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Nickel (Ni) is a magnetic transition metal with two allotropic phases, stable face-centered cubic (FCC)
and metastable hexagonal close-packed (HCP), widely used in structural applications. Magnetism
affects many mechanical and defect properties, but spin-polarized density functional theory (DFT)
calculations are computationally inefficient for studyingmaterial behavior requiring large system sizes
and/or long simulation times. Here we develop a “magnetism-hidden”machine-learning Deep
Potential (DP)model for Ni without a descriptor formagneticmoments, using training datasets derived
from spin-polarized DFT calculations. The DP-Ni model exhibits excellent transferability and
representability for a wide-range of FCC and HCP properties, including (finite-temperature) lattice
parameters, elastic constants, phonon spectra, and many defects. As an example of its applicability,
we investigate the Ni FCC-HCP allotropic phase transition under (high-stress) uniaxial tensile loading.
The high accurate DP model for magnetic Ni facilitates accurate large-scale atomistic simulations for
complex phase transformation behavior and may serve as a foundation for developing interatomic
potentials for Ni-based superalloys and other multi-principal component alloys.

Deformationmechanisms andmechanical properties are fundamental topics
in the study of metallic materials. For most coarse-grained metals and alloys,
their strength and hardness increase with decreasing grain size, following the
Hall-Petch relationship. Plastic deformation is primarily accommodated
through dislocation motion and grain boundary processes. However, when
the grain size is reduced to the nanometer scale, the material’s strength and
hardness are mainly governed by stacking faults or twins, exhibiting an
inverse Hall–Petch behavior. Phase transformations can also influence the
mechanical response of metals and alloys; e.g., transformation-induced
plasticity is particularly significant in nanostructuredmetallic systems at high
stress1–4. Ni is a typically high stacking fault energy face-centered cubic (FCC)
metal which primarily deforms through partial dislocation motions and/or
twinning5–7. At high-rate shear rates, the FCC lattice becomes unstable,
leading to an FCC-to-hexagonal close-packed (HCP) transformation2,3 in
nickel with grain size smaller than ~17 nm. Such a microstructure of HCP
grains surrounded by FCC grains exhibits high hardness and yield strength
compared to a fully FCCmicrostructure2. HCP nickel is also widely observed
in thin hetero-epitaxial films8,9. The thermodynamics for this FCC → HCP
in nickel remains unclear2–4,8. To elucidate such phenomena, atomistic
simulations must accurately reproduce both the stable and metastable
thermodynamics of this material as well as its mechanical response. Such
robustness in the description of bonding in metals is necessary in many
applications of nanostructured metallic systems.

Density-functional theory (DFT) can provide a highly accurate,
quantum mechanics-based approach to understanding the structure and
properties of metals, but its applicability to the properties of defects and
finite temperature behavior is limited by the large computational demands
required for reasonable system size and time scales. Although most struc-
tural applications of nickel (a soft ferromagnet below 627 K) do not depend
on itsmagnetic response,manynon-magnetic properties depend sensitively
on its electronic spin degrees of freedom. Inclusion of magnetic degrees of
freedom impacts phase stability10,11, vacancy and self-interstitial formation
energies12–15, elastic moduli10,16, stacking fault energies17–20, and mechanical
properties, as seen inDFT calculations. For example, the elastic constants of
Nidetermined innon-spinpolarizedDFTare in error by asmuchas ~23%16

compared with experiments, while spin-polarized DFT results are in much
better agreement with experiment21. Stacking fault energies in Ni, deter-
mined from DFT with and without spin degrees of freedom differ by
24–50%17,18. Hence, magnetism is important for the prediction of a wide
range of non-magnetic (structural) properties. DFT calculations of a rea-
sonable number of spin-polarized (say 103–5 atoms) and long time scales
(> 1 ns) are heroic.

Empirical or semi-empirical interatomic potentials are routinely
employed to enable the simulation of the properties of metals and their
defects on these scales. Over the past fifty years, dozens ofNi potentials have
been developed (e.g., see refs. 22,23) and achieved some successes in
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explaining experimental observations and predicting material behavior.
However, the transferability and accuracy of these potentials are limited by
their fixed functional form; this concern is particularly acute in determining
the properties of non-equilibrium structures, such as, HCP Ni. We
benchmarked the basic properties of FCC and HCP Ni using various
interatomicpotentials, including eight embedded-atommethod (EAM)and
ten modified embedded-atom method (MEAM) potentials (see Supple-
mentary Table 1). All potentials display significant discrepancies in simple
properties, such as the elastic constants (Cij) ofmetastableHCPNi (possibly
due to the limited availability of fitting data); these deviations can be as high
as 41% (see C13, C33, C44 in Supplementary Table 1). This makes accurate
prediction of themechanical (elastic andplastic) deformation ofHCPNi (as
well as other non-FCC phases) and phase transitions in Ni using these
potentials unreliable.

One approach to achieving accurate and efficient atomistic simulations
of, e.g., allotropic phase transformations, is through transferable machine-
learning (ML) based interatomic potentials (see ref. 24 for a recent example
for titanium). Developing accurateML potentials relies on accurately fitting
the potential energy surface (PES). The PES may be strongly influenced by
magnetic moments (in magnetic systems). Accurately capturing these
magnetic effects is essential for constructing a reliable PES, yet it remains a
formidable task for ML potentials. ML approaches that simply ignore
magnetism25,26 lead to unreliable potentials for predicting several funda-
mental properties (see “Results and discussion”).

Incorporating spin-polarized DFT training datasets into the training
process is a straightforward strategy for developing ML potentials for
magnetic systems. This approach has been explored in the Gaussian
approximation potential27–30 and neural network potentials (NNPs)31.
However, these potentials often lack sufficient transferability and repre-
sentational capabilities across diverse properties27–31. The deep potential
(DP) method, a successful and widely adopted form of NNP32,33, rarely
employs spin-polarized training sets33,34. Here, we account for magnetic
effects on (non-magnetic) properties by training the DP model on spin-
polarized DFT calculation results (without explicitly including magnetic
moment degrees of freedom). We demonstrate, such “magnetism-hidden”
potentials are applicable to the robust predictionofnon-magnetic properties
for both FCCandHCP phases, specifically, for accurate description of finite
temperature and defect (point defect, surface energies, stacking fault, dis-
location core, grain boundary) properties and allotropic phase transfor-
mations. The resultant interatomic potential for nickel is unusually,
extremely accurate, robust, and transferrable; capable of describing meta-
stable phases, phase transformations and defects. Our approach serves as a
model for developing, relatively simple MLNNPs for structural (magnetic)
materials.

Results and discussion
TheDPmodel forNi (DP-Ni) is trained via a supervisedML technique. The
training labels include atom coordinates, total energy, atomic forces, and
virial tensors, obtained from spin-polarized DFT calculations. We employ
the DP-GEN framework32 along with the DeepPot-SE35 to conduct the
training. A “specialization” strategy24 is adopted to further improve the
accuracy. Initially, distorted 2 × 2 × 2 body-centered cubic (BCC), FCC, and
HCP structures are input into finite-temperature ab initio molecular
dynamics (AIMD) simulations to generate a starting training dataset (108
entries). During the DP-GEN loop, exploration involves DP-based MD
(DPMD) simulations on bulk and surface structures for several tempera-
tures and pressures, followed by DFT calculations on selected configura-
tions. The resultant DFT data is then incorporated into the training dataset
to refine theDPmodels.Convergenceof theDP-GEN loop is achievedwhen
the agreement betweenDPandDFTcalculations for atomic forces reaches a
predetermined threshold.

Following the DP-GEN loop, the resulting DP model can accurately
represent the general properties of FCC and HCP Ni albeit with some
discrepancies in the cohesive energy curve compared to DFT results. To
address this, specialized training datasets are generated from selected

configurations along the cohesive energy line. These specialized training
datasets are thenmerged with those generated from the DP-GEN loop. The
combined training dataset used for potential development consists of 2020
entries, all derived from spin-polarized DFT calculations. For a compre-
hensive discussion on the training process and training data generation,
please refer to “Training Strategy of Deep Potential for Ni”.

We systematically benchmark a wide range of crystal and defect
properties of DP-Ni; in particular, we examine equations of states, elastic
constants, finite temperature properties, phonon spectra, point defect
energies, surface properties, stacking fault energies, plastic deformation,
dislocation dissociation, and grain boundary energies. We compare the
DP-Ni model performance against several of the most widely-used and
best-performed empirical/semi-empirical interatomic potentials, including
the EAM potential of Mishin et al.36, the MEAM_2021 potential of Vita
et al.37, the MEAM_2015 potential of Ko et al.38, and the ML qSNAP
potential by Zuo et al.25. These benchmarks provide a comprehensive
assessment of the performance of our newDP-Nimodel with other widely-
used interatomic potentials for Ni. (Note that since these benchmark
potentials all involve some DFT data in their fitting procedure, we provide
some details for the DFT calculations they employed in the Supplemen-
tary Note 4).

Basic crystal properties
Table 1 compares a wide range of crystalline Ni properties with DFT cal-
culations, experiment, DP-Ni, and other interatomic potentials. The DP-Ni
shows excellent agreement with both DFT and experimental values for the
stable FCC and metastable HCP crystals. The energy difference between
DP-Ni andDFT iswithin 3meV/atom for both FCC andHCPNi, while the
lattice parameter difference between DP and DFT/experiment is within
0.004Å. The EAM, MEAM and qSNAP potentials also exhibit accurate
lattice parameters for both phases, with discrepancies less than 2% when
compared to DFT and experimental results. The DP-Ni model shows a
slight deviation of the cohesive energy from the experimental data but
accurately reproduces the DFT value for FCC Ni (this is likely associated
with issues related to the DFT data to which DP-Ni is trained). EAM and
MEAM_2015 potentials perfectly match the experimental cohesive energy
of 4.450 eV/atom as required in their fitting procedure, whileMEAM_2021
underestimates it by ~11%. In contrast, qSNAP potential exhibits a large
deviation ~30% from the experimental data. DP-Ni yields cohesive energy
that is almost identical to the DFT prediction for HCP Ni. Similarly, EAM
and MEAM_2015 yield results close to the experimental measurements,
while the other interatomic potentials exhibit significant deviations from
both DFT and experimental results.

Elastic constants are fundamental and essential material properties
reflecting mechanical stability and stiffness. The largest discrepancy
between DP and DFT/experiment for DP FCC Ni is for C44 (2.3%)/C11

(6.8%); all other interatomic potentials also accurately reproduce the elastic
constants of FCC Ni (except for a slight underestimation of C44 for the
MEAMpotentials). For HCPNi, the predicted Cijs fromDFT and DP yield
mechanical stability according to the Born criteria39; i.e., C11− ∣C12∣ > 0,
ðC11 þ C12ÞC33 � 2C2

13 > 0 and C44 > 0. DP-Ni accurately reproduces
the DFT elastic constants of HCP Ni, with a maximum deviation at C12

(9.6%). On the other hand, all other potentials show large deviations in
the elastic constants of HCP Ni as compared with DFT results; particularly
for EAM at C13 (37.4%), C33 (35.5%), and C44 (15.9%), and the other three
potentials at C44 31.5%, 39.1%, 39.1% for MEAM_2021, MEAM_2015,
and qSNAP, respectively. (Note that deviations between the DFT data and
this widely-used EAM potential may arise, in part, from the fact that this
EAM potential was fitted to a different form of DFT calculation—specifi-
cally a first-principles linearized augmented plane-wave (LAPW) method
with a Perdew-Wang parametrized local-spin-density (LSD) approxima-
tion). The elastic constants measure the (stress) response of the crystal to
small strains and are indicative of sensitivity to lattice distortions. The
training data for the DP-Ni includes many such locally distorted structures
(see “Training Strategy of Deep Potential for Ni”). No HCP crystal
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distortions are included in the fitting data of the classical and ML qSNAP
potentials.

Phonon spectra
In addition to the Born mechanical stability criteria and cohesive energies,
phonon spectra40 also characterize crystal stability. Figure 1 shows the
phonon spectra of bothFCCandHCPNiobtained fromexperiment41,DFT,
DP-Ni, and other interatomic potentials. Both FCC and HCP Ni are
inherently stable (no imaginary frequencies).However, notable variations in
accuracy are observed amongst the different potentials. DP-Ni demon-
strates outstanding performance in both FCC and HCP crystal structures,
reproducing all frequencies across the phonon spectra with high accuracy.
Minor deviations are observed for qSNAP potential (particularly the HCP).

Other classical potentials exhibit evident deviations from the DFT and/or
experimental data at symmetry points.

FCC surface energies and point defects
In Table 2, the unrelaxed energies of lowMiller index surfaces calculated by
DP-Ni are compared to values obtained from DFT, experiment, and other
potentials. OurDFT results are consistentwith both the values and ordering
of previous DFT calculations42. DFT predicts that the {111} close-packed
plane has the lowest surface energy, whilst the {210} surface is the highest.
All interatomic potentials successfully reproduce the lowest and highest
energy planes. DP-Ni results show excellent agreement with DFT, exhi-
biting a maximum error of 2.2% for the {221} surface. MEAM_2021 and
qSNAP potentials also provide accurate predictions (errors within 6%).

Table 1 | Comparison of several crystal properties obtained from DFT, experiment (Expt.), and various interatomic potentials
(DP-Ni, EAM36, MEAM_202137, MEAM_201538, qSNAP25); i.e., lattice parameters (a), bulk energies (E), cohesive energies (Ecoh),
elastic constants (Cij) of FCC and HCP Ni, and FCC melting point

Structure Property DFT Expt. DP EAM MEAM_2021 MEAM_2015 qSNAP

FCC a (Å) 3.517 3.520a 3.518 3.520 (3.428) 3.519 3.521 (3.524) 3.521 (3.508)

E (eV/atom) −5.467 - −5.466 −4.450 (−4.450) −3.952 −4.450 −5.780

Ecoh (eV/atom) 4.865 4.450b 4.862 4.450 (4.450) 3.952 4.450 (4.842) 5.780

C11 (GPa) 275.7 261.2c 278.9 247.9 278.3 260.4 (266.1) 267.5 (276.0)

C12 (GPa) 156.0 150.8c 158.1 147.8 169.8 148.6 (155.1) 155.3 (159.0)

C44 (GPa) 130.7 131.7c 127.7 124.8 112.5 111.1 (128.5) 125.7 (132.0)

Tm (K) - 1728d 1635 - - 1892 -

HCP a (Å) 2.484 2.487e 2.485 2.483 2.490 2.487 2.491

c/a 1.643 1.645e 1.641 1.619 1.630 1.642 1.643

E (eV/atom) −5.443 - −5.446 −4.430 (−4.420) −3.956 −4.440 −5.772

Ecoh (eV/atom) 4.841 4.426f 4.842 4.430 (4.420) 3.956 4.440 5.772

C11 (GPa) 312.0 - 311.4 302.2 327.6 314.7 334.0

C12 (GPa) 142.3 - 156.0 147.6 159.5 133.8 144.0

C13 (GPa) 122.8 - 114.6 76.9 131.9 108.3 109.1

C33 (GPa) 330.7 - 344.7 213.3 355.6 336.0 369.2

C44 (GPa) 55.5 - 54.6 64.3 73.0 77.2 77.2

Bold numbers indicate deviations of > 15% versus DFT and/or experiment. The values in parentheses represent the target DFT data employed in developing (other) potentials.
aLattice constants at 6 K91.
bRef. 92.
cExperimental elastic constants at 0 K extrapolated from low T data93.
dRef. 94.
eLattice constants a and c/a ratio at room temperature95.
fEcoh of FCC based on the DFT energy difference between FCC and HCP.

Fig. 1 | Comparison of predicted andmeasured phonon spectra. a FCC and (b) HCP. The experimental values are fromFCCNi neutron diffraction data at 298 K41, and the
HCP DFT data is from this work.
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However, EAMandMEAM_2015 potentials slightly underestimate surface
energies by 11.4%–15.9% and 5.8%–15.1%, respectively. The quoted
experimental surface 2.240 J/m2 is a polycrystalline average43. The vacancy
formation energy (Ef

v) fromDP-Ni is ~0.124 eVwhich is 13.2% lower than
the DFT value. All other potentials yield higher values than the DFT Ef

v
result but in the experimental range.

The FCC structure exhibits six types of self-interstitial structures,
namely the 〈100〉 dumbbell, 〈111〉 dumbbell, 〈110〉 dumbbell, crowdion,
octahedral, and tetrahedral (see Supplementary Fig. 1). The DFT calcula-
tions show that 〈100〉 dumbbell has the lowest formation energy in FCC,
followed by octahedral, 〈111〉 dumbbell, tetrahedral, crowdion and 〈110〉
dumbbell. Note that the crowdion and 〈110〉 dumbbell energies are
nearly equivalent, and relaxed configurations exhibit a slight difference.
This energy ordering is consistent with other results44–46. DP-Ni captures
all of the metastable configurations with a maximum energy discrepancy
of < 6.8% (tetrahedral) compared to DFT results. However, a small incon-
sistency with DFT is the altered energy ordering sequence for DP, which
is (from low to high): 〈100〉 dumbbell, octahedral, crowdion, 〈110〉
dumbbell, 〈111〉 dumbbell and tetrahedral. Almost all EAM potential self-
interstitial energies are much higher than the DFT values, the octahedral
interstitial is unstable, and the EAM 〈100〉 dumbbell is short. The
MEAM_2021 captures all six self-interstitial configurations with small
energy deviation compared to DFT, but the energy ordering is quite dif-
ferent. The 〈111〉 dumbbell and tetrahedral energies from MEAM_2015
are nearly the same after relaxation; the octahedral structure transforms
into a 〈100〉 dumbbell. The qSNAP potential accurately reproduces all

self-interstitial formation energies; however, the tetrahedral interstitial
transforms to a 〈100〉 dumbbell.

Note that the training datasets for the DP-Ni potential do not include
vacancy or self-interstitial configurations. This implies that DP-Ni accu-
rately captures the essential characteristics of many defects in Ni even
though such configurations are not included in the training data. This
underscores the versatility and reliability of the DP-Ni model in predicting
defect properties.

Cohesive and decohesive energy
The relationship between the cohesive energy and atomic spacing (cohesion
curves) is critical for a wide range of properties. Figure 2 shows the cohesive
curves for FCCNi at 0 K, determined fromDFT and interatomic potentials.
The DFT, DP-Ni, MEAM_2021, and MEAM_2015 curves are smooth
across the entire range. TheDP-Ni andDFTcurves nearly overlap,while the
MEAM_2015 deviates from the DFT value near the equilibrium lattice
parameter. In contrast, theMEAM_2021 results show large deviations from
the DFT data in the crucial 0.5a0–2a0 range. The EAM curve remains
continuous at large atom separations but exhibits discontinuities under
large compression, with deviations from the DFT curve in the 1.25–2.0a0
range (recall the issue raised above regarding comparing our DFT and the
EAM results). The qSNAP potential yields a discontinuous and inaccurate
cohesive energy curve and its equilibrium FCC Ni cohesive energy is sub-
stantially different from theDFT results (see Table 1). This indicates that the
qSNAP potential may introduce unexpected and significant errors in
mechanical properties.

Table2 | Thecalculatedunrelaxedsurfaceenergies (Es), vacancy formationenergies (Ef
v), interstitial formationenergies (Ef

i ), and
unstable (γusf) and stable stacking fault energies (γsf), as well as grain boundary energies of low Miller index tilt boundaries for
FCC Ni using DP-Ni, in comparison with DFT results, available experimental data, and selected interatomic potentials

Property DFT Expt. DP EAM MEAM_2021 MEAM_2015 qSNAP

Es{111} (J/m
2) 1.919

2.240a

1.958 1.636 1.815 1.630 1.938

Es{221} (J/m
2) 2.210 2.259 1.924 2.164 1.965 2.230

Es{110} (J/m
2) 2.343 2.357 2.056 2.367 2.172 2.356

Es{211} (J/m
2) 2.279 2.323 1.970 2.222 2.021 2.280

Es{210} (J/m
2) 2.463 2.488 2.181 2.526 2.321 2.472

Es{100} (J/m
2) 2.239 2.223 1.884 2.220 2.088 2.254

Ef
v (eV) 1.424 1.400–1.800b 1.236 1.598 1.539 1.509 (1.41) 1.465 (1.49)

Ef
i h100i dumbbell (eV) 4.048 - 4.184 4.885c 4.253 4.531 4.118

Ef
i h111i dumbbell (eV) 4.664 - 4.892 6.920 4.765 5.508 4.751

Ef
i h110i dumbbell (eV) 4.828 - 4.614 5.786 4.664 5.103 4.769

Ef
i Crowdion (eV) 4.826 - 4.614 5.114 4.669 5.112 4.788

Ef
i Octahedral (eV) 4.229 - 4.421 ⊛ 4.465 ⊛ 4.460

Ef
i Tetrahedral (eV) 4.670 - 4.986 6.920 5.085 5.508 ⊛

γusf 〈110〉 (mJ/m2) 766.6 - 801.6 924.3 746.9 898.2 789.9

γusf 〈112〉 (mJ/m2) 280.4 - 301.9 365.6 285.4 423.6 275.5

γsf 〈112〉 (mJ/m2) 135.9 125d 126.8 125.2 −26.9 60.0 52.2

Σ3 ½1�10�ð111Þ (mJ/m2) 68.03 - 63.50 63.46 −13.45 30.09 26.53

Σ3 ½1�10�ð112Þ (mJ/m2) 896.03 - 893.67 1064.03 782.53 960.66 908.44

Σ5 ½100�ð0�21Þ (mJ/m2) 1288.75 - 1310.72 1564.08 1372.11 1421.66 1339.00

Σ7 ½�1�1�1�ð3�2�1Þ (mJ/m2) 1234.31 - 1212.57 1471.91 1210.14 1395.51 1286.36

Σ9 ½�110�ð22�1Þ (mJ/m2) 1120.58 - 1103.69 1368.13 1148.89 1258.83 1157.30

Σ11 ½1�10�ð113Þ (mJ/m2) 454.23 - 440.81 531.15 420.36 518.89 464.21

⊛ indicates that the initial interstitial structure is not stable and will undergo a transformation to the 〈100〉 dumbbell. Bold numbers indicate > 15% deviations from DFT/Expt. The values in parentheses
represent the DFT results from the work of the quoted potentials.
aPolycrystalline average43.
bRef. 13.
cVariant 〈100〉 dumbbell.
dRefs. 55,56.
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Examining the (uniaxial) surface decohesion energy and its gradient
(stress) provides a deeper understanding of the energy landscape and forces
involved in atomic plane separation; this is important for predicting and
simulating fracture. Figure 3 displays the surface decohesion energy and its
gradient for four crystallographic planes using DFT and interatomic
potentials. No plane separation data is explicitly included in the DFT
training datasets of DP-Ni. The DP-Ni model demonstrates excellent pre-
dictability comparedwithDFT for all planes. TheMEAM_2021 andqSNAP
potentials also show relatively good agreement with DFT data. However,
significant deviations in energy and stress are observed for separation

distance ranging from 0.5 < d < 3Å for the {100}, {110}, {112} planes and
0.5 < d < 2.5Å for the {111} plane. Additionally, the peak stress position for
qSNAP is shifted to larger d (~1Å). The EAM potential exhibits dis-
continuities for {100}, {110}, {111} planes for 1.5 < d < 3.5Å, leading to
unphysical fluctuating decohesion stresses. The EAM decohesion energies
are much smaller than DFT for d > 1.5Å. Peak stress values for the EAM
potential are shifted to smaller d. The MEAM_2015 potential yields deco-
hesion results largely in agreementwithDFTresults except for abrupt jumps
at d ~ 2.5Å.

Ideal strength
Smooth cohesive and decohesive energies are important for predicting
(ideal) strength. Ideal strength is themaximum stress that a perfectmaterial
can withstand before undergoing plastic deformation or fracture47. This
property canbe identified through the stress–strain curve (a valuable tool for
material application and design). We initially assess the ideal strength of
FCCNiunder tensile and shear loadingusingDFTcalculations; seeFig. 4 for
the computed stress as a function of applied strain in various directions. At
low strains, the curves are linear (linear elastic), while at higher strains the
deviation from the linear elastic response is evident; the ideal strength (σideal)
corresponds to the maximum stress or the stress at the peak strain (ϵideal).
The stress–strain response is strongly anisotropic. For example, the σideal
and ϵideal differ considerably between the [001] and [011] directions under
uniaxial tension. Additionally, the (111)〈112〉 directions under shear stress
show obvious “stiff” and “soft” tendencies. Overall, Ni shows
σideal = 29.0 GPa and ϵideal = 0.52 under hydrostatic tension while
σideal = 35.3 GPa and ϵideal = 0.41 in [001] uniaxial tension and
σideal = 15.9 GPa and ϵideal = 0.28 in ð111Þ½�1�12� shear.

Unlike elastic constants, ideal strength calculations involve significant
(rather than infinitesimal) deformation and therefore represent consider-
able demands on the ability of a potential to accurately describe deforma-
tion. We conduct a comparative analysis of stress-strain relationships

Fig. 2 |The FCCNi cohesive energy as a function of lattice parameter fromDFT and
several potentials.

Fig. 3 | The plane decohesion energy (γd - bright data points) and stress (σ - dim data points) as a function of plane separation distance (d). a {100}, (b) {110}, (c) {111}
and (d) {112} planes.
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amongvarious interatomic potentials using static calculations. TheDP-Ni is
in excellent agreement with the DFT results, especially for hydrostatic and
[111] uniaxial tension, as well as ð111Þ½1�10�, ð111Þ½�110� and ð111Þ½11�2�
shear. The largest deviations observed are 10.4% and 9.3% in the non-linear
region for [011] tension and ð111Þ½�1�12� shear, respectively. The DP-Ni also
reproduces the ϵideal in all cases. MEAM_2021 performs well in shear but
overestimates the ideal strength and strain in hydrostatic and uniaxial
tension. Similarly, qSNAP shows good performance in shear but over-
estimates σideal and underestimates ϵideal under hydrostatic and most uni-
axial tension cases. The EAM model shows large deviations compared to
DFT results, with a discrepancy of 58.7% under [011] tension (again, recall
that the deviation of the EAM and DFT results may be associated with
differences between theDFTmethod employed here and that used to fit the
EAM potential). In comparison with DFT, MEAM_2015 exhibits minor
discrepancies in hydrostatic but overestimates the ideal strength in most
uniaxial tension and shear cases.

Finite temperature properties
Nickel and Nickel-based alloys are widely used at elevated temperatures,
such as in superalloy turbine blades, hence we also focus on the finite
temperature properties usingDP-Ni inMD simulations. Figure 5 shows the
variation of the FCCNi lattice parameter and elastic constants as compared
with experimental measurements48 and simulations with other interatomic
potentials from 0 to 1728 K. The DP-Ni lattice parameter is in good
agreement with experimental results at high temperatures (above 600 K)48

and the thermal expansion coefficient (slope) is similar to the experimental

value. The DP-Ni melting point for Ni is 1635 ± 5 K (Table 1), obtained
using the two-phase method49, is ~5.4% lower than the experimental value
(1728 K). The discrepancy may be attributed to either the inaccuracy of the
DFT in reproducing some experimental measurements or the lack of
potential training data for configurations including solid-liquid interfaces.
We note that in the training procedure, we terminated training where the
errors were in what we considered acceptable bounds (this deviation from
the experimental melting point was deemed acceptable). TheMEAM_2015
melting point is 164 K (~9.5%) higher than the experiment measurement.
Figure 5b–d shows the temperature dependence of the elastic constants Cij

from DFT within the quasi-harmonic approximation50 and various
potentials. Like the DFT and experimental results50,51, the DP-Ni elastic
constants decrease continuously with temperature. Other potentials reveal
different trends or profiles as compared with DFT/experiment. The EAM
data shows an increase of Cij with temperature below 400 K, followed by a
continuous decrease at higher temperatures. This abnormal elastic constant
behavior is alsoobserved forMEAM_2021 andqSNAPforC12.Ontheother
hand, theMEAM_2015 elastic constants results show a similar (decreasing)
trend as the DFT/experiment results, although the discrepancies in the
magnitude can be significant, e.g., the discrepancy is > 15% for C12 for
T > 700 K. The present results demonstrate that most potentials are unre-
liable for predicting finite temperature behavior. This is likely because they
were fitted to low temperature (and/or limited finite temperature) data,
while the DPmethod incorporates finite-temperature-like perturbations in
the training set. The discrepancies between the finite-temperature DFT and
experimental results may be attributed to several factors. These include

Fig. 4 | Stress–strain curves for FCC nickel. a hydrostatic, (b) [001], (c) [011], (d) [111] uniaxial tension. (e) ð111Þ½1�10�, ð111Þ½�110�, (f) ð111Þ½�1�12�, ð111Þ½11�2� shear loading.
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issues related to the exchange-correlation function50 and approximations
employed in extracting finite temperature results from DFT calculations
(e.g., the quasi-harmonic approximation).

Stacking fault and dislocation core
The generalized stacking fault energy (GSFE) is a useful, surrogate property
for predicting the plastic response of the material, i.e., dislocation and
twinning properties52. The GSFE represents the variation in the system
energy required for the slip of a part of the crystal over the other along
particular crystal lattice planes under shear, leading to the formation of
stacking faults. The variation of the system energy accompanying the
translation/slip alongparticular directions on a slip plane is referred to as the
γ-line53. The maximum energy along the γ-line corresponds to the unstable
stacking fault energy (γusf), which represents the barrier for dislocation
nucleation at stress concentrations such as crack tips. Ametastable point on
the γ-line, referred to as γsf, represents a dislocation dissociation energy. The
complete two-dimensional plane characterizing all possible slip directions,
γ-lines, is the γ-plane or γ-surface53.

Figure 6a, b show the γ-lines along the 〈110〉/2 and 〈112〉/2 directions
on the {111} plane (most dense plane in FCC) determined from DFT and
several interatomic potentials. The only unstable stacking fault is along the
〈110〉/2-direction with a γusf of 766.6 mJ/m2 at half of the Burger vector b,
〈110〉/2, consistent with previous DFT calculations54. In the 〈112〉/2 slip
direction, a stable stacking fault occurs atb/3 (b = 〈112〉/2)while anunstable
stacking fault is present atb/6. Although a peak appears at 2b/3 in the γ-line,
it is irrelevant because this barrier, 1168.4mJ/m2, is too high to allow slip.
The DFT calculations yield γusf = 280.4 mJ/m2 and γsf = 135.9mJ/m2. The
γsf is in good agreement with experimental results (125mJ/m2 55,56) and
previous DFT values ranging from 110 to 145mJ/m2 54,57. Figure 6a, b also

show the γ-line results from DP-Ni and other interatomic potentials. All
potentials reproduce the general shape of the γ-lines from DFT except for
MEAM_2015, which shows a minimum value at b/2 along 〈110〉/2 direc-
tion. Table 2 lists the calculated γusf and γsf values. DP-Ni reproduces the
different stacking fault energies well compared with DFT results, with
deviations of only 4.6% for γusf in the 〈110〉/2 slip, 7.6% for γusf and 6.7% for
γsf along the 〈112〉/2 slip. (Notably, there is no stacking fault data in theDP-
Ni training datasets). In contrast, the MEAM_2021 and qSNAP potentials
capture the γusf well in both 〈110〉/2 and 〈112〉/2 directions, but significantly
underestimate the γsf, particularly for MEAM_2021 which yields an
unphysical negative γsf. While the EAM potential accurately describes the
γsf, it overestimates both γusf in 〈110〉/2 and 〈112〉/2 directions. The
MEAM_2015 potential fails to accurately describe γusf and γsf. The unrea-
listic empirical and ML qSNAP potential GSFE results suggest that these
potentials will struggle to correctly simulate dislocation nucleation and
dislocationdissociationbehavior.Theminimumenergypath is indicatedon
the DP-Ni {111} γ-surface (Fig. 6c), which exhibits the expected symmetry
from geometry. The minimum energy path for dislocation dissociation is
expected to follow the green or red dashed arrows (Fig. 6c), indicating that a
full dislocation 〈110〉/2 or 〈112〉/2 will dissociate into Schockley partials on
the {111} plane— as expected.

The Shockley partial dislocations are separated by a stable stacking
fault58. Accuratemodeling of dislocation dissociation and partial dislocation
separation is essential for precise modeling of plastic behavior.We simulate
this dissociation by inserting a perfect 〈110〉/2 edge and screwdislocation at
the center of a 301 × 17 × 85Å3 (the dislocation line is along the y-direction,
while the Burgers vector is in the x-direction) and 15 × 302 × 85Å3 (dis-
location line and Burgers vector parallel the x direction) supercells with
periodic boundary conditions in the x- and y-directions, respectively. We

(a)

(c) (d)

(b)

Fig. 5 | Finite-temperature properties of FCCNi calculated fromDFT,DP-Ni and
other potentials. a lattice parameters and elastic constants (b) C11, (c) C12 and (d) C44.
The experimental lattice parameters (T > 200 K) are from ref. 48, while the DFT and

experimental data of elastic constants are from refs. 50 and 51, respectively. The DP
meltingpointTDP

m is indicated by vertical dotted lines (~90K lower than the experiment -
termination of the temperature axis on the plots).
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thenminimize the energy (molecular statics simulation at 0 K) with DP-Ni;
the relaxed configurations are shown in Fig. 7. The edge and screw con-
figurations decompose into a pair of Shockley partial dislocations with
different separation distances. Differential displacement (DD)59 plots reveal
the strainfields around a dislocation bymeasuring the relative displacement
of a pair of nearest neighbor atoms. A partial dislocation consists of three
atoms with clockwise or counterclockwise net chirality. In this case, the DD
plots inFig. 7c, d identify thepositions of thepartial dislocations. TheDP-Ni
partial dislocation separation distances are dedge = 19.25Å and
dscrew = 11.83Å. Our result for the edge dislocation separation distance
aligns with weak-beam transmission electronmicroscopy observations, i.e.,
26 ± 8Å55. While dscrew is not easily measured experimentally, our result of
11.83Å is consistent with the 12.0Å obtained from the previous DFT
calculation60.

Structures and energies of tilt grain boundaries
Grain boundaries (GB) in polycrystalline materials limit dislocation slip
and, hence, play an important role in determining strength and ductility. In
this study, we investigate several high angle symmetric tilt GBs, constructed

based upon geometry. We then identify the lowest energy GB structure by
sliding one grain relative to the other and minimizing the energy. The
lowest-energy GB configurations (after relaxation using DP-Ni) are shown
in Supplementary Fig. 2. The relaxed Σ3 ½1�10�ð111Þ, Σ5 ½100�ð0�21Þ and
Σ11 ½1�10�ð113Þ remain symmetric, while Σ3 ½1�10�ð112Þ, Σ7 ½�1�1�1�ð3�2�1Þ and
Σ9 ½�110�ð22�1Þ relax to an asymmetric boundary structure. Table 2 shows the
GB energies from both DFT calculations and with several interatomic
potentials. DP-Ni accurately reproduces all GB energies with only minor
discrepancies (< 6.7%) compared to the respective DFT values. BothDP-Ni
andDFT identifyΣ3 ½1�10�ð111Þ as the lowestGBenergy, as reported inmost
experimental observations61. The energy ordering follows the pattern:
Σ3 (111) < Σ11 < Σ3 (112) < Σ9 < Σ7 < Σ5. Other potentials capture the
energy ordering of these GBs but are less quantitative relative to the DFT
results. EAM accurately predicts the energy of Σ3 ½1�10�ð111Þ, but over-
estimates other GB energies by 16.9–22.1%. MEAM_2021, MEAM_2015
and qSNAP roughly reproduce the energy of low Σ GBs but drastically
underestimate the energy of the important Σ3 ½1�10�ð111Þ (by > 50%)—in
fact theMEAM_2021 gives an unphysical negative value for this GB energy.
Overall, DP-Ni reproduces all GB structures and corresponding energies,

(c)

Fig. 6 | Generalized stacking fault energy (GSFE) lines (γ-lines) and suface
(γ-surface) of FCC nickel. γ-lines along the (a) 〈110〉/2 and (b) 〈112〉/2 directions.
c γ-surface on the loosest packing {111} planes predicted byDP-Ni. The solid red and

green arrows represent the slip path along 〈112〉/2 and 〈110〉/2 directions respec-
tively, and dashed arrows show the corresponding dissociated slip paths. The
symbols of + and × represent the positions of stable and unstable stacking faults.

Fig. 7 |Dislocation core structures of two Shockley
partials of 〈110〉/2 edge and screw dislocations in
FCC Ni predicted by DP-Ni. a, b Show the atomic
configurations of edge and screw dislocations
visualized by OVITO96. The common neighbor
analysis (CNA) method97 is utilized to distinguish
the FCC (blue), HCP (yellow), and other (white)
local atom stacking. The dislocation extraction
algorithm (DXA)98 is employed to identify disloca-
tions precisely. c, d Show the corresponding differ-
ential displacement plots for (a) and (b). The partial
core separations are shown to be dedge and dscrew of
19.25Å and 11.83Å.
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demonstrating its potential for simulation of GB behavior (e.g., GB
migration, deformation twinning, and disconnection behavior62–64).

Allotropic transformation of nickel under uniaxial tension
As a further, stringent test, on the performance of DP-Ni, we examine the
allotropic phase transformation of nickel under uniaxial loading. Figure 8
shows the stress-strain relationship for Ni under uniaxial tension along the
[001] crystallographic direction; calculations are conducted at 0 K. The
results show amonotonic increase in stress as a function of strain, followed
by a sudden drop at a strain of ~0.226. The inset atomic configuration
depicts the observed atomic structure at different strains, showing the
strainedFCCandHCPstructures.These insets indicate that the abrupt drop
in the stress corresponds to an FCC →HCP transformation. Subsequently,
the HCP phase remains stable for an additional strain of at least 15% (from
point B). The transformation strain is quite large compared with other
strain-induced transformations65–69. However, such large transformation
strains are not unusual for FCC metals; e.g., see the experimental observa-
tions and theoretical calculations70–76.

Specifically, in the case of nickel, an FCC→HCP transformation was
observed experimentally in nanocrystalline (nanoscale grained)Ni subjected
to large plastic strains2,3. To confirm this transformation, the energy differ-
ences (ΔE) between structures at points A and B are measured, as shown in
Fig. 8. The positive ΔE obtained from both the DP-Ni and DFT calculations
suggest that the HCP structure at point B is more stable compared to the
strained FCC structures at point A. We apply DFT to calculate the stress of
the structures in the strain–stress curve fromDP-Ni. As indicated by the red
squares in Fig. 8, the results fromDP-Ni are very close to those fromDFT.At
the allotropic transformation strain, the energy difference betweenΔEDP and
ΔEDFT, is very small (~10meV/atom), corroborating the fidelity of the DP-
Ni model. The observed crystallographic orientation relationship between
FCC and HCP structures in our study presents an atypical case, namely,
{100}FCC∥{0001}HCP and 010h iFCCk 11�20

� �
HCP. This orientation deviates

from the commonly documented strain-induced FCC → HCP transfor-
mation, which is typified by the orientation relation {111}FCC∥{0001}HCP
and 1�10

� �
FCCk 11�20

� �
HCP

4,70,77,78. The present orientation relationship is
associated with the very large mechanical strains here. This orientation
relationship was previously reported based upon theoretical71,79 and
experimental investigations80 in other FCC metals. Interestingly, another

unconventional orientation relation was observed in nanocrystalline nickel
110h iFCCk 1�21�3

� �
HCP

2.

Conclusions
We developed a “magnetism-hidden” machine learning Deep Potential
(DP) model for both FCC and HCP nickel, based upon DFT calculations.
The nickel DP (DP-Ni) was trained using spin-polarized DFT calculations
employing a relatively small training dataset (see Supplementary Table 2).
Inclusion of spin polarization was found to be essential. DP-Ni achieves
DFT-level accuracy in predicting a wide range of properties for both FCC
and HCP Ni, such as (finite-temperature) lattice parameters and elastic
constants, phonon spectra, cohesive and decohesion energies/stresses, point
defect formation energies, stacking fault energies, and dislocation and grain
boundary properties. The DP-Ni results are, overall, more reliable than
predictions based upon other potentials (including semi-empirical and
other machine learning potentials). DP-Ni thus serves as a promising tool
for large-scale atomistic simulations of Ni, especially for mechanical prop-
erties. Our DP-Ni model facilitated the examination of the allotropic
FCC → HCP phase transition, wherein we identified a high critical strain
and an atypical orientation relationship under uniaxial tensile loading. The
newDP-Ni potential and the associated training datasets can be utilized as a
foundation for developingML potential for Ni-based superalloys, medium-
entropy (FeCoNi) and high-entropy (FeCoNi-based) alloys through
methods such as the DP attention pre-training model81.

Methods
DFT calculations
TheViennaAb initio Simulation Package (VASP)82,83 is used to perform the
density functional theory (DFT) calculations using the projector augmented
wave (PAW) method84 for generation of the training set and determining
property benchmarks. The exchange-correlation function is treated within
the generalized gradient approximation (GGA), as formulated by Perdew-
Burke-Ernzerhof (PBE)85. The basis set includes Ni 3d84s2 electron levels.
We employ a planewave cutoff energy of 600 eVand theMethfessel-Paxton
method86 to determine partial wave function occupations with a 0.12 eV
smearing width. Monkhorst-Pack k-point grids87 are optimized to sample
the Brillouin zone with a 0.1Å−1 k-points grid. A 10−6 eV/atom total energy
and a 10−3 eV/Å ionic force convergence criteria is employed. Both the
ground state calculations and ab initio molecular dynamics (AIMD)
simulations account for spin-polarization (magneticmoment).More details
may be found in Supplementary Note 1.

Molecular dynamics simulations
Molecular dynamics (MD) and static calculations are conducted using the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)88.
Atomic structure optimization is performed using the conjugate gradient
method; convergence criteria for force is 10−10 eV/Å (self-interstitial con-
figurations are converged to energy 10−13). The same simulation cell size/
configurations are employed in bothDFTandMDcalculations of the elastic
constants, surface energy, point-defect formation energy, grain boundary,
stacking fault energy, cohesive and decohesive energies, phonon spectra,
and ideal strength. See the Supplementary Note 2 for more details.

Training strategy of deep potential for Ni
We utilize the general Deep Potential Generator (DP-GEN) scheme32, the
DeepPot-SE35, along with the “specialization” strategy24 to generate the
training datasets (a 6Å cutoff radius is used throughout). We employ a
neural network of 240 × 240 × 240.

Initially, supercells with three perfect 2 × 2 × 2 cell BCC, FCC, and
HCP (2, 4, and 2 atoms per cell) are constructed. Supercell volumes are
rescaled by a scaling factor (0.96–1.06 in steps of 0.02), resulting in six
configurations for each phase. These scaled supercells are then randomly
perturbed (3X) by scaling the supercell translation vectors and adding
relative atomic translation in the range of −3 to 3% and −0.01 to 0.01Å,
respectively. Next, two steps of AIMD are conducted for each distorted

HCP

HCP

[0001]
[1120]

[1100]

FCC

FCC

[100]
[010]

[001]

Fig. 8 | The uniaxial stress vs. strain of Ni under uniaxial tension along [001]
usingDP-Ni at 0K.The red square points are the stress calculated byDFTunder the
corresponding strain. Allotropic phase transformation is induced upon a precipitous
decrease in stress. The energy difference values represent the cumulative energy
discrepancy of structures at points A and B as computed by the DP-Ni and DFT,
respectively. The insert atomic configurations are labeled using CNA97 for FCC
(blue) andHCP (yellow) local packing byOVITO96. The crystallographic orientation
relationship for FCC-HCP is {100}FCC∥{0001}HCP and 010h iFCCk 11�20

� �
HCP.
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structure (at 100K) in the NVT ensemble (Nosé-Hoover thermostat). A
total of 108 ionic configurations are obtained from the AIMD calculations
(converged electronic degrees of freedom), providing atom coordinates,
total energy, atomic forces, and virial tensors. This data serves as the initial
training dataset for the DP-GEN loop.

In eachDP-GEN training step, fourDPmodels are initiated using four
random initial neural net parameter sets. The training step consists of
400,000 epochs. The learning rate starts at 10−3 and exponentially decays to
5 × 10−8 during the training. The loss function prefactors for the energy,
atomic force, and virial tensor pstarte = 0.02, plimit

e = 2, pstartf = 1000, plimit
f = 1,

pstartv = 0, and plimit
v = 0, respectively, vary during training.

During the DP-GEN loop exploration step, a single DP model is
selected to explore various bulk and surface structures for each of the dis-
torted BCC, FCC, and HCP supercells using DPMD with the LAMMPS
package. The bulk structure is explored viaMD in the temperature range of
50–3283.2 K (1.9 times the Ni melting point Tmelt) under isothermal-
isobaric (NPT) conditions, with pressures varying between 0.001 and
50 kBar. Surface structures are constructed from all crystal supercells
by introducing {100}, {110}, and {111} (BCC and FCC) and {0001} and
f10�10g (HCP) surfaces. Surface supercells are scaled andperturbed similarly
to the bulk structures and simulated via DPMD in a canonical (NVT)
ensemble over the same temperature range. A criterion is set for choosing
amongst the four models at each DPMD step to perform spin-polarized
DFT calculations (energy, force, virial) to add to the training datasets for
subsequent DP-GEN loop iterations. See Supplementary Note 3 for more
details.

While the final four DP models reproduce many properties of FCC
and HCP Ni, they do not accurately reproduce cohesive properties
(see SupplementaryTable 1 and Supplementary Fig. 3b).We address this by
generating a specialized training dataset consisting of 170 configurations
specifically selected from the cohesive energy line. These configurations
include 17 distinct structures; each assigned a weight of 10 in the final
training set (i.e., 10X theother structures). Thefinal training is performedon
both the training datasets from DP-GEN and the “specialization” (DFT
calculations are all spin-polarized). More details are provided in Supple-
mentary Note 3 (see Supplementary Table 2 for a summary of training
datasets employed). We emphasize that while our training set is large, it is
considerably smaller than those employed in other ML potentials24,89,90.

Data availability
The DP-Ni model and training datasets have been uploaded to the online
open data repository https://www.aissquare.com/datasets.

Code availability
The DP-Ni model was generated by the DP-GEN scheme32. The codes
supporting the properties calculations and other findings of this study are
available from the corresponding author upon reasonable request.
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