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Achieving near-zero-wear remains a major challenge in mechanical engineering and material science.
Current ultra-low wear materials are typically developed based on the self-consumption strategy.
Here, we demonstrate a new self-repairing approach to achieve near-zero-wear. We find that the WB4-
BB/WC tribo-pair has alow wear rate of 10~ mm®*N~"m~"in low vacuum conditions, under a maximum
Hertzian contact stress of 2.23 GPa over 1 x 10° friction cycles. Additionally, we observe an abnormal
wear phenomenon after 5 x 10* friction cycles, characterized by an increase in the dimensions of the
tribo-pair. This near-zero-wear mechanism is attributed to the synergistic action of the super-hard
WB,-BB substrate and the self-repairing tribo-oxide layer. This research provides a new approach for
advancing wear-resistant materials and enhancing material longevity.

Wear is a ubiquitous phenomenon that is considered to be the removal
of surface material due to the mechanical, chemical, and thermal
interactions between mating surfaces during friction'. According to
scientific statistics, wear causes about 60% of equipment damage or
failure. Wear failure in mechanical parts typically shows up as a
reduction in the tribo-pair dimension, which immediately impacts
accuracy, reliability, and service life*®. Therefore, the question of
achieving near-zero wear tribo-pairs in mechanical engineering and
material science remains perennial.

There have been only a handful of materials with ultra-low wear rates
until now, and the mechanisms and methods for achieving ultra-low wear
are not uniform. For example, classification by wear mechanism, diamond’
with super-hardness can inhibit abrasive wear; the layered materials like
graphene*'™", a-C:H", MoS,"™", and MXenes/MoS, nanocomposites'
have ordered layered structures with low shear strength and consequently
reduce surface adhesive wear; the Pt-Au film with a very stable nanocrys-
talline structure' can mitigate the evolution of frictional subsurface
microstructure and ultimately prevent the occurrence of fatigue wear; in
polymer matrix composites with ultra-wear-resistant performance
mechanisms include molecular lubrication films produced by alumina-
promoted friction chemistry of PTFE and composite friction films con-
sisting of PTFE/2D layered material”""”. From these, it can be roughly
concluded that there is ultra-stable microstructure (super-hard phase, stable
nanocrystals, passivated surface)”*”' or a layered tribo-film with low shear
strength (graphite film, MXenes film)’, which is conducive to reducing
material wear. Although some material systems exhibit ultra-low wear
through slow self-consumption under specific conditions, theoretical wear

is inevitable. In contrast, self-repairing strategies can overcome this theo-
retical limitation.

The combination of polymer matrix composites, alongside the mole-
cular lubrication film generated through the alumina-facilitated tribo-che-
mical reaction of PTFE, as well as the composite friction film comprising
PTFE and two-dimensional layered materials, contributes significantly to
the superior wear-resistant characteristics of the materials.

To achieve near-zero wear, we propose a new approach by self-
repairing tribo-pair. Self-repairing tribo-pair means that in certain tribo-
elements (tribo-pair, load, speed, environment, atmosphere, temperature,
etc.) and without additional material flow and energy flow, the friction-
driven self-adjustment of the composition and structure of the worn surface
can repair its wear’”°. To achieve near-zero wear, the target material must
have two necessary characteristics. First, the material has excellent structural
stability to resist subsurface lattice dislocation and/or initiation and pro-
pagation of cracks driven by friction force™”. Second, it has a self-repairing
function, restoring worn surfaces or compensating for wear loss through
chemical or physical action.

Super-hard materials with high bulk modulus help restrain surface
damage and prohibit deformation®, which can be divided into two cate-
gories: super-hard materials with short covalent bonding of light elements
(B, C,N or/and O) and new super-hard materials with high valence electron
density (W, Re, Os, etc.)”*’. Among them, WB, is a typical transition metal
boride, consisting of a three-dimensional network structure composed of
short B-B covalent bonds with high shear modulus and transition metal W
element with high valence electron density with incompressibility”****". The
theoretical value of the Vickers hardness of WB, is 41.1-42.1 GPa, and the
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Vickers hardness value of WB, synthesized experimentally is currently
43.3-46.1 GPa™. Crystalline boron exhibits a remarkable hardness and at
the same time reacts easily with friction to produce lubricating B,O; and
H3BO3** . Therefore, we designed the WB,-BB/WC tribo-pair: the WB,
super-hard phase carries the normal friction force to resist the deformation
of the worn surface; the B phase generates a B,O; oxide layer through tribo-
chemical reaction, which plays the role of friction-reduction, anti-wear and
repairing the worn surface™ ™.,

This paper proposes a new strategy to realize near-zero-wear tribo-pair
by super-hard WB, bulk material and self-repairing tribo-chemical layer.
The constructed WB,-BB/WC tribo-pair exhibited the dimension variation
of +10°mm’N"'m™" with the expression of wear rate during
1.25 x 10*-1 x 10° friction cycles, and we found a new self-repairing wear
effect of the sliding interface by tribo-chemistry. This work provides a novel
path for wear-less research and material protection.

Results and discussion

Microstructure and mechanical properties

The sample with a B/W ratio of 9 is synthesized by the spark plasma
sintering (SPS) method. As shown in Fig. S1, the experimental sample has
the appearance of a 25 mm diameter bulk material with a metallic luster. The
XRD spectrum (Fig. 1a) shows the peaks of WB,, which are consistent with
the standard diffraction peak of the PDF (Ref. code 00-019-1373), and there
are no impurity peaks™*. Figure 1b shows the presence of two regions on
the surface of the sample, a boron-enriched black region, and a tungsten-
enriched white region, respectively. Meanwhile, the sample is composed of
two distinct crystalline phases with a particle size of not more than 5 um,
which is consistent with the SEM observations (Fig. 1d). The SAED image of
Point 1 shows the crystal planes of (110), (112), and (002) along the [001]
zone axis belonging to WB,. The SAED image of Point 2 shows the crystal
planes of (113), (211), and (10-2) along the [2-51] zone axis belonging to -
rhombohedral boron. The diffraction wave of crystal B is masked by WB, so
only the diffraction peak of WB, is shown in Fig. 1a™*. In summary, the
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Fig. 1 | Characterization of material phase composition and mechanical prop-
erties. a XRD pattern of the sample and WB, standard diffraction peaks from (Ref.
code 00-019-1373). b SEM image and EDS mapping of the sample plane. ¢ Vickers

as-prepared sample is composed of the WB, phase and -B phase, which is
the same as the WB, materials reported in the works of literature®**,

Vickers micro indentation hardness tests were performed on optically
flat WB,-BB sample with applied loads ranging from 0.49 N-9.8 N, and
hardness results of the as-prepared WB,-B material are displayed in Fig. 1c.
The hardness values of 43.91 + 4.82 GPa under an applied load of 0.49 N
and 27.72 + 0.65 GPa under an applied load of 9.8 N are measured for the
WB,-BB material. The 43.91 GPa hardness values measured at low loads are
very close to 41.1-42.2 GPa of the theoretical prediction and 41.2-46.2 GPa
of experimental tested data in the literature®***’. The results indicate that
the as-prepared sample consisting of the WB, phase and B phase behaves
as a super-hard property. Furthermore, the hardness of this WB,-B sample
is load-dependent and decreases as the load applied increases. This phe-
nomenon of material hardness increasing with decreasing pressure is called
the indentation size effect. The principle behind ISE is that smaller indenters
produce harder values due to the influence of microstructural features such
as grain boundaries, dislocations, and other defects, which have been
observed in super-hard materials such as ReB, and OsB,***’. As shown in
Fig. $4 the fracture toughness of WB,4-B was measured using the single-edge
precracked Beam (SEPB) method as 3.28 MPa-m'?. The nanoindentation in
Fig. S3 measured the nano-hardness as 37.48 GPa and the modulus of
elasticity as 599.17 GPa. This result is in agreement with the results reported
by Mohammadi et al. . In addition, cemented carbide WC with a similar
modulus to WB,-pB material is selected as the counterpart since the
excellent compatibility of the tribo-pair materials can avoid severe wear on
one side during the friction process.

Tribological behavior

To demonstrate the wear resistance of our designed WB,-BB/WC tribo-
pair, the friction and wear properties were evaluated under 10-100 Pa
vacuum conditions with different friction cycles. Figure 2 presents the three-
dimensional (3D) worn topography, the two-dimensional (2D) worn profile
of the WB4-pB disk, and the SEM images of the WC ball worn scar.

(1)
(113) \V (102)

[251]

5 1/nm

SO

micro indentation hardness of the sample under 0.49 N-9.8 N loads. d SAED and
HRTEM images of different phases.

Communications Materials | (2024)5:222


www.nature.com/commsmat

https://doi.org/10.1038/s43246-024-00667-1

Article

Ei 800:

V concave groove )
£ 6001  ~564x10 mm? !
£ o0l V convex peak
= ~3.82x10* mm? 637 nm
[}

(0]

°

—

©

2
-200- e

300 pm

-400

0 ZEJO 4('30 GEJO 8(')0 1600 12IOO 14I00
Position (um)
800

o

V concave groove

_. 6001 ~4.30x10*mm?
£ Y%
convex peak .
€ w00) " DG 575104 mafp !
S
@ 2004 441 nm
©
—
T 04 %MW
%’ 157 nm
i Al
-2004 <470 ym..~
-400

0 200 400 600 800 1000 1200 1400
Position (um)

()

800

V concave groove

8001 ~577x104 mm?3

E V convex peak
4004
£ ~0.30x104 mm?
©
o 4
o) 200
© Lk
5 04« bty A A A,
8 “er‘ r ; - 100 nm R
= 200] 200
-400

0 260 4('10 6(I)0 860 10'00 12‘00 14'00
Position (um)

Q

1.0
j=
D 0%
9
=
® 0.6+
Q IWMW
(&)
S 04] Laod:5N
"8 Speed: 0.2 m s
= Room temperature
L 02{ Coupled ball WC

Vacuum environment
00 T T T T
0 2 4 6 8 10

Friction cycles ( x10%)

Fig. 2 | Tribological properties of the WB,-pB/WC tribo-pair. The 3D topography
and 2D worn scar profiles of the WB,4-BB worn surface and the corresponding SEM
images of the coupled WC ball worn surface. a The worn surface after 1.25 x 10*
friction cycles. b The worn surface after 5 x 10" friction cycles. ¢ The worn surface
after 1 x 10° friction cycles. d Friction coefficient curve of WB4-BB/WC tribo-pair
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when the number of sliding is 1 x 10°. (V concave groove A1 Veonvex peak are the volume
change of the entire worn surface) e Dimension evolution of the WB,-BB disk and
the WC ball at different sliding times. (4 indicates dimension increase, — indicates
dimension reduction).

According to the volume change shown by the worn surface topography of
the WB,-BB/WC tribo-pair for the 5 x 10* friction cycles, the total concave
groove volume is calculated to be 5.64 x 10™*mm’, and the convex peak
volume is 3.82 x 10~ mm’ (Fig. 2a). The diameter of the circular worn scar

on the WC surface is about 0.185 mm, and the calculated volume loss of the
coupled ball is 1.92 x 10~° mm’ (Fig. 2a). On the WB,-BB worn surface after
5 x 10* cycles, the volume of the concave groove is 4.30 x 10™* mm’, and the
volume of the convex peak is 6.57 x 10~* mm’ (Fig. 2b). The diameter of the

Communications Materials | (2024)5:222


www.nature.com/commsmat

https://doi.org/10.1038/s43246-024-00667-1

Article

—~ o -107 -10° -10® -107 -10 -10%
-E +107 I I I I I 8
= The WB,-BB/WC tribo-pair 8
Z . (this work) =
g U =
E e
= 0 Zero wear
e [0}
- Wear-resistant films 3
G -1071° 9
> / 3]
= [0}
.2 o
2 -10°
[0}
£ o
©
% -108 Polymer composites
.E
© 7
E -107 .
o
z 1001
= .
< Ngnocrystalllne metal_s Traditional metals

0% ngh-hardness ceramics and ceramics

T T
0 -107 -10°

Hydrogen-rich DLC film / self mated coating ball %
Fullerene-like MoS, nanoparticles film / 440C steel ball *5
Graphene film / DLC film '

Hydrogenated fullerene-like carbon film / Al,O, ball 4°
Nanocrystalline Pt-Au film / Al,O, ball %
MXene-MoS,/ 52100 steel ball *®

Ti,C,Tx film / Si,N, ball 7

GaN film / ruby probes %

WC-Co-Cr coating / ALO, ball %

CNx film / SUJ2 steel ball &'

Hydrogen-rich DLC film / ZrO, ball 2!

e 6 6 ¢ o o o

-108

-107
The counterpart balls dimension variation (mm?3 N-' m)

-10°® -10%

Alumina filled PTFE composite / 304 steel ball *°
PI-SCF-Gr-SiO, composite / GCr15 ball '8
Polycrystalline diamond films / SiC ball 2
ZrO,-ZrB, ceramic / bearing steel ball ¢
PTFE-(Cr Ti Mn) composite / Brass 260 ball %
Gradient nanograined Cu-5Ag alloy / WC ball 28
(Hf-Mo-Nb-Ta-Ti)C high-entropy ceramic / AL,O, ball %
Mos, film / 440C steel ball '

Graphene film / 304 steel ball ®
Nanocrystalline Fe-Zr alloy / Si,N, ball %

TiB, ceramic / WC ball &

HE B H 6 E H ¢ EH O ¢ o

Fig. 3 | Dimensional change after friction for various tribo-pairs. (+ indicates dimension increase, — indicates dimension reduction)®”'*!4!7142127:37:4749.61-6

circular worn scar on the WC surface is 0.222 mm, and the calculated
volume loss of the coupled ball is 3.97 x 107> mm’ (Fig. 2b). When the
number of friction cyclesis 1 x 10° friction times, the volume of the concave
groove and convex peak on the WB,4-BB worn surface is 5.10 x 10~ mm’
and 0.13 x 10* mm’, respectively (Fig. 2c). The circular worn scar diameter
of the coupled WC ball is 0.259mm, and the wear volume is
7.36 x 107> mm’ (Fig. 2c).

The friction coefficient curves show that the WB,-BB/WC tribo-pair
has a shorter run-in period with a higher friction coefficient of 0.65 (Fig. 2d).
During the steady-state period, the friction coefficient decreases to 0.55,
and the friction curve also tends to be smooth. As shown in Fig. 2e, the-
friction cycles increase from 1.25x 10* to 1x 10°, the WB,-BB disk

shows the dimensional decrease of 9.06 x 107 mm’ N™' m ™", the dimen-
sional increase of 2.89 x 107 mm’N~"'m™, the dimensional decrease
of 319%x10°*mm*N'm™, and the dimensional decreases of
the corresponding coupled WC ball are 9.55x 10 mm’N~"'m™,
506 % 107 mm*N"'m™, and 4.69 x 10~° mm’ N"' m~'. When the num-
ber of friction cycles reaches 1 x 10%, it is sufficient to meet the long-life wear-
resistant test requirements. The depth of the WB,-pB worn track after
1 x 10° friction cycles is about 100 nm, equivalent to that it takes hundreds of
friction cycles to remove the WB,-pB worn surface as a monolayer in size
terms. Under the high maximum Hertz contact stress of 2.23 GPa, the wear
resistance of WB,-PB/WC tribo-pair performs near-zero wear, not only the
wear resistance of the unilateral counterpart.
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Fig. 4 | Morphology and composition of worn surfaces. SEM images and the
corresponding EDS elemental mapping of the worn surfaces of WB4-BB/WC tribo-
pair after different friction cycles. The arrow points to the ball’s sliding direction

during friction. a The worn surface after 1.25 x 10 cycles. b The worn surface after
5 x 10* cycles. ¢ the worn surface after 1 x 10° cycles. d High-magnification SEM
image of the worn track and the corresponding elemental mapping.

Figure 2 demonstrates that with the increase in friction times, the depth
dimension of the WB,-BB worn track was reduced from 191 nm after
1.25 x 10* cycles to 100 nm after 1 x 10° cycles, and the dimension of the
WB,-BB/WC tribo-pair experienced the change of “decrease - increase -
decrease”. We can find that some substances are generated on the worn
surface, forming convex peaks, and compensating for the volume of wear
loss. In addition, the wear volume of the coupled WC ball is an order of
magnitude lower than that of the WB,-pB disk, which suggests the ability of
WC material transfer to compensate for the volume loss of the WB,-$B disk
is minimal. In this case, the WB,-PB/WC tribo-pair realizes near-zero wear
in the low vacuum environment (without additional substances), indicating
that the tribo-pair has the self-repairing ability during the wear process.

Figure 3 shows the dimensions of various tribo-pairs after friction,
including the WB,-PB/WC tribo-pair in this work. There are clear
boundaries for wear-resistant films, polymer composites, nanocrystalline
metals, high-hard ceramics, and traditional materials. The wear resistance of
traditional metal and ceramic bulk materials has significant limitations, the
wear rate of the disk is in the order of 10~ mm® N~ m ™', and the wear rate of
the coupled ball is in the order of 1077 mm’ N™" m™". The best wear resis-
tance of bulk materials is attributed to about 10° mm’N™"'m™" order of
magnitude of polymer composites and 107" mm’N™"'m™" order of mag-
nitude of nano-metals and high-hard ceramics, respectively. Only a few
films exhibit an ultra-low wear rate of 10~ mm’ N " m™" order of magni-
tude under exceptional circumstances, such as the self-mated hydrogen-rich
DLC film tribo-pair, the fullerene-like MoS, nanoparticles film/Al,O5 tribo-
pair, and the Pt-Au film/Al,O; tribo-pair*”*’. Surprisingly, from 1.25 x 10*
to 1x10° friction cycles, the variation of the WB,-BB/WC tribo-pair
dimension is + 10~ mm’ N™' m ™" with the expression of wear rate. Fur-
thermore, WB4-BB super-hard ceramic can adapt to higher Hertz stress
(2.23 GPa) compared to ultra-low wear films like MoS, film (1.1 GPa)",
carbon film (0.7GPa)” and Pt-Au film (1.1 GPa)”, and polymer
composites.

Figure 4 displays the worn surface of the WB,-BB/WC tribo-pair
observed by scanning electron microscope and energy dispersive spectro-
meter. The worn track width of the WB,-B disk and the worn scar diameter
of the coupled WC ball increase with the sliding number. In addition, there
is material accumulation on the worn track of the WB4-pB disk and the

worn scar of the coupled WC ball after friction, which was not observed on
the outer edge of the worn track. The EDS mapping confirms that the tribo-
chemical products are dominated by the O element and a small amount of
W and B elements (Fig. 4a—c). The worn surface morphology and EDS
mapping in Fig. 4d illustrate that the oxide debris forms a tribo-layer on the
worn surface under the frictional stress action, which is relatively uniformly
attached to the substrate.

Figure 5 illustrates that the chemical states of tungsten, boron, carbon,
and oxygen in the WB,-fB worn surface and subsurface with different etch
depths were characterized by XPS. The C 1s peak for the surface-
contaminated elemental C was 284.8 eV for the calibrated standard peak
(Fig. 5¢). There are also C=C bonds at 286.29 eV and C=0O bonds at
288.70 eV, which are formed by the adsorption of contaminants and oxygen
atoms on the worn surface™.

The high-resolution spectrum of the W 4f exhibits two binding energy
(B.E) states of the W element, with the W 4f;, and W 4f;;, peaks, as
illustrated in Fig. 5a. The W 4f,,, peaks range from 35.74 eV and W 4f;),
peaks from 37.90 eV, which are associated with the W-O bond". The results
are consistent with the 530.76 eV peakin the O 1s spectrum, whichisa W-O
bond, and both belong to WO; (Fig. 5d). The W 4f;, at 35.37-31.42 eV and
W 4fs/, at 37.44-37.47 eV are attributed to the W-B bond of WB,**. In
addition, low binding energy W-B appeared after etching the worn surface.
The percentage of low binding energy W-B bonds increased with increasing
etching time.

The peak of B 1s at 190.68 eV is associated with B-O bonds of B,Os. In
comparison, the B 1s peak at 188.88 eV is linked to B-O bonds of boron-rich
oxides (Fig. 5b)°>***. The subsurface B 1s peak at 187.78-187.82 eV belongs
to the B-B bond of crystalline boron and the W-B bond of WB,, which have
the same chemical state of the B element in both of them™. The results are
consistent with the B-O bond represented by peak 532.34 eV, confirming
the presence of B,O; on the worn surface (Fig. 5d)**. The presence of
adsorbed oxygen on the worn surface, with a peak at 531.69 €V, is due to
defects in B,O; with incomplete oxidation™. In addition, it is indicated in
Fig. 5d that only lattice oxygen peaks are present at 530.53-530.57 eV and
adsorbed oxygen peaks are present at 531.63-531.68 ¢V on the etched
surface, and that the relative intensities of lattice oxygen and adsorbed
oxygen decrease as the depth of etching increases. The above results indicate
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Fig. 5 | XPS survey spectra of the WB,-$B composite at a different depth from the worn surface. a The W 4f spectrum. b The B1 s spectrum. ¢ The C 1s spectrum. d The O

1s spectrum.

that the original worn surface consists of boron oxide with tungsten oxide.
The ion-etched surfaces are characterized by the presence of substrate WB,
and crystalline B. Meanwhile, low binding energy W-B bonds are present on
the etched surfaces, and it is presumed that the unstable WB, is affected by
ion etching to produce a new chemical state.

Figure 6a is the STEM image of the cross-section of the wear track, and
the enlarged image of the square is marked area in Fig. 6b, c. As can be seen
from the STEM image of the cross-section, the thin section consists of the
Auprotective layer, the tribo-oxidation layer, the intermediate layer, and the
WB,-PBB substrate from top to bottom (Fig. 6b). The surfaces of WB, grains
are smooth and without cracks and deformations, and there are tiny grooves
on the worn surface of B-B grains. The thickness of the tribo-oxidation layer
is 5-100 nm, which is significantly deposited above the B-B grains
(Fig. 6b, ¢). The thickness of the intermediate layer is about 10-50 nm,
mainly distributed above the WB, grains. HRTEM images and corre-
sponding FFT images of the tribo-layer and intermediate layer show that the
tribo-oxidation layer is of amorphous composition and the intermediate
layer is composed of WB, grains and amorphous composition (Fig. 6d). The
corresponding EDS element mapping on the cross-section of the worn
surface, where the tribo-oxidation layer is enriched with oxygen elements

and the intermediate layer is enriched with tungsten elements (Fig. 6e, f).
Combined with the XPS results, we can discover that the tribo-oxidation
layer is mainly composed of amorphous B,O5 and amorphous WO3, while
the intermediate layer is mainly composed of WB, grains, $-B grains, and
amorphous oxide.

The micro-mechanism of the near-zero wear strategy is shown in
Fig. 7, where the WB,-PB/WC tribo-pair achieves near-zero wear perfor-
mance through the synergistic effect of the super-hard WB,-BB bulk
material and the self-repair tribo-layer. At a high maximum Hertz contact
stress of 2.23 GPa, the WB,-BB/WC tribo-pair produces a large frictional
heat. Thermodynamically, the frictional heat generated by the mechanical
abrasion provides the activation energy for the tribo-chemical reaction so
that the wear debris undergoes a chemical reaction with oxygen. It can be
found that at 1.25 x 10* and 5 x 10* frictional cycles, oxide micro-convex
peaks protrude on the WB,-BB worn surface, consequently offering wear
compensation. The frictional heat drives the formation of a low shear tribo-
oxidation layer, which reduces the direct friction between the rough surfaces
of the upper and lower samples, thereby reducing the generation of frictional
heat and the influence of thermal radiation on the substrate. Thus, the
thickness of the tribo-oxidation layer cannot be increased infinitely, and a
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Fig. 6 | Microstructure of the cross-section of the WB,-pB worn surface. a STEM
image of FIB-cut foil of the cross-section of the WB4-BB worn surface. b Enlarged
view of the marked quadrate area of the interface in (a) between the WB, phase and
tribo-layer interface. ¢ Enlarged view of the quadrate marked interface area in (a)
between the BB phase and tribo-layer interface. d High-resolution transmission
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electron microscopy (HRTEM) images and fast Fourier Transform (FFT) images of
tribo-layer and intermediate layer in the worn surface. e EDS elemental mapping
corresponding to the (b) region. f 1D compositional profile measured along the
orange arrow in (b).
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Fig. 7 | Schematic representation of the micro-mechanism of the near-zero wear
strategy. The blue-green rectangle represents the WB,-B substrate. The gray
hemisphere represents the WC counterpart. The brown-yellow region at the friction

II

I

interface represents the friction oxides and the gray-white region represents WB,-B
broken grains. The structure of the worn interface changes with the friction process
as shown in schematic.

dynamic balance is affected by the relative growth rate and removal rate.
During long-life wear of 1x 10° frictional cycles, wear compensation is
transformed into wear loss due to the inadequate growth rate of the tribo-
oxidation layer. It is the superiority of this self-repairing strategy that allows
both the WB4-$B disk and the WC ball to meet the super-resistant wear.
Wear has been recognized as the phenomenon of damage to or
removal from the surface of a material because of interaction with a mating

surface. In general, the degree of wear is evaluated by the amount of volume
loss and the condition of the worn surface. The existing material systems are
to realize ultra-low wear by self-consumption. For super-resistant materials
like hydrogenated amorphous carbon, (a-C:H)'* and MoS, ", graphitization
or rearrangement of hexagonal crystal orientation occurs on the worn
surface during friction. The interlayer slip of the basic crystal plane causes
the breakage of the valence bond, resulting in the gradual removal of an
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atomic layer. In polymer matrix composites, aluminum oxide promotes the
tri-chemical reaction of PTFE to form a molecular lubricating film, and this
dynamic process of lubricant molecule formation-destruction provides
wear protection'”'®. In the above ultra-wear materials, no apparent wear
compensation effect was found. Our research revealed the self-repairing
mechanism by the formed tribo-chemical layer, reducing wear damage.

Conclusions

In this study, the WB,4-pB super-hard material was prepared by the SPS
method, and the WB4-BB/WC tribo-pair exhibits near-zero wear perfor-
mance under 10-100Pa vacuum conditions, which wear resistance
mechanism is due to the synergistic effect of the super-hard WB4-B sub-
strate and the self-repairing tribo-layer. We found the abnormal wear
phenomenon that during 1.25 x 10*to 1 x 10’ friction cycles, the variation of
this tribo-pair dimension is +10™® mm® N~ m ™" with the expression of wear
rate. The WB,-BB/WC tribo-pair provides a novel design method to achieve
near-zero wear tribo-pair by in-situ material repair, breaking through the
traditional ultra-low-wear design method attempted to minimize wear and
opening up a new path to the wear control of the mechanical system.

Methods

Materials fabrication

WB,-BB material with a ratio of tungsten to boron of 1:9 was fabricated by
spark plasma sintering (SPS, LABOX-3010KF, Japan) method. Elemental
boron powder (Baoding Zhongpu Ruite Technology Co., Ltd; purity
299.9%; particle size 1 um) and elemental tungsten powder (Sinopharm
Chemical Reagent Co., Ltd; purity 299.8%; particle size 75 um) were milled
in planetary high-energy ball milling (Fritsch Pulverisette 5, Germany) for
4, with the rotation speed of 250 r/min to obtain mixture uniformly. SPS
sintering procedures are: The mixed powders were placed into a 25 mm
diameter graphite mold and cold pressed at 10 MPa for 3 min; sintered at
1600 °C and held for 2 min at a sintering pressure of 15 MPa; the sintering
was stopped, and the pressure was lowered to 0 MPa, and the samples were
allowed to cool naturally to room temperature and then removed. The
synthesized samples were cut and mechanically polished, awaiting sub-
sequent testing. The polished samples’ surface roughness (Ra) was mea-
sured to be about 0.025 pm using a three-dimensional surface profilometer
(MicroXAM-800), as shown Fig. S5.

Mechanical properties

Determination of Vickers micro indentation hardness of specimens using a
diamond pyramid indenter microhardness tester (MH-5-VM). The diagonal
length of indentation was measured using a 3D surface profilometer (KEY-
ENCE, VHX-6000). To ensure very accurate hardness measurements, take
the average of the indentation measurements of at least 20 randomly selected
points on the sample for each loading. Nanoindentation tests were performed
using an Anton Parr NHT2 nanoindentation machine with a Berkovich
diamond tip. There were at least 6 indentations on each material surface and
the maximum pressure applied was up to 50 mN. The fracture toughness of
the material was tested by the single-sided pre-cracking method with a sample
size of 16 mm x4 mm x 3 mm and an opening depth 2 mm. At least 6
samples were tested at an indenter downward pressure rate of 0.5 mm/min.

Wear performance analysis

The tribological properties of the WB,4-BB/WC tribo-pair were evaluated by
a rotational tribometer (GHT-1000E, Zhongke Kaihua Technology
Development Co., Ltd). The disks were made from sintered WB4-pB
samples, and WC balls (¢: 6 mm) were selected as the upper sample. YG6
ball (Zhejiang Jienaier New Material Co., Ltd) has a Vickers hardness of
19 GPa, surface roughness of 0.025 um, an elastic modulus of 642 GPa, and
a Poisson’s ratio of 0.204%. The YG6 (WC-6 wt% Co) ball will be written as a
WC ball in the article. The specifications for the friction experiment are as
follows: a maximum Hertzian contact stress of 2.23 GPa (with an applied
load of 5 N), a sliding velocity of 0.2 m/s (or 400 r/m), a rotation radius of
5mm, a vacuum measurement of 10-100 Pa, a test temperature around

23 °C, and laboratory air humidity ranging from 20% to 30%. Carry out at
least three wear tests under the same conditions and take the average value of
the repeated test data within the error range to ensure the repeatability of the
test and reliability. The wear volume (V) of the sample was measured using a
non-contact 3D profilometer (MicroXAM-800, KLA-Tencor, USA) and the
worn scar diameter (d) of the WC coupled ball was measured using a
scanning electron microscope (SEM, JSM-5601LV).

Structure characterization

The sample microstructure and composition were verified by X-ray dif-
fraction meter (XRD), scanning electron microscopy (SEM), X-ray photo-
electron spectroscopy (XPS), and transmission electron microscope (TEM).
The physical phase analysis of the samples was performed by XRD
(Empyrean, PANalytical B.V.) with the technical parameters of the
instrument as Cu target (Ka, A=15418 A), accelerating voltage and
accelerating current of 40 kV and 40 mA, with a scan step size of 0.028°. The
samples and worn surfaces were examined by scanning electron microscope
(SEM, JSM-5601LV) equipped with an energy dispersive spectrometer
(EDS) at an operating voltage of 20 kV for morphology and element dis-
tribution. The chemical elemental states of the surfaces at different etch
depths were characterized using X-ray photoelectron spectroscopy (XPS,
ESCA LAB 250Xi). The radiation source is Al-Ka radiation, the test tube
voltage is 15 kV, and the test spot size is 400 um. Etching was performed
with an Ar gun at a beam energy of 2 kV and a beam current of 10 mA, and
the etching rate was typically 0.2 nm/s. The sectioned samples were pre-
pared in the WB,-pB wear region using focused ion beam (FIB) device
(ZEISS Crossbeam 350) preparation. The WB,-pB Sliced samples were
studied by an FEI Talos F200X transmission electron microscope (TEM) at
a working voltage of 200 kV.
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