international port listed in the World Port 
Index57. Banana production and harvesting rely on manual labour, so 
we estimated R90 for population density58.

Projecting future optimal banana plantation distribution
For the future climate scenario, we used ensemble averages of 12 CMIP6 
global circulation model outputs driven by SSP2-4.5 for the time period 
2061–2080. These global circulation model outputs were obtained from 
WorldClim at five-arcminute resolution53. The chosen SSP sees emissions 
peak in 2040 and then gradually decline, limiting global warming to under 
3 °C by 2100. The region most suitable for banana production was esti-
mated from R90 values using future mean annual temperature, tempera-
ture seasonality and annual precipitation, holding irrigation, cropland, 
soil pH, population density and distance to port at the current values.

The area equipped for irrigation has grown in recent decades34 
and could continue to increase in the future. We estimated the maxi-
mum future extent of banana growing areas by widening the R90 for 
mean annual temperature, temperature seasonality and annual pre-
cipitation to incorporate the effect of irrigation. For example, R90 for 
annual precipitation is 912–3,690 mm for low-irrigation (<5%) areas and 
543–2,356 mm for high-irrigation (≥5%) areas (Supplementary Table 5). 
To estimate future suitable area with unrestricted irrigation, the R90 for 
precipitation was thus extended to 543–3,690 mm.

Population densities are likely to change in the future due to popu-
lation growth and trends such as urbanization59. The SSPs provide a 
range of scenarios for changes in population size and distribution59. 
For climate change, we chose SSP2, known as ‘Middle of the road’. 
Demographic change in SSP2 is characterized by medium levels of 
population growth and medium rates of urbanization, with spatial 
distributions following historical patterns. Population growth rates in 
high-fertility, low-fertility and rich low-fertility countries, along with 
urbanization levels in low-, medium- and high-income countries, vary 
among the other SSPs: SSP1 (Sustainability), SSP3 (Regional rivalry), 
SSP4 (Inequality) and SSP5 (Fossil-fuelled development). We explored 
the effect of projected population density in 2070 among SSPs on 
the area most suitable for banana using downscaled gridded popula-
tion density projections60, assuming that the dependence of banana 
production on labour does not change in the future. Exposure to high 
temperatures is a serious health risk for agricultural labourers39,40. We 
calculated the maximum temperature of the warmest month (BIO5) 
for suitable areas under the current climate and compared this to the 
maximum temperatures of suitable areas under SSP2-4.5 climate and 
population distributions under SSP1–SSP5.

Relative yield estimation
We estimated climate-dependent relative yield (YC) for all five-arcminute 
grid cells containing banana (BM19) using response curves estimated 
from national and subnational production data for the Latin America 
and the Caribbean region20. Actual yield is a function of YC and other 
factors such as agrochemical inputs and management, which vary 
among countries and over time20. YC was estimated as the product of 
temperature-dependent (YT) and precipitation-dependent (YP) yields:

YC = YT×YP

YT and YP were estimated using beta functions that employ mini-
mum (min), optimum (opt) and maximum (max) values of mean annual 
temperature (T) and annual precipitation (P) for yield. For example, the 
beta function for temperature is:

YT = ( Tmax − T
Tmax − Topt

) ( T − Tmin
Topt − Tmin

)
(Topt−Tmin )
(Tmax−Topt )

YC, YT and YP take values of one under optimal conditions, and zero if any 
predictor falls below the minimum or above the maximum. For Latin 

America and the Caribbean, the cardinal (minimum, optimum and max-
imum) values for temperature are 20.0, 26.8 and 29.4 °C. The values for 
precipitation are 85.5, 2,646 and 5,307 mm. YC was estimated for current 
(YCc) and future (YCf) conditions using recent historical (1970–2000) 
and projected (multimodel average, SSP2-4.5, 2061–2080) climates. 
Change in yield per country was estimated as the banana-area-weighted 
median and interquartile range of the relative difference between cur-
rent and future relative yield (YCf − YCc).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used for analysis are available from the sources listed in  
Supplementary Table 1, except the banana production locations  
supplied by BANELINO (Santa Cruz de Mao, Dominican Republic), 
CORBANA (San José, Costa Rica) and the Banana Growers Associa-
tion (Big Creek, Belize). The data are available on request from these 
organizations. The BM19 banana production map tiles are available via 
figshare at https://doi.org/10.6084/m9.figshare.26509024 (ref. 61) as 
TIF files. Source data are provided with this paper.

Code availability
A land-use classifier was developed in JavaScript for Google Earth 
Engine. The code is available at https://code.earthengine.google.com/
dd3aa4e7547fd21a1c16a8f03d3d74ff?noload=true and https://code.
earthengine.google.com/5da98b1455951c36dcc133c48589efa6?no
load=true.
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Extended Data Fig. 1 | BM19 compared with FAOSTAT. a. BM19 vs. FAOSTAT 
banana area by country and region (Car = Caribbean, CAM = Central America 
and Mexico, SAm = South America) for 2019. Log-transformed axes were used 

therefore 1 ha was added to enable zero values to be visualized. Country codes 
are given in Table S1. b. BM19 banana area vs. FAOSTAT banana export by country 
and region for 2019.
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a b

50 m 50 m

Extended Data Fig. 2 | Aerial imagery of banana production. a. Putative  
banana or plantain production in the Archahaie Arrondissement to the  
north west of Porte-au-Prince. Aerial imagery obtained from Google Earth 

(https://earth.google.com). Data from Airbus (2023). b. High intensity export 
banana production near San Cristobal, Costa Rica. Aerial imagery obtained from 
Google Earth (https://earth.google.com). Data from CNES/Airbus (2022).
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Extended Data Fig. 3 | Banana area estimate comparison. Upper row (a-c) is Costa Rica, lower row (d-f) is Ecuador. Left column (a,d) is BM19, centre (b,e) is SPAM, 
right (c,f) is GAEZ. Spatial resolution 5 arc minutes.
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Extended Data Fig. 4 | Kendall correlations among climate variables. Correlations for all 5 arc minute grid cells containing banana (n = 1203). Temperature variables 
are isothermality (tiso), mean diurnal range (tdir), seasonality (tsea), minimum (tmin), maximum (tmax) and average (tavg). Precipitation variables are seasonality 
(psea) and annual total (prec).
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Extended Data Fig. 5 | Current suitability for banana. Binary images show suitability (dark blue) for banana based on R90 for edaphic, socioeconomic and climatic 
predictors. Climatic predictors are adjusted for low ( < 5 %) and high (≥ 5 %) irrigation. Irrigation (% area) is shown categorized.
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Extended Data Fig. 6 | Future suitability for banana, by irrigation provision. 
Yellow denotes areas unsuitable for banana based on R90 for edaphic, 
socioeconomic and climatic predictors. Dark blue denotes areas suitable for 
banana with mean annual temperature, temperature seasonality and annual 

precipitation adjusted for current levels of irrigation provision. Green denotes 
additional suitable areas if irrigation provision were extended to the entire 
region.
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Extended Data Fig. 7 | Future suitability for banana under different population 
density scenarios. Binary images show suitability (dark blue) for banana based 
on R90 for edaphic, socioeconomic and and future (SSP2-4.5, 2061–2080) climatic 

predictors. Climatic predictors are adjusted for low ( < 5 %) and high (≥ 5 %) 
irrigation. Panels show suitability based on current (2020) population density 
(top left) and future SSP population density projections for 2070.
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Extended Data Fig. 8 | Population density and maximum temperature of 
warmest month. a) Violin plots show population density for grid cells most 
suitable for banana production using R90 limits for socioeconomic (port distance, 
crop cover) and edaphic factors (elevation, soil pH), future climate (SSP2-4.5, 
2061-2080, adjusted by irrigation level) and different population density 
projections (current population in 2020, and SSP1–SSP5 scenarios for 2070). 

Population density is log-transformed for clarity. Vertical lines within violin plots 
show median and interquartile range. b) Maximum temperature of warmest 
month (Tmax) for suitable areas for banana production under ‘current’ climate 
(1970–2000, pale blue fill) and population density, and future climate (SSP2-4.5, 
2061–2080, yellow fill) and population densities under different SSPs.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection A land use classifier was developed in Javascript for Google Earth Engine. The code is available at https://code.earthengine.google.com/
dd3aa4e7547fd21a1c16a8f03d3d74ff?noload=true and https://code.earthengine.google.com/5da98b1455951c36dcc133c48589efa6?
noload=true

Data analysis Data analysis other than for the land use classifier was conducted in R version 4.3.2. Package terra version 1.7-55 was used for raster data 
manipulation. Vectors of countries were obtained from the Database of Global Administrative Areas (GADM) using package geodata version 
0.5-9.  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data used for analysis are available from sources listed in Table S1, with the exception of banana production locations supplied by BANELINO (Santa Cruz de Mao, 
Dominican Republic), CORBANA (San José, Costa Rica) and the Banana Growers Association (Big Creek, Belize). The data are available on request from these 
organizations. The BM19 banana production map tiles are available at https://doi.org/10.6084/m9.figshare.26509024 as Tag Image File Format (TIF) files

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender NA

Population characteristics NA

Recruitment NA

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study analysed remote sensing data to generate a map of banana production in Latin America and the Caribbean, and analysed 
the banana distribution in relation to associated climatic, edaphic and socioeconomic data.

Research sample The banana map was generated at 0.5 ha resolution. This was aggregated to 5 arc minute resolution for comparison with other 
datasets.

Sampling strategy The entire region was analysed. A representative sample of banana plantation locations (N = 156 polygons) were obtained in Belize, 
Dominican Republic and Costa Rica.

Data collection The remote sensing data were analysed in Google Earth Engine.

Timing and spatial scale Satellite images were obtained for the year 2019.

Data exclusions None

Reproducibility NA

Randomization NA

Blinding NA

Did the study involve field work? Yes No
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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