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Machine learned synthesizability predictions aided
by density functional theory
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A grand challenge of materials science is predicting synthesis pathways for novel com-

pounds. Data-driven approaches have made significant progress in predicting a compound’s

synthesizability; however, some recent attempts ignore phase stability information. Here, we

combine thermodynamic stability calculated using density functional theory with

composition-based features to train a machine learning model that predicts a material’s

synthesizability. Our model predicts the synthesizability of ternary 1:1:1 compositions in the

half-Heusler structure, achieving a cross-validated precision of 0.82 and recall of 0.82. Our

model shows improvement in predicting non-half-Heuslers compared to a previous study’s

model, and identifies 121 synthesizable candidates out of 4141 unreported ternary composi-

tions. More notably, 39 stable compositions are predicted unsynthesizable while 62 unstable

compositions are predicted synthesizable; these findings otherwise cannot be made using

density functional theory stability alone. This study presents a new approach for accurately

predicting synthesizability, and identifies new half-Heuslers for experimental synthesis.
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The search for novel compounds with exotic properties has
long been a major initiative of materials science research.
This search has traditionally been difficult due to hypo-

thetical materials having a virtually infinite design space1–3,
where stoichiometric, compositional, and structural degrees of
freedom must be considered. Once a material’s stoichiometry is
determined, such as AB2C for full-Heuslers or ABC3 for per-
ovskites, the compositional degrees of freedom involve all the
ways a set of elements can be permuted in a stoichiometry (e.g.,
Co2MnSi or SrTiO3). The final degree of freedom, for a given
stoichiometry and composition, involves the theoretically endless
number of crystal structures that a composition can be arranged
in. Traditional approaches for experimentally exploring hypo-
thetical materials have often involved substituting elements in
reported compounds with chemically similar ones or tweaking
well-known synthesis procedures4–7. And while these approaches
have worked reliably, they are limited in finding innovative
materials in completely unexplored composition and structural
spaces. Empirically derived rules and trends take researchers a
step further, enabling studies to branch out further from existing
work, such as electron counting for Zintl compounds8 or the
Hume-Rothery Rules9 for solid solution formation. However,
rules and trends are seldom widely generalizable and often
require extensive and thorough experimental studies to develop.
Thus, there is a substantial need for devising faster methods to
predict experimental synthesizability. Owing to exponential
advances in technology over the recent decades, computational
techniques have become increasingly popular and successful in
revolutionizing materials discovery1,2.

Density functional theory (DFT) calculations can provide a
material’s zero-kelvin energetic stability10–12 and are commonly
used as a first approach for predicting experimental synthesiz-
ability. By calculating the DFT energy of a compound and its
competing phases within a compositional system, the formation
energies of the compound and the entire convex hull can be
determined. At a given composition, the formation energy of the
convex hull is the lowest linear combination of energies from
competing phases. We define the difference between the forma-
tion energy of a given compound and that of the convex hull as
the energy above the convex hull, denoted Ehull, which describes
the compound’s zero-kelvin thermodynamic stability (lower Ehull
values indicate greater stability). In this work, we label materials
with Ehull= 0 eV/atom as DFT-stable, and DFT-unstable if
otherwise; we continue our discussion using the terms “stable”
and “unstable” interchangeably with “DFT-stable” and “DFT-
unstable”. Many studies have used DFT stability as a condition of
experimental synthesizability to screen candidate materials for
synthesis. For instance, Gautier et al.13 determined DFT stabilities
for 18-electron ABC compounds and found 54 out of 400 unre-
ported compounds to be stable, of which they experimentally
synthesized 15 and confirmed all to be in their predicted structures.
Most of Gautier et al.’s predicted compounds were half-Heuslers
and they find that compounds with Ehull < –0.13 eV/atom
can be synthesized in their predicted single-phase. Zhu et al.14 used
a similar approach to search for thermoelectric materials; among
thousands of candidates, they identified several promising candi-
dates that are stable which they subsequently synthesized.

Yet, zero-kelvin DFT stability does not perfectly describe
experimental synthesizability, that is, not all stable compounds
have been synthesized and not all unstable compounds are
necessarily unsynthesizable. This is due to other important factors
affecting experimental synthesizability such as synthesis tem-
perature, pressure, and method that cannot be easily explained by
DFT stability. Diamond and its allotrope graphite are well-known
materials which demonstrate the importance of processing tech-
niques when synthesizing one form of carbon over the other.

Both allotropes have been successfully synthesized at different
pressures and temperatures, despite diamond being less stable
than the ground-state structure graphite. When analyzing the
Inorganic Crystal Structure Database (ICSD)15, we find that
roughly half of experimentally reported compounds are stable
while the other half are metastable (unstable, yet experimentally
synthesizable) with a median Ehull of 22 meV/atom as calculated
through the Open Quantum Materials Database (OQMD)10.
Furthermore, some experimentally reported compounds have
hypothetical structures that are relatively more stable, yet these
have never been synthesized. Thus, while experimentally reported
materials tend to be stable or have lower metastability (i.e. lower
Ehull), DFT stability does not provide a full explanation of
experimental synthesizability.

Further studies have attempted to elucidate the relationship
between DFT energetics and synthesizability for metastable
materials. Sun et al.16 calculated DFT stabilities for ICSD-
reported compounds to investigate the degree of metastability for
synthesizable materials. They separately analyze Ehull distribu-
tions for binaries, ternaries, quaternaries, and 5+ element com-
pounds, finding that experimentally reported compounds
generally (1) are more abundant at lower metastability, and (2)
have lower ranges of metastability as the number of elements they
are comprised of increases. While these findings suggest that low
metastability means greater chances of synthesizability, Sun et al.
also find many polymorphs that are relatively stable and unre-
ported (and thus assumed unsynthesizable). Therefore, low Ehull
appears to be an important, yet insufficient condition for syn-
thesizability, meaning there are factors beyond zero-kelvin ther-
modynamics that affect and further complicate synthesizability
predictions. Aykol et al.17 extend Sun et al.’s work by quantifying
the Ehull limit of metastable compounds. Aykol et al. first used the
ICSD to identify 41 compounds for which they calculated DFT
stability. Then, they calculated the stabilities of various poly-
morphs for all 41 compounds and calculated the stability of the
amorphous state of each reported compound. For all 41 com-
pounds, the metastability of the reported compound was always
lower than that of the corresponding amorphous phase. This
suggests that polymorphs with Ehull greater than that of the
amorphous phase, termed the “amorphous limit”, are unsynthe-
sizable, though the converse is not necessarily true. That is, all
polymorphs above the amorphous limit are unsynthesizeable, but
not all polymorphs under the amorphous limit are synthesizable.
While Aykol et al.’s findings provide a way to accurately identify
materials that are unsynthesizable, the task of calculating many
amorphous limits is prohibitively costly, and the problem of
accurately predicting the synthesizability of all polymorphs under
the amorphous limit remains a challenge.

We present a matrix in Fig. 1 to help visualize the relationship
between DFT stability and synthesizability by defining four
categories for classifying compounds. Category I and II contain
compounds that respectively are stable or unstable in their
reported and hence synthesizable structures, while category III
and IV contain unreported and hence unsynthesizable com-
pounds that respectively are stable or unstable. The assumption
that a compound is unsynthesizable if unreported depends on
whether any compound with the same composition has been
studied and reported. Because compounds of a given composition
can be unreported if never studied, in which case being unre-
ported may not reasonably indicate unsynthesizablility, the
matrix in Fig. 1 does not apply to unstudied compositions.
Compounds with compositions that have been studied can be
categorized into one of these four categories, so it is important to
consider all categories together when predicting synthesizability.
Some previous studies only consider subsets of this matrix at a
time, such as Sun et al.’s16 and Aykol et al.’s17 works investigating
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ICSD-reported metastable materials (category II and IV). In
another work by Aykol18, the network properties of ICSD-
reported stable materials as connected by tie-lines in the OQMD
are used to model synthesizability. This work captures both sci-
entific and nonscientific factors that influence synthesizability,
but only considers stable compounds reported in the ICSD
(category I).

We consider stable compounds that are synthesizable (category
I) and unstable compounds that are unsynthesizable (category
IV) as “correlated” (since DFT stability and synthesizability are
correlated), while unstable compounds that are reported and
stable compounds that are not reported are labeled “uncorre-
lated”. There are multiple ways of rationalizing uncorrelated
materials, where finite-temperature thermodynamics like entropy
may cause compounds stable at zero kelvin to become unstable at
higher synthesis temperatures (category III). This explanation for
uncorrelated materials has been observed in cases where materials
of half-Heusler-like chemistry are synthesized in non-half-
Heusler structures19,20 despite being stable at zero kelvin in the
half-Heusler structure, and studies on other materials have
pointed to vibrational entropy as the cause of such
phenomena21,22. Likewise, entropy may also stabilize compounds
that are unstable at zero kelvin leading to materials in category II.
Explanations for uncorrelated compounds may also lie beyond
thermodynamics where kinetic barriers may allow or prevent the
formation of certain materials16,23,24. Experimental mis-
characterization or DFT-related errors may also explain why
some materials are category II or III, though we believe this

applies to only a minority of reported materials. Regardless of the
reason, there are cases where DFT stability does not perfectly
describe a material’s synthesizability, thus there is strong interest
in developing new methods for predicting experimental
synthesizability.

Onex such method involves using machine learning (ML),
which has emerged as a powerful tool in the materials science
community and enabled researchers to devise highly accurate
models that describe increasingly complex trends25–28.
Models have already been developed for a diverse range of
applications, from predicting material properties29–32, to DFT
energetics32,33, and even force fields for molecular dynamics34.
ML models have also been used to predict experimental syn-
thesizability. To find favorable conditions for growing MoS2,
Tang et al.35 trained a model on hundreds of synthesis condi-
tions reported to lead to successful or unsuccessful synthesis.
They optimized synthesis conditions and identified the most
influential synthesis parameters by analyzing feature impor-
tances. In another study proposing a general framework that
can be hypothetically applied to any material, Kim et al.36

leveraged the vast trove of scholarly articles published online to
identify favorable synthesis conditions. By combining natural
language processing techniques with ML algorithms, they
extracted thousands of properties and synthesis conditions
across half a million articles to identify trends that are difficult
to find manually. They illustrated their approach by focusing on
titania nanotubes, for which they identified new synthesis
heuristics involving various parameters like calcination

Fig. 1 Material classification matrix. A matrix for categorizing materials that have been attempted for synthesis based on their synthesizability and
stability. Category I materials are stable and synthesizable; category II materials are unstable, yet synthesizable; category III materials are stable, yet
unsynthesizable; category IV materials are unstable and unsynthesizable. Categories labeled “correlated'' include materials whose stability directly
describes their synthesizability. That is, materials are expected to be synthesizable if stable and are expected to be unsynthesizable if unstable.
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temperature, calcination time, solvent concentration, and
precursors.

ML synthesizability models are more feasible to construct than
ever, owing to publicly available databases such the OQMD,
Materials Project11, AFLOW, ICSD, and many others. Jang et al.37

used the Materials Project database to train a neural network that
accurately predicts a material’s synthesizability given its composi-
tion and crystal structure. They represent materials by their
structural features and are able to identify thousands of synthe-
sizable, yet unreported materials in the OQMD and Materials
Project. Using the ICSD, Davariashtiyani et al.38 built a model that
similarly also predicts a material’s synthesizability given composi-
tion and structure. ML models more focused on specific materials
classes have also been reported for various materials such as full-
Heuslers39, Chevrel phase chalcogenides40, perovskites41–43, and
polyelemental nanoparticles44; by focusing on specific material
classes or compositions, these models sacrifice generalizability for
improved accuracy. In this work, we focus on half-Heusler mate-
rials, for which two previous studies have developed ML synthe-
sizability models.

Our paper begins by examining these two reported ML models
by Gzyl et al.45 and Legrain et al.46 that predict half-Heusler
synthesizability. These models do not use DFT stability when
making predictions, and suggest a surprising number of highly
metastable candidates to be synthesizable. While metastable
materials certainly exist, previous works suggest there is to some
degree, a positive correlation between synthesizability and DFT
stability13,14,16,17. That is, we expect most synthesizable materials
to be stable. Thus, we hypothesize that combining DFT stability
with composition-based features may enable a more accurate ML
synthesizability model. While some studies have used DFT sta-
bility to find new synthesizable materials whereas others use ML
with non-DFT features to do the same, no single model has
integrated the two approaches. So in this paper, we use DFT
stability with composition-based features to build an ML model
that predicts the synthesizability of an ABC composition in the
half-Heusler structure. Our model reproduces an expected cor-
relation between DFT stability and synthesizability, yet it also can
identify metastable half-Heuslers and stable half-Heuslers that are
unsynthesizable (compositions where a non-half-Heusler struc-
ture is metastable). We show prediction improvements for several
half-Heuslers predicted by Gzyl et al.45, and our model achieves a
precision of 0.82 and recall of 0.82. We conclude by applying our
model on several thousand ABC compositions unreported in
literature and identify promising candidates for further
experimental study.

Results and discussion
Previous half-heusler synthesizability models. Numerous stu-
dies have directly used DFT stability as a screening criteria for
discovering new synthesizable half-Heuslers and other Heuslers.
Anand et al.47 calculated Ehull to evaluate DFT stability while
Vikram et al.48 used Ef (formation energy) to assess DFT stability
for identifying synthesizable half-Heuslers. Jia et al.49 more
recently used a criteria of Ehull < 100 meV/atom for synthesiz-
ability in addition to other clustering techniques to to identify
new half-Heuslers candidates. Other works have found magnetic
Heuslers50, low thermal conductivity Heuslers51, and others with
various novel properties2,52–56. In all of these studies, new half-
Heuslers were discovered, however, it is unclear whether all stable
half-Heuslers were actually synthesizable and if all unstable half-
Heuslers were unsynthesizable.

Thus, our study begins by focusing on ML-based half-Heusler
synthesizability models by Gzyl et al.45 and Legrain et al.46, which
do not use DFT stability to directly filter candidates for synthesis.

Legrain et al. used a random forest algorithm with a training
dataset comprised of ABC compositions flagged as reported in the
ICSD within the AFLOW12 database. Each ABC composition is
labeled as (1) half-Heusler if reported as such, generating one
positive (i.e. half-Heusler) example, and (2) non-half-Heusler if
reported as non-half-Heusler along with its five other composi-
tional permutations (BAC, BCA, CAB, CBA, ACB), generating 6
negative (i.e. non-half-Heusler) examples. This process yields 164
half-Heusler examples and 11022 non-half-Heusler examples for
the training dataset. Each example is represented by composition-
based features such as electronegativity, difference in atomic
radius, covariance of element column numbers, and many others;
the feature vectors are order-specific with respect to composi-
tional permutations to account for elemental site preferences (e.g.
the feature vector for BAC is not equivalent to that of CAB).
Before discussing this model’s performance, we first clarify several
terms that are used throughout this paper to evaluate model
performance.

For a synthesizability models, a true positive (TP) prediction is
a synthesizable material predicted as synthesizable, and a false
positive (FP) prediction is an unsynthesizable material predicted
as synthesizable. True negative (TN) predictions are unsynthesiz-
able materials predicted as unsynthesizable, and false negative
(FN) predictions are synthesizable materials predicted as
unsynthesizable. With these definitions, we introduce two
accuracy metrics that are useful for evaluating synthesizability
models:

Precision: % of compounds predicted synthesizable that are

known to be synthesizable TP
TPþFP

� �

Recall: % of compounds known to be synthesizable that are

predicted synthesizable TP
FNþTP

� �

Low precision models will recommend candidates that are
seldom synthesizable, while low recall models will incorrectly rule
out many candidates that are truly synthesizable. Thus, ML
models should maximize both precision and recall, though this is
a difficult task since the two metrics tend to be anti-correlated.
Legrain et al.’s model obtains a precision of 0.91, and a recall of
0.51. The second model, by Gzyl et al., uses an ensemble of six
different ML algorithms to produce an aggregated synthesizability
prediction. The model is trained on a dataset of 180 half-Heusler
(minority class) examples and 2638 non-half-Heusler (majority
class) examples found in Pearson’s Crystal Data; in order to
balance the dataset, additional minority class data points are
generated from the existing 180 half-Heusler datapoints using the
synthetic minority oversampling technique. The model features
are also constructed solely from composition-based properties,
such as atomic number, ionic radius, melting point, and many
others. Various arithmetic operations are applied to these
properties to generate model features, and their model attains a
precision of 0.77 and a recall of 0.88.

These two synthesizability models reported by Gzyl et al. and
Legrain et al. are especially useful for guiding materials discovery
given their narrowed focus on one particular material class (i.e.
half-Heuslers). Confining a model to one material class generally
improves accuracy while remaining generalizable to compositions
within the material class’ compositional design space. However,
these two models do not directly account for DFT stability, which
we expect to correlate to some degree with synthesizability. Using
the OQMD, we obtain DFT stabilities for the half-Heuslers that
Gzyl et al. and Legrain et al. predict to be highly synthesizable and
plot the stabilities against each models’ predicted synthesizabil-
ities in Fig. 2. We observe in Gzyl et al.’s predictions a cluster of
highly synthesizable (>0.90) compositions with Ehull values up to
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500 meV/atom. This is unexpected since only two experimentally
reported half-Heuslers from the ICSD and Springer Materials
(SM)57 have Ehull > 400 meV/atom. Furthermore, metastable half-
Heuslers only make up around 28% of experimentally reported
half-Heuslers from the ICSD and Springer Materials, and less
than half of these have Ehull > 73 meV/atom. Gzyl et al.’s model
also seems to predict synthesizabilities that have no correlation
with stability, which is unexpected. Legrain et al.’s predictions
more closely follow an expected inverse relationship between
synthesizability and Ehull, though a large majority of Legrain
et al.’s synthesizable predictions are still surprisingly far above the
convex hull.

Without any knowledge of DFT stability, these synthesiz-
ability models by Gzyl et al. and Legrain et al. predict many
highly unstable half-Heuslers to be synthesizable. We hypothe-
size that a combination of half-Heusler DFT stabilities with
composition-based features can enable an improved half-
Heusler synthesizability model that makes predictions more
aligned with our expectations from DFT stability. We test our
hypothesis using a ML prediction process summarized in the
flowchart from Fig. 3. First, we gather experimental data for
ABC compositions reported as half-Heusler and non-half-
Heusler as found in the ICSD, Springer Materials, and ASM
International’s Alloy Phase Diagram Database (ASM)58. Next,
we represent each composition with its DFT stability in the
half-Heusler structure in addition to various composition-based
features. The data is used to then predict a synthesizability score
between 0 and 1, which is compared against empirically derived

cutoffs to determine whether an ABC composition is synthesiz-
able as a half-Heusler.

When classifying experimentally reported ABC compositions
in our training set into the four categories in Fig. 1, we find that
DFT stability does not perfectly describe half-Heusler synthesiz-
ability. A composition is considered “synthesizable” if reported as
half-Heusler and “unsynthesizable” if reported in another crystal
structure. We find 71% (Category I

IþII) of reported half-Heuslers
to be stable in the half-Heusler structure and 72% (Category I

IþIII)
of ABC compositions that are stable in the half-Heusler structure
to be reported as half-Heusler. Evidently, properties beyond DFT
stability must be accounted for to more accurately predict
synthesizability.

While there are helpful rules for predicting half-Heusler
synthesizability, they are insufficient alone for evaluating all
possible ABC compositions that can form a half-Heusler. The
well-known 18 electron rule is one such rule, which has aided the
discovery of several half-Heuslers13,47,59,60; this rule borrows
from Zintl compounds the observation that valence electron
count strongly correlates with structure and bonding8. While
fairly accurate, this rule’s generalizability is questionable since
many non-18-electron half-Heuslers have also been reported in
literature. Other works have tried to link defects and elemental
site preferences with half-Heusler synthesizability47,61, though the
findings do not fully apply to all half-Heuslers in the ABC
compositional design space. Thus, we use ML coupled with DFT
to learn the complex rules that determine an ABC composition’s
synthesizability in the half-Heusler structure. With thousands of
ABC compositions still unreported in literature, even modest
accuracy gains over current predictive methods may reveal many
new promising half-Heuslers.

DFT stability as a benchmark synthesizability model. Because
our ML model is expected to show improvement over using DFT
stability alone for predicting synthesizability, we first evaluate the
performance of a synthesizability model informed only by a
compound’s DFT stability as a benchmark. We report in Fig. 4
the precisions and recalls as a function of an Ehull cutoff for the
benchmark model applied to our training set; materials with half-
Heusler stabilities higher than a given cutoff are considered
unsynthesizable in the half-Heusler structure and are synthesiz-
able if otherwise. We find precision to monotonically decrease as

Fig. 2 Synthesizability vs DFT stability for previous half-Heusler models. Comparisons of Ehull from the OQMD and synthesizability for synthesizable
half-Heuslers as determined by (a) Gzyl et al.’s45 and (b) Legrain et al.’s46 models. Both models are not informed of DFT stability and predict many
unstable half-Heuslers to be synthesizable. The dashed red line depicts the median Ehull (73 meV/atom) of all unstable half-Heuslers experimentally
reported in the ICSD as calculated in the OQMD.

Fig. 3 Flowchart of this work’s modeling process. First, we calculate DFT
stabilities for experimentally reported ABC compositions from the ICSD,
Springer Materials, and ASM in the half-Heusler structure. The calculated
stabilities are then used with composition-based features produced through
Magpie to train the machine learning model. Final synthesizability labels are
made based on how predicted synthesizabilities compare against
empirically derived cutoffs.
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the Ehull cutoff increases for metastable materials since experi-
mentally reported materials tend to have low Ehull values. When
the Ehull cutoff is 73 meV/atom, the model predicts half of all
experimentally known unstable half-Heuslers as synthesizable
(recall = 0.5), and only about 15% of such predictions are correct
(precision = 0.15). Accuracies for stable half-Heuslers are not
plotted in Fig. 4, since recall equals 1 and precision is just the
y-intercept of the solid precision line (precision = 0.72). While
this benchmark model has moderate accuracy, we show next that
our ML-driven approach coupled with DFT stability can make
improved synthesizability predictions.

Machine learning model accuracy. We evaluate our ML model
by using leave-one-out cross-validation to determine the syn-
thesizability of all compositions used to train the model. Our
model undersamples 600 data points among category IV com-
positions in order to reduce the training set class imbalance; the
remaining compositions excluded from the training sets during
the under-sampling process are also predicted on during cross-
validation. This cross validation procedure is repeated for 10
trials, with new batches of 600 under-sampled data points per
trial, and synthesizability values are averaged across all trials.
Compositions with predictions above a synthesizability cutoff are
determined as synthesizable in the half-Heusler structure. We
finalize a cutoff of 0.50 for stable compositions and 0.75 for
unstable compositions, which provide sufficiently accurate pre-
dictions (see Supplementary Note 1 for more details). At these
cutoffs, the model has a precision of 0.95 and a recall of 0.90
among stable compositions, for which the DFT stability bench-
mark model with a precision of 0.72 and recall of 1. More notably,
the overall precision for unstable compositions is 0.92 while the
recall is 0.43. The precision is 0.12 for the benchmark model at
the same recall of 0.43. Thus, with almost eight times the preci-
sion at the same recall, our ML model provides a significant
accuracy boost for predicting synthesizable half-Heuslers among
unstable candidates. Even among stable compositions, our ML
model provides a sizable boost in precision (from 0.72 to 0.95)
with only a slight penalty in recall (from 1 to 0.90).

In Fig. 5, we report our model’s precision and recall as a
function of the synthesizability cutoff. Our model predicts the
synthesizability of stable half-Heuslers more accurately than
unstable half-Heuslers, and recall monotonically decreases while
precision increases as the synthesizability cutoff is increased. The
precision is 0.82 and recall is 0.82 for a synthesizability cutoff of
0.5, which Gzyl et al. and Legrain et al. use in their models. While
our model has comparable precisions and recalls with those of
models from Gzyl et al. and Legrain et al., we refrain from closely
comparing accuracies due to nonidentical datasets used to
evaluate each model. We also find our model, when trained only
on single-phase compounds, poorly generalizes to the ABC
compositions known to phase separate (visualized in Supple-
mentary Fig. 2). This suggests that synthesizability models trained
only on single-phase compounds, like in Gzyl et al.’s and Legrain
et al.’s models, may erroneously predict unknown materials that
phase separate as synthesizable.

Feature discussion. We now examine the most important model
features that determine synthesizability as listed in Table 1, where
we find DFT stability to be the most important feature. We plot
stability against synthesizability in Fig. 6 and observe that max-
imum Ehull values (Emax

hull ) tend to decrease for increasingly syn-
thesizable materials; this is in line with our intuition that low Ehull is
a necessary, though insufficient condition of synthesizability. We
quantify this inverse relationship between Emax

hull and synthesizability
by finding Emax

hull among compounds of synthesizabilities within
steps of 0.05, and calculating the spearman rank correlation
between Emax

hull and synthesizability. The spearman rank correlation
describes the monotonic correlation between two sets of values,
where a correlation of -1 indicates a perfectly inverse correlation
(i.e. as one set of values increases, the corresponding set of other
values always decreases). We find Emax

hull to have a spearman rank
correlation of –0.902 with synthesizability, indicating a strong
inverse correlation. By definition, the energy above the convex hull
is non-negative, so the inverse trend is interrupted at Ehull= 0.
Thus, we try replacing Ehull with decomposition energy, the for-
mation energy difference between the half-Heusler and its
decomposition products (non-ABC stoichiometry compounds that
make the convex hull), which can be negative. We observe the
inverse trend between synthesizability and Ehull continues below
Ehull= 0 (visualized in Supplementary Fig. 3), confirming our
intuition that synthesizable compounds tend to be more stable. The
inverse correlation between the maximum decomposition energies
versus synthesizability is also very strong, with a spearman rank
correlation of -0.908. We note that replacing Ehull with decom-
position energy does not improve model performance, so we
continue using Ehull as a model feature. Furthermore, we emphasize
that because the model does not solely rely on Ehull to make pre-
dictions, it can identify known metastable half-Heuslers with high
synthesizability and identify known non-half-Heusler composi-
tions that are stable in the half-Heusler structure with low syn-
thesizability. These category II and III compounds are of particular
interest since their synthesizability cannot be modeled with DFT
stability alone. The fourth most important feature, Mendeleev
number, is an intuitive feature since it orders elements by chemical
similarity62. Other top features such as covalent radii and electron
counts are also intuitively important, though our model cannot
provide specific and interpretable rules that relate these features
with synthesizability. This limitation is a widely-acknowledged
weakness of using ML, since the decision criteria a model uses to
generate predictions is often complex and difficult to interpret.

Validation on previously reported compounds. Next, we vali-
date our model against experimental data reported in literature

Fig. 4 Synthesizability prediction accuracies from only DFT stability.
Accuracies for the benchmark half-Heusler synthesizability model applied
to the ABC compositions in our training set, based solely off a
composition’s Ehull in the half-Heusler structure. A composition with
Ehull ≤ a cutoff is considered synthesizable as a half-Heusler, and is
unsynthesizable otherwise. Dashed lines depict accuracies for only
metastable (Ehull > 0 meV/atom) compositions, for which this model
performs especially poorly. Because precisions for only stable compositions
always equal 0.72 and their respective recalls always equal 1, their curves
are not drawn here.
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on ABC compounds that are not used to train our ML model. We
begin by comparing our model against Gzyl et al.’s45 for seven
new compounds they predict as half-Heusler, of which six are
reported to be synthesized as half-Heusler. We first simulate
X-Ray Diffraction (XRD) patterns to identify the six reported
half-Heuslers, which is non-trivial since there are many possible
ordered and disordered atomic arrangements for Heusler-type
structures that correspond to visually similar diffraction patterns;
we formally define these arrangements in Supplementary Note 2.
We find that while most reported peak positions match those of
our simulated patterns for the half-Heusler structures that Gzyl
et al. report, the relative peak intensities do not match, suggesting
that none of the reported half-Heuslers are actually ordered ideal-
stoichiometry (ABC) half-Heuslers. Thus, our next step was to
identify other Heusler-type structures that better match the
reported XRD patterns. We simulated XRD patterns for non-
stoichiometric and disordered half-Heuslers and identified
patterns with peak positions and intensities that more closely
match those reported. The simulated patterns can be found in

Supplementary Figs. 4 and 5, and more details on the identified
disordered structures is in Supplementary Table 2.

We conclude that while both our model and Gzyl et al.’s model
are accurate, our model shows improvement in correctly
identifying non-half-Heusler compositions; we summarize our
comparison in Table 2. The only composition Gzyl et al. finds to
be non-half-Heusler is MnRhPb, which they report is a mixture of
binary phases despite the composition having the highest
predicted synthesizability of 0.935 from their model; meanwhile,
we correctly predict a much lower synthesizability of 0.401. The
observed XRD patterns for MnPdIn and MnNiSn most closely
match the simulated patterns for the full-Heuslers MnPd2In and
MnNi2Sn, respectively. This is intuitive since the full-Heuslers are
stable as determined by DFT calculations and have been
reported63,64, whereas the half-Heusler counterparts MnPdIn
and MnNiSn are unstable; for these two compositions, our model

Fig. 5 Precision and recalls for this work’s ML model. Precisions and recalls for our synthesizability model as a function of a synthesizability cutoff.
Dashed lines depict accuracies for either (a) stable compounds or (b) unstable compounds. Compositions with synthesizabilities lower than a given cutoff
are labeled non-half-Heusler, and are half-Heusler otherwise. Accuracies are determined through leave-one-out cross-validation, where dashed lines depict
the accuracies among stable or unstable compositions. When the cutoff equals 0, precisions can be interpreted as the chance of selecting a half-Heusler
through random guessing.

Table 1 The ten most important features for this work’s
ML model.

Feature Name Importance

Stability 0.062
Formula mode Covalent Radius 0.021
Formula minimum Covalent Radius 0.021
Formula maximum Mendeleev No. 0.020
Formula avg. dev. No. of p-valence e- 0.010
Formula range Covalent Radius 0.009
Octahedral E. minimum Column No. 0.009
Formula mode Melting Temperature 0.009
Formula minimum Melting Temperature 0.009
Octahedral E. mean Column No. 0.009

Stability is by far the most important feature, which is expected as an important descriptor of
synthesizability. Feature names denoted as “Formula” refer to the Magpie featurizer being
applied on the entire chemical formula. Feature names containing “Octahedral E.” describe
features from applying Magpie to the half-Heusler’s two octahedrally coordinated elements. See
Supplementary Data File 1 for the full list. All feature importances sum to 1, though the full list of
features is not shown here (see Supplementary Data 1).

Fig. 6 Synthesizability predictions vs DFT stability for this work’s ML
model. Energies above the convex hull for predictions made by our model
on training data compounds using leave-one-out cross-validation. Data
points are colored according to their true experimental labels, as either half-
Heusler, another structure, or phase-separating. We observe an inverse
trend between synthesizability and Emax

hull , which agrees with the intuition
that compounds that are more stable are more likely to be synthesizable.
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predicts low synthesizabilities. We note that because secondary
phases are reported for all observed ABC compositions, non-ABC
stoichiometry compounds like full-Heuslers may be observed.
MnPdSn and MnRhSn have synthesizabilities near the cutoff we
set at 0.75, and most resemble disordered half-Heusler structures.
For disordered compounds, we generate their special quasiran-
dom structure65, the small-unit-cell periodic representation of a
disordered structure, using the Alloy Theoretic Automated
Toolkit66 and calculate their energies above the convex hull
using DFT. The observed disordered phase for MnRhSn is more
stable than its respective ordered half-Heusler counterpart, which
may help explain why the ordered half-Heusler structure is not
observed, while the disordered phase for MnPdSn is only slightly
less stable than its ordered half-Heusler structure. While the
disordered structures for VRhSn and MnRuSb are noticeably less
stable than their ordered half-Heusler structures, there are also
many unidentifiable peaks in both compounds’ XRD patterns,
leading us to have lower confidence in the disordered phases we
identify. Nevertheless, we are confident VRhSn and MnRuSb are
not ordered half-Heuslers as originally claimed. For each
composition in Table 2, we also list the compounds that make
up each convex hull in Supplementary Table 3. Gzyl et al. also
attempt to synthesize seven additional compositions they predict
to have low probabilities of forming half-Heuslers. For all seven
compositions, they do not observe half-Heusler structures, and all
seven are predicted by our model to have synthesizabilities close
to 0. While both models appear to be accurate and are in
agreement when predicting compositions expected to form half-
Heusler, our model offers improved predictive accuracy for
compositions expected to not form half-Heusler.

The next dataset we use to validate our model includes
compositions experimentally reported in multiple structures as
found during training set construction; these compositions are
labeled “multiple prototype” and are omitted from our model’s
final training data set. We are interested in whether our ML
model can maintain high prediction accuracy despite being
uninformed of synthesis conditions and techniques, which we
hypothesize are particularly influential for determining half-
Heusler synthesizability among these “multiple prototype”
compositions. We consider a “multiple prototype” composition
as half-Heusler if any of its reported structures is half-Heusler;
with these compositions, our model achieves a precision of 0.82
and a recall of 0.62, which are slightly lower than the leave-one-
out cross-validation accuracies when predicting on training data
compositions. Where the positive labels are half-Heuslers, our
model predicts 18 true positives, 4 false positives, 11 false
negatives, and 405 true negatives. To rule out the possibility of
compositions being erroneously marked as “multiple prototype”
due to database entry errors, we manually verify published papers

corresponding to each entry for the non true negative composi-
tions. Only a few compositions are erroneously labeled as
“multiple prototype”, so we conclude most compositions are
truly polymorphic. The decreased accuracy we observe for
“multiple prototype” compositions suggests our model may be
missing important features like synthesis conditions, which play
an important role in determining a specific polymorph’s
synthesizability. Accounting for synthesis conditions is outside
the scope of this paper due to the difficulties acquiring the
requisite data, so we continue while acknowledging this limitation
as an area for improvement.

In another paper focused on a broader set of ABC ternary
materials, Gautier et al.13 use DFT stability alone to determine
synthesizability. They try to synthesize 28 materials, all of which
but one are not in our training set; of these 28 materials
attempted for synthesis, 12 are half-Heusler, 5 are MgSrSi-type
(Pnma), and 11 are phase separating. Our model applied on these
28 compounds predicts 9 compositions as synthesizable half-
Heuslers, of which all are reported to be half-Heuslers by Gautier
et al. This means our model achieves a precision of 1 and a recall
of 0.75 (9/12) for predicting synthesizable half-Heuslers, which
further validates our model’s predictive accuracy. The 28
compounds and their predicted synthesizabilities can be found
in Supplementary Table 4.

Predicting new half-heuslers. We conclude our paper by
applying our model on unreported ABC compositions to find
new synthesizable half-Heuslers. ABC compositions are generated
by combinatorially combining the set of A, B, and C elements
found across all half-Heuslers in our training set. After removing
compositions already in the training set, we calculate DFT sta-
bilities for 4141 compositions in the half-Heusler structure, which
we predict synthesizabilities for with our ML model. The pre-
dicted synthesizabilities for these compositions are plotted with
the respective DFT stabilities in Fig. 7. Most compositions are
unsynthesizable, which can be rationalized by the facts that (1)
90% (n= 3745) of all compositions are quite unstable with
Ehull > 100 meV/atom, of which only 44 are predicted synthesiz-
able, and (2) synthesizable half-Heuslers have elemental site
preferences, so combinatorially generated compositions should
generally be unfavorable and thus unsynthesizable. We also find
that while only 2% (n= 98) of all compositions are stable, where
over half (n= 59) of these are considered synthesizable. As
expected, there is an inverse trend between synthesizability and
Ehull similar to what we observe from training data predictions. Of
the synthesizable compounds identified by our model, 38 have
nonzero band gaps ranging from 0.21 eV to 1.73 eV and may be
suitable for thermoelectric and photovoltaic applications, though

Table 2 Comparing our predictions with a literature model’s.

Composition Ideal half-Heusler Gzyl et al Our Identified Primary Phase* Primary phase

Ehull (meV/atom) Synthesizability Synthesizability Ehull (meV/atom)

MnRhPb 264 0.935 0.401 Phase Separated –
MnPdIn 302 0.885 0.470 full-Heusler (MnPd2In) 0
MnNiSn 93 0.879 0.616 full-Heusler (MnNi2Sn) 6
VRhSn 122 0.556 0.726 half-Heusler (disordered) 461
MnPdSn 166 0.918 0.740 half-Heusler (disordered) 190
MnRhSn 190 0.895 0.778 half-Heusler (disordered) 104
MnRuSb 163 0.719 0.779 full-Heusler (disordered) 259

We simulate XRD patterns (see Supplementary Figs. 4 and 5) to identify each compound’s primary phase, and calculate the primary phase stabilities using DFT. All compositions are unstable in the half-
Heusler structure, thus our model considers a composition synthesizable as a half-Heusler when its synthesizability >0.75. MnRhPb decomposition products are not reported, thus the stability is not
calculated. *: multiple phases are observed for all compositions, but only the primary phase is shown here. Table summarizing our predictions compared to those made by Gzyl et al.45 for the seven
compositions their model predicted to be half-Heusler.
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more precise band structure and electronic property calculations
should be performed first. These calculations are beyond the
scope of our work which focuses solely on experimental synthe-
sizability, and will be completed in a follow up study.

While our predictions have not been experimentally verified, the
DFT stabilities for synthesizable half-Heuslers are within expected
values observed in previously reported materials. In total, 121
compositions are predicted synthesizable by our model, with 59
being stable and 62 being unstable. We list the most synthesizable
candidates in Table 3, and the full list of synthesizable half-Heuslers
can be found in Supplementary Table 5.

Conclusion
Here, we present a ML model that predicts whether an ABC
composition can be synthesized as a half-Heusler. We first establish
that DFT stability is an important, yet insufficient, property to
consider when predicting synthesizability, which some reported
models do not do. Thus, we combine DFT stability with
composition-based features to represent materials in our synthe-
sizability ML model, which is trained on experimentally reported
half-Heuslers, non-half-Heuslers, and compositions observed to
phase separate. Our model attains significantly improved accuracy
over using DFT stability alone as a synthesizability criteria, with a
precision of 0.82 and recall of 0.82; most notably, our model
achieves almost eight times the precision over using DFT stability
as a synthesizability predictor for unstable half-Heuslers. When
validated against the experimental results from Gzyl et al., our
model correctly identifies more compounds to be unsynthesizable,
and when applied to the 28 ABC compounds synthesized by
Gautier et al., our model predicts 9 of the 12 known half-Heuslers
to be half-Heusler, with all 9 predictions being correct. Further
validation carried out on polymorphic (“multiple prototype”)
compositions result in reduced accuracies, which we suspect is due
to our model not accounting for synthesis conditions. When
applied on combinatorially enumerated ABC compositions, our
model predicts 121 of 4141 unreported compositions to be syn-
thesizable, with many possessing favorable band gaps for thermo-
electric and photovoltaic applications. With regards to
experimental synthesizability, the most interesting predictions are
the 39 stable compositions predicted unsynthesizable and 62
unstable compositions predicted synthesizable; these predictions
provide examples of compounds whose synthesizability may not be
described by DFT stability alone, which can be further studied to

elucidate the relationship between thermodynamic stability and
synthesizability. While this work focuses on half-Heusler materials,
we emphasize our DFT-informed ML approach for predicting
synthesizability is applicable to any class of materials. With com-
putational resources becoming increasingly available, this ML-
driven framework can enable more accurate synthesizability
models for more efficient materials discovery.

Methods
Half-Heuslers are encompass a large compositional design space and are widely
studied for their thermoelectric8,61,67,68, ferromagnetic69–71, and spintronic56,72,73

applications. half-Heuslers are cubic (F�43m) ternary compounds with ABC com-
positions, where A is typically an early transition metal or rare earth element, B is a
late transition metal, and C is a main group element from the right half of the
periodic Table61. The half-Heusler structure has occupied Wyckoff positions 4a (0,
0, 0), 4b (12,

1
2,

1
2), and 4c (14,

1
4,

1
4), where the 4c atom is cubically coordinated by the 4a

and 4b elements, while the 4a and 4b atoms are octahedrally coordinated by each
other. This leads to three distinct half-Heusler prototype configurations for a given
ABC composition, where the experimentally observed (and usually most energe-
tically stable) configuration involves the A element in the 4a site, B element in the
4c site, and C element in the 4b site.

Machine learning training data curation. Our ML model’s training dataset
comprises three kinds of compositions: those experimentally reported

Fig. 7 Half-Heusler synthesizability predictions for unreported ABC compositions. Predicted half-Heusler synthesizabilities with calculated Ehull values for
(a) 4141 ABC compositions that are unreported in the ICSD, SpringerMaterials, and ASM, and (b) the subset that is synthesizable. Compositions are generated
by combinatorially combining sets of A, B, and C elements found in reported half-Heuslers. Compositions are considered synthesizable when predicted
synthesizabilities > 0.5 if stable and > 0.75 if unstable. As expected from the combinatorial composition generation, a majority are predicted unsynthesizable.

Table 3 Top potential candidates for future synthesis.

Composition
(DFT-stable)

Synthesizability Composition
(DFT-
unstable)

Synthesizability

DyPdBi 0.984 MgPdBi 0.906
YPdBi 0.974 CeNiBi 0.902
NdPdBi 0.970 UPtBi 0.896
ThPtBi 0.956 YbNiBi 0.884
TiCoBi 0.939 TiNiBi 0.866
ScPtBi 0.932 VRhSb 0.855
SmPtBi 0.930 LuAuPb 0.853
TiRhBi 0.930 NbCoBi 0.850
PrPtBi 0.922 MnPtBi 0.845
TmAuPb 0.919 NbRuBi 0.845

Top 10 unreported ABC compositions that our model identifies as synthesizable in the half-
Heusler structure. Two sets of compositions are reported here, for compositions that are stable
or unstable in the half-Heusler structure. The full list of synthesizable compositions can be found
in Supplementary Table 5.
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(i) as half-Heusler, (ii) as another prototype/structure (still with ABC stoi-
chiometry), and (iii) to phase separate into decomposition products (i.e. com-
pounds with non-ABC stoichiometry). These compositions are sourced from
three databases: the ICSD, Springer Materials, and ASM International’s Alloy
Phase Diagram Database. Data from the ICSD and Springer Materials are used
to identify half-Heuslers and compositions found in other prototypes. Compo-
sitions queried in the ICSD and Springer Materials often return multiple entries,
so all entries of duplicate structures are first removed. If multiple unique entries
remain, the composition is marked as “multiple prototype” (438 total). Likewise,
those with only one unique reported structure remaining are marked “single
prototype”. We hypothesize the compositions reported in multiple structures
have half-Heusler synthesizabilities that strongly depend on synthesis conditions
and techniques, which are not considered by our model. Thus, our finalized
training set excludes these compositions. We then calculate the DFT stability for
training set compositions, which involves three configurations of the half-
Heusler structure, and report the most stable of the three as the half-Heusler
stability for a given composition. The final training set has 149 half-Heuslers
(positive/synthesizable examples) and 1906 compounds of other prototypes
(negative/unsynthesizable examples). We note that while the “unsynthesiz-
ability” of an ABC composition in the half-Heusler structure cannot be defini-
tively proven, we assume that an ABC composition found in a non-half-Heusler
structure is unlikely to also be synthesizable as a half-Heusler. Of the “multiple
prototype” compositions that we find, only 3% of compositions involve the half-
Heusler structure and another non-half-Heusler structure, suggesting our
“unsynthesizability” criteria is reasonable.

Next, we obtain from ASM the ABC compositions expected to phase separate
into non-ABC decomposition products. Including these phase-separating
compositions is important for generalizing predictions to all unreported ABC
compositions since attempts to synthesize materials can also result in multi-phase
separation. However, because phase separation is often considered as the failure to
synthesize a material, this “negative” data is seldom reported among works
focusing on synthesizing ABC compounds; the difficulty of accessing these “dark
reactions” has been discussed and studied as a barrier to producing accurate
synthesizability ML models74. In our work, we identify phase separating
compositions by querying ternary phase diagrams from ASM and searching for the
presence of a single phase at the ABC composition. If a single phase at the ABC
composition does not exist, the composition is labeled “phase separating”, but only
if the composition is within a study’s attempted composition range (a single phase
may be absent from the phase diagram simply because it was not attempted in a
study). This search method yields 335 ABC compositions which phase separate,
bringing the total number of negative examples to 2241. Categorizing all
compositions into the matrix in Fig. 1, we find 106 in category I (reported half-
Heusler and stable), 43 in category II (reported half-Heusler and unstable), 41 in
category III (reported non-half-Heusler and stable), and 2200 in category IV
(reported non-half-Heusler and unstable).

Machine learning model parameters and features. Our ML model is con-
structed using the Scikit-learn python package, and uses a random forest classifier
to predict synthesizability values defined as the fraction of trees (100 trees) that
classify a composition as half-Heusler. The model represents materials using a
combination of features generated by Magpie75, a software package that applies
statistical operators like mean, minimum, maximum, and standard deviation on
composition-based properties such as atomic radius, mendeleev number, melting
point, and many others. The featurizer is applied to the whole ABC composition, as
well as on each element individually, with elements ordered by increasing elec-
tropositivity. The latter is done to help inform the model of elemental site pre-
ferences. The difference between the features of the cubically-coordinated element
and the means of the octahedrally-coordinated element features are also used to
represent materials, further informing the model of elemental site preferences. And
most importantly, we add the energy above the convex hull for the half-Heusler
structure calculated through the OQMD as a feature, where the most stable of the
three prototype configurations for the half-Heusler structure is used. The complete
list of features and their importances can be found in Supplementary Data 1.

Data availability
Data for reproducing major parts of this work are posted in the Github repository:
https://github.com/andrewlee1030/machine_learned_synthesizability_from_DFT.

Code availability
Code for reproducing major parts of this work are posted in the Github repository:
https://github.com/andrewlee1030/machine_learned_synthesizability_from_DFT.
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