communications materials

A Nature Portfolio journal

Article

https://doi.org/10.1038/s43246-025-00825-z

Building an end-to-end battery recipe
knowledge base via transformer-based

text mining

M| Check for updates

Daeun Lee ® 2, Hiroshi Mizuseki'?, Jaewoong Choi®'

& Byungju Lee ®'

Recent studies have increasingly applied natural language processing to automatically extract
experimental information from battery materials literature. Despite the complexity of battery
manufacturing—from material synthesis to cell assembly —no comprehensive study has
systematically organized this information. Here we present a language modeling-based protocol for
extracting complete battery recipes from scientific papers. Using machine learning-based filtering and
topic modeling, we identified 2174 relevant papers and extracted over 5800 paragraphs describing
synthesis and assembly procedures. Deep learning-based named entity recognition models were
trained to extract 30 entities with F1-scores of 88.18% and 94.61%. We also evaluated large language
models, including GPT-4, using few-shot learning and fine-tuning. These results enabled the
structured construction of 165 end-to-end recipes and identification of trends such as
precursor-method associations. The resulting knowledge base supports flexible recipe retrieval and
provides a scalable framework for organizing protocols across large volumes of publications, thereby

accelerating literature review and data-driven battery design.

In materials science, there has been a notable surge in interest towards data-
driven materials informatics'’. To underpin this paradigm shift, concerted
efforts have been made to obtain ample high-quality datasets. Several open
databases related to materials information exist, including the Materials
Project’, Open Quantum Materials Database’, and Novel Materials
DiscoveryS ; however, these databases mainly consist of the results of com-
putational studies. This insufficiency of actual experimental data can be
resolved by applying natural language processing (NLP) to scientific
literature™. Research articles are meticulously curated and peer-reviewed,
ensuring both high quality and large quantity, from which NLP techniques
can automatically extract specific information of interest®. In this context,
text-mining studies in materials science have increased in recent years,
particularly in the fields of catalysts”", metal-organic frameworks'>", and
high entropy alloys".

For battery materials, various NLP studies have focused on extracting
information on battery materials or performance, and synthesis recipes
from the literature to construct databases'"*. Specifically, there has been a
wealth of research dedicated to extracting material and property informa-
tion on battery cell assembly processes using NLP techniques such as named
entity recognition (NER). For example, some pioneers suggested various
literature mining protocols to extract cell-composition information, such as
anode, cathode, or electrolyte materials, and cell-performance information

such as capacity or voltage using chemistry-aware NLP techniques*™"".
Similarly, efforts have been made to retrieve specific information such as the
electrochemical characterization and cycling conditions of lithium-ion
battery cells using transformer-based NER models, thereby providing a
large-scale text-mined dataset with 28 entities'®. Recently, Gou et al."” sug-
gested a document-level NLP pipeline for literature related to layered
cathode materials for sodium-ion batteries. The model simultaneously
extracts chemical entities, electrochemical properties, and synthesis para-
meters. Building on recent progress in NLP-driven materials extraction, the
emergence of large language models (LLMs), such as GPT-3 and GPT-4, has
significantly advanced the capabilities of scientific text analysis. These
models enable zero-shot, few-shot, and fine-tuned learning paradigms,
providing flexible and scalable solutions for extracting structured infor-
mation from unstructured text’. In materials science and chemistry,
LLM-based approaches have demonstrated promising results in extracting
synthesis steps, predicting experimental outcomes, and assisting literature
analysis™ . Notably, recent studies have highlighted the potential of LLMs
to revolutionize battery research by transforming unstructured text into
structured insights and even guiding materials discovery through generative
reasoning’’.

Despite their contributions, there is still room for improvement in
defining the subject of battery recipes, as prior works employed limited
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information such as ‘name of battery material’ or ‘synthesis recipe of battery
material’, which we suggest is not sufficient to represent or directly connect
to battery performance data. For example, even if the same electrode
material is used, differences in the cell-assembly process, e.g., using different
cell types™?, electrode slurry recipes’ ™, separators” ™, binders**", or
electrolyte composition* ™, greatly affect the battery performance. There-
fore, to avoid ambiguity in defining battery performance, it is necessary to
collect end-to-end battery recipes, where all the information from the
synthesis of the electrode materials to cell assembly is gathered, before
analyzing the battery performance. Notably, there has been no attempt to
handle the overall process from battery materials synthesis to battery cell
assembly.

In this work, we propose a language modeling-based protocol, Text-to-
Battery Recipe (T2BR), for the automatic extraction of end-to-end battery
material recipes from the scientific literature. As a proof of concept, we select
LiFePO, cathode material, one of the most extensively studied materials in
the battery field", for our case study. First, we report machine learning
(ML)-based text classification models to systematically gather papers on
battery recipes. Next, we apply topic modeling such as Latent Dirichlet
Allocation (LDA)", to identify paragraphs related to cathode materials
synthesis and battery cell assembly. Third, NER models based on pre-
trained language models are developed. The best-performing models exhibit
F; scores of 88.18% and 94.61% in recognizing entities related to cathode
materials synthesis and cell assembly, respectively. Our information
extraction reveals trends in the usage of materials, conditions, and synthesis
methods in battery experimental studies. Finally, we generate 2840 and
2511 sequences for two tasks based on NER results and synthesis actions”,
thereby reporting 165 end-to-end battery material recipes. Based on the
recipe database, it is expected that an interactive battery recipes
information-retrieval system, which provides end-to-end recipes based on
user inputs such as partial precursors or synthesis methods, can be devel-
oped. To the best of our knowledge, this work is the first to provide an
automatic extraction of end-to-end battery material recipes from scientific
literature.

Results and discussion

Workflow of the proposed protocol

Figure 1 presents the comprehensive process of our T2BR protocol, which is
divided into five distinct steps: (1) paper collection, (2) paper selection, (3)
paragraph preparation, (4) battery recipe information extraction, and (5)
battery recipe generation. In the first step, 5885 papers were collected by
using a query consisting of several relevant keywords, such as LiFePO,, on
an academic search engine. Next, we developed a text-classification model to
filter out irrelevant papers based on abstract information, leaving 2174 valid

papers. In the third step, we implemented topic modeling at the paragraph
level, thereby identifying 2876 and 2958 paragraphs related to cathode
material synthesis and cell assembly topics, respectively. Next, we developed
NER models to extract a total of 30 entities, such as the precursors, active
materials, binder, atmosphere, or temperature, then revealing the usage
trends using the extracted entities. Finally, we generated 2840 and
2511 sequences representing the process of cathode materials synthesis and
cell assembly, respectively, which were used to construct 165 end-to-end
battery recipes. The results for each step are described below.

Collection and selection of battery recipe papers

The first step of our protocol involves collecting comprehensive scientific
literature on battery materials recipes. We used the ScienceDirect RESTful
API, employing a search query such as (“LiFePO,” OR “lithium iron
phosphate” OR “lithium ferrophosphate” OR “olivine”) AND (“battery”);
Our focus was on selecting documents categorized as research articles,
therefore, other document types such as review articles, encyclopedias, short
communications, and book chapters were excluded. This search yielded a
total of 5885 papers published up to May 2022. For each selected paper, we
gathered bibliographic information, including the DOI, as well as textual
information such as the title and abstract.

The results of such an information-retrieval process depend on the
inclusion of specific keywords. Consequently, even if the above-mentioned
keywords are mentioned in a paper, they might not necessarily pertain to
battery material synthesis. To address this issue, we sampled 1000 papers
and evaluated their abstracts to determine their relevance to battery recipes.
Using this dataset (true: 281, false: 719), we conducted a binary classification
using term frequency inverse document frequency (TF-IDF)-based ML
models. All text classification models underwent evaluation using fivefold
cross-validation, with the optimized eXtreme Gradient Boosting (XGB)
model exhibiting the highest F; score of 85.19% among five different clas-
sification models. Detailed optimization procedures for each model are
provided in the Methods section. We applied the best-performing model to
the remaining 4885 papers, thereby identifying 1893 relevant papers in
addition to 281 true papers.

Preparation of battery recipe paragraphs

Next, we extended our analysis to the paragraphs of valid papers (N = 2174).
After excluding paragraphs too short to identify the contents (less than 200
characters), 46,602 paragraphs remained for analysis. This threshold was
established to exclude content that lacked sufficient detail to describe
complex synthesis processes or experimental results. To validate this cri-
terion, we manually reviewed a random sample of excluded paragraphs and
confirmed that most contained incomplete or generic information, such as
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Fig. 1| Workflow of the T2BR protocol. The following issues are considered in this
workflow: (1) All the textual information of scientific literature, in addition to
metadata such as paper type, publication date, or journals, is collected to filter high-
quality papers. (2) Papers of interest are selected based on the abstract of papers
using the ML model trained on a labeled dataset. (3) Paragraph preparation is
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performed by an unsupervised ML model, which refers to paragraph-level text
information. (4) NER models are developed to extract scientific information on
materials, conditions, or synthesis actions, where we prepare the annotation dataset
for training these models. (5) Based on the information extraction results, recipe
sequences are generated and stored in our database.
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Fig. 2 | Results of filtering valid papers and paragraphs. a Two-dimensional map of
topics, which was obtained by applying principal component analysis to a topic-
keyword distribution matrix. Here, the node size is proportional to the ratio of each
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section titles or brief figure/table descriptions. For instance, brief statements
such as ‘Fig. 3. The first cycle charge-discharge curves of LiFePO, powders
synthesized at 220 °C for 10 hours’ lack sufficient detail to describe the
synthesis process comprehensively. We applied unsupervised learning-
based topic modeling methods, specifically LDA, BERTopic, and BERTopic
combined with K-means clustering, to identify common topics within the
dataset. We compared the models using two criteria—the number of topics
generated and the coherence score—as summarized in Supplementary
Table 1. BERTopic initially generated 253 fine-grained topics with a high
coherence score of 64.05, indicating well-organized internal structures.
However, the large number of topics complicated the interpretation and
categorization of specific themes. To address this, we applied K-means
clustering to BERTopic, which reduced the number of topics to 24 despite
initially setting the cluster count to 25. This discrepancy likely resulted from
data distribution characteristics, where highly similar topics were merged, or
one cluster remained empty due to insufficient data points.

In contrast, LDA generated 25 distinct topics with a coherence score of
59.63, which, though slightly lower than that of BERTopic, was more
manageable for identifying key themes within battery-related research. The
simpler and distinct structure of LDA topics made it particularly beneficial
for our analysis, allowing us to pinpoint paragraphs specifically related to
battery recipes without significant ambiguity. As a result, we adopted LDA
for our final analysis due to its ability to produce a reasonable number of
distinct topics with acceptable coherence. Using LDA, we identified 25
topics and analyzed their most frequent keywords to determine their main
content, revealing two topics closely related to battery recipes: one on the
synthesis of cathode materials and the other on battery cell assembly
(Fig. 2b, c), while the node distribution on the 2D map (Fig. 2a) highlights
thematic relationships, where closely positioned nodes indicate overlapping
topics and distant nodes suggest independent themes. Notably, topics 17
and 14 exhibit a close relationship, sharing overlapping keywords such as

“capacity,” “cycling,” and “performance,” which reflect their thematic focus
on various aspects of battery performance, including discharge rates and
electrochemical behavior. In contrast, topics 21 and 17 are positioned far
apart due to minimal keyword overlap. Topic 21 focuses on chemical and
structural analyses, such as Raman spectroscopy, while topic 17 emphasizes
battery cycling and discharge characteristics. This distinct positioning
underscores the divergence between structural characterization and elec-
trochemical performance analysis.

The topic of cathode material synthesis encompassed 2876 paragraphs,
characterized by frequent key terms such as ‘solution’, ‘h’, ‘temperature’,
‘mixture’, and ‘powder’. The topic of battery cell assembly comprised 2958
paragraphs, with frequent keywords including ‘cell’, ‘electrode’, ‘electro-
chemical’, ‘cathode’, ‘electrolyte’, and ‘foil. Thus, by employing unsu-
pervised learning techniques such as statistical topic distribution inference,
we were able to efficiently identify the main content of paragraphs related to
battery recipes and accurately determine the locations of these recipe-related
paragraphs within the research papers. The primary keywords for the
remaining 23 topics, judged to be unrelated to battery recipes, are delineated
in Supplementary Table 2.

Information extraction of battery recipes

Next, we developed two NER models to extract specific information about
cathode materials synthesis and battery cell assembly. To achieve this, we
created an annotated dataset where the start and end indices of each cate-
gory were marked with special tags. Our deep learning-based NER models
primarily consisted of bidirectional encoder representations from trans-
formers (BERT)* and conditional random field (CRF)* layers, as illustrated
in Fig. 3. We used existing pre-trained BERT models for the BERT com-
ponent, which was pre-trained on domain-specific and large-scale corpora.
Then the models were fine-tuned on our annotated datasets to adapt the
model to the specific context of battery recipes. For cathode materials
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Fig. 3 | Schematic illustration of our NER model. The original text of the paper
concerning battery recipes undergoes tokenization by the tokenizer, followed by the
NER model, which predicts the category for each token. The NER model comprises a

BERT layer for capturing the contextual meaning of each token, alongside a SoftMax
function and a CRF layer designed to predict the sequence with high probability.

synthesis, we identified 15 categories: precursors, temperature, target
materials, time, amount, ratio, atmosphere, company, method, solvent,
wash solvent, speed, solution, coating, and pH. We manually annotated 100
paragraphs, carefully reading and marking the relevant entities. For cell
assembly, we defined 15 categories: amount, cathode solvent, active mate-
rials, binder, conductive agent, anode, solvent, salt, current collector, tem-
perature, time, company, size, separator, and pressure. The descriptions and
statistics of these annotations are provided in Supplementary Tables 3-4.
We annotated 200 paragraphs to develop the NER models for this task.
Specific details on the model training and its mechanisms are provided in
the Methods section.

In simple terms, as illustrated in the example in Fig. 3, the first token of
the input text, ‘LiFePO,’, is tagged as ‘S-AM’ for a single-word entity of the
‘Active Materials’ category. The NER model is trained to accurately predict
the tag for each word by considering the surrounding context, such as the
meaning and the predicted tags of neighboring tokens. This mechanism
enables the model to determine the start and end positions of words cor-
responding to each category, thereby facilitating the extraction of relevant
information. We employed the BERT-CRF model for the NER task, uti-
lizing various domain-specific BERT models to investigate the impact of
their context-understanding abilities. The efficacy of NER is influenced by
both the specific characteristics of the subject under analysis (cathode
material synthesis vs. battery cell assembly) and the domain specificity of the
language model’s training corpus. To investigate this effect, we evaluated
four pre-trained language models—BERT*, SciBERT™, BatteryBERT", and
MatBERT"'—by comparing their NER performance in terms of F1 score, as
summarized in Supplementary Tables 5 and 6. In addition to testing BERT-
based NER models, we evaluated the performance of ChemDataExtractor, a
widely used rule-based tool for material information extraction, as a base-
line. Supplementary Table 7 summarizes the performance of ChemDa-
taExtractor with and without boundary relaxation for cathode synthesis and
cell assembly tasks. ChemDataExtractor achieved F1 scores of 50.09 for
cathode synthesis and 40.75 for cell assembly. When boundary relaxation
was applied (allowing partial matches to count as correct), the performance
improved to 68.14 and 56.40, respectively. These scores demonstrate that
while  boundary relaxation enhances the performance of

ChemDataExtractor, it remains limited in effectively handling complex or
ambiguous entities in battery-related research texts.

To ensure a fair comparison, the performance evaluation of Chem-
DataExtractor was restricted to categories that it is capable of recognizing.
For cathode materials synthesis, the evaluation included categories such as
“PRECURSOR,” “TARGET_MATERIAL,” and “SOLVENT,” while for
battery cell assembly, categories like “ACTIVE_MATERIAL,” “ANODE,”
and “SEPARATOR” were considered. This filtering approach aligns the
evaluation with ChemDataExtractor’s inherent design limitations, provid-
ing a focused analysis of its capabilities within its predefined scope.

Despite the improvements achieved through boundary relaxation,
ChemDataExtractor’s inability to adapt to a broader range of annotation
categories underscores the advantage of Transformer-based models, which
demonstrate greater flexibility and contextual understanding across diverse
and complex domains. These results highlight the limitations of rule-based
methods like ChemDataExtractor, which rely on predefined rules and
dictionaries. While effective for structured and simple entities, ChemDa-
taExtractor struggles with diverse and ambiguous entity expressions com-
monly found in materials science texts.

For the NER task focused on cathode materials synthesis, MatBERT
exhibited the highest performance, achieving an average F, score of 88.18%
on the test set (Fig. 4a). This superior performance can be attributed to the
substantial similarities between the synthesis procedures for cathode
materials and those of inorganic materials, which are well-represented in
MatBERT’s training corpus. Consequently, the model’s tokenizer demon-
strates enhanced word recognition capabilities, leading to improved NER
performance in this specific context. In the category of materials informa-
tion, such as precursors and target materials, MatBERT and BatteryBERT
demonstrated superior performance. For instance, MatBERT achieved an
F; score of 86.97% in recognizing ‘target materials’ entities, whereas Sci-
BERT scored 81.97%. This superior performance of MatBERT likely stems
from its specialization in materials knowledge. Conversely, for quantitative
information categories such as ‘temperature’, ‘time’, and ‘ratios’, SCiBERT
and BERT show better performance. This finding suggests that domain-
specific adaptation of language models may diminish their ability to
recognize general numerical information.
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Fig. 4 | Performance of NER models for two information extraction tasks.

a Abbreviated categories for cathode material synthesis, i.e., precursors (PREC),
temperature (TEMP), target materials (TM), atmosphere (ATM), ratio (RAT),
active materials (ATM), company (COMP), method (METH), solvent (SOLV),
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categories for cell-assembly process, amount (AMO), solvent (SOLV), and active
materials. (AM), binder (BIND), conductive agent (CA), anode (ANO), cathode
solvent (CS), current collector (CC), temperature (TEMP), company (COMP),
separator (SEPA), and pressure (PRES).

For the cell-assembly NER task, BatteryBERT is the best-performing
model, exhibiting the highest average F; score of 94.61% on the test set
(Fig. 4b). We attribute the abundant battery knowledge of BatteryBERT to
its superior performance, as it encompasses various terms about battery cell
components, such as the anode and active materials that are exclusive to the
context of battery technology. Specifically, for the anode entity, Batter-
yBERT achieved an F, score of 90.21%, outperforming other models such as
BERT (87.22%), SciBERT (87.64%), and MatBERT (89.65%). Similarly, the
BatteryBERT-based model demonstrated a superior ability to recognize
‘conductive agents’ entities, achieving a higher F; score (93.60%) compared
to other models (BERT: 86.77%, SciBERT': 90.82%, MatBERT: 91.53%). This
finding suggests that the BatteryBERT model exhibits a specialized con-
textual understanding of battery-related literature, enhancing its perfor-
mance in identifying materials with specific roles such as ‘anode’ (90.21%) or
‘active materials’ (95.93%) within battery systems. Conversely, for categories
such as salts and solvents that are relevant across numerous material
domains beyond batteries, MatBERT—designed to comprehensively cover
the literature on inorganic materials—demonstrated superior performance
with F; scores of 94.79% and 96.74%, respectively. Categories with low
annotation frequency, including PRES entities, exhibited relatively lower
performance across all models, as detailed in Supplementary Table 3. This
limitation is likely due to the insufficient annotation data, which reduces the
models” ability to learn effective patterns for these entities. Since battery
recipes inherently follow a structured sequence from precursor selection to
final assembly, the relationships between entities are naturally inferred from
their sequential order in the extracted text. As a result, explicitly modeling
entity relationships is less critical, as key insights can be effectively captured
through well-structured entity extraction. Given this structured approach,
we also explored the potential of utilizing LLMs for NER tasks. Detailed
performance metrics and methodologies are provided in the Methods
section and Supplementary Information (Supplementary Tables 8 and 9;
Supplementary Fig. 1). Specifically, five-shot learning with GPT-4 (‘gpt-4-
0416’) achieved notable F1 scores of 82.58% and 86.89% for cathode
material synthesis and cell assembly, respectively, as shown in Supple-
mentary Fig. 2. However, the results obtained from prompt engineering

differ in format from those of standard NER outputs, making direct per-
formance comparisons challenging. While recent advances in LLMs, such as
GPT-4, have demonstrated competitive performance in NER tasks’>”, their
application to large-scale battery data extraction presents several challenges,
including cost, consistency, and interpretability’*. Unlike traditional NLP
approaches such as BERT-CRF, which offer greater transparency and
domain-specific fine-tuning, LLMs often function as black-box models,
making structured entity extraction more difficult. Additionally, GPT-4’s
computational expense at scale significantly exceeds that of BERT-based
models, which are more efficient and cost-effective for large-scale text
extraction tasks, as shown in Supplementary Table 11. Another funda-
mental difference lies in how these models represent entity spans. BERT-
based NER models explicitly output both entity labels and precise token
positions (start and end indices), allowing for more structured and detailed
information extraction. In contrast, GPT-based models generate entity
values as free text without inherent token position information. Extracting
structured token spans from GPT outputs requires additional prompt
engineering, which increases both input and output complexity, further
amplifying computational costs. Due to this fundamental difference in
output format, direct performance comparisons between BERT-based and
GPT-based NER models remain inherently challenging.

GPT performance and fine-tuning analysis model

In addition to BERT-based models, we further explored the potential of
GPT-based models, including GPT-3.5 Turbo and GPT-4o, for battery
recipe information extraction. To evaluate their performance, we employed
zero-shot, five-shot, and fine-tuned settings. Distinct performance patterns
across entity categories emerged, as summarized in Supplementary
Tables 8 and 9. While GPT-40 achieved competitive results in several
categories with five-shot learning, certain limitations were observed. In
particular, it exhibited difficulties in processing complex sentence structures,
often misinterpreting intricate descriptions or producing inconsistent out-
puts. For example, sentences containing ambiguous references to chemical
names or experimental procedures were occasionally misclassified. Addi-
tionally, both GPT models struggled with domain-specific challenges,
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especially when identifying rare battery-related terminology or specialized
chemical entities.

Another notable limitation was the tendency of GPT models to gen-
erate unintended entities, even when explicitly instructed to extract only
predefined categories. For instance, when prompted to extract conditions
such as Temperature and Time, the models sometimes inserted additional,
non-existent terms like Heating Material or Cooling Step, resulting in errors.
This behavior reflects the challenge of ensuring strict adherence to specific
entity types through prompt engineering alone. Interestingly, GPT-40
occasionally attempted to infer missing details when faced with incomplete
input. For example, given the sentence “Stir the mixture at 70 °C”, the fine-
tuned model sometimes fabricated hypothetical completions such as “for
30 minutes,” even though no such duration was provided. This tendency
underscores the generative nature of GPT models, which may introduce
hallucinated details when processing underspecified or ambiguous content.

To address these issues, we fine-tuned both models using annotated
battery literature. In the cathode synthesis task, fine-tuning led to perfor-
mance improvements of up to 7.02% compared to the GPT-4o five-shot
baseline, particularly in categories such as PRECURSOR, TARGET
MATERIAL, TEMP, and TIME. In the cell assembly task, fine-tuning
similarly improved performance, with gains of up to 4.17% in categories
such as SEPARATOR and TIME. Additionally, for GPT-3.5 Turbo, fine-
tuning resulted in an overall average improvement of 5.56% over the five-
shot approach, indicating consistent benefits across diverse entity types.
Despite these improvements, some categories, such as RATIO and COAT
showed limited gains, likely due to insufficient training examples and the
inherent ambiguity of expressions found in the dataset.

These observations suggest that while GPT models demonstrate strong
adaptability through few-shot learning and show notable improvements
with fine-tuning, challenges remain in controlling unintended generation
and managing linguistic ambiguity. By contrast, the BERT-CRF model
exhibited superior consistency and precision in structured entity extraction,
making it more suitable for high-reliability battery recipe NER tasks.
Nevertheless, the flexibility and generalization capacity of GPT models
present promising avenues for future research, particularly for tasks invol-
ving complex or loosely structured scientific language.

NER-based battery research trend analysis
We applied the highest-performing NER models to the remaining para-
graphs to extract all entities from battery recipe papers. Specifically, we
employed the MatBERT-based NER model for 2776 paragraphs associated
with cathode material synthesis and the BatteryBERT-based model for 2758
paragraphs related to battery cell assembly. Based on the information
extraction results, we were able to reveal the relationships between entities in
cathode materials synthesis or battery cell assembly paragraphs (Fig. 5).
As shown in Fig. 5a, the atmosphere used for synthesizing the cathode
material is predominantly Ar, followed by N,, H,, air, and vacuum. In
summary, 77% of cathode material synthesis occurs in an Ar or N, atmo-
sphere at temperatures between 0 °C and 100 °C or 600 °C and 800 °C, with
room temperature being the most common. Above 1000 °C, the synthesis is
primarily conducted in an atmosphere of Ar, N,, air, or H,. However, less
frequently, environments such as C,H,, CHy, O,, or vacuum are also used.
Under sub-zero conditions, the synthesis primarily uses atmospheres of Ar,
followed by N,, inert gases, air, H,, and vacuum conditions. In Fig. 5b, the
combination of LiPF, with ethylene carbonate (EC) and dimethyl carbonate
(DMC) predominates as the salt and solvent in most cases. EC is used due to
its high dielectric constant and wide electrochemical stability window,
which facilitate the dissociation of LiPFs and enhances battery stability.
DMC is selected for its low viscosity and excellent electrochemical stability,
which, when combined with EC, improve the electrolyte’s flow properties
and overall performance. In addition, EC solvent is occasionally mixed with
solvents such as ethyl methyl carbonate (EMC), dimethyl ether (DME),
propylene carbonate (PC), and dioxolane (DOL), whereas vinylene carbo-
nate (VC), dimethoxymethane (DMM), dimethylformamide (DMF), and
acetonitrile (CAN) are used less frequently.

In Fig. 5¢, the association relationships between precursor materials
and synthesis methods in battery cell assembly are visualized. From the
perspective of precursors, our dataset on LFP batteries indicates that Li, Fe,
and PO, sources are the most frequently extracted, with Li,CO3, FeC,0y,
and NH,H,PO, being the most commonly used. Most studies adopted the
solid-state method for synthesizing uniformly formed LFP particles, pri-
marily using Li,COj3, FeC,0,, or NH,;H,PO, as precursor materials. For
hydrothermal methods, LiOH, FeSO,, or H;PO, precursors are used,
whereas H;PO, and LiOH are frequently selected in the solvothermal
method as well. They are selected because of their ability to act as a versatile
reactant under elevated temperatures and pressures in aqueous or solvent
environments, facilitating controlled crystallization and the formation of
desired nanostructures or complex compounds with tailored properties.
The sol-gel method was mainly employed for handling citric acid or NH,,
whereas the precipitation, rheological phase, or polymerization method was
sometimes used for FeSO,, NH,, and S, respectively. In Fig. 5d, the
dependency relationships of precursor materials in battery recipes are
analyzed. In summary, Li,CO; and NH, are frequently used together,
because of their ability to efficiently provide lithium ions and facilitate the
formation of homogeneous and high-purity cathode materials. In addition,
there are dominant combinations such as LiOH-H;PO,, FeSO,~LiOH,
FeC,0,~NH,, FeSO,~H;3PO,, and Li,CO;-FeC,0,. In addition to these
results, we analyzed the relationships between temperature-time and
temperature—action in cathode materials synthesis and binder-conductive
agent and temperature-action in battery cell assembly (Supplemen-
tary Fig. 3).

Battery recipe pattern analysis and retrieval

In addition to the NER results, we extracted the synthesis action information
to provide the full information of end-to-end battery recipes as sequences.
To this end, we used the pre-trained text-mining toolkit for inorganic
materials synthesis”, which classifies the verbs related to synthesis action
into eight categories such as ‘starting’, ‘mixing’, ‘purification’, ‘heating,
‘cooling’, ‘shaping’, ‘reaction’, and ‘non-altering’ based on the context. Based
on the information extraction results, we identified the most probable
synthesis action sequences for cathode material synthesis and battery cell
assembly. The results of sequence probability modeling are presented in
Fig. 6, which effectively highlights the flow of probabilities across the
synthesis steps and provides a clear understanding of the sequential pro-
gression and dominant patterns in each process.

Here, we assumed that the sequential mention of synthesis actions in
the text represents the order of the synthesis process and displayed the
synthesis actions and NER results according to the order of sentence
appearances in the sequence data. To extract and classify these synthesis
actions, we adopted the ULSA (Unified Language of Synthesis Actions)
model”, a framework specifically designed for inorganic synthesis proto-
cols, which provides a standardized representation of synthesis actions.
Using this framework, verbs extracted from synthesis paragraphs were
mapped into eight predefined synthesis steps: ‘starting, ‘mixing, ‘pur-
ification,” ‘heating,’ ‘cooling,” ‘shaping,” ‘reaction,” and ‘non-altering. This
mapping enabled the effective construction of structured synthesis
sequences, with 2840 sequences derived from cathode material synthesis
paragraphs and 2511 from battery cell assembly paragraphs. This entire
process—from raw text extraction and synthesis action identification using
domain-specific BERT models, to the mapping of verbs such as ‘prepared,
‘dissolved,” and ‘stirring’ into standardized steps like ‘starting’ and ‘mix-
ing'—is illustrated in Supplementary Fig. 4. It highlights the structured
representation of synthesis actions, enabling a systematic analysis of
synthesis protocols.

Next, we aimed to uncover potential causal relationships between
synthesis actions by probabilistically analyzing the previously derived
cathode material synthesis sequences (N=2840) and cell assembly
sequences (N = 2511). As a result of analyzing sequences of synthesis actions
in cathode material synthesis paragraphs, the sequence with the highest
probability is identified as <‘starting' — ‘mixing’ — ‘purification’ —
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mical vapor deposition. d Dependency relationships between precursor materials.

‘heating’ > (Fig. 6a). The reason for this high probability is that the synthesis
of cathode materials typically begins with the preparation of raw materials
(‘starting’), followed by their combination to ensure uniformity (‘mixing’).
Subsequent purification steps are crucial to remove impurities that could
affect material performance, and finally, heating is applied to induce the
necessary chemical reactions and phase transformations. An analysis of
2511 sequences of synthesis actions in cell-assembly process paragraphs
identified the most probable sequence as <‘starting’ — ‘mixing’ — ‘non-
altering’ — ‘purification’ > (Fig. 6b). The reason for this high probability is
that the cell-assembly process typically begins with the preparation of initial
components (‘starting’), followed by their combination to ensure homo-
geneity (‘mixing’). The non-altering step involves procedures that do not
change the chemical nature of the components, such as coating slurry onto
the current collector layers. Finally, purification steps are essential to remove
any contaminants that could compromise the performance and longevity of
the cell.

Next, we tried to identify end-to-end battery recipes, which encompass
the entire process from material synthesis to cell assembly, by linking and
filtering the two types of recipes. For this task, the following post-processing
steps were conducted. First, we verified whether the source papers of the
material synthesis recipe and the cell assembly recipe were the same. Next,
we confirmed whether the target material resulting from the cathode
material synthesis sequence and the active material, which is the starting
material for the cell assembly sequence, were the same. Then, we utilized a

predefined dictionary-based approach to confirm whether the target
material from the cathode material synthesis sequence matched the active
material used as the starting material in the cell assembly sequence. The
dictionary, which was constructed by integrating existing chemical data-
bases and manual curation, contained normalized representations of che-
mical entities, including standard chemical formulas, synonyms, and
common abbreviations (e.g., “LiFePO,” = “LFP”). For example, a target
material such as “LiFePO,” in the synthesis sequence was matched with the
active material “LFP” in the assembly sequence using this dictionary.
Finally, we ensured that the precursor and synthesis methods were
clearly specified in the given recipes, thereby identifying 165 end-to-end
recipes. The reason why the number of end-to-end recipes is relatively small
is that not all LFP battery studies cover the entire process from material
synthesis to cell assembly. In the collected dataset, numerous instances were
found where only the cathode synthesis process was detailed, primarily
concentrating on material synthesis and characterization. For instance,
when the research objective involves analyzing the morphological char-
acteristics of specific materials such as FePO, and LiFePO,, the aim is to
understand the structure, size, and thermal behavior of these materials™*.
Consequently, the focus is on their physical and chemical properties, with
no evaluation of the electrochemical performance of the battery cell. Fur-
thermore, several studies concentrated exclusively on the synthesis process
of LiFePO, particles and their properties during synthesis”**. Conversely, in
instances where only the cell assembly process was described, the cathode
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respectively, are analyzed.

was often procured commercially, with only the source being specified.
These studies typically omitted descriptions of the cathode synthesis
process™ .

Based on this recipe database, an interactive battery recipe
information-retrieval system can be developed, as illustrated in Fig. 7. If
precursor materials are limited and only solid-state synthesis methods are
available, users can search our database to find relevant recipes, including
cathode synthesis, cell assembly, or end-to-end types. Searching with a
query such as “((‘sucrose’). PREC.) AND ((‘solid state’). METHOD) AND
((‘end-to-end’). TYPE)” provides the following end-to-end recipe: In Step 1,
the target material, LiFePO,/C, is synthesized from raw materials such as
LiH,PO,, FeC,0,-2H,0, 5% sucrose, and 5% citric acid. In Step 2, a slurry is
prepared using LiFePO, (‘active material’), Super P (‘conductive agent’), and
PVDF (‘binder’), which is then coated onto aluminum foil to form the
cathode. Next, the anode is prepared using lithium foil, and a microporous
PE film is inserted between the two electrodes to serve as the separator.
Finally, the electrolyte, consisting of LiPF¢ mixed with EC and DEC solvents,
is added to complete the battery cell assembly. In this way, by using certain
precursor elements or synthesis method conditions as input, it is possible to
provide the complete recipe for material synthesis or cell assembly.

Conclusion

In this work, we aimed to systematically and automatically extract end-to-
end battery recipes from the scientific literature using a language modeling-
based protocol, i.e., T2BR. First, we developed ML-based text classification
models to discern the papers related to battery recipes from the information-
retrieval results, leading to the filtering of 2174 valid documents with a high
F; score of 85.19%. Next, we conducted topic modeling at the paragraph
level, efficiently identifying 2876 and 2958 paragraphs about cathode
materials synthesis and cell-assembly processes, respectively. We developed
two deep-learning-based NER models, each designed to extract 15-type
entities— one model focused on cathode materials synthesis (e.g., pre-
cursors, target materials) and the other targeting entities associated with cell-
assembly processes (e.g., active materials, anode). These models exhibited

high average F; scores of 88.18% and 94.61%, respectively, enabling the
automatic extraction of battery recipe entities from the remaining ~5500
paragraphs. In addition, we extracted the synthesis action using a materials-
aware NLP toolkit", thereby generating 165 sequences representing the
overall process of battery recipes. To the best of our knowledge, this study is
the first to collectively extract end-to-end battery recipes from large-scale
scientific literature, paving the way for a generalized approach to the
knowledge base construction of battery materials.

We acknowledge several limitations of the current study and propose
directions for future research. First, our analysis is based on a limited dataset
of LiFePO, battery literature, collected exclusively from a single search
engine. Consequently, some reports based on information extraction results
may exhibit bias. However, our protocol is adaptable and can be applied to
an expanded dataset that includes other battery systems**** such as lithium-
ion batteries consisting of LiCoO, and LiMn,0, cathode materials, as
demonstrated by several examples in Supplementary Figs. 5 and 6. The
second limitation arises from the lack of connection between battery recipes
and the electrochemical performance of the batteries. Our protocol enables
the extraction of battery recipe information, not providing quantitative
information on the electrochemical profile of batteries such as the
voltage-capacity curve, charge/discharge curve, cycle life, energy density,
and current-voltage curve. Considering that the long-term goal is to identify
the optimal battery recipe by linking our end-to-end battery recipes with
performance data, it is essential to analyze additional information from
tables and figures® as well as extract relationships between entities from text.
Finally, we have identified potential areas for performance enhancement in
the proposed protocol, likely attributable to discrepancies between the
predefined categories and actual data. The diverse and complex terminology
employed by materials scientists when referring to battery components may
contribute to this performance degradation. Consequently, it is imperative
to use an annotation dataset that ensures both quality and diversity. For
categories with limited datasets (e.g, method, solvent, solution, coating,
pressure), augmenting existing data, rather than merely increasing tagging
sets, may serve as a viable alternative. Moreover, exploring other state-of-
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the-art models, such as pointer networks for NER, could potentially
improve contextual understanding and final output performance. For
instance, applying fine-tuning of LLMs presents an opportunity to develop
an NER model specific to battery recipe extraction™. For instance,
applying fine-tuning of LLMs presents an opportunity to develop an NER
model specific to battery recipe extraction, in line with recent advancements
in Al-driven materials research®~"". Considering the presence of exceptional
cases, such as the intertwining of cell assembly and material synthesis
information in a single paragraph, generative models could potentially offer
a solution in the future.

Methods

Paper-level text classification models

We classified battery recipe-related papers from the information-retrieval
results in a systematic manner. Initially, we manually reviewed the abstract
and title information of 1000 randomly selected papers to determine their
relevance to battery recipes. This process resulted in 281 relevant and 719
irrelevant papers. We used this labeled dataset to develop a paper classifi-
cation model. First, we applied TF-IDF to represent the text as vectors using
the scikitlearn, generating a 1000 x 10,592 matrix. We then developed five
classification models using AutoML in the H20 module”: random forest
(RF), logistic regression (LR), gradient boosting machine (GBM), multi-
layer perceptron (MLP), and XGB. To optimize the hyperparameters for

each ML model, we conducted a grid search based on fivefold cross-vali-
dation, using the F; score as the performance evaluation metric.

The optimal parameters identified were as follows: the number of trees
and maximum depth were 50 and 20 for the RF. The family was set as
binomial distribution, and the minimum lambda, beta epsilon, theta, and
stopping tolerance were set as 0.0001, 0.0001, le-10, and 0.001, respectively,
for LR. The following parameters were set for GBM: sample rate = 0.8,
learning rate = 0.1, stopping tolerance = 0.001, stopping metric = log loss,
maximum depth = 15, and number of trees = 50. Three hidden layers of 100
nodes, an Adam optimizer with a 0.005, a rectified linear unit as the acti-
vation function, and a dropout rate of 0.5 for MLP were used. For XGB, the
following parameters were used: number of trees = 110, maximum depth of
the trees = five levels, learning rate =0.03, a scale of positive weight =2,
minimum child weight =2, and minimum split loss =3. Among these
models, the optimized XGB model demonstrated the highest performance,
as shown in Supplementary Table 10. We then applied this model to the
remaining 4885 papers. Combining the 281 manually labeled papers with
the prediction results, where 1893 papers were classified as relevant, we
identified a total of 2174 papers related to battery recipes.

Paragraph-level topic modeling
We conducted paragraph-level topic modeling using Python libraries
such as Natural Language Toolkit (NLTK)”> and gensim”. First,
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NLTK was used for pre-processing such as tokenization and stop-
words elimination, where common articles such as ‘a@’, and ‘the’, and
pronouns such as ‘this’ and ‘that’ were excluded. Next, genism was
employed to develop the LDA model. LDA is a probabilistic model
that provides insights into the topics present within a given
document™. It estimates topic-specific word distributions and
document-specific topic distributions from datasets consisting of
documents and their constituent words. This inference process relies
on the assumption of distributions following the Dirichlet distribu-
tion, a common practice in Bayesian models of multivariate prob-
ability variables. In essence, LDA posits that words within a
document are generated based on the joint distribution of topic-word
distributions and document topic distributions and utilizes Gibbs
sampling to infer these distributions from the observed word dis-
tribution within the document.

LDA involves two hyperparameters: a and . The former determines
the density of document topic relationships, whereas the latter indicates the
density of topic-word relationships. Their higher values lead to more uni-
form probabilities across topic distributions, whereas lower values empha-
size specific topic distributions. We set these parameters as 5.0 and 0.01. In
addition, we determined the number of topics as 25 based on coherence and
perplexity scores. Perplexity gauges the efficacy of a probability model in
predicting observed values, with lower values indicating superior
document-model alignment. Coherence, on the other hand, evaluates the
semantic consistency within topics’*. As modeling accuracy increases, topics
tend to aggregate semantically related terms. Consequently, by assessing the
similarity among primary terms, we ascertain the semantic coherence of
topics. Through exhaustive testing across topic numbers ranging from 1 to
40, we identified 25 topics characterized by an optimal balance between low
perplexity and high coherence. For the visualization of topic modeling
results, we used the LDAvis Python library, which provides an interactive
web-based visualization.

Pre-trained language model configuration

For the NER tasks, we employed the BERT-CRF model. We tested a range of
pre-trained language models, including BERT (‘bert-base-uncased’), Sci-
BERT (‘scibert_scivocab_uncased’), MatBERT (‘matbert-base-uncased’),
and BatteryBERT (‘batterybert-uncased’). These models were fine-tuned on
our specific dataset to enhance domain-specific entity recognition and
contextual understanding. Each model was originally pre-trained on dis-
tinct domain corpora, leading to variations in their word recognition and
contextual comprehension capabilities. Specifically, BERT was trained on
general knowledge sourced from books and Wikipedia text (~3300 M
words), whereas SciBERT was trained on research papers from the fields of
biology, medicine, and computer science (~3170 M words). MatBERT was
trained on materials science research papers (~8.8B words), and Batter-
yBERT was fine-tuned based on BERT, specifically using papers from the
field of battery materials (~1870M words). BERT-based models are trained
with two tasks such as masked language modeling, which predicts masked
words within a given sequence, and next sentence prediction, which discerns
relationships between sentences. Their contextual understanding cap-
abilities vary depending on the corpus used for training, which directly
affects their performance across NLP tasks in different domains. Further-
more, each BERT model utilizes a distinct tokenizer, as they rely on the byte
pair encoding algorithm. Consequently, the level at which consecutive
character sequences, appearing with a certain frequency in the corpus, are
recognized as a single token varies depending on the corpus used. The word
‘LiFePO4’ can be tokenized either as a single entity or segmented into
multiple tokens-‘LiFe’, PO’, ‘4’ (Supplementary Fig. 7).

NER model development

After tokenization, we annotated the tokens using the IOBES tagging
scheme, which classifies each entity into subtypes to indicate whether a
token is inside (I), outside (O), at the beginning (B), or the end (E) of multi-

token entities as well as single-token entities (S). This scheme is effective for
handling compound words, as it provides additional information about the
boundaries of named entities. This tagging scheme can introduce certain
constraints in sequence labeling tasks. For example, an I-tag cannot appear
at the beginning of a sentence, and an OI pattern is invalid. In a B-I-I pattern,
the named entity must remain consistent; for instance, BAM can be followed
by I-AM or E-AM, but not by I-CA. To address these sequence labeling
challenges, we employed a CRF layer as the final layer of the NER models. A
CRF is a type of SoftMax regression that transforms categorical sequential
data into a format suitable for SoftMax regression, subsequently used to
predict sequence vectors.

After model configuration, the dataset with annotations is split into
training, validation, and test sets with a ratio of 8:1:1 with stratified sampling.
In training NER models, we conducted an exhaustive grid search to opti-
mize the hyperparameters, which are determined as follows: the maximum
number of epochs of 50, applying early stopping with the patience of 10, the
learning rate of le-3, batch size of 5, and optimizer of RangerLars, which is
the composite of RAdam, LARS, and Lookahead. We conducted 10-fold
shuffle split cross-validation, which is effective in adjusting imbalanced
datasets, and verified the performance of the NER models. Next, when
evaluating the NER performance for each category, we adopted a lenient
evaluation criterion by applying boundary relaxation, considering the
diversity and complexity of entity expressions in the materials science and
battery recipe domains. Specifically, if any component word of a compound
term belonging to a specific category was correctly identified, it was deemed
a correct match.

Post-processing of information extraction results

After extracting specific information from the scientific literature, we
normalized the entities written in natural language in a qualitative
but systematic manner. First, based on frequent entities for each
category, we constructed a dictionary of chemical substances. Next,
we identified the entities with similar meanings but different entities
by conducting pairwise comparisons of frequent entities. Conse-
quently, entities representing the same active materials such as
LiFePO,/C, and LiFePO,/Carbon were normalized into the more
frequently appearing one such as LiFePO,/C, whereas binder-type
entities such as polyvinylidene fluoride and PVDF were unified into
PVDF. Finally, these normalization results were used to analyze the
battery research trends in depth. When normalizing synthesis time
information, all the values were converted to seconds and trans-
formed using a logarithmic scale, divided into 10 intervals for ana-
lysis. ‘Overnight’ was estimated as 8 h, and ‘few’ and ‘several’ were
approximated as 5. For normalizing synthesis temperature informa-
tion, Kelvin temperatures were converted to Celsius. When tem-
perature ranges were provided, we checked if they fell within 100-
degree intervals. For example, if the extracted entity was ‘150-220’,
both the 0-100 and 100-200 intervals were marked.

Data availability
The datasets generated and analyzed during this study are available at

https://github.com/KIST-CSRC/Text-to-BatteryRecipe.

Code availability
The source codes used in this study are available at https://github.com/
KIST-CSRC/Text-to-BatteryRecipe.

Received: 4 September 2024; Accepted: 9 May 2025;
Published online: 17 May 2025

References

1. Choudhary, K. et al. Recent advances and applications of deep
learning methods in materials science. npj Comput. Mater. 8, 59
(2022).

Communications Materials | (2025)6:100

10


https://github.com/KIST-CSRC/Text-to-BatteryRecipe
https://github.com/KIST-CSRC/Text-to-BatteryRecipe
https://github.com/KIST-CSRC/Text-to-BatteryRecipe
www.nature.com/commsmat

https://doi.org/10.1038/s43246-025-00825-z

Article

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Batra, R., Song, L. & Ramprasad, R. Emerging materials intelligence
ecosystems propelled by machine learning. Nat. Rev. Mater. 6,
655-678 (2021).

Jain, A. et al. Commentary: The Materials Project: a materials genome
approach to accelerating materials innovation. APL Mater. 1,011002
(2013).

Kirklin, S. et al. The Open Quantum Materials Database (OQMD):
assessing the accuracy of DFT formation energies. npj Comput.
Mater. 1, 1-15 (2015).

Draxl, C. & Scheffler, M. NOMAD: The FAIR concept for big data-
driven materials science. MRS Bull. 43, 676-682 (2018).

Olivetti, E. A. et al. Data-driven materials research enabled by natural
language processing and information extraction. Appl. Phys. Rev. 7,
041317 (2020).

Kononova, O. et al. Opportunities and challenges of text mining in
materials research. Iscience 24, 102155 (2021).

Choi, J. & Lee, B. Quantitative topic analysis of materials science
literature using natural language processing. ACS Appl. Mater.
Interfaces 16, 1957-1968 (2023).

Choi, J. et al. Deep learning of electrochemical CO, conversion
literature reveals research trends and directions. J. Mater. Chem. A 11
(2023).

Wang, L. et al. A corpus of CO2 electrocatalytic reduction process
extracted from the scientific literature. Sci. Data 10, 175 (2023).

Gao, Y., Wang, L., Chen, X., Du, Y. & Wang, B. Revisiting
electrocatalyst design by a knowledge graph of Cu-based catalysts
for CO2 reduction. ACS Catal. 13, 85258534 (2023).

Glasby, L. T. et al. DigiMOF: a database of metal-organic framework
synthesis information generated via text mining. Chem. Mater. 35,
4510-4524 (2023).

Park, H., Kang, Y., Choe, W. & Kim, J. Mining insights on
metal-organic framework synthesis from scientific literature texts. J.
Chem. Inf. Model. 62, 1190-1198 (2022).

Pei, Z.,Yin, J., Liaw, P. K. & Raabe, D. Toward the design of ultrahigh-
entropy alloys via mining six million texts. Nat. Commun. 14, 54 (2023).
Huang, S. & Cole, J. M. BatteryBERT: a pretrained language model for
battery database enhancement. J. Chem. Inf. Model. 62, 6365-6377
(2022).

Huang, S. & Cole, J. M. BatteryDataExtractor: battery-aware text-
mining software embedded with BERT models. Chem. Sci. 13,
11487-11495 (2022).

Huang, S. & Cole, J. M. A database of battery materials auto-
generated using ChemDataExtractor. Sci. Data 7, 260 (2020).
El-Bousiydy, H., Troncoso, J. F., Johansson, P. & Franco, A. A.
LIBAC: an annotated corpus for automated “reading” of the
lithium-ion battery research literature. Chem. Mater. 35,
1849-1857 (2023).

Gou, Y., Zhang, Y., Zhu, J. & Shu, Y. A document-level information
extraction pipeline for layered cathode materials for sodium-ion
batteries. Sci. Data 11, 372 (2024).

Brown, T. et al. Language models are few-shot learners. Adv. Neural
Inf. Process. Syst. 33, 1877-1901 (2020).

Jin, Q., Yang, Y., Chen, Q. & Lu, Z. GeneGPT: augmenting large
language models with domain tools for improved access to
biomedical information. Bioinformatics 40, btae075 (2024).

Telenti, A. et al. Large language models for science and medicine. Eur.
J. Clin. Investig. 54, e14183 (2024).

Yu, S., Zhang, Y., Kim, J., Wang, L. & Chen, X. Large-language
models: the game-changers for materials science research. Artif.
Intell. Chem. 2, 100076 (2024).

Lei, G., Liu, Y., Zhao, T., Chen, W. & Ong, S. P. Materials science in the
era of large language models: a perspective. Digit. Discov. 3,
1257-1272 (2024).

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Foppiano, L., Wang, Z., Wu, Y., Wang, L. & Cole, J. M. Evaluation of
large language models for information extraction in materials science.
Nat. Commun. 15, 1418 (2024).

Vangala, S. R., Zhang, C., Lin, A., Mo, Y. & Kim, S. Suitability of large
language models for extraction of high-quality chemical reaction
dataset from patent literature. J. Cheminform. 16, 131 (2024).
Schulze Balhorn, L., Meier, J., Hoffmann, M. & Schneider, G. Empirical
assessment of ChatGPT’s answering capabilities in natural science
and engineering. Sci. Rep. 14, 4998 (2024).

Luo, K., Li, Y., Wang, X., Zhou, H. & Zhang, Y. Large language models
surpass human experts in predicting neuroscience results. Nat. Hum.
Behav. 9, 225-234 (2024).

Zhang, W., Chen, J., Li, M., Yang, Y. & Aspuru-Guzik, A. Leveraging
GPT-4 to transform chemistry from paper to practice. Digit. Discov. 3,
2367-2376 (2024).

Zhao, S., Liu, Y., Kim, J., Wang, L. & Xu, S. Potential to transform
words to watts with large language models in battery research. Cell
Rep. Phys. Sci. 5, 101844 (2024).

Duffner, F. et al. Post-lithium-ion battery cell production and its
compatibility with lithium-ion cell production infrastructure. Nat.
Energy 6, 123-134 (2021).

Park, N., Lee, M., Jung, H. & Nam, J. Complex rheological response of
Li-ion battery anode slurries. J. Power Sources 608, 234607 (2024).
Li, J., Fleetwood, J., Hawley, W. B. & Kays, W. From materials to cell:
state-of-the-art and prospective technologies for lithium-ion battery
electrode processing. Chem. Rev. 122, 903-956 (2021).

Li, Z., Zhang, J. T., Chen, Y. M., Li, J. & Lou, X. W. Pie-like electrode
design for high-energy density lithium—sulfur batteries. Nat. Commun.
6, 8850 (2015).

Hawley, W. B. &Li, J. Electrode manufacturing for lithium-ion batteries
—analysis of current and next generation processing. J. Energy
Storage 25, 100862 (2019).

Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-
olivines as positive electrode materials for rechargeable lithium
batteries. J. Electrochem. Soc. 144, 1188 (1997).

Yang, H., Shi, X., Chu, S., Shao, Z. & Wang, Y. Design of block-
copolymer nanoporous membranes for robust and safer lithium-ion
battery separators. Adv. Sci. 8, 2003096 (2021).

Lin, C.-E. et al. Carboxylated polyimide separator with excellent
lithium ion transport properties for a high-power density lithium-ion
battery. J. Mater. Chem. A 6, 991-998 (2018).

Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal-organic framework-
based separator for lithium-sulfur batteries. Nat. Energy 1, 1-6 (2016).
Ransil, A. & Belcher, A. M. Structural ceramic batteries using an earth-
abundant inorganic waterglass binder. Nat. Commun. 12, 6494
(2021).

Zhang, Z., Zeng, T., Lai, Y., Jia, M. &Li, J. A comparative study of
different binders and their effects on electrochemical properties of
LiMn204 cathode in lithium ion batteries. J. Power Sources 247, 1-8
(2014).

Xu, J. et al. Electrolyte design for Li-ion batteries under extreme
operating conditions. Nature 614, 694-700 (2023).

Chen, J. et al. Electrolyte design for LiF-rich solid—electrolyte
interfaces to enable highperformance microsized alloy anodes for
batteries. Nat. Energy 5, 386-397 (2020).

Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles
for electrolytes and interfaces for stable lithium-metal batteries. Nat.
Energy 1, 1-7 (2016).

Chen, Z. & Dahn, J. Reducing carbon in LiFePO4/C composite
electrodes to maximize specific energy, volumetric energy, and tap
density. J. Electrochem. Soc. 149, A1184 (2002).

Blei, D. M., Ng, A. Y. &Jordan, M. |. Latent dirichlet allocation. J. Mach.
Learn. Res. 3, 993-1022 (2003).

Communications Materials | (2025)6:100

11


www.nature.com/commsmat

https://doi.org/10.1038/s43246-025-00825-z

Article

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Wang, Z. et al. ULSA: unified language of synthesis actions for the
representation of inorganic synthesis protocols. Digit. Discov. 1,
313-324 (2022).

Devlin J., Chang M.-W., Lee K., Toutanova K. Bert: Pre-training of
deep bidirectional transformers for language understanding. In:
Proceedings ofthe 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies 1, 4171-4186 (2019).

ZhengS. et al. Conditional random fields as recurrent neural networks.
In: Proceedings of the IEEE international conference on computer
vision) (2015).

Beltagy, I., Lo, K. & Cohan, A. SciBERT: A pretrained language model
for scientific text. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
3615-3620 (2019).

Trewartha, A. et al. Quantifying the advantage of domain-specific pre-
training on named entity recognition tasks in materials science.
Patterns 3, 100488 (2022).

Polak, M. P. & Morgan, D. Extracting accurate materials data from
research papers with conversational language models and prompt
engineering. Nat. Commun. 15, 1569 (2024).

Dagdelen, J. et al. Structured information extraction from scientific
text with large language models. Nat. Commun. 15, 1418 (2024).
Kalyan, K. S. A survey of GPT-3 family large language models including
ChatGPT and GPT-4. Nat. Lang. Process. J. 6, 100048 (2023).
Ivanov-Schitz, A., Nistuk, A. & Chaban, N. Li3Fe2 (PO4) 3 solid
electrolyte prepared by ultrasonic spray pyrolysis. Solid State lon.
139, 153-157 (2001).

Scaccia, S., Carewska, M., Wisniewski, P. & Prosini, P. P.
Morphological investigation of submicron FePO4 and LiFePO4
particles for rechargeable lithium batteries. Mater. Res. Bull. 38,
1155-1163 (2003).

He, L., Liu, X. & Zhao, Z. Non-isothermal kinetics study on synthesis of
LiFePO4 via carbothermal reduction method. Thermochim. Acta 566,
298-304 (2013).

Xu, C., Lee, J. & Teja, A. S. Continuous hydrothermal synthesis of
lithium iron phosphate particles in subcritical and supercritical water.
J. Supercrit. Fluids 44, 92-97 (2008).

Shim, J. & Striebel, K. A. Cycling performance of low-cost lithium ion
batteries with natural graphite and LiFePOA4. J. Power Sources 119,
955-958 (2003).

Ge, S. et al. High safety and cycling stability of ultrahigh energy lithium
ion batteries. Cell Rep. Phys. Sci. 2, 100584 (2021).

Yuan, C. et al. The abrupt degradation of lifepo4/graphite battery
induced by electrode inhomogeneity. Solid State lon. 374, 115832
(2022).

Pan, X., Liu, L., Yang, P., Zhang, J. & An, M. Effect of interface wetting
on the performance of gel polymer electrolytes-based solid-state
lithium metal batteries. Solid State lon. 357, 115466 (2020).

Kim, J. S. et al. Improving the highrate performance of LCO cathode
by metal oxide coating: evaluation using single particle measurement.
J. Electroanal. Chem. 933, 117190 (2023).

Ali, M. E. S. et al. LiIMn204-MXene nanocomposite cathode for
high-performance lithium-ion batteries. Energy Rep. 11,
2401-2414 (2024).

Lee, J., Lee, W. &Kim, J. MatGD: materials graph digitizer. ACS Appl.
Mater. Interfaces 16, 723-730 (2023).

Choi, J. & Lee, B. Accelerating materials language processing with
large language models. Commun. Mater. 5, 13 (2024).

Tian, S. et al. Steel design based on a large language model. Acta
Mater. 285, 120663 (2024).

68. Zheng Z. et al. Large language models for reticular chemistry. Nat.
Rev. Mater. 10, 369-381 (2025).

69. Jiang, X. et al. Applications of natural language processing and large
language models in materials discovery. npj Comput. Mater. 11, 79
(2025).

70. Pyzer-Knapp, E. O. et al. Foundation models for materials
discovery—current state and future directions. npj Comput. Mater. 11,
61 (2025).

71. LeDell, E. & Poirier, S. H2o0 automl: Scalable automatic machine
learning. In: Proceedings of the AutoML Workshop at ICML. ICML San
Diego, CA, USA (2020).

72. Bird, S., Klein, E. & Loper E., Loper E. Natural language processing
with Python: analyzing text with the natural language toolkit. “ O’Reilly
Media, Inc.” (2009).

73. Rehurek, R. & Sojka, P. Gensim-Python framework for vector space
modelling. NLP Cent. Fac. Inform. Masaryk Univ. Brno, Czech Repub.
3,2 (2011).

74. Rdder, M., Both, A. & Hinneburg, A. Exploring the space of topic
coherence measures. In: Proceedings of the eighth ACM international
conference on Web search and data mining) (2015).

Acknowledgements

This work was supported by the National Research Foundation of Korea,
funded by the Ministry of Science and ICT (NRF-2021M3A7C2089739), and
Institutional Projects at the Korea Institute of Science and Technology
(2E33681). We would like to express our sincere gratitude to Nayeon Kim, a
Ph.D. student at the Korea Institute of Science and Technology, for her
valuable assistance in editing our figures.

Author contributions

B.L. conceived the idea. B.L. and H.M. supervised the project. D.L.
implemented the research framework, contributed to the design of the
research methodology, prepared and annotated the dataset, developed,
trained, and evaluated all models, conducted data analysis, and led the
manuscript writing and revision. J.C. collected relevant literature,
contributed to the design of the research methodology, contributed to the
development of the AutoML model, and participated in drafting the
manuscript. All authors contributed to the discussion and writing of the
manuscript. All remaining authors reviewed and approved the final version of
the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43246-025-00825-z.

Correspondence and requests for materials should be addressed to
Jaewoong Choi or Byungju Lee.

Peer review information Communications Materials thanks the
anonymous reviewers for their contribution to the peer review of this work.
Primary Handling Editors: Jack Evans and Jet-Sing Lee. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Communications Materials | (2025)6:100

12


https://doi.org/10.1038/s43246-025-00825-z
http://www.nature.com/reprints
www.nature.com/commsmat

https://doi.org/10.1038/s43246-025-00825-z

Article

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincludedin the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

Communications Materials | (2025)6:100

13


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsmat

	Building an end-to-end battery recipe knowledge base via transformer-based text mining
	Results and discussion
	Workflow of the proposed protocol
	Collection and selection of battery recipe papers
	Preparation of battery recipe paragraphs
	Information extraction of battery recipes
	GPT performance and fine-tuning analysis model
	NER-based battery research trend analysis
	Battery recipe pattern analysis and retrieval

	Conclusion
	Methods
	Paper-level text classification models
	Paragraph-level topic modeling
	Pre-trained language model configuration
	NER model development
	Post-processing of information extraction results

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




