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Climate change will alter the geographical locations most suited for crop
production, but adaptation to these new conditions may be constrained by

edaphic and socio-economic factors. Here we investigate climate change
adaptation constraints in banana, amajor export crop of Latin America and
the Caribbean. We derived optimal climatic, edaphic and socio-economic
conditions from the distribution of intensive banana production across
Latin America and the Caribbean, identified using remote sensing imagery.
We found that intensive banana production is constrained to low-lying,
warm aseasonal regions with slightly acidic soils, but is less constrained

by precipitation, asirrigation facilitates production in drier regions.
Productionis limited to areas close to shipping ports and with high human
population density. Rising temperatures, coupled with requirements for
labour and export infrastructure, will resultina 60% reductionin the area
suitable for export banana production, along with yield declines in most
current banana producing areas.

Climate is a major determinant of global vegetation distributions’.
As climate changes, the geographical regions suitable for different
vegetation types will follow”. The influence of climate extends to the
geographical distributions of agricultural crops® and how these may
changeinfuture®. There are several key differences between the climate
change responses of natural plant populations and those of agricultural
crops. Humans alter both the climatic niche of crop plants through
breeding’ and the suitability of habitat through technologies such as
irrigation®. Socio-economic factors such as local market preferences,
export market access and government subsidies also influence farmer
choice in selecting crops for production’. Adaptation of agriculture
to climate change must therefore also consider social, economic and
cultural constraints to crop production.

The capacity for climate change adaptation may be particularly
limited inthe tropics, for several reasons. First, unlike higher latitudes,
which may become suitable for warm-adapted crops over time®, equa-
torial regions already experience the warmest temperatures and thus
lack regions from which novel crops could be sourced. Plant breeding
for heattolerance’, increased reliance on the most heat-tolerant crops
and increased deployment of technologies such as irrigation could

mitigate this limitation to some degree. Second, warminginthetropics
may not enhanceyields'® or extend the growing season of crops already
present", as expected in extratropical regions. Third, the global latitu-
dinal trend in wealth and technological capacity'> means that farmers
in the Global South may be less able to adapt agricultural practices
to cope with changing climate than their counterparts in wealthier
countries”. Understanding and preparing for the impacts of climate
change on tropical crops is therefore of central concern in ensuring
global food security and sustainable development, particularly where
populations are expected to grow rapidly™.

Here we analyse the potential impact of climate change on the
production of a major tropical export crop, banana. Bananas and
closely related plantains are the fruit of various hybrids and cultivars of
Musaspecies”. While banana species were domesticated in Southeast
Asia to produce a huge diversity of edible varieties, the international
bananatrade relies onasingle cultivar, Cavendish'®. Around 50 million
tonnes of Cavendish bananas (comprising anumber of somaclonal cul-
tivars) are produced each year, approximately half of global banana pro-
duction. Of this, 20 million tonnes are internationally traded. Europe
and the United States are the biggestimporters, sourcing the majority
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Fig.1|Bananadistribution maps. a, Sentinel-1median SAR VH (vertical transmit,
horizontal receive polarization) for 2019 over the Caribbean coast of Costa

Rica, aggregated to 100-m resolution. b, BM19 banana presence (black) over

the same region, 50-m resolution. ¢, BM19 for Latin America and the Caribbean,
aggregated to ha per 0.5° grid cell. The colour scale is log-transformed. The axes

Longitude (° W)

Longitude (° W)

arein degrees. The red square indicates Costa Rica. d, BM19 bananaareain Costa
Ricaaggregated to ha per five-arcminute grid cell. The purple square outlines
the Caribbean coast regioninaandb. e, SPAMbananaareain CostaRica. f, GAEZ
bananaareain CostaRica.

oftheir bananas from Latin America. This global tradeis worth around
US$11 billion, exceeding that of any other exported fruit”. Banana
exports are therefore animportant source of revenue for certain low-
and middle-income countries. In Colombia, for example, theindustry
accounts for around 5% of agricultural gross domestic product and
employs nearly 300,000 workers directly or indirectly'®. Asatropical
species, bananas are able to grow under hot conditions but are highly
sensitive to water deficits". Bananas are therefore potentially vulner-
ableto climate change where temperatures exceed optima and where
water is limiting, but they may benefit where warming approaches
growth optima and water is sufficient’>”. Unfortunately, detailed
ecophysiological information on banana productivity in relation to
climate is scarce'”?, and the available geographical distribution data
arebased on probabilistic estimates rather than observation”, hamper-
ing efforts to understand how climate change might affect this crop.
To facilitate our analysis, we developed a high-resolution map of
banana production for Latin America and the Caribbean for the year
2019. We refer to this dataset as BM19 (Banana Map 2019) hereafter.
Previous studies of banana production have employed subnational
production data?® or visual identification of banana plantations in
Google Earth images? to infer climatic tolerances for this crop. The
latter approachis possible because of certain characteristics of bananas
in comparison with other crops and vegetation types: banana plants
are tall with very large leaves and uniform canopies, and tend to be
planted with quasi-regular spacing. Furthermore, bananas for export
aregrownina continuous production cycle that leaves a characteristic

temporal signalinsatellite data. These spatio-temporal attributes have
enabled detailed mapping of hurricane impacts on banana plantation
productioninthe Dominican Republic usingacombination of synthetic
aperture radar (SAR) and multi-spectral remote sensing®. An impor-
tant caveat is that a large fraction of global banana production is by
smallholders, often in sparser, mixed cropping systems in which the
banana canopy is difficult to distinguish from surrounding vegetation
except atvery high spatial resolution®. Hence, we restrict our analysis
to high-density export banana production, as in previous research”.
Because of the reliance of export banana production onmanual labour,
access to shipping ports and irrigation in drier areas'®, we quantify
the degree to which banana plantation distributions are restricted
to areas with high population density, near ports and equipped for
irrigation. We project future suitability for banana production under
climate change and assess the influence of socio-economic factors in
constraining potential responses to climate change through reloca-
tion of production.

Results

Banana map BM19

Our classifier proved adept at identifying banana plantations (Supple-
mentary Table 2). All 500 plantation grid cells in the test dataset were
correctly identified, and only 20 of the remaining 2,500 grid cells of
other land-use classes were misclassified as banana, of which 17 were
mangrove. Young and developing plantations with sparse canopies
were not identified as banana plantations.
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Fig. 2| Banana plantation distributions in relation to climatic, edaphic and
socio-economic variables. The boxes show the areainterquartile range (with
the median), and the whiskers show Ry, of banana-area-weighted grid cells for
the entire ROI (all), croplands (crops) and BM19 (banana) for elevation, area
equipped forirrigation, latitude, soil pH at 0-5 cm, population density, distance

to nearest port (Port), annual precipitation (P), precipitation seasonality (P,.,),
mean annual temperature (7,,,), temperature diurnal range (7y,), temperature
isothermality (T;,,), maximum temperature of the warmest month (7,,,,),
minimum temperature of the coldest month (7,,,) and temperature seasonality
(T.o)- The sample size (the number of land area grid cells) is 261,871.

High levels of Sentinel-1 SAR backscatter were associated with
banana (Fig.1a,b). The classifieridentified 360,662 ha of banana planta-
tions >0.5 hawithin theregion of interest (ROI) (Fig. 1c). The detected
areaof plantations equates to 24.4% of the total harvested bananaarea
listed by FAOSTAT in countries within the ROIfor 2019 (Supplementary
Table 3). The total BM19 banana area is closest to FAOSTAT estimates
for Central American countries, Mexico, Ecuador, Colombia and the
Dominican Republic (Extended Data Fig. 1a). However, the BM19 classi-
fier detected nobananaplantations >0.5 hain several Caribbean states
thatreportlarge bananaproductionareas, including Haiti, St. Vincent
and the Grenadines, Dominica, and Trinidad and Tobago (Supplemen-
tary Table 3). Banana areain Haitiis reported to be slightly larger than
that in Costa Rica and is concentrated in the Archahaie Arrondisse-
ment to the northwest of Porte-au-Prince®. We were unable to obtain
ground-truth verification of banana productionin Haiti. Inspection of
aerialimagery and expert opinion (T. Lescot, personal communication)
suggests a far sparser production system in Haiti than in commercial
export plantations (Extended Data Fig. 2), though this interpretation
isuncertain (R. Yudin, personal communication).

BM19 areais strongly correlated with banana export quantity for
Central American countries, Mexico, Belize, Colombia, the Dominican
Republic, Bolivia and Peru (Extended Data Fig. 1b). Some Caribbean
islands including St. Vincent and the Grenadines have high export
quantities though no banana production was detected by the BM19
classifier, while Argentina, Cuba, Puerto Rico and El Salvador report
no exports but have substantial banana production. BM19 banana
area tends to have a more spatially restricted distribution than both
the Spatial Production Allocation Model (SPAM) 2010 and the Global
Agro-Ecological Zones (GAEZ+2015) harvested area estimates derived
from the spatial downscaling of national and subnational production
statistics (Fig.1d-fand Extended DataFig. 3). Of the two derived prod-
ucts, BM19 more closely resembles the SPAM distribution with more
localized and intensely cultivated areas than GAEZ.

Climatic, edaphic and socio-economic limits of banana
plantations

Banana plantations tended to be restricted to particular climatic,
edaphic and socio-economic conditions (Fig. 2 and Supplementary

Table 3). Banana plantations were found at lower elevations
(95th percentile of area below 440 m above sea level) and in more
acidic soils (90th percentile of area between pH 5.0 and 6.7) than
croplands in general. The latitudinal range was narrower than crop-
lands, with somewhat greater annual precipitation, much narrower
and higher annual mean and minimum temperatures, and much nar-
rower and lower temperature seasonality. Precipitation seasonality
and maximum temperature distributions were similar tobut somewhat
higher thanthose for other croplands. Bananawas far more likely tobe
grownin areas equipped for irrigation than other crops, in areas with
higher population density and much closer to ports: three quarters of
mapped banana area lies within 86 km of the nearest port.

The requirement for irrigation tends to be greater in hotter,
drier regions (Fig. 3a). Irrigation provision increases below 1,500 mm
annual precipitation and above 25 °C mean annual temperature. An
exception to this pattern is seen at around 25 °C and 1,700 mm pre-
cipitation, which has a very high (60%) area equipped for irrigation.
This anomalously high irrigation provision is found near Guayaquil,
Ecuador. Median irrigation provision, weighted by banana area per
grid cell, is around 5% (Supplementary Table 4). Banana production
areaforlow-irrigationareas (<5%) is concentrated at around 26 °C and
3,500 mm precipitation, while productionin high-irrigation areas (=5%)
occursabove 25 °Cand below 2,000 mm (Fig.3b). The 90th percentile
range (R,,) of climatic variables for banana production differed by irri-
gation provision level (Supplementary Table 5). The median and Ry, of
mean annual temperatures (26.1,22.9 and 27.9 °C) were similar to the
optimum, minimum and maximum annual temperatures (26.8, 20.0
and 29.4 °C) estimated for Latin America and the Caribbean derived
from a global banana yield analysis?’. Total annual precipitation dif-
fered most strongly by irrigation, with nearly twice the rainfall found
in low-irrigation versus high-irrigation areas (median 2,473 versus
1,210 mm).

Climate change impacts on export banana production area

We used the observed distributions of banana plantations inrelation to
climatic, edaphic and socio-economic variables to estimate the poten-
tial geographical distributions under historical (1970-2000) and future
(Shared Socio-economic Pathway (SSP) 2-4.5,2061-2080) climates.
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factors. Grid cells are classified by observed banana presence (o+) or absence
(o-), predicted current suitability (c+) or unsuitability (c-) and predicted
future suitability (f+) or unsuitability (f-). The inset shows the total area of each
category, except the o-c—f- category (grey).

For low-irrigation regions, we used the observed R, for precipitation
(912-3,690 mm). For high-irrigation regions, we lowered the minimum
rainfall to 543 mm (the 5th percentile of the precipitation distribu-
tion for high-irrigation regions) but retained the upper limit at the
low-irrigation value. The logic here is that banana production could
occur under high precipitationin high-irrigation areas but thatirriga-
tioninfrastructure tends not to be established where rainfall is plentiful.

Optimal regions for banana production were estimated using the
Ry, for total precipitation, mean annual temperature and temperature
seasonality, each adjusted forirrigation level. Other climatic variables
were omitted either because they were not strongly restricted for
bananainrelationto otherland-use classes or because they were highly
correlated with other climatic variables (Extended Data Fig. 4). Eleva-
tion, soil pH, population density and distance to port were alsoincluded
to define the optimal region for banana. We arbitrarily restricted the
potential areaforbananatogrid cells with atleast 1% crop cover to avoid
largely undeveloped protected and wilderness areas.

Considering climatic and edaphic factors (elevation and soil pH),
Central America, the northern and southern borders of the Amazon
basin, and coastal Brazil are currently the most suitable (thatis, optimal)

for banana production (Fig. 4a and Extended Data Fig. 5). Banana
plantations currently occupy only 9.0% of the area (on the basis of
five-arcminute grid cells) that is predicted to be suitable under the
recent historical climate (Fig. 4b and Supplementary Table 6). Both
thetotal suitable areaand the current production areathatis suitable
shrink dramatically (by 60% overall) under the SSP2-4.5 climate change
scenario when considering both climatic and socio-economic con-
straints (Fig.4b). In particular, Colombia and Venezuela are predicted
tobecome almost entirely suboptimal for export production. Ecuador,
amajor exporter, is the only nation to see a small increase in suitable
area and to maintain suitability for areas that currently have banana
production. Suitable areais maintained primarily on the Atlantic coast
of Brazil, with smaller areasin Nicaragua, Bolivia, Ecuador and Mexico
(blue in Fig. 4b). Southern Brazil (the states of Mato Grosso do Sul,
Sao Paulo, Parana and Rio de Janeiro) and parts of the Atlantic coast
are the only regions that are likely to become substantially more
suitable for production in the future (green in Fig. 4b). Banana was
detected in some areas, mainly in central Brazil, deemed to be unsuit-
able (orangein Fig.4b). Overall, the suitable area considering only cur-
rent climatic and edaphic factors (pH and elevation) is 3.34 x 10° km?,
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areas is compared with the Ry, for low-irrigation areas (green), high-irrigation
areas (blue) and their overlap (teal). ¢,d, Changes in suitable areas considering
projected temperature change alone (c) and projected precipitation change
alone (d).

reduced to 0.99 x 10° km? when population density, distance to port
and crop cover are considered. Under future climate and edaphic con-
straints, the suitable area is 1.07 x 10° km?, reduced to 0.40 x 10° km?
when socio-economic factors are included (Supplementary Table 7).

Increasingtemperatureis the sole climatic driver of suitable area
loss (Fig. 5). Considering the current suitable area, the distribution of
mean annual temperature lies within the Ry, for low-and high-irrigation
areas (by definition). Under the future climate scenario, much of the
currently suitable area becomes too warm, with mean annual tem-
peratures exceeding 30 °C in some areas. In contrast, the annual pre-
cipitation distribution for currently suitable areas does not change
noticeably. The establishment of irrigation where required across the
region could expand the future suitable area by 45% compared with
future climate under current irrigation, other factors being equal
(Supplementary Table 8 and Extended Data Fig. 6). The total suitable
areawould shrink by 41% compared with current climate and irrigation
provision, substantially less than the 60% loss under current irriga-
tion. The dry Atlantic coast of Brazil would benefit the most in terms
of absolute area, while Venezuela, Cuba and Mexico would benefit in
relative terms. The trajectory of future population distributions under
different SSPs has little influence on the area most suitable for banana
(Extended Data Figs. 7 and 8a). However, the maximum temperature in
the warmest monthincreases significantly (from mean 30.9 to 33.4 °C)
under climate change (Extended Data Fig. 8b).

Climate-dependent relative yield in current banana producing
areas declined for most countries between historical and projected
future climate (Fig. 6). Ecuador and Brazil are the only major produc-
ersexpectedtoseeyieldincreasesincurrentbananaproduction areas
dueto climate change.

Discussion
We have presented a high-resolution map of intensive banana produc-
tion for Latin Americaand the Caribbean, BM19, showing that this major

export cropis produced within narrow climatic limits associated with
high levels of irrigation and close to areas of high population density
and shipping ports. Under the assumption of no future labour migra-
tionand no expansion of irrigation or transportinfrastructure to ports,
we found that the most suitable area for export banana production
under climate change is strongly restricted. Substantial adaptation
measures will be needed to facilitate production in future optimal
production areas.

The classifier developed for BM19 showed high accuracy and pre-
cision. High SAR backscatter due to the physical structure of banana
plants, and low variability in backscatter over time as a consequence
of intensive-production practices, enabled discrimination of banana
plantations from other vegetation types. However, other landscape
features, particularly bare slopes in hilly areas, could potentially intro-
duceclassification errors. Such artefacts were largely corrected for by
augmenting the SAR data with multi-spectral (Normalized Difference
Vegetation Index, NDVI) and topographical (slope) information. Asin
previous studies®, we were unable to distinguish banana or plantain
growninlessintensive or mixed cropping systems, whichare common
in Haiti (T. Lescot, personal communication) and other Caribbean
islands.

Ourclassifierrelied ondatafromthe ESA Sentinel missions. Training
of arandom forest classifier for Sentinel-1 SAR data using the LUCAS
2018 land-use survey enabled identification of 18 crop classes (and
three non-crop classes) across Europe at 10-m resolution, though
with variable accuracy”. These classifiers benefited from intensive
ground-truth surveys, with LUCAS contributing 87,853 data points to
the European Union crop map. Such extensive ground-truth informa-
tion is not currently available for Latin America, although field data
have beenused to develop distribution maps for some other crops such
assoybean”®, The stature and distinctive hexagonal planting arrange-
ment of commercial oil palm plantations have facilitated mapping
of this export crop by enabling training datasets to be developed by
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is proportional to the total banana areain BM19. The colours indicate median
change. The number of grid cells per country is given in parentheses. Individual
values are shown for countries with fewer than ten grid cells.

inspection of high-resolution aerial imagery®. The high spatial reso-
lution (minimum area 0.5 ha) obtainable using the Sentinel data has
enabled detailed analysis of spatio-temporal dynamics—forexample,
the loss and recovery of banana plantations after extreme weather
events*. However, in the present study, we aggregated the banana
distribution to match other spatial datasets required for our analyses.

We found that the BM19 distribution was closer to that predicted
by the SPAM algorithm® than by GAEZ*'. SPAM downscales official
crop production statistics for national or subnational administra-
tive units to gridded cropland datasets using GAEZ crop suitability
estimates and gridded estimates of irrigation provision. GAEZ uses
similar datasets to SPAM, but the algorithm results in substantially dif-
ferent spatial crop allocation®’. GAEZ models agroclimatic suitability
for crops using acombination of climatic and edaphic tolerances. For
banana, optimal conditions occur when more than one third of the
growing season hasamean temperature of20-30 °C, lessthan halfthe
growing season between 10 and 15 °C, and no periods above 30 °C or
below 10 °C. Suboptimal conditions allow temperatures above 30 °C
for up to one sixth of the growing season, but no periods below 10 °C.
Thoughnotdirectly comparable, our Ry, for mean annual temperature
(22.9-27.9 °C without considering irrigation) is consistent with the
GAEZ temperature profile. GAEZ models the effect of water availability
onyield by comparingactual crop evapotranspiration with maximum
crop evapotranspiration; hence, the relationship with precipitationis
indirect. The approximate range of seasonal evapotranspiration for
banana is estimated as 700-1,700 mm (ref. 33), which spans the 5th
percentile for low-irrigation banana area in BM19 (953 mm), suggest-
ing a sufficient level of rainfall to maximize yields across most of the
distribution. We found that total precipitation could be lower, and
precipitation seasonality could be greater, in high-irrigation areas,
confirming that irrigation is associated with a wider climatic niche
for this crop.

Our models suggest that future climate change will severely
restrict the area most suitable for export banana production, particu-
larly due torising temperature. Temperature change was also found to
be the dominant driver of yield trends in a historical analysis of global
banana production®. In contrast, changing precipitation has less
influence on future suitability as the precipitation range for banana
is relatively wide. Investment in irrigation could extend the suitable

area substantially, particularly in Brazil, where the area equipped for
irrigation hasincreased greatly (though sustainably) inrecent years™.
A potential limitation in our analysis is the reliability of CMIP6 global
circulation model precipitation projections, whichin certainregions of
South Americatend to overestimate the frequency of dry periods rela-
tive to observations®. The absence of a strong effect of precipitation
is partly due to the presence of irrigation; hence, the maintenance of
irrigation water supplies in the future will be key, along with breeding
of drought-tolerant banana varieties®®. Currently, the bananaindustry
isfighting a devastating fungal pathogen, Fusarium wilt Tropical Race
4 (caused by the fungus Fusarium oxysporum f.sp. cubense), which
was first reported in Colombiain 2019 and has since been detected in
Peru”. Efforts are underway to develop Cavendish cultivars resistant
to this disease’®, but our results suggest that climate change will lead
to extreme temperatures that will severely reduce suitable production
areas and yields in many important exporting countries and expose
banana workers to greater risk of heat stress, with negative impacts
on health and productivity***°. The reduction and redistribution of
highly productive areas across Central America, Latin Americaand the
Caribbean would require the global banana value chain to adapt. This
could stimulate a larger reorganization of international trade flows,
with as yet unexplored consequences for local agricultural economies
inproducer countries to maintain demands for nutritional diversity in
non-producing countries.

Methods

Exceptwherespecified, allanalyses were performed using Google Earth
Engine (https://earthengine.google.com/) and R* v.4.3.2. R package
terra*? v.1.7-55 was used for raster data manipulation. Vectors of
countries were obtained from the Database of Global Administrative
Areas (GADM) using R package geodata*’v.0.5-9. The figures were made
using R packages ggplot2 (ref.44) v.3.5.1, tidyterra®v. 0.7.0, ggspatial*®
v.1.1.9 and ggcorplot*’ v.0.1.4.1.

OurROlincludes North America, Central America, South America
and the Caribbean islands between the latitudes 35° N and 37°S.
The data sources used in the analysis are given in Supplementary
Tablel.

Ground-truth data

We sourced polygons of banana plantations that were active in 2019
from the Dominican Republic (source: BANELINO banana producers
association, Santa Cruz de Mao, Dominican Republic) and Costa Rica
(source: CORBANA national banana corporation, SanjJosé, CostaRica).
These polygons were digitized from ground surveys and represent
asubset of the active plantation area in each country. In addition, a
digitized paper map of banana plantation area for Belize (valid for
2012-2014) (source: Banana Growers Association, Big Creek, Belize)
was updated using visual interpretation of high-resolution aerial
imagery for 2019 available from Google Earth’s timeline feature. Large
banana plantations are visually distinguishable from the surrounding
landscape in such high-resolution images?'. Hence, we have high con-
fidence that these modified polygons represent active plantations in
Belize for 2019. Preliminary runs of our classification method (detailed
below) suggested some misclassification of banana plantations as
non-banana plantations, which were most apparent in southern Brazil.
We therefore augmented the banana plantation training data from
this region. Using training polygons from the Dominican Republic,
Costa Rica and Belize, we identified the characteristic distribution
of Sentinel-1 vertical polarization (VV) backscatter values (median
annual value for 2019) for plantations. We widened the bounds of this
distributionand usedit as athreshold (for the median annual Sentinel-1
VVbackscatter for2019) to generate a binary image of southern Brazil.
This binary image was overlaid with high-resolution aerial imagery
for 2019 available from Google Earth to manually digitize additional
plantation polygons in the region. In total, the banana ground-truth
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dataset contained 156 polygons spread over Belize, the Dominican
Republic, Costa Rica and Brazil.

In addition to the banana plantation polygons, we included five
other land-cover classes in our classification process. These were
generic classes of forest, undulating terrain with sparse vegetation,
built-up areas, other crops and mangroves. The choice of including
these generic classes was through aniterative trial-and-error process of
preliminary classification runs and identifying the potential land-cover
typesthat reduced the accuracy of the banana plantation class (primar-
ily through false positives). For example, plantsincommercial banana
plantations tend to show high backscatter valuesin SARimagery due to
their large leaves and upright stature strongly reflecting the incident
SAR signal. As commercial plantations operate on a continuous pro-
ductionschedule (to meet weekly exportschedules), alow variationin
backscatter values can be expected over time (that is, aweak seasonal
signature). However, these characteristics are logically also shared
by buildings and ridges, which canreflect the incident SAR signal to a
large extent, and the intensity of the reflection would vary little over
time. Training polygons for these generic classes were also digitized
using high-resolution aerialimagery for 2019 available through Google
Earth’s timeline feature.

Mapping of banana plantations

Classification and mapping of banana plantations was carried out in
Google Earth Engine. The study region was divided into 2° x 2° tiles
in Earth Engine to facilitate efficient data processing and storage. We
created animage collection for all Sentinel-1and Sentinel-2 images for
2019 that covered the study region. The Sentinel-1image collection was
used to derive four datalayers—annual median VV backscatter, annual
median VH backscatter, annual VV standard deviation and annual VH
standard deviation. Images in the Sentinel-2 image collection were
first passed through a function that masks cloud-contaminated pixels
using each image’s QA60 band. Band 4 and band 8 were then used to
derive anannual median NDVIlayer. A slope layer was derived using the
90-m-resolution Shuttle Radar Topography Mission Digital Elevation
Model.Slope wasincludedin the classification as commercial banana
cultivationis carried out onrelatively flat terrain. These six derived lay-
erswere concatenated or stacked and formed the dataset (henceforth
referred to as the data stack) to build a classifier and thence to map
plantations over the study extent.

Random sampling points were generated within the polygons of
the six training classes. Values from the data stack were extracted to
these sampling points. This represents the training dataset. The num-
ber of points generated within each class were n=1,000 for banana,
n=1,000 for forest,n=1,000 for undulating terrain with sparse veg-
etation,n =100 for built-up areas, n =200 for other crops and n =200
for mangroves. The differences in the number of sampling points
for each class reflect the severity of banana plantation classification
inaccuracies that the respective generic land-cover classes gener-
ated, as well as the memory restrictions imposed by Google Earth
Engine onthe size of the training dataset. We used the random forest
algorithm with 50 decision trees to build the classifier, which we then
used to predict the presence of banana plantation pixels across the
study extent. To reduce fine-scale artefacts of the classification, we
enumerated the contiguity of the classified banana pixels and only
retained patches of pixels that were =50 pixels. As the native resolu-
tion of the classification was 10 m, mapped plantations were >0.5 ha.
Our method is therefore not capable of mapping the production area
of smallholders and should be used exclusively for mapping larger
commercial plantations.

Toevaluatethe overall accuracy of our classification, we generated
a fresh set of 500 points per land-cover class, to which we extracted
values from the data stack and calculated a confusion matrix*®
after running this validation dataset through the classifier. To
assess banana-plantation-specific measures of classifier performance,

we extracted values from the validation error matrix and calculated
the following:

Accuracy = (TP + TN)/(TP + FP + FN + TN)
Precision = (TP)/(TP + FP)
Recall = (TP)/(TP + FN)

F; = 2x((precisionxrecall)/(precision + recall))

where TP aretrue positives, TN are true negatives, FP are false positives
and FN are false negatives.

Comparison of BM19 with existing crop distribution estimates
and production statistics

Total BM19 plantation areas by country were compared with
available FAO harvested area data for the categories ‘banana’ and
‘plantain and cooking bananas’ for the year 2019. BM19 aggregated to
afive-arcminute grid was compared with harvested areain SPAM 2010
v.2.0 (ref. 49) and the GAEZ+ 2015 harvested area estimate™.

Banana plantation occupancy of climatic, edaphicand
socio-economic space

We employed bioclimatic (rectilinear surface range) envelope model-
ling® to obtain the Ry, for aset of climatic and socio-economic variables
that we hypothesized would influence the selection of areas for banana
production. Our predictors (detailed below) were bioclimatic vari-
ables, elevation, areaequipped forirrigation, latitude, soil pH, human
population density and distance to shipping port.

Therectilinear surface range method simply calculates the lower
and upper bounds of a variable within which a certain fraction (here,
90%) of the area of aspeciesisfound. Weinterpret the Ry, envelopes as
those regions most desirable or suitable for exportbanana production,
rather thanthe conditions under which banana could be grown. Hence,
we refer to ‘optimal’ or ‘suitable’ areas while recognizing that banana
canbegrownunder awider range of conditions. BM19 and the predic-
torswere aggregated to five-arcminute resolution where necessary, and
Ry, was estimated by weighting grid cells by bananaarea. R,, values for
BM19 banana areawere compared with Ry, for all cropland and R, for
the ROI land surface, to determine which predictors were restrictive
tothe observed distribution of banana. Cropland extent was obtained
from the Global Land and Discovery project®at 0.025° resolution.

Recent historical (1970 to 2000) bioclimatic variables were
obtained from WorldClim at five-arcminute resolution®. To mini-
mize redundancy among climatic predictors, correlations among
bioclimatic variables in WorldClim were used to identify a suitable
subset: mean annual temperature (bioclimatic variable BIO1), mean
diurnal temperature range (BI02), temperature seasonality (BIO4)
and annual precipitation (BIO12). This subset was used to predict the
region most suitable for banana production under recent historical
and future climate (see below).

Irrigation is used to extend the range of crop species into
chronically and seasonally drier, as well as potentially hotter, areas than
would be possible under rainfed agriculture alone. We estimated Ry,
for selected bioclimatic predictors in two groups determined by area
equipped for irrigation®*: low-irrigation production with irrigation
area of 0-5% and high-irrigation production with irrigation >5%. The
5% boundary between low- and high-irrigation areas was determined
by the median area equipped for irrigation in banana-producing grid
cells. Little published information is available regarding optimal soil
properties for banana production, though in Australia banana tends
to be grown in slightly acidic soils®. We therefore estimated R, for
soil pH at 0-5 cm using SoilGrids250m data®. Given that Cavendish
bananas are exported by sea, we included distance from the centre of
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eachgrid cell tothe nearestinternational portlisted in the World Port
Index”. Banana production and harvesting rely on manual labour, so
we estimated Ry, for population density*®.

Projecting future optimal banana plantation distribution

For the future climate scenario, we used ensemble averages of 12 CMIP6
global circulation model outputs driven by SSP2-4.5 for the time period
2061-2080. These global circulation model outputs were obtained from
WorldClim at five-arcminute resolution®. The chosen SSP sees emissions
peakin2040and thengradually decline, limiting global warming to under
3°Cby 2100. The region most suitable for banana production was esti-
mated from Ry, values using future mean annual temperature, tempera-
ture seasonality and annual precipitation, holdingirrigation, cropland,
soil pH, population density and distance to port at the current values.

The area equipped for irrigation has grown in recent decades™
and could continue to increase in the future. We estimated the maxi-
mum future extent of banana growing areas by widening the R, for
mean annual temperature, temperature seasonality and annual pre-
cipitation to incorporate the effect of irrigation. For example, Ry, for
annual precipitationis 912-3,690 mm for low-irrigation (<5%) areas and
543-2,356 mm for high-irrigation (>5%) areas (Supplementary Table 5).
To estimate future suitable areawith unrestrictedirrigation, the Ry, for
precipitation was thus extended to 543-3,690 mm.

Population densities arelikely to change in the future due to popu-
lation growth and trends such as urbanization®. The SSPs provide a
range of scenarios for changes in population size and distribution®’.
For climate change, we chose SSP2, known as ‘Middle of the road".
Demographic change in SSP2 is characterized by medium levels of
population growth and medium rates of urbanization, with spatial
distributions following historical patterns. Population growthratesin
high-fertility, low-fertility and rich low-fertility countries, along with
urbanization levelsinlow-, medium- and high-income countries, vary
among the other SSPs: SSP1 (Sustainability), SSP3 (Regional rivalry),
SSP4 (Inequality) and SSP5 (Fossil-fuelled development). We explored
the effect of projected population density in 2070 among SSPs on
the area most suitable for banana using downscaled gridded popula-
tion density projections®®, assuming that the dependence of banana
productiononlabour does not change inthe future. Exposure to high
temperaturesis aserious healthrisk for agricultural labourers®**°. We
calculated the maximum temperature of the warmest month (BIO5)
for suitable areas under the current climate and compared this to the
maximum temperatures of suitable areas under SSP2-4.5 climate and
population distributions under SSP1-SSP5.

Relative yield estimation

Weestimated climate-dependent relativeyield (Y) forall five-arcminute
grid cells containing banana (BM19) using response curves estimated
from national and subnational production data for the Latin America
and the Caribbean region®. Actual yield is a function of Y. and other
factors such as agrochemical inputs and management, which vary
among countries and over time®. Y. was estimated as the product of
temperature-dependent (Y;) and precipitation-dependent (};) yields:

Yc = YixVe

Y;and Y, were estimated using beta functions that employ mini-
mum (min), optimum (opt) and maximum (max) values of mean annual
temperature (T) and annual precipitation (P) for yield. For example, the
beta function for temperatureis:

(Topt=Tmin)

v ( Toax — T )( T = Toin )(rmax-ro,,a
! Tmax - Topt Topt - 7-min

Y., Yrand Y, take values of one under optimal conditions, and zeroif any
predictor falls below the minimum or above the maximum. For Latin

Americaand the Caribbean, the cardinal (minimum, optimum and max-
imum) values for temperature are 20.0,26.8 and 29.4 °C. The values for
precipitationare 85.5,2,646 and 5,307 mm. Y. was estimated for current
(Yc) and future (Y, conditions using recent historical (1970-2000)
and projected (multimodel average, SSP2-4.5,2061-2080) climates.
Changeinyield per country was estimated as the banana-area-weighted
medianandinterquartile range of the relative difference between cur-
rent and futurerelative yield (Y — Yco).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used for analysis are available from the sources listed in
Supplementary Table 1, except the banana production locations
supplied by BANELINO (Santa Cruz de Mao, Dominican Republic),
CORBANA (SanJosé, Costa Rica) and the Banana Growers Associa-
tion (Big Creek, Belize). The data are available on request from these
organizations. The BM19 bananaproduction map tiles are available via
figshare at https://doi.org/10.6084/m9.figshare.26509024 (ref. 61) as
TIF files. Source data are provided with this paper.

Code availability

A land-use classifier was developed in JavaScript for Google Earth
Engine. The codeis available at https://code.earthengine.google.com/
dd3aa4e7547fd21alc16a8f03d3d74ff?noload=true and https://code.
earthengine.google.com/5da98b1455951c36dcc133c48589efa6?no
load=true.

References

1. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map
of the Képpen-Geiger climate classification. Hydrol. Earth Syst. Sci.
1, 1633-1644 (2007).

2. Beck, H.E. etal. Present and future Képpen-Geiger climate
classification maps at 1-km resolution. Sci. Data 5, 180214
(2018).

3. Leff, B., Ramankutty, N. & Foley, J. A. Geographic distribution
of major crops across the world. Glob. Biogeochem. Cycles 18,
GB1009 (2004).

4. Beck, J. Predicting climate change effects on agriculture from
ecological niche modeling: who profits, who loses? Climatic
Change 116, 177-189 (2013).

5. Coles, N.D., McMullen, M. D., Balint-Kurti, P. J., Pratt, R. C. &
Holland, J. B. Genetic control of photoperiod sensitivity in maize
revealed by joint multiple population analysis. Genetics 184,
799-812 (2010).

6. Wang, X. etal. Global irrigation contribution to wheat and maize
yield. Nat. Commun. 12,1235 (2021).

7. Mehdi, B., Lehner, B. & Ludwig, R. Modelling crop land use
change derived from influencing factors selected and ranked by
farmers in north temperate agricultural regions. Sci. Total Environ.
631-632, 407-420 (2018).

8. Anderson, R., Bayer, P. E. & Edwards, D. Climate change and
the need for agricultural adaptation. Curr. Opin. Plant Biol. 56,
197-202 (2020).

9. Driedonks, N., Rieu, I. & Vriezen, W. H. Breeding for plant heat
tolerance at vegetative and reproductive stages. Plant Reprod.
29, 67-79 (2016).

10. Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection
risk tracks global crop yields under climate change. Nat. Clim.
Change 11, 710-715 (2021).

1. Mueller, B. et al. Lengthening of the growing season in wheat
and maize producing regions. Weather Clim. Extrem. 9, 47-56
(2015).

Nature Food | Volume 6 | April 2025 | 343-352

350


http://www.nature.com/natfood
https://doi.org/10.6084/m9.figshare.26509024
https://code.earthengine.google.com/dd3aa4e7547fd21a1c16a8f03d3d74ff?noload=true
https://code.earthengine.google.com/dd3aa4e7547fd21a1c16a8f03d3d74ff?noload=true
https://code.earthengine.google.com/5da98b1455951c36dcc133c48589efa6?noload=true
https://code.earthengine.google.com/5da98b1455951c36dcc133c48589efa6?noload=true
https://code.earthengine.google.com/5da98b1455951c36dcc133c48589efa6?noload=true

Article

https://doi.org/10.1038/s43016-025-01130-1

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Kummu, M. & Varis, O. The world by latitudes: a global analysis of
human population, development level and environment across
the north-south axis over the past half century. Appl. Geogr. 31,
495-507 (201M1).

Thomas, A. et al. Global evidence of constraints and limits to
human adaptation. Reg. Environ. Change 21, 85 (2021).

Molotoks, A., Smith, P. & Dawson, T. P. Impacts of land use,
population, and climate change on global food security. Food
Energy Secur. 10, €261 (2021).

Mertens, A. et al. Conservation status assessment of banana crop
wild relatives using species distribution modelling. Divers. Distrib.
27, 729-746 (2021).

Bebber, D. P. The long road to a sustainable banana trade. Plants
People Planet 5, 662-671 (2023).

Voora, V., Larrea, C. & Bermudez, S. Global Market Report: Bananas
(International Institute for Sustainable Development (IISD), 2020).
Banana Value Chain (Directorate of Agricultural and Forestry
Value Chains, 2020).

Carr, M. K. V. The water relations and irrigation requirements of
banana (Musa spp.). Exp. Agric. 45, 333-371(2009).

Varma, V. & Bebber, D. P. Climate change impacts on banana
yields around the world. Nat. Clim. Change 9, 752-757 (2019).
Machovina, B. & Feeley, K. J. Climate change driven shifts in

the extent and location of areas suitable for export banana
production. Ecol. Econ. 95, 83-95 (2013).

Turner, D. W., Fortescue, J. A. & Thomas, D. S. Environmental
physiology of the bananas (Musa spp.). Braz. J. Plant Physiol. 19,
463-484 (2007).

You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global
crop distribution maps: from census to grid. Agric. Syst. 127,
53-60 (2014).

Thompson, W. J. et al. Smallholder farmer resilience to extreme
weather events in a global food value chain. Climatic Change 176,
152 (2023).

Machovina, B. L., Feeley, K. J. & Machovina, B. J. UAV remote
sensing of spatial variation in banana production. Crop Pasture
Sci. 67, 1281-1287 (2017).

Céspedes, C. Production and Harvest/Post Harvest Operations of
the Banana Industry (USAID, 2012).

d’Andrimont, R. et al. From parcel to continental scale—a first
European crop type map based on Sentinel-1and LUCAS Copernicus
in-situ observations. Remote Sens. Environ. 266, 112708 (2021).
Song, X.-P. et al. Massive soybean expansion in South America
since 2000 and implications for conservation. Nat. Sustain. 4,
784-792 (2021).

Cheng, Y. et al. Towards global oil palm plantation mapping using
remote-sensing data. Int. J. Remote Sens. 39, 5891-5906 (2018).
You, L. et al. Spatial Production Allocation Model (SPAM) 2005
v.3.2 MapSPAM http://mapspam.info/ (2017).

Global Agro-Ecological Zoning version 4 (GAEZ v4). FAO & IIASA
https://gaez.fao.org/ (2022).

Anderson, W., You, L., Wood, S., Wood-Sichra, U. & Wu, W. An
analysis of methodological and spatial differences in global
cropping systems models and maps. Glob. Ecol. Biogeogr. 24,
180-191(2015).

Doorenbos, J. & Pruitt, W. O. Guidelines for Predicting Crop Water
Requirements (FAQ, 1977); https://www.fao.org/4/f2430e/f2430e.pdf
Mehta, P. et al. Half of twenty-first century global irrigation expansion
has been in water-stressed regions. Nat. Water 2, 254-261(2024).
Almazroui, M. et al. Assessment of CMIP6 performance and
projected temperature and precipitation changes over

South America. Earth Syst. Environ. 5, 155-183 (2021).

Brown, A., Carpentier, S. C. & Swennen, R. in Genomic Designing
of Climate-Smart Fruit Crops (ed. Kole, C.) 91-115 (Springer, 2020);
https://doi.org/10.1007/978-3-319-97946-5_4

37.

38.

39.

40.

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Ploetz, R. C. in Plant Diseases and Food Security in the 21st Century
(eds Scott, P. et al.) Vol. 10, 21-32 (Springer, 2021).

Dale, J. et al. Transgenic Cavendish bananas with resistance to
Fusarium wilt tropical race 4. Nat. Commun. 8, 1496 (2017).
Arjona, R. H., Pifieiros, J., Ayabaca, M. & Freire, F. H. Climate
change and agricultural workers’ health in Ecuador: occupational
exposure to UV radiation and hot environments. Ann. Ist. Super.
Sanita 52, 368-373 (2016).

de Lima, C. Z. et al. Heat stress on agricultural workers
exacerbates crop impacts of climate change. Environ. Res. Lett.
16, 044020 (2021).

R Core Team. R: a language and environment for statistical
computing. R Foundation for Statistical Computing https://www.
R-project.org/ (2024).

Hijmans, R. J. et al. terra: spatial data analysis. https://doi.org/
10.32614/CRAN.package.terra (2025).

Hijmans, R. J., Barbosa, M., Ghosh, A. & Mandel, A. geodata:
download geographic data. https://doi.org/10.32614/CRAN.
package.geodata (2024).

Wickham, H. et al. ggplot2: create elegant data visualisations
using the grammar of graphics. https://doi.org/10.32614/
CRAN.package.ggplot2 (2024).

Hernangomez, D. Using the tidyverse with terra objects: the
tidyterra package. J. Open Source Softw. 8, 5751 (2023).
Dunnington, D., Thorne, B. & Hernangdmez, D. ggspatial: spatial
data framework for ggplot2. https://doi.org/10.32614/CRAN.
package.ggspatial (2023).

Kassambara, A. & Patil, I. ggcorrplot: visualization of a correlation
matrix using ‘ggplot2’. https://doi.org/10.32614/CRAN.package.
ggcorrplot (2023).

Stehman, S. V. Selecting and interpreting measures of thematic
classification accuracy. Remote Sens. Environ. 62, 77-89 (1997).
International Food Policy Research Institute Global
Spatially-Disaggregated Crop Production Statistics Data for 2010
version 2.0 (Harvard Dataverse, V4, 2020).

Grogan, D., Frolking, S., Wisser, D., Prusevich, A. & Glidden, S.
Global gridded crop harvested area, production, yield, and
monthly physical area data circa 2015. Sci. Data 9, 15 (2022).
Araujo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic
envelope modeling. Ecology 93, 1527-1539 (2012).

Potapov, P. et al. Global maps of cropland extent and change
show accelerated cropland expansion in the twenty-first century.
Nat. Food 3, 19-28 (2022).

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial
resolution climate surfaces for global land areas. Int. J. Climatol.
37, 4302-4315 (2017).

Siebert, S. et al. A global data set of the extent of irrigated land
from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521-1545 (2015).
Daniells, J. & Moody, P. Managing soil acidity in banana
production. Banana Top. 31, 9 (2004).

Hengl, T. et al. SoilGrids250m: global gridded soil information
based on machine learning. PLoS ONE 12, e0169748 (2017).
World Port Index (National Geospatial-Intelligence Agency, 2019);
https://msi.nga.mil/Publications/WPI

Gridded Population of the World Version 4 (GPWv4) (Center for
International Earth Science Information Network, 2018).

Jones, B. & O'Neill, B. C. Spatially explicit global population
scenarios consistent with the Shared Socioeconomic Pathways.
Environ. Res. Lett. 11, 084003 (2016).

Wang, X., Meng, X. & Long, Y. Projecting 1 km-grid population
distributions from 2020 to 2100 globally under shared
socioeconomic pathways. Sci. Data 9, 563 (2022).

Varma, V., Mosedale, J. R., Guzman Alvarez, J. A. & Bebber, D. P.
Banana Map 2019. figshare https://doi.org/10.6084/m9.
figshare.26509024 (2025).

Nature Food | Volume 6 | April 2025 | 343-352

351


http://www.nature.com/natfood
http://mapspam.info/
https://gaez.fao.org/
https://www.fao.org/4/f2430e/f2430e.pdf
https://doi.org/10.1007/978-3-319-97946-5_4
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.32614/CRAN.package.terra
https://doi.org/10.32614/CRAN.package.terra
https://doi.org/10.32614/CRAN.package.geodata
https://doi.org/10.32614/CRAN.package.geodata
https://doi.org/10.32614/CRAN.package.ggplot2
https://doi.org/10.32614/CRAN.package.ggplot2
https://doi.org/10.32614/CRAN.package.ggspatial
https://doi.org/10.32614/CRAN.package.ggspatial
https://doi.org/10.32614/CRAN.package.ggcorrplot
https://doi.org/10.32614/CRAN.package.ggcorrplot
https://msi.nga.mil/Publications/WPI
https://doi.org/10.6084/m9.figshare.26509024
https://doi.org/10.6084/m9.figshare.26509024

Article

https://doi.org/10.1038/s43016-025-01130-1

Acknowledgements

The study was funded by Global Food Security grant no.
BB/N020847/1(D.P.B.), EC Horizon 2020 project ID 727624 (D.P.B.)
and a Science and Technology Facilities Council (STFC) small grant
(D.P.B). The funders had no role in the study design or execution.
Base maps were created using administrative region polygons from
GADM v.2.8 (https://gadm.org/). We thank BANELINO (Santa Cruz

de Mao, Dominican Republic), CORBANA (San José, Costa Rica) and
the Banana Growers Association (Big Creek, Belize) for information
on banana plantation locations for classifier development. Aerial
imagery was obtained from Google Earth (https://earth.google.com)
with data from CNES/Airbus. We thank T. Lescot (CIRAD) and R. Yudin
for discussions and advice on banana production systems in Haiti,
and C. Staver (Universidad Veracruzana), S. Carpentier (Alliance
Bioversity-CIAT) and D. Turner (University of Western Australia) for
discussion of banana temperature relations.

Author contributions

D.P.B. and V.V. designed the study. V.V. collated the data and developed
the land-use classifier in discussion with J.A.G.A. J.R.M. and D.P.B.
analysed the data. V.V., J.R.M. and D.P.B. wrote the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s43016-025-01130-1.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s43016-025-01130-1.

Correspondence and requests for materials should be addressed to
Daniel P. Bebber.

Peer review information Nature Food thanks Sebastien Carpentier and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

Nature Food | Volume 6 | April 2025 | 343-352

352


http://www.nature.com/natfood
https://gadm.org/
https://earth.google.com
https://doi.org/10.1038/s43016-025-01130-1
https://doi.org/10.1038/s43016-025-01130-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s43016-025-01130-1

BM19 + 1 (ha)

Ecu
i °
Region Bra
°
CAM °
Col
® Car
PY DoR
® SAm ® °
Bol Per
® Cub
Arg o ©
Ven
°
P
° ue Par
°
J
Slu Sur .am
®,
Guy
Ant Bah Dom
® 5,00 0,0 05, ,®
10? 10° 10* 10°

FAOSTAT + 1 (ha)

Extended Data Fig. 1| BM19 compared with FAOSTAT. a. BM19 vs. FAOSTAT
banana area by country and region (Car = Caribbean, CAM = Central America
and Mexico, SAm =South America) for 2019. Log-transformed axes were used
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Extended Data Fig. 2 | Aerial imagery of banana production. a. Putative (https://earth.google.com). Data from Airbus (2023). b. High intensity export
banana or plantain production in the Archahaie Arrondissement to the banana production near San Cristobal, Costa Rica. Aerial imagery obtained from
north west of Porte-au-Prince. Aerial imagery obtained from Google Earth Google Earth (https://earth.google.com). Data from CNES/Airbus (2022).
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Extended Data Fig. 3| Banana area estimate comparison. Upper row (a-c) is Costa Rica, lower row (d-f) is Ecuador. Left column (a,d) is BM19, centre (b,e) is SPAM,
right (c,f) is GAEZ. Spatial resolution 5 arc minutes.
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Extended Data Fig. 5| Current suitability for banana. Binary images show suitability (dark blue) for banana based on Ry, for edaphic, socioeconomic and climatic
predictors. Climatic predictors are adjusted for low (< 5%) and high (=5 %) irrigation. Irrigation (% area) is shown categorized.
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Yellow denotes areas unsuitable for banana based on R, for edaphic, additional suitable areas if irrigation provision were extended to the entire
socioeconomic and climatic predictors. Dark blue denotes areas suitable for region.
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Extended Data Fig. 7 | Future suitability for banana under different population
density scenarios. Binary images show suitability (dark blue) for banana based
on Ry, for edaphic, socioeconomic and and future (SSP2-4.5,2061-2080) climatic
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predictors. Climatic predictors are adjusted for low ( < 5%) and high (=5 %)
irrigation. Panels show suitability based on current (2020) population density
(top left) and future SSP population density projections for 2070.
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Extended Data Fig. 8 | Population density and maximum temperature of
warmest month. a) Violin plots show population density for grid cells most
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crop cover) and edaphic factors (elevation, soil pH), future climate (SSP2-4.5,
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show median and interquartile range. b) Maximum temperature of warmest
month (T,,,,) for suitable areas for banana production under ‘current’ climate
(1970-2000, pale blue fill) and population density, and future climate (SSP2-4.5,
2061-2080, yellow fill) and population densities under different SSPs.
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