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Benefits and complexity of defects in
metal-organic frameworks
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N. S. Portillo-Vélez', Juan L. Obeso?®, José Antonio de los Reyes*, Ricardo A. Peralta®'0<,

llich A. Ibarra®>* < & Michael T. Huxley ®°

Defect engineering has developed over the last decade to become an inimitable tool with which to
shape Metal-Organic Framework (MOF) chemistry; part of an evolution in the perception of MOFs from
perfect, rigid matrices to dynamic materials whose chemistry is shaped as much by imperfections as it
is by their molecular components. However, challenges in defect characterisation and reproducibility
persist and, coupled with an as-yet opaque role for synthetic parameters in defect formation, deny
chemists the full potential of reticular synthesis. Herein we map the broad implications defects have on
MOF properties, highlight key challenges and explore the remarkable ways imperfection enriches

MOF chemistry.

Metal-organic Frameworks (MOFs) are a burgeoning class of hybrid
organic-inorganic materials composed of metal cluster nodes inter-
connected by multitopic organic ligands to form highly crystalline, porous
and chemically mutable structures. Such an opening line would have
succinctly captured the field only a decade ago. On the surface it still largely
does, yet much has changed. The classical MOF is a rigid matrix defined by
the chemical properties and dimensions of its molecular components, given
to being by the power of reticular synthesis. The modular, chemically
mutable design allows MOFs to be tuned to suit particular applications with
angstrom scale precision, at least in theory. Breaking from this
crystallography-centric view, which defined its infancy, MOF chemistry has
evolved in recent years to embrace the imperfect, dynamic lattice’. The
underlying form remains guided by reticular synthesis, but the chemistry
and physical properties are enriched by imperfections.

As with any crystalline solid, the perfect structure portrayed by crys-
tallography belies the omnipresent lattice defects and dynamic nature of
coordination bonds”™. Such imperfections are a ubiquitous feature of solid-
state chemistry where they influence global properties even at vanishing
concentrations’. For instance, just 0.1% defectivity in graphene or boron
arsenide causes up to 95% reduction in thermal conductivity“"’. In MOFs,
lattice defects manifest as missing linkers (ML) and/or missing clus-
ters (MC) and have similarly drastic physicochemical implications

(Fig. 1)'". For example, the blue-green colour associated with the proto-
typical Cu" framework HKUST-1 actually arises from ubiquitous Cu'
defects rather than the Cu" paddlewheel motif "°. That this was revealed only
recently illustrates the challenges associated with characterising lattice
imperfections and defining their role in MOF chemistry. Since the first in-
depth study concerning missing linker defects in UiO-66 was published in
2011%, an extraordinary tapestry of defectivity has been unveiled. This
transformation has occurred in concert with a significant advancement in
experimental characterisation techniques that allow the local environment
to be probed, in some cases providing real-space visualisation of
defects™*"*,

It is in this rapidly changing environment that defect engineering has
captured the imagination of MOF chemists™** and dramatically expanded
the utility and richness of MOF chemistry. Defectivity has significant
implications on mechanical stability'*"**’~*, hydrophobicity’', photo-
physical properties™, thermal conductivity**, catalytic activity”**"*, pore
size”™ and surface area***™ which are pertinent to commercial
applications'>*". Properties involving cooperative lattice phenomena,
including negative thermal expansion™* and negative gas adsorption™, are
also influenced by defectivity. In some cases these manifestations are
desirable: for instance mass transport benefits from hierarchical porosity
introduced by defect engineering”®”’. However, in applications such as
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Fig. 1 | A Building block design susceptible to
classical and transient defectivity. MOFs form
from organic and inorganic components to produce
a crystalline material (a) featuring a mixture of ideal
cells (b) and a variable degree of defects, including
missing linker (left) and missing cluster defects
(right). Note: a green monotopic linker replaces the
missing linker to complete the coordination sphere
of the transition metal node (c). Related to classic
defectivity are transient defects that arise from
dynamic metal-linker bonds; this concept is
explored in detail in Fig. 2. d The extent and type of
defectivity present within a MOF sample can be
modulated via both synthetic and post-synthetic
methods, creating a continuum of defectivity with
diverse physicochemical properties (e).
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molecular sieving, success is dependent on angstrom scale refinement of the
sieve pores, which is undermined by defectivity”*". Thus, the optimum
defectivity for a specific application exists somewhere along a defectivity
continuum with extraordinary physicochemical diversity (Fig. 1). Harnes-
sing this potential will require overcoming significant challenges, such as
establishing the synthetic origin of defectivity, developing reliable char-
acterisation techniques and consistent reporting, and ensuring synthesis
protocols are reproducible'**,

This contribution posits defectivity as an intractable feature of MOF
chemistry, the formation and evolution of which is intimately linked to the
dynamic nature of metal-ligand coordination bonds (Fig. 2)*****'. The
emergence of defect engineering has parallelled interest in dynamic metal-
ligand bonding which persists in even the more robust Zr" frameworks**".
We consider these short-lived dissociated metal-linker states as ‘transient
defects’, distinct from the ‘classical’ ML or MC defects in both lifetime and in
the sense that no structural components are missing. This underlying
dynamic behaviour facilitates facile ligand/cation exchange®*, reversible
guest responsive structural transformations™”" and the preparation of glass/
liquid MOFs*’. Moreover, dynamic metal-linker bonding is central to the

emergence of crystallinity in MOFs, and equally so to the evolution of
defectivity during crystallisation and post-synthetic handling®’. The latter
point raises an important but as yet rarely discussed question: as chemists
seek to tune the extent, type and spatial distribution of defects within a
fundamentally dynamic platform, how long - in terms of processing,
handling and time - does it take before the engineered defects become
defective? To answer this question a comprehensive understanding of
dynamic processes and defectivity will be necessary. In particular, the elu-
cidation of dynamic interactions and characterisation of disordered or
defective frameworks requires new experimental and computational tools,
and a departure from the classic MOF model**">"°,

Defectivity has been the focus of extensive discussion over the last
decade. The benefits of defect engineering are well established***** and are
not the focus of this contribution. Rather, we explore the long-term challenges
which persistently beleaguer chemists seeking to harness defect engineering.
These include accurate characterisation and consistent reporting of defec-
tivity, and the reproducible synthesis of phase pure samples with consistent
defectivity. We consistently advocate that collaborative interlaboratory stu-
dies are an underutilised but effective tool for assessing reproducibility in
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Dynamic bonding in MOFs
a) Dynamic bonding - transient defects

b) Catalysis/adsorption at transient open-metal sites
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c) Glass or liquid MOFs

Fig. 2 | The various manifestations of dynamic metal-ligand bonding in MOFs.
Related to defectivity is the presence of dynamic metal-ligand bonds (a) which
manifest as transient open metal sites pertinent to adsorption and catalysis appli-
cations (b). Liquid MOFs are typically prepared by heating crystalline MOFs to form
a melt state characterised by persistent dynamic coordination between molecular
components, this can be quenched to form an amorphous coordination network
classified as a glass (c). The now widely recognised tendency for MOFs to undergo
facile linker or cation exchange is enabled by dynamic metal-linker interactions (d).

MOF synthesis and establishing the precise role of synthetic parameters in
defect engineering. The value of reproducible synthesis and accurate char-
acterisation is contingent on the stability of engineered defect landscapes. We
contend that the role of dynamic bonding in defect formation and, particu-
larly, the evolution of defect landscapes; cannot be understated (Table 1). To
fully realise the promise of defect engineering, chemists must embrace the
dynamic nature of coordination bonds and employ their most sophisticated
experimental and computational tools to uncover the spatial, chemical and
temporal diversity hiding behind the crystalline faade.

Characterisation and quantification of classical lattice
defects in MOFs

Considering the pertinence of defects in all facets of MOF chemistry, their
unambiguous characterisation and reproducibility are vital to harnessing
the potential physicochemical diversity on offer'®*. To this end, a slew of
characterisation techniques are regularly employed to quantify ML and MC
defects, many of which were developed in the context of UiO-66 (see
Box 1)"”. The tools of defect analysis and their sophistication have
necessarily evolved in tandem with the discovery of new defect types as well
as their impact on readily measured physicochemical properties. The sim-
plest and most widely reported defect analyses assess defectivity through its

effect on MOF properties. Evoking Plato’s Cave, this requires that experi-
mentally measured metrics such as stoichiometry, surface area, diffraction
pattern, thermal stability or pore-size distribution be compared to those of
an ideal version of the framework. For example, Thermo-gravimetric
Analysis is frequently used to quantify missing linker defects by establishing
the ratio of inorganic to organic components through complete combustion
of the former. By comparing the experimental value to that of the ‘ideal
framework and making basic assumptions about the type of defect(s) pre-
sent, an estimate of sample defectivity is obtained. The coexistence of MC
and ML defects (and correlation of the former) complicates these simple
assessments. Assumptions must be made. A more complete picture requires
careful application of multiple complimentary techniques that can distin-
guish and quantify specific defect species™.

Chemical characterisation of defect sites in-situ involves more
sophisticated techniques which are less amenable to routine analysis and are
more sample specific**”’"**. Exploiting the porosity inherent to most MOFs,
various probe molecules have been employed to establish the chemical
environment of defects in-situ. For example, the prototypical Cu" frame-
work HKUST-1 exhibits Cu' defects which arise from impure inorganic
precursors or in-situ thermally induced reduction of Cu" moieties®. These
are readily identified by monitoring CO probe molecules using IR spec-
troscopy because the CO stretching frequency is highly sensitive to the
chemical environment of the node site to which it coordinates™"**. When
supported with computational modelling, a picture emerges of the local
environment at defect sites and their real-time evolution”. The same
approach has a long history in zeolite chemistry***". Beyond CO, the cat-
alogue of probe molecules now includes a homologous series of
phosphines” and even fluorescent proteins®', providing an expansive and
bespoke toolbox with which to chemically and spatially distinguish defects.
To observe defects in real-space however, chemists have turned to
advancements in electron microscopy techniques - particularly High
Resolution Transmission Electron Microscopy (HRTEM) — which enable
imaging of MOF lattice defects (Fig. 3) and direct evidence for defect cor-
relation and defective nanoregions within the crystal lattice'****”. We note
that electron bombardment can also generate missing linker defects™”,
careful consideration of these effects is essential when using HRTEM for
defect analysis. It is by harnessing chemical probe experiments, computa-
tional chemistry and microscopy that chemists have revealed increasingly
complex layers of defectivity in prototypical frameworks.

Even in extensively studied MOFs, new layers of previously imper-
ceptible chemistry are being revealed using increasingly bespoke char-
acterisation techniques™***"”*. Exemplars include defect termination and
the fascinating interaction between framework nodes and guest
molecules”™ . In an elegant example, Fu et al. employed in-situ "*C Solid-
state (SS) NMR and DFT calculations to identify the coordination geometry
and location of formate defects in MOF-74", Perhaps because the formate in
question arises from in-situ decomposition of DMF during solvothermal
synthesis rather than intentional addition of formic acid modulator, the
defects had previously escaped notice. Yet they significantly impact on
adsorptive properties: the surface area of Mg-MOF-74 decreases from
1900 m’g " in the ideal framework to 700 m’g™" in defective frameworks,
accompanied by concomitant reduction in CO, adsorption. This study
underscores two key points that lie at the core of this contribution: (1)
undetected and physicochemically significant defectivity persists even in
prototypical frameworks due to challenges in identifying such species and
(2) sophisticated computational and experimental techniques are becoming
essential for elucidating more obscure MOF chemistry which is not per-
ceptible via classic diffraction techniques™***>****’, The latter is true in the
emerging field of amorphous MOFs****'” and is becoming so more
generally as materials scientists seek to unravel the local chemical envir-
onment within crystalline frameworks and its effect on global properties**”.

The devil is in the details
While the subtle physicochemical implications have long been appreciated in
solid-state chemistry, the overt outcomes of defectivity such as hierarchical
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Box 1 | UiO-66: the preeminent platform for studying defectivity

The central protagonist in the story of MOF defectivity is UiO-66, a robust
framework composed of [Mg(OH)4(0)4]"** (M = Zr"V or Hf"¥) nodes inter-
connected by 12 benzene-1,4-dicarboxylate (BDC) linkers in the ideal
structure (Fig. 3)""'%%. The intense interest in defect engineering UiO-66
arises from its capacity to tolerate loss of up to 6 ligands per cluster',
providing scope to explore defect-enhanced catalytic®® and adsorptive
properties®'*’. Missing linker (ML) defects were first identified in UiO-66
in 2011 by Valenzano et al. *°. Later, in 2014, Cliffe and co-workers
confirmed the presence of missing cluster (MC) defects in UiO-66(Hf)
which form correlated defect nanoregions with reo network topology (the
ideal framework features fcu topology)?'. Interestingly, diffuse scattering
arising from short-range order of correlated defects was originally
attributed to disordered solvent'®*, highlighting how our understanding of
defectivity has continued to evolve as earlier assumptions about MOF
chemistry are re-assessed. In 2019, missing cluster defects concurrent
with missing linkers were observed to form localised scu topology in UiO-
66'°. Calculations indicate that defects with local reo, scu and bcu

porosity or catalytic activity have garnered more attention from MOF che-
mists. But defectivity is increasingly understood to impact MOF bulk mod-
ulus, mechanical stability and thermal conductivity'™'*”=****1%"'% " Such
subtle implications are not always prioritised (or evident) in the laboratory,
but can become pronounced at scale and as MOFs are increasingly integrated
into hybrid materials™. For example, to avoid cracking and delamination in
devices, the thermal expansion properties of a MOF must be compatible with
those of materials with which it is interfaced’". Similarly, thermal conductivity
becomes more influential at scale due to the need to efficiently dissipate the
heat released during processes such as adsorption'”'*. Yet thermal expan-
sion and thermal conductivity remain poorly represented in MOF literature
and the effects of defectivity are less understood than for other physico-
chemical properties.

Extraordinary surface areas and chemical mutability has placed MOFs at
the forefront of future gas adsorption applications. Adsorption is however an
exothermic process and since MOFs exhibit poor thermal conductivity, heat
dissipation therefore becomes a concern. Low density and high porosity
restrict thermal transport in MOFs which explains why ZIF glasses exhibit
higher thermal conductivity than their crystalline (and more porous)
counterparts'®. Porosity is not the only culprit though. In solid-state mate-
rials, phonons play an integral role in thermal conductivity*’ and it is
increasingly evident that lattice defects in MOFs (and adsorbate molecules'”)
induce phonon scattering that reduces thermal conductivity further than
intrinsic porosity would demand™*. Intriguingly, correlated MC defects are
associated with an increase in thermal conductivity compared to randomly
distributed MC or ML defects”. This behaviour is attributed to reduced
phonon scattering in the direction of thermal transport and hints at a com-
plex interplay between defectivity, phonon scattering and thermal transport
that may concern other processes in which phonons are implicated'”’. Thus
the effects of defectivity on MOF chemistry concern as much the infinitesimal
details of lattice vibrational modes as they do the palpable outcomes of defect
engineering. While much anticipation accompanies the latter, the devil is in
the details and commercial emphasis on benchmark physicochemical
properties will refocus attention accordingly. At present though, studies
concerning the thermal transport properties of MOFs typically assume a
‘defect-free’ material or do not consider defects at all"**. In this conceptual
simplification a vital opportunity to define fundamental physicochemical
attributes in the context of defectivity is overlooked.

Reproducible MOF synthesis
While challenges remain in distinguishing, quantifying and spatially eluci-
dating defectivity; advancements in characterisation will only benefit the

topologies (encompassing the MC/ML defects described above) all
attract a similar energy penalty relative to the ideal fcu topology, sug-
gesting that they are all accessible under MOF synthesis conditions and
can coexist within a sample (Fig. 3)'°. The presence of missing linker and
cluster defects within the UiO-66 lattice, including the correlation of MC
defects to form defect nanoregions is now well established?’, along with
synthetic tools with which to tune the extent and type of defectivity
expressed within a sample'"**"%8_ |t is likely that further research will
unveil novel defect types as the UiO family is scrutinised with new
experimental and computational techniques. Success in the UiO space
has motivated defect engineering studies involving other prototypical
frameworks such as HKUST-1"4, MUV-10""*""> and MOF-74 (see Table 1
for seminal defect engineering studies)**“®. Yet, although synthetic
parameters play a major role in modulating defectivity in as-synthesised
MOFs™**'5317% the precise role of specific parameters is not fully under-
stood even in the intensively studied UiO family'®'*°.

field if defectivity in a given framework can be reliably reproduced across
time and place. Indeed, variable phase purity or defectiveness is incompa-
tible with commercial applications™. Discussion of MOF defectivity natu-
rally intersects with this broader debate around reproducibility of MOF
synthesis outcomes. For example, Kieslich and colleagues attribute the
significant variability in experimental bulk moduli to poor defect repro-
ducibility across samples of the same MOF analysed by different
laboratories™. Part of this issue arises from phase impurities”* (including
amorphous impurities) and/or variable and inadequately characterised
defectivity. Even different samples of the same MOF can exhibit varying
defectivity between for instance, powder and epitaxial forms, which reflects
differences in synthesis conditions'”. One strategy for eliminating variable
sample defectivity is to prepare one large batch of MOF on which all analysis
is performed'”. While this sidesteps the core issue, the paucity of studies on
defect reproducibility, coupled with genuine characterisation challenges,
currently leaves little alternative.

The question of reproducible phase purity and defectivity in MOFs was
underscored in an insightful interlaboratory study by Bostrém et al.””. The
focus was a family Zr" Porphyrinic Coordination Network (PCN) MOFs
which can form multiple phases under the same synthesis conditions*""’
and are highly susceptible to defects’. Strikingly, under the interlaboratory
study only 1 in 10 syntheses targeting PCN-222 yielded phase pure product
despite implementing an identical literature procedure across the partici-
pating laboratories. Synthesis of phase pure ligand ordered PCN-224 failed
in all cases. Factors including reaction vessel dimensions, hydration of the
inorganic precursor and ambient humidity are likely contributors to the
erratic reproducibility. This rouses an unavoidable question: if subtle
parameters so profoundly impact MOF morphology, why should defectivity
be any less susceptible to variation? Considering the potent implications on
physicochemistry, defect reproducibility remains conspicuously under-
explored. We note that the interlaboratory study cited above did report —
albeit cautiously, considering the erratic phase purity of the samples -
variable defectivity across PCN samples. This work simultaneously high-
lights the challenge facing reproducible MOF synthesis and outlines an
effective roadmap for much needed interlaboratory studies concerning
defect reproducibility and characterisation.

Defect-free MOFs?

Having established defectivity as an easily obfuscated but central determi-
nant of MOF physicochemistry, we turn now to its minimisation and the
temporal stability of defect landscapes. The popular term ‘defect-free’ is a
misnomer: defects cannot be entirely eliminated, but can be minimised
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Defect type and Spatial distribution in UiO-66

correlated

random

Fig. 3 | Defect type and spatial distribution in UiO-66. The MOF UiO-66 is
composed of BDC linkers interconnected by 12 connected M"-oxo clusters (M = Zr,
Hf) to form a robust and highly porous network. A representation of the ideal
structure with fcu net, including the ideal 12-connected cluster, is presented (a). The
material is highly susceptible to defects including ML (bcu net) and MC (reo or scu
net) (b). MC defects are known to form correlated defect nanoregions in some UiO
samples, leading to aggregation of defects which is represented schematically in 1)
and ii). HRTEM image showing significant correlation of missing cluster defects
adopting the scu net (scale bar represents 5 nm) iii. The scu structural model,
simulated potential map and actual averaged HRTEM image representing one unit
cell (left to right, iv). Image components c(ii) adapted with permission from ref. 21.
Copyright 2014 Springer Nature and c(iii)-c(iv) adapted with permission from
ref. 19. Copyright 2019 Springer Nature.

58,111

using synthetic™®""" and post-synthetic strategies''"*. Samples with minimal
defectivity show improved stability, are better model materials and find
virtue in applications such as molecular sieving and sensing'***'"". Thus, two
motivations for defect minimisation can be distinguished: the preparation of
model materials for fundamental studies and the optimisation of materials
for applications such as molecular sieving or sensing. Embodying the former
scenario, a recent study explored the epitaxial growth of optically pure,
defect-free HKUST-1 thin films which are of interest in fundamental
chemistry and sensing applications (Fig. 4)"°. Rather than exhibiting the blue
hue synonymous with HKUST-1, the films are colourless owing to the
effective elimination of strongly absorbing Cu'/Cu" defects. Recent work by
Liu et al. epitomises the latter category: a series of ultra-low defectivity UiO

membranes with precisely tuned pore apertures were prepared and
demonstrated exceptional H,/CO, selectivity an order of magnitude greater
than defective analogues (Fig. 4)*. The examples above demonstrate that
defectivity can be minimised to obtain materials that closely approximate
their ideal counterparts. The question that is particularly apparent in this
context, but is just as relevant in classic defect engineering scenarios, is how
effectively can specific defect landscapes be maintained under operating
conditions given the persistence of dynamic metal-ligand bonding in
extended frameworks?"”.

While appreciation of dynamic metal-ligand bonding continues to
grow in the MOF community, the chemistry is not new. For instance, the
facile displacement of labile ligands is central to transition metal
catalysis'™'". In MOFs, dynamic metal-ligand bonding is implicated in the
mechanism of hydrothermal decomposition which can be considered as an
accumulation of defects that culminates in loss of crystallinity™*''*'"”. Facile
linker and cation exchange as well as the emergence of glass and liquid
MOFs is predicated on dynamic bonding. Reversible dissociation of metal-
linker bonds has been invoked in catalytic and adsorptive applications that
exploit the resulting transitory open metal sites (Fig. 2)"*""*""**. Thus, one
could make the case that reversible metal-linker dissociation events create a
transient defect which is separate from classic ML defects only in as far as
life-time is concerned. Spectroscopy experiments have confirmed that such
species (or at least the soft-mode precursory states) are ubiquitous in car-
boxylate MOFs****'"'* and that temperature®, particle size'*'** and guest
molecules™ modulate the relative populations of ‘tight’ and ‘loose’ states.
However, we posit that MOF defects as we define them here constitute a
departure from ideal stoichiometry - that is, components are missing rather
than momentarily detached. In this sense dynamic bonding is an explana-
tion for evolving defectivity within a crystal such as occurs during activation,
crystal growth or post-synthetic modification; but is itself distinct from
classic ML or MC defectivity. We define ‘transient defects’ to capture this
distinction. The fact that post-synthetic defect engineering is frequently
affected by design'®'""'*’ but also unintentionally during processes such as
activation, sorption and solvent exchange attests that designer defect profiles
are liable to change under forcing conditions”. Even during crystallisation,
the relative abundance of MC and ML defects in UiO-66 evolves due to
Ostwald Ripening processes that produce larger crystals with less MC
defects”. Washing UiO-66 has been observed to increase defectivity, most
likely due to exchange of hydrolysed linkers with solvent'"'. The underlying
dynamic nature of MOFs must be reconciled with the long-term stability of
engineered defect landscapes, particularly when intended operating con-
ditions are likely to expedite structural evolution.

Chemists have already revised the classical MOF to include myriad
defects in the crystal lattice. Perhaps this revision does not go far enough. If
one considers the continuous rotation of linker functional groups, dynamic
coordination chemistry, phonon modes, guest responsive behaviour (such
as breathing, gate opening etc.) as well as the motion of guests colliding and
interacting with the framework themselves, the lattice is not only imperfect
but an evolving, heaving kaleidoscope of molecular activity. Routine char-
acterisation techniques are blind to such local dynamics and their influence
on defectivity. Indeed time was recently posited as a fourth dimension in
which MOF chemistry can be intentionally engineered'”. This necessitates
that framework materials be probed with techniques that can provide a
time-resolved understanding of dynamic molecular processes™**'***,
Steps have already been taken in this direction. Ultra-fast spectroscopy
experiments coupled with molecular dynamics simulations have, for
instance, uncovered the surprising picosecond rearrangement of hydrogen
bonding networks involving MOF-pore confined water molecules'". Solid-
state ultrafast magic-angle spinning '°F NMR has determined the metal-
linker exchange rates in Zn(II) coordination polymers to be on the order of
3% 10*s™" at room temperature”. The metal-ligand dynamics responsible
for liquid MOF formation, are known to occur on the order of picoseconds
on the basis of molecular simulations’. Evidently, characterisation and
simulation tools required to elucidate the dynamics underpinning defect
propagation exist but their application is limited by the bespoke sample-
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Fig. 4 | Defect-free MOFs. a Defect-free UiO membranes are synthesised from
fumaric acid, BDC or BDC-OH linkers to form a family of supported membranes
with precisely regulated pore sizes. b The H,/CO, selectivity UiO membranes is
dependent on the pore size determined by linker choice and strongly degraded by
increased defectivity. ¢ HRTEM image of UiO-fumarate membrane provides evi-
dence for a near ideal lattice. Figure elements adapted with permission from ref. 58.

Copyright 2023 Springer Nature. d The structure of HKUST-1 is composed of Cu"
paddlewheel nodes bridged by BTC linkers. A known defect involves reduction of
one Cu" centre and loss of a single carboxylate linker. Defective HKUST-1 SURMOF
samples exhibit a blue colour while high quality thin films are colourless. Figure
elements adapted with permission from ref. 15. Copyright 2017 American Chemical
Society.

specific experiments, specialist instrumentation and data analysis required.
Our understanding of defectivity (among many other aspects of MOF
chemistry) will remain incomplete until the underlying local dynamics are
resolved. The application of experimental and computational expertise to
this end must therefore be prioritised.

Our intention in raising these points is not to dissuade efforts to
minimise defectivity or indeed, engineer it. Rather, we argue that these
efforts are central to maximising the utility of MOFs in wide-ranging
applications. Yet the transformative potential and ubiquity of dynamic
bonding demands that more scrutiny be placed on the long-term stability of
defect landscapes. Perhaps what is needed most is an interlaboratory study
that assesses both defect reproducibility and stability in MOFs, focusing on
the effects of routine processing on defect extent, type and distribution.

Future directions and concluding remarks

The preceding decade has seen defect engineering claim in MOF chemistry a
similar eminence to what it has long enjoyed in semiconductor science.
While MOFs spanning the full spectrum of defectivity, from amorphous to
‘defect-free’, find merit in specific applications, it is only by learning to
reproducibly tune and characterise defectivity that chemists can fully realise
the precision promised by reticular chemistry. A wealth of defect engi-
neering research has proven beyond doubt that defect extent, type and
spatial distribution to be tuned by judicious choice of synthetic parameters.
Yet the exact role of temperature, stoichiometry and modulator remains
unclear and often conflicting'®. It is evident from existing work concerning
the reproducibility of PCN frameworks that subtle factors wield significant
influence over sample morphology and this conclusion likely extends to
defectivity”. Delineating these relationships is a challenging task well suited
to large-scale interlaboratory studies.

Attached to the question of reproducibility is the difficulty in char-
acterising and consistently reporting defectivity. Despite the historical sig-
nificance of crystallography, defect characterisation requires that chemists
look beyond diffraction and towards methodologies that probe local
chemistry. MOF characterisation is therefore guided ever more by materials
science fields that never enjoyed the luxury of crystallinity’>'***”, In this

sense defect characterisation shares challenges with glass, liquid and het-
erometallic/multicomponent MOFs wherein the relationship between the
spatial distribution of disordered molecular components and emerging
properties is only revealed by sophisticated analysis™'*’. The value of
computational chemistry in this process - linking structural and physico-
chemical properties in framework materials - cannot be understated,
especially where disorder is present. This role will grow as machine learning
is increasingly adopted™***"'. This evolution in computational and
experimental techniques is well underway and will undoubtedly reveal new
defect types and correlations in the future. All of this is not to diminish the
extraordinary role crystallinity plays in the archetypal properties and con-
ceptual elegance of extended framework materials, nor the insight crystal-
lography provides MOF chemists’*"**"*”. Nonetheless, a crystal structure
cannot capture the whole picture, which is textured with a vastly richer
chemistry than the classical MOF lattice can convey.

That MOFs undergo facile linker/cation exchange and post-
synthetic structural transitions to new crystalline'*>'** or amorphous glass
phases’™ confirms that coordination bonds do not relinquish their dynamic
nature when incorporated in extended framework materials. Yet the role of
labile coordination bonds in propelling the evolution of defectivity in MOFs,
including during crystallization, activation and solvent exchange remains
underexplored”’. While defectivity is routinely analysed in as-synthesised
samples, the stability of defect landscapes under operating conditions must
be established to confirm that properties imbued by defect engineering are
retained. Considering the significant - often beneficial - impact defects have
on physicochemical properties, the unintended effects of post-synthetic
processing in shaping the defect landscape over time would seem just as
important as synthetic parameters are in shaping the initial defectivity.

We emphasise again that by underscoring challenges surrounding defect
characterisation, reproducibility, and stability our intention is to inspire
rather than discourage further work in this vital field. Indeed, defectivity and
dynamic bonding are part of an expansive and ongoing reimagination of
MOFs. Inspiration can be found in the revolution underway in the field of
structural biology where advanced Electron Cryomicroscopy enables time-
resolved atomic-resolution snapshots to be obtained which capture the

68,140,141
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extraordinary dynamic properties from which biological function is
derived'**'”. Insight garnered from this transformative technology far
exceeds traditional crystallographic or NMR based techniques, confirming
that even within well-established fields opportunity remains to avail deeper
understanding from emerging technologies. We posit that while the under-
lying dynamic processes in MOFs are challenging experimental subjects
today, their effects should not evade our imagination. Based on the evidence
available already, the role of dynamic metal-linker interactions cannot be
overestimated in any attempt to conceptualise or engineer defectivity.

Much has been reaped from the fertile chemical landscape that MOFs
present. Increasingly, advancement has stemmed from embracing - and
exploiting - the imperfections and dynamic properties of the crystalline
lattice. The ascendency of glass MOFs is the ultimate manifestation of this
transformation”’>'”’, While the popular description of MOFs emphasises
crystalline order and reticular synthesis; it is increasingly evident that
imperfections grant access to new layers of chemical complexity and
extraordinary opportunity.
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Published online: 08 November 2024
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