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Predicting hydrogen diffusion in
nickel–manganese random alloys using
machine learning interatomic potentials
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To advance carbon neutrality, structural materials for high-pressure hydrogen environments must be
designed based on fundamental principles. However, the atomic-scale complexity of random alloys
hinders the development of interatomic potentials that can accurately reproduce hydrogen behavior
influenced by alloying elements. This study develops a machine-learning interatomic potential (MLIP)
for the Ni–Mn–H ternary system by efficiently sampling training data through an active learning
strategy that combines atomic-force uncertainty and structural descriptors of diverse atomic
environments. Molecular dynamics simulations employing the constructed MLIP quantitatively
reproduce the experimentally observed non-monotonic dependence of the hydrogen diffusion
coefficient on the Mn content. Two competing Mn-addition effects are found: increased and
decreased activation energies from repulsive Mn–H interactions and lattice expansion, respectively,
the balance of which shifts with the Mn content and governs the diffusion behavior. This approach
enables accurate prediction of hydrogen diffusion in random alloys and provides atomic-level insights
into alloying effects.

In efforts to achieve carbon neutrality and address energy resource deple-
tion, the “hydrogen economy” is developing at an accelerating rate1,2, with
various initiatives progressing worldwide3–11. A hydrogen society encom-
passes all stages, from hydrogen production, transportation, storage, and
supply to utilization, with notable advancements, particularly for hydrogen
utilization4. Hydrogen fuel cell vehicles (FCVs), which employ hydrogen as
a fuel and emit no carbon dioxide, are a prominent technology5,12. With the
spread of FCVs, the development of hydrogen refueling stations is also
progressing13. However, in such systems, specificmetal components such as
pipes and valves are exposed to high-pressure hydrogen environments.
Further, hydrogen can penetrate these materials, potentially reducing their
strength and ductility14–17. This phenomenon is commonly known as
“hydrogen embrittlement (HE)”18–22.

Austenitic stainless steels (ASSs) with high austenite stability are pri-
marily used in FCVs and hydrogen-refueling stations23,24. To expand the
range of usable materials, recent research has investigated HE behavior in
ASSs with varying austenite stabilities. In those studies, the HE behavior was

evaluated using either external hydrogen introduced through high-pressure
hydrogen gas or internal hydrogen pre-charged into thematerial by exposure
to high-pressure hydrogen gas25,26. Ductility in hydrogen environments
decreaseswith the austenite stability27–32. Although extensive research is being
conducted onHE in austenitic alloys33–39, the underlyingmechanisms are not
fully understood because they vary with the materials, environmental con-
ditions, and loading states. For high-pressure hydrogen environments in
particular, atomic hydrogen readily dissolves and diffuses intometals, even at
room temperature, causingHE. Therefore, hydrogen solubility and transport
(diffusion) inmetalsmust beunderstood to enable thedevelopment of design
guidelines for the materials employed in such environments.

Several studies have investigated hydrogen solubility and diffusion
coefficients in practical stainless steels under high-pressure hydrogen gas40,41.
However, practical alloys contain various alloying elements intended to
enhance their corrosion resistance, HE resistance, and phase stability. To
eliminate the complexity introduced by other metallurgical factors,
Omura et al.42 investigated the effects of certain alloying elements (Fe, Cr,
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Mn, Mo) on the hydrogen solubility and diffusion coefficients of Ni under
high-pressure hydrogen using simple binary Ni–X austenitic alloys. Fur-
thermore, Ito et al.43 semi-quantitatively reproduced the experimental results
for hydrogen solubility using density functional theory (DFT) calculations
and clarified the action mechanism of the alloying elements. However, the
action mechanism of the alloying elements on the hydrogen diffusion coef-
ficient, which is another important factor, has not been reproduced through
calculation, nor has it been explained based on calculation results. For pure
Ni, nonempirical calculations of hydrogen diffusion coefficients using DFT-
based phonon calculations combined with transition state theory have
quantitatively reproduced experimental results44. However, DFT-based cal-
culation of the hydrogen diffusion coefficients in alloy systems is not com-
putationally practical, as the various diffusion paths caused by the random
atomic positions must be comprehensively assessed. Calculations of hydro-
gen diffusion coefficients in high-entropy alloys using combinations of DFT-
basedmachine learningmodels and kineticMonte Carlo (kMC) simulations
have recently been reported45,46. However, for these kMC methods, the dif-
fusion attempt frequency must be provided as a parameter and, thus, the
predictions are semi-empirical rather than fully nonempirical45,46. Further-
more, as the results have not been compared with experimental data, the
prediction validity remains unclear. In contrast, molecular dynamics (MD)
calculations using empirical interatomic potentials for Ni–H, which are
constructed while emphasizing consistency with DFT, can reproduce
experimental results for hydrogen diffusion coefficients47. However, con-
struction of highly accurate empirical interatomic potentials for the Ni-X-H
ternary system, which exhibits magnetism, is difficult48. Recently, machine-
learning interatomic potentials (MLIPs) have been developed for many
systems49–52, including Ni53–55, Fe, and their binary systems56–68, which exhibit
magnetism. MLIPs have also been applied to analyze hydrogen diffusion in
binary systems containing hydrogen69–72. However, MLIPs have reduced
accuracy in the extrapolation region73 and, to the best of our knowledge, no
ternary MLIPs that can reproduce hydrogen diffusion behavior in random
alloys under diverse atomic environments have been reported. In this study, a
MLIP for the Ni–X–H system is developed, and MD simulations are per-
formed using this potential to nonempirically predict hydrogen diffusion
coefficients in random alloys. The predictions are verified through compar-
ison with experimental results. Furthermore, a detailed analysis of the
simulation results elucidates the effects of the alloying elements on the
hydrogen diffusion at the atomic level. In particular, an active learning
method is employed for the MLIP construction, in which a commonly used
uncertainty-based approach based on atomic forces74 is combined with a
structural-feature-based screening process75. This method enables efficient
sampling of diverse atomic environments relevant to hydrogen diffusion in
alloys, thereby facilitating the construction of a high-accuracy MLIP. How-
ever, the MLIP development and subsequent analyses generate substantial
computational costs. Therefore, this study focuses on the Ni–Mn alloy sys-
tem. Although experimental investigations of this system have revealed a
nonlinear dependence of the hydrogen diffusion coefficient on the Mn
concentration42, the underlying mechanism remains unclear. Thus, this
system presents a suitable case for demonstrating the utility of MLIP-based
analysis. Notably, the approach adopted in this study is not limited to the
Ni–Mnsystem and is applicable to other randomalloy systems. Accordingly,
this study presents an approach towards the nonempirical prediction of
hydrogen diffusion behavior in random alloys and offers deep atomic-level
insights into hydrogen transport. These findings will extend the role of
computational materials science in the design of materials for hydrogen
environments and support the realization of a carbon-neutral society.

Results and discussion
Overview of MLIP construction using GeNNIP4MD
In this subsection, the construction procedure of the Ni–Mn–HMLIP is
outlined. In the subsequent subsections of the Results and discussion
section, we demonstrate the accuracy of the developed MLIPs in repro-
ducing the properties of Ni–Mn alloys relevant to hydrogen diffusion and
the hydrogen behavior therein, through comparison with DFT

calculations. Additionally, we report hydrogen-diffusion coefficients
within Ni–Mn alloys determined from MD simulations conducted using
the devised MLIPs and compare those coefficients with the experimental
values. Based on these computational results, we then revealed, at the
atomic scale, the effect of Mn on the hydrogen diffusivity at the atomic
scale. Finally, we discuss the potential for further development of the
methods and the insights obtained in this study. The method used to
calculate the hydrogen-diffusion coefficients via MD simulations, which
identifies the atomic environments that should be sampled to construct
the MLIP training dataset, is described in the Methods section. The
training-dataset generation and the MLIP training process are also
described in theMethods section, and details of the DFT settings used for
the training-data generation and validation are provided. In this study, we
constructed anMLIP for theNi–Mn–Hsystem that can accurately predict
the hydrogen diffusion coefficients; this was achieved using the recently
developed GeNNIP4MD software package75, which is an MLIP con-
struction tool. Active learning methods based on the atomic-force
uncertainty, which are provided in the DP-GEN software platform74, are
widely used for MLIP construction. In GeNNIP4MD, a more sophisti-
cated active learning approach is adopted75, which combines uncertainty-
based active learning74 with an additional screening process based on the
structural features. GeNNIP4MD likely enables efficient generation of the
most compact and appropriate training dataset for a high-accuracy
MLIP75. In this study, we employed the DP framework76, which is com-
monly used in DP-GEN. The current implementation of GeNNIP4MD
supports DP framework, including M3GNet77 and CHGNet78. In princi-
ple, however, it can also be extended to other potential forms such as the
Behler–Parrinello neural network potential (BNNP)79, atomic cluster
expansion (ACE)80, moment tensor potential (MTP)81, Gaussian
approximationpotential (GAP)82, and spectral neighbor analysis potential
(SNAP)83. The MLIP construction method using GeNNIP4MD is illu-
strated in Fig. 1. Followingpreparation of an initial training dataset,model
training and training-data generation processes were iteratively executed
until themodel achieved sufficient prediction accuracy. The training-data
generation process comprised three steps: (1) generation (sampling) of
candidate structures, (2) screening of candidate structures via active
learning, and (3)DFT labeling of the screened structures to create a labeled
training dataset. First, multiple DP models with different initial para-
meters were trained using the initial training data (Fig. 1b). In the sub-
sequent step, in which the candidate structures were generated (Fig. 1d),
one of those DP models (e.g., one of four) was used to perform multiple
MD simulations on the target atomic system. For example, long-term
annealing under various temperature and pressure conditions was
simulated. Hence, a large and diverse set of candidate atomic structures
was generated. In the next step, two screening methods were applied to
select training-data candidates. First, uncertainty-based screening was
performed, throughwhich deviations in the atomic forces predictedby the
multiple DP models were evaluated. Structures with deviations within
predefined lower and upper thresholds were selected. These thresholds
were set to enable appropriate identification of structures for which the
model was undertrained and the prediction errorswere high. InDP-GEN,
the structures selected through this uncertainty-based screening were
used directly for labeling. By contrast, the GeNNIP4MD tool further
applied structural feature-based screening to the structures already
selected by the uncertainty-based method. In detail, the similarities
between the uncertainty-selected structures and existing training data
were evaluated, and structures with low similarity were preferentially
chosen. This dual screening process was expected to yield high-accuracy
MLIP construction with fewer iteration cycles and a smaller training
dataset using GeNNIP4MD compared to that achievedwith DP-GEN75,84.
In the subsequent step, i.e., labeling, DFT calculations were performed on
the structures selected by both screening methods to generate labeled
training data. TheDPs were then retrained using both the newly obtained
and existing training datasets. The predictive accuracies of the retrained
DPs were evaluated, and if necessary, the data generation and model
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retraining processes were repeated. Following sufficient iterations, the
final DP was obtained through training with both the initial and newly
added training datasets.

Accuracy of Constructed Deep Potential
Figure 2a and b show the dependence of the Ni lattice constant on the Mn
concentration, and the relationship between the lattice constant variation
and energy, respectively. As discussed in the following subsection, the
changes in the lattice constant induced by the presence of Mn significantly
affect the hydrogen diffusion via the activation energy. For the accuracy
validation, we employed 2 × 2 × 2 supercells with 32 hostmetal atoms in the
fcc structure.Consequently, each supercell includes 32octahedral interstitial
sites. Here, we employed Ni–Mn alloy configurations with the highest
degree of randomness in terms of the correlation functions, to achieve
validation for alloy-element arrangements with the maximum possible
randomness. The DP predictions agreed well with the DFT results. In
particular, the Ni lattice expansion due to Mn addition was accurately
reproduced. Figure 2c and d show the hydrogen solution energies at each
octahedral site in Ni–12.5 at.% Mn and Ni–25.0 at.% Mn, respectively.
These energies served as reference values for the hydrogen-diffusion acti-
vation energies. The DPs successfully reproduced the small energy differ-
ences in the hydrogen solution energies between sites.

Figure 3a and b show the energy profiles associated with the hydrogen
diffusion, which were calculated using the nudged elastic band (NEB)
method85,86 (see Methods) with both DP and DFT, respectively, for pure Ni
and Ni–25.0 at.% Mn. These energy profiles are the primary factors deter-
mining the hydrogen-diffusion activation energy derived from the MD
simulations. In the DFT-based NEB calculations, SCF (self-consistent field)

convergence for Ni–25 at.%Mn sometimes required several hundred steps,
which necessitated the use of a reduced number of images compared to the
NEB calculations with DP. The large number of steps required for SCF
convergence may be related to the magnetic instability of Ni–25 at.% Mn,
where Mn atoms may exhibit either ferromagnetic or antiferromagnetic
coupling with surrounding Ni atoms, and the energies of these magnetic
states are likely close43. It should be noted that, in the training dataset, allMn
atoms were confirmed to exhibit ferromagnetic coupling.

Figure 3c illustrates the local atomic environment of the hydrogen
during diffusion. The hydrogen diffusion proceeded via a tetrahedral site,
transitioning from a stable octahedral site to an adjacent octahedral site.
Note that the activation energy corresponds to the state inwhichhydrogen is
closest to the three host atoms during the transition between the octahedral
and tetrahedral sites; hereafter, this state is referred to as the “transition
state.” The hydrogen-diffusion activation energy in pure Ni was well
reproducedby theDP,with values of 0.41 and0.40 eVobtained from theDP
and DFT, respectively. For Ni–25.0 at.% Mn, we examined two repre-
sentative cases in which the effect of Mn became particularly significant, as
discussed indetail in the following subsection: (i) oneof the threehost atoms
adjacent tohydrogen in the transition statewasMnand (ii) all threewereNi.
In the presence of Mn, the activation energy increased; however, when all
three atoms were Ni, the activation energy decreased. The DP accurately
reproduced the effects of Mn.

Figure 3d and e show the phonon dispersion relations for pure Ni and
Ni–25.0 at.%Mnwith hydrogen in solid solution. These plots represent the
phonon dispersion for the octahedral sites, which is critical for accurate
computation of the pre-exponential of the hydrogen diffusion coefficient44.
In the pure Ni, when a hydrogen atom was located at an octahedral

Fig. 1 | Workflow for deep potential (DP) construction using GeNNIP4MD.
a The cycle begins with the creation of an initial training dataset. b In the training
step, fourDPswith different initial parameters are trained. cThe predictive accuracy
of the trained DPs is evaluated. d If the accuracy is insufficient, additional training
data are generated to improve the model. First, a diverse and large set of candidate
atomic structures is generated using molecular dynamics (MD) with the current
DPs. In the subsequent screening step, structures are selected based on themaximum
force deviation among the DPs, within a predefined range. This deviation threshold

is set to effectively identify poorly learned structures with large prediction errors. The
structural similarities of the selected candidates are then evaluated relative to the
current training set, and structures with low similarity are chosen for labeling. In the
labeling step, density functional theory (DFT) calculations are performed on the
selected structures, and the resulting data are added to the training set. This cycle is
repeated until a DP with satisfactory accuracy is obtained. (RMSE: root mean
square error).
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interstitial site, the phonondispersion exhibited a triply degenerateflat band
at approximately 24 THz.This result indicates that thehydrogenwasweakly
bound to the host lattice. The DP results were in excellent agreement with
those obtained from the DFT calculations and effectively captured this
behavior.

For theNi–25.0 at.%Mn, the case in which aMn atomwas adjacent to
the octahedral site, as shown in Fig. 3c, was considered. The calculations
indicated that, in the presence of Mn, hydrogen at the octahedral site
exhibited three distinct vibrational modes.This behavior indicated lifting of
the degeneracy. As discussed in Supplementary Note 1, for the transition
state, the accuracy achieved by the DP in reproducing the Mn-induced
effects was lower than that achieved for pure Ni. This lower accuracy may
have been due to the increased variety of diffusion pathways in the alloy
system compared to that of pure Ni, which made sufficient sampling of the
transition states more challenging. Nevertheless, the DP qualitatively
reproduced the influence of Mn reasonably well. In summary, the DP
developed using GeNNIP4MD successfully reproduced various DFT
results, including the lattice constant and associated energy variations in
Ni–Mn alloys, hydrogen solution energies and their site dependencies,
hydrogen-diffusion activation energies, and phonon dispersions. These
results suggest that the obtained DP enables accurate computation of
hydrogen diffusivity in Ni–Mn alloys.

Comparison of values calculated using DP and experimental
values for hydrogen diffusion coefficients in Ni–Mn alloys
Figure 4a, b, and c show examples of MD simulations of hydrogen dif-
fusion conducted using the developed DP for pure Ni, Ni-10.0 at.% Mn,
and Ni-25.0 at.% Mn, respectively. In all systems, a linear relationship
existed between time and the mean square displacement (MSD), vali-
datingfittingwith the Einstein equation (seeMethods). Figure 4d presents
Arrhenius plots of the diffusion coefficients obtained from the Einstein
relation at each temperature. The linearity of these plots validates the
approach in which a single activation energy was used for fitting. This
consistency also validates the computational conditions and atomic
structure models used in the hydrogen diffusion analysis. Similar results
were obtained for other chemical compositions; for details, please refer to
Supplementary Note 2.

Figure 4e and f present the obtained hydrogen-diffusion pre-expo-
nential factors and activation energies for each system. For comparison, the
experimental results reportedbyOmura et al.42, Katz et al.87, andVölkl et al.88

are also presented. As regards the activation energy, for the pure Ni, the
activation energy obtained from the MD calculations was 0.42 eV, which is
in good agreement with the octahedral-to-octahedral activation energy of
0.41 eV shown in Fig. 3. Note that the hydrogen-diffusion activation energy
generally corresponds closely to that calculated fromNEB analysis44,47. This
result further validates the computational settings and structural models
used in theMDsimulations. The value of 0.42 eV calculated for theMn-free
case is slightly lower than the value of 0.44 eV reported by Omura et al.42;
however, the difference is within the range of experimental uncertainty
when considering the values reported by Katz et al.87 and Völkl et al.88.
Additionally,Wimmer et al.44 theoretically estimated thehydrogendiffusion
coefficient inNi using phonon calculations and transition state theory based
on first-principles methods. They estimated that the zero-point vibrations
contributed approximately 0.02 eV to the activation energy. This value
alignswell with the difference from the experimental result ofOmura et al.42,
suggesting that the slight deviation in activation energy obtained in the
present MD simulations may have arisen because zero-point vibrational
contributions cannot be reflected in MD calculations. For the Mn-added
systems, the absolute values of the activation energies were slightly lower
than the experimental values; however, their variation trendwith increasing
Mn content was accurately reproduced. Specifically, with the addition of
~10.0 at.%Mn to pure Ni, the activation energy decreased slightly and then
increased toward 25.0 at.%, closely reproducing the trend observed in the
experiments. Regarding the pre-exponential factors, the computed values
agreed well with the experimental results of Omura et al.42. One possible
reason for this agreement is that zero-point vibrational effects, which were
not explicitly included in the MD calculations, had only a minor influence
on the pre-exponential factor44. Furthermore, the nonlinear change in the
pre-exponential factor owing to the addition of Mn was accurately repro-
duced in the simulations. In summary, the DP developed in this study,
combined with MD simulations, enabled quantitative reproduction of the
influence of Mn addition on hydrogen diffusivity in Ni. In particular, this
approach successfully captured the nonlinear effect of Mn content on the
hydrogen diffusion coefficient.

Fig. 2 | DP accuracy for Ni–Mn random alloys and
hydrogen solution in alloys. a Effect of Mn con-
centration on Ni lattice constant. b Relationship
between atomic volume and energy in Ni and
Ni–Mn alloys. In b, the energy reference is set to the
energy at the equilibrium lattice constant of each
system. c, dAccuracy of hydrogen-solution energies
in Ni–12.5 at.% Mn and Ni–25.0 at.% Mn, respec-
tively. For c and d, no hydrogen molecules are
included in the DP training dataset; therefore, the
reference energy is not that of an isolated hydrogen
atom in a molecule but is, instead, set to the lowest
calculated solution energy.
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Atomic-levelmechanismof theeffectofMnadditiononhydrogen
diffusion in Ni
Weexplored the atomic-scalemechanismthroughwhichMnadditionaffects
hydrogen diffusion. According to the experimental results of Omura et al.42,
the diffusion coefficient near room temperature, which is of industrial
importance, is primarily governed by the activation energy. For example, at
270 °C, the hydrogen diffusivity in Ni–25.0 at.% Mn decreases significantly
due to the increased activation energy, reaching approximately half that of
pureNi.Therefore, this section focuseson the influenceofMnadditionon the
hydrogen-diffusion activation energy. As shown in Fig. 3, the presence of
adjacent Mn atoms in the transition state can significantly affect the
hydrogen-diffusion activation energy. To investigate this effect in detail, we
constructed a 4 × 4 × 4 special quasi-random structure (SQS) model89 (see
Methods) comprising 256 host metal atoms for Ni–10.0 at.% Mn and
Ni–25.0 at.% Mn, which exhibited the minimum and maximum activation
energies, respectively. We then calculated the activation energies for all
256 × 8 possible diffusion paths using the DP and NEB methods. Figure 5a
shows theactivationenergyas a functionof thenumberof adjacentMnatoms
in the transition state. In both systems, the activation energy tended to
increase with an increasing number of adjacentMn atoms. This trend can be
attributed to the strongerMn–Hcore repulsion compared to that of Ni–Hat
the same bond length43, which is consistent with the fact thatMn has a larger
atomic radius than Ni. This repulsive interaction leads to an increase in
energy when the Mn atoms are located near the transition state, where the
interatomic distances between the host metals become shorter.

On the other hand, when there were no adjacent Mn atoms at the
transition state, the average activation energies were 0.38 and 0.32 eV for
Ni–10.0 at.% Mn and Ni–25.0 at.% Mn, respectively, both of which lower
than that of pure Ni (0.41 eV). To interpret this result, Fig. 5b shows the
relationship between the activation energy and lattice constant when the
number of adjacent Mn atoms was zero. This relationship agrees well with
the trend observed for pure Ni with various lattice constants. These results
indicate that, in the absence of adjacent Mn atoms, the activation energy is
reduced is caused by the lattice expansion due to the addition ofMn, which
increases the distances between the host atoms and between the host atoms
and hydrogen in the transition state, thereby reducing the energy penalty
from core repulsion. From these findings, two primary effects of Mn
addition on hydrogen diffusion were identified: (i) activation energy
reduction due to Ni lattice expansion, and (ii) increased activation energy
caused by repulsive Mn–H interactions.

Next, we considered the contribution of these two effects to the
hydrogen diffusion behavior. Figure 5c and d show histograms of the
hydrogen-diffusion activation energy in Ni–10.0 at.% Mn and
Ni–25.0 at.% Mn, respectively. For the Ni–25.0 at.% Mn, the number of
diffusion paths occurring with increased activation energy was almost
identical to those arising for decreased activation energy, relative to pureNi.
Therefore, selective diffusion of hydrogen over long distances via only those
paths inwhich the activation energy is reduced owing to lattice expansion is
difficult. Consequently, the effective activation energy may exceed that of
pure Ni. To verify this, Fig. 6 shows one representative case (i.e., the average

Fig. 3 | DP accuracy for hydrogen diffusion in
Ni–Mn random alloys. Energy profiles of hydrogen
diffusion calculated using aDP and bDFT, for pure
Ni and Ni–25.0 at.% Mn, comparing cases where
Mn atoms are adjacent to hydrogen at the diffusion
barrier site and where they are not. c Local atomic
configuration of hydrogen during diffusion in the
case of adjacent Mn. The gray, blue, and red spheres
represent Ni, Mn, and H atoms, respectively. The
gray spheres represent Ni atoms. Here, diffusion
occurs from an octahedral site adjacent to two Mn
atoms to an octahedral site adjacent to oneMn atom.
At the transition state, one of the three neighboring
host metal atoms is Mn. d Phonon dispersion of
hydrogen atom occupying octahedral site in Ni
calculated using DP and DFT. e Phonon dispersion
of hydrogen atom occupying octahedral site in
Ni–25.0 at.% Mn calculated using DP and DFT. In
d and e, the structure corresponds to the stable
configuration in which a single Mn atom is adjacent
to the hydrogen, as shown on the leftmost side of c.
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over eight hydrogen atoms in a single configurationof alloying elements and
hydrogen positions) for both pure Ni and Ni–25.0 at.% Mn at 700 K, in
which the averageMSD is close to the overall average amongmultiple cases
shown inFig. 4a and c. Figure 6a andbpresent the time evolutionof the path
length (cumulative distance traveled) and mean displacement (the square
root of the MSD, i.e., the straight-line distance between the initial and final
positions) of hydrogen. A temperature of 700 K was chosen because the
host-metal thermal vibrations were relatively moderate, which facilitated
atomic structure analysis. In both systems, the hydrogen diffusion behavior
waswell described by a single activation energy value; thus, therewas no loss
of generalitywhen the analysiswas conducted at 700 K.As shown in Figs. 4a
and 4c, at 700 K, the MSD and its square root (i.e., the mean displacement)
of pure Ni and Ni–25.0 at.% Mn (Fig. 6a) were similar. However, the path
length of the latter was longer (Fig. 6b). This outcome indicates that
hydrogen tends to follow longer diffusion paths in Ni–25.0 at.% Mn,
selecting routes with reduced activation barriers due to the increased lattice
constant resulting from Mn addition.

Figure 6c and d show the mean displacements of the individual
hydrogen atoms. In the pure Ni, monotonic increases in the displacements
of almost all hydrogen atoms occurred with increasing annealing time. In
contrast, for the Ni–25.0 at.% Mn, although the mean displacements of
some hydrogen atoms increased significantly, for the majority of hydrogen
atoms, the mean displacements tended to increase gradually with repeated
increases and decreases. To further elucidate the influence of Mn on the
hydrogen diffusion, the path lengths of each hydrogen atom in
Ni–25.0 at.% Mn are shown in Fig. 6e and f, color-coded by the number of
adjacent Mn atoms at the octahedral sites through which the hydrogen
diffused. These results indicate that most hydrogen atoms underwent dif-
fusion primarily via sites adjacent to Mn atoms, demonstrating that Mn
significantly impacts the selection of diffusion pathways. These findings
suggest that, in long-range hydrogen diffusion, hydrogen rarely moves
exclusively through low-barrier paths. That is, inmost cases, hydrogenmust
also traverse high-barrier paths. This behavior likely contributes to the
increased effective activation energy observed in Ni–25.0 at.% Mn

compared to that of pureNi.Moreover,when fourMnatoms are adjacent to
an octahedral site, the hydrogen interacts directly with theMn regardless of
the surrounding tetrahedral site towhich it attempts tomove, yielding ahigh
activation energy and a prolonged stay at that site. Thus, hydrogen trapping
at octahedral sites surrounded by adjacentMn atomsmay also contribute to
the increase in the effective activation energy caused by Mn addition. As
demonstrated above, the additionofMn induces twoopposing effects on the
hydrogen-diffusion activation energy: a decrease owing to the Ni lattice
expansion, and an increase owing to repulsiveMn–H interactions. Based on
simple combinatorial calculations, the fractions of diffusion paths involving
adjacentMn atoms in the transition state were found to be 27.1% and 57.8%
for 10.0 at.%Mn and 25.0 at.%Mn, respectively. Thus, the number of paths
involving repulsive Mn–H interactions increases with the Mn content.
Consequently, for Ni–10.0 at.%Mn, the reduction in activation energy due
to lattice expansion dominates, lowering the effective activation energy
compared to that of pure Ni. In contrast, forMn content exceeding 10 at.%,
the repulsive Mn–H interactions have a more pronounced effect, and at
25.0 at.% Mn, the effective activation energy increases. Finally, we discuss
the effect of the Mn addition on the pre-exponential factor. As mentioned
previously, the qualitative behavior of the pre-exponential factor as a
function of theMn contentmirrors that of the activation energy. That is, the
pre-exponential factor decreases when approximately 10 at.% Mn is added
toNi, and then increases againup to25.0 at.%, indicating anon-linear trend.
Although changes in the lattice constant influence the jump distance
(scaling with the square of the lattice parameter), the resulting change in the
pre-exponential factor between that of pureNi andNi–25.0 at.%Mn is only
approximately 4%. This difference is insufficient to explain the observed
1.69-fold increase in the pre-exponential factor. Therefore, the effect of the
lattice expansionon thepre-exponential factor via the jumpdistance is likely
limited, with other factors being dominant.

As shown inFig. 3e, diffusionpaths involving adjacentMnatoms in the
transition state cause degeneracy of the octahedral stable site, and the
transition state is lifted, which causes the emergence of higher-frequency
vibrational modes. However, lattice expansion softens phonon modes,

Fig. 4 | Comparison of calculated and experimental hydrogen-diffusion coeffi-
cients inNi–Mnalloys. a–cRelationship between annealing time andmean squared
displacement (MSD) of hydrogen in a Ni, b Ni–10.0 at.% Mn, and c Ni–25.0 at.%
Mn. dArrhenius plots of hydrogen diffusion coefficients versus 1/kBT for these three

systems. e, f Comparison of calculated and experimental effects of Mn content on
e activation energy and f pre-exponential factor for hydrogen diffusion in Ni.
Experimental results reported by Omura et al.42, Katz et al.87, and Völkl et al.88 are
shown for reference.
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Fig. 6 |Hydrogen diffusion behavior inNi andNi–25.0 at.%Mn. aTime evolution
of average hydrogen-atom displacement (i.e., square root of MSD), and b time
evolution of hydrogen-atom cumulative path lengths in Ni and Ni–25.0 at.% Mn.
Results are shown for a single case at 700 K for which the average displacement
closely matched the mean value across multiple cases shown in Fig. 4. c, d

Displacements of eight individual hydrogen atoms in case shown in b, for Ni and
Ni–25.0 at.% Mn, respectively. e, f Displacements of eight hydrogen atoms in
Ni–25.0 at.% Mn, color-coded by number of Mn atoms adjacent to octahedral site
occupied by each hydrogen atom at a given time.

Fig. 5 | Effect of Mn on hydrogen-diffusion acti-
vation energy in Ni. a Relationship between num-
ber of adjacent Mn atoms and hydrogen-diffusion
activation energy in Ni–10.0 at.% Mn and
Ni–25.0 at.% Mn. b Relationship between lattice
constant and activation energy for zero adjacent Mn
atoms. The trend obtained by varying the pure-Ni
lattice constant is also shown for comparison. c, d
Histograms of activation energies for Ni–10.0 at.%
Mn and Ni–25.0 at.% Mn, respectively. The results
in panels a–d were obtained from SQS models
comprising 256 host metal atoms in a 4 × 4 ×
4 supercell. The hydrogen-diffusion activation
energy in pure Ni is indicated by dashed lines.
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thereby reducing the jump frequency.Qualitatively, these twoeffects explain
the dependence of the pre-exponential factor on theMn content. However,
for amore quantitative discussion, a comprehensive and detailed analysis of
the effects of the alloy element distribution on the phonon dispersion is
required, which we leave for future work.

Application of findings from this study
This study elucidated the mechanisms through which the addition of Mn
affects hydrogen diffusion in Ni. Two primary effects of Mn addition were
identified: a decrease in activation energy due to expansion of the Ni lattice
constant and an increase in activation energy due to repulsive Mn–H
interactions. These two effects are not unique to Mn; rather, they represent
generalmechanisms exhibited by alloying elements in randomly distributed
face-centered cubic (fcc)metals. These insights are valuable for interpreting
the influences of various alloying elements on hydrogen diffusion. Omura
et al.42 experimentally investigated the effects of Mn and Cr on hydrogen
diffusivity, and showed that, at an addition level of 20 at.%, Cr generated a
greater increase in the hydrogen-diffusion activation energy thanMn.AsCr
and Mn are neighboring elements in the periodic table, with similar core
repulsion characteristics, this difference can be interpreted as being due to
the smaller lattice expansion effect induced by Cr compared to that of Mn
when both elements are at the same concentration. Thus, the findings of the
present study can be broadly applied to other alloying elements, to interpret
their effects on hydrogen diffusion. In this study, we used GeNNIP4MD to
construct an MLIP for the Ni–Mn–H system and demonstrated that the
resulting MD simulations successfully reproduced the experimentally
observed hydrogen-diffusion trends in Ni–Mn alloys. This study demon-
strates the effectiveness of MLIP construction using GeNNIP4MD for
metallic materials and illustrates potential applications in computational
materials science enabled by the construction of high-accuracy ternary
MLIPs. Although our focus was on the Ni–Mn system, the proposed
approach is applicable to hydrogen diffusion in a wide range of binary
random alloys. Therefore, this technique can potentially predict the effects
of alloying elements on hydrogendiffusion in diverse alloy systems, without
experimental measurements. At present, MLIP construction and MD
simulations based on those MLIPs require considerable computational
resources and, in some cases, may even be costlier than experiments.
However, as computation performance is continuously improving, this
approach is expected to become a powerful tool for the design of hydrogen-
resistant materials.

Methods
MLIP-based calculation of hydrogen-diffusion coefficient
Using the MLIP constructed according to the procedure described in the
“Overview of MLIP construction using GeNNIP4MD” section, hydrogen-
diffusion coefficients were calculated for pure Ni, Ni–7.5 at.% Mn,
Ni–10.0 at.% Mn, Ni–12.5 at.% Mn, and Ni–25.0 at.% Mn to span the
compositional range reported in the experimental study of Omura et al.42.
Diffusion simulations were performed using supercells comprising 2048
host metal atoms, which were created by expanding the conventional fcc
unit cell to a size of 8 × 8 × 8, as illustrated in Fig. 7. The OVITO software
package90 was used for the atomic structure visualization.

In alloy systems, owing to the constraints on the supercell size and
annealing time, the results may depend on the alloying-element arrange-
ment. Therefore, in this study, multiple configurations were used for each
composition. To represent random alloy configurations with themaximum
possible accuracy, an SQSmodel89 was employed. This model was also used
in previous DFT studies of hydrogen solubility in randomNi alloys43. Note
that this method determines near-random atomic arrangements in small
supercells based on correlation functions that quantify the randomness.
Here, SQSs were generated using the alloy-theoretic automated toolkit
(ATAT)91 and its mcsqs code92. The generation criteria employed in this
work were adopted from previous studies43,93. Among the many generated
SQSs, those with the best correlation function values were selected. For each
composition, i.e., Ni–7.5 at.%Mn, Ni–10.0 at.%Mn, Ni–12.5 at.%Mn, and

Ni–25.0 at.% Mn, 5, 5, 5, and 6 supercells with SQS-based random alloy
configurations were used, respectively. Eight hydrogen atoms were ran-
domly placed at octahedral sites in each supercell to generate the initial
structures for the diffusion calculations. This hydrogen content corre-
sponded to approximately 140 wt ppm, which is of the same order as the
hydrogen concentration under a hydrogen pressure of 100MPa employed
in the experiment byOmura et al.42.Owing to thehigh computational cost of
the MLIP, the placement of eight hydrogen atoms yielded statistically
meaningful results with a limited number of simulations. For the pure Ni,
the simulations were performed on 25 different systems with various initial
hydrogen configurations. For eachNi-Mn alloy configuration, five different
initial hydrogen placements were simulated, which yielded more than 25
combinations for each composition. The simulation conditions were based
on a previous study on Ni47, and all calculations were performed under
periodic boundary conditions. Temperatures of 700, 750, 800, 850, and
900 K were selected to ensure sufficient hydrogen diffusion and statistical
convergence of the diffusion coefficient within theMDsimulation duration.
First, a 50-ps annealing process was performed using a Nosé–Hoover
thermostat at the target temperature, with the pressure controlled at 0 to
relax the initial structures. Subsequently, a 1.0-ns annealing process was
conducted to enable computation of the diffusion coefficients. A 0.5-fs time
step was used. Following the approach of Torres et al.47, the hydrogen-atom
MSDduring annealing was computed, and the diffusion coefficients at each
temperature were obtained using the Einstein relation. Furthermore, the
pre-exponential factor and activation energy were derived from Arrhenius
plots of the diffusion coefficients against temperature. As discussed in the
Results section, the hydrogen diffusion behaviors in all the alloy systems
were well described by the Einstein relation across multiple alloy config-
urations and initial hydrogen placements. The Arrhenius plots revealed
linear trends thatwerewellfittedwhena singlediffusion coefficientwasused
for each alloy system.

MLIP construction using GeNNIP4MD
To train the DPmodels on the initial dataset and for each iterative training
step, we used DeePMD-kit (version 2.2.8)94. The model architecture and
hyperparameters were set based on a previous study on W–H DP con-
struction using DP-GEN95. In detail, we employed DPmodels using a two-
body embeddingdescriptor (i.e., se_e2_a). The cutoff radiuswas set to 6.5 Å,
the embedding net comprised layers with 20, 40, and 80 neurons, and the
number of axis neurons was 16. The fitting network had three hidden layers
with 240neurons each, and the learning rate began at 1×10−3 anddecayed to
1.0 × 10−8 over 800,000 training steps. The deep neural network architecture
comprised three fully connected hidden layers, each containing 240 neu-
rons, and the activation function was set to a hyperbolic tangent for all
hidden layers.

The structures used to construct the initial and additional training
datasets were selected to span the atomic environments encountered during
MD simulations for hydrogen diffusivity calculations. Specifically, we
employed atomic structures from the initial dataset, as listed in Table 1. The
initial trainingdataset comprised three subsets: (1) pureNiwithhydrogen in
a solid solution, (2) a randomNi–12.5 at.%Mn alloy with hydrogen in solid
solution, and (3) a random Ni–25.0 at.% Mn alloy with hydrogen in solid
solution. All these were based on 2 × 2 × 2 supercells with 32 host metal
atoms in the fcc structure, into which 0–2 hydrogen atoms were introduced
in solid solution. The atomic structures of (2) and (3) were generated using
the SQS approach described in the previous section. In the initial dataset,
only one random configurationwas used for each chemical composition. In
addition to the equilibrium volume, structures expanded by 2.0% were also
prepared. For each of these, ab initio MD (AIMD) simulations were per-
formed for 200 steps at 600 and 1200 K under constant-volume conditions,
and snapshotswere extractedat two-step intervals and included in the initial
dataset. Similarly, AIMD simulations under NPT conditions were per-
formed at 600 and 1200 K using the equilibrium volumes, and snapshots
were again extracted at every step and included in the initial dataset. Fur-
thermore, for the atomic structures in (2) and (3), we placed one hydrogen
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atom in each of the 32 octahedral sites and performed structural relaxation.
Five snapshots were extracted from each relaxation trajectory and included
in thedataset.All spin-polarizedDFTcalculations for the initial datasetwere
performed under the conditions described in the “Computational details”
subsection. The energies, forces, and virial tensors of each structure were
computed. As this study aimed to accurately evaluate hydrogen diffusion,
additional trainingdatawere constructedusing structures similar to those of
the initial dataset (see Table 1). To generate these additional structures,MD
simulations using DPs were conducted using LAMMPS96. For random
Ni–12.5 at.% Mn and Ni–25.0 at.% Mn alloys with hydrogen in solid
solution, multiple SQS models were generated to sample diverse alloy
configurations. Among these, four and nine additional random configura-
tions, respectively, were selected basedon the highdegrees of randomness in
their correlation functions. We also included structures with volumes
compressed by 1.0% and 0.5% and expanded by 0.5%, 1.0%, 1.5%, and 2.0%,
to reflect the thermally expanded environments relevant to hydrogen dif-
fusion during the MD simulations. Annealing-based sampling was per-
formed on these structures using NVT ensembles at 300, 600, 900, and
1000 K for 50 ps. Owing to the small 2 × 2 × 2 supercell and the instability
introduced by the high hydrogen concentrations during longNPT runs, we
opted for NVT simulations with fixed volumes. A 0.5-fs time step was used,
and structureswere extracted every 100 steps as candidate configurations. In
these simulations, one of four trained DP models was employed. In the
subsequent screening step, for each structure, themaximumdeviation in the
predicted atomic forces among the fourDPmodels,whichwere trainedwith
the same hyperparameters but different random seeds, was calculated.
Structures with a deviation between 0.10 and 0.25 eV/Å were selected as
candidates for labeling. Next, structures for labeling were selected based on
their similarities. In detail, multidimensional features extracted from the
hidden layers of the DP models were projected onto a two-dimensional
space using densMAP97, and the pairwise Euclidean distances between the

candidate structures in this 2D space were computed. To enable selection of
a fixed number of representative structures, those with shorter distances
from others were sequentially removed until the desired number of
900 structures remained in each screening round. The DFT calculations for
labeling, including spin polarization, were performed under the same
conditions as those described in the Computational Details section for the
atomic structures selected through the screening process. The energies,
forces, and virial tensors of each structure were calculated.

Following convergence of the GeNNIP4MD iterative workflow, the
MLIP was trained for the final time using the accumulated dataset. Twenty
iterations were performed. The DP architecture used during the iterations
was retained, with only the number of training steps being changed; that is,
the training steps were increased to two million. However, no significant
improvement in thefitting accuracywas observedcompared to the casewith
800,000 steps, which confirmed that sufficient convergence during training
had already been attained. The final training dataset comprised
17,777 structures (592,435 local atomic environments).As details inTable 1,
the root mean square errors (RMSEs) for the energy and force were
5.70meV/atom and 68.41meV/Å, respectively, indicating sufficient accu-
racy. We also tested a hybrid descriptor combining 2- and 3-body (se_e2_a
and se_e3, respectively) embedding terms56, following a previous study on
W–H DP development95; however, we observed no significant improve-
ment in fitting accuracy (Supplementary Note 3). Therefore, for compu-
tational efficiency in MD simulations requiring long timescales and a large
number of cases, we employed a 2-body embedded descriptor DP model.

Computational details
Spin-polarized DFT calculations were performed to construct the training
dataset and validate the accuracy of the interatomic potential using the
projector augmented wave (PAW) method, as implemented in VASP98,99.
The exchange-correlation potential was treated using the generalized

Fig. 7 | Atomic structures used in MD simulations for the prediction of hydrogen diffusion coefficients. a–c Representative atomic configurations for Ni, Ni–10.0 at.%
Mn, and Ni–25.0 at.% Mn, respectively. The gray, blue, and red spheres represent Ni, Mn, and H atoms, respectively.

Table 1 | Training datasets and fitting errors of the constructed deep potentials

Category Subsets RMSEE (meV/atom) RMSEF (meV/Å) Nframe

a. Initial dataset 1. Ni with 0–2 H atoms 0.81 24.67 568

2. Ni–12.5 at.% Mn with 0–2 H atoms 1.32 32.99 729

3. Ni–25.0 at.% Mn with 0–2 H atoms 5.30 57.21 756

b. GeNNIP4MD dataset 1. Ni with 0–2 H atoms 0.81 24.84 596

2. Ni–12.5 at.% Mn with 0–2 H atoms 4.63 50.15 2438

3. Ni–25.0 at.% Mn with 0–2 H atoms 6.15 74.27 12,690

All 5.70 68.41 17,777

The training dataset consists of the initial dataset and additional dataset generated throughGeNNIP4MD. For each subset, the number of structures (Nframe), rootmean square error of energy (RMSEE), and
root mean square error of atomic forces (RMSEF) are shown.
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gradient approximation with the Perdew–Burke–Ernzerhof functional100.
The pseudopotentials forNi andMn include 4 s and 3 d electrons as valence
electrons; these choiceswere consistentwith those used in ourpreviousDFT
calculations43. The plane-wave cut-off energywas set to 500 eV. The k-point
mesh for each atomic structure was generated using the Monkhorst–Pack
scheme101, and was chosen tomatch the accuracy of an 8×8×8mesh for the
conventional unit cell of Ni. This setup corresponded to a KSPACING of
0.13 in VASP and ensured an accuracy equal to or higher than that adopted
in previous studies on MLIP development65,67. For improved convergence,
the Methfessel–Paxton smearing method102 with a 0.1-eV smearing width
was employed. The convergence criterion for the self-consistent electronic
calculations was set to 10−6 eV for the total energy. Structural relaxations
were performed until the forces on each atom were less than 10−2eV/Å. All
DP-based calculations for accuracy verification were performed using
LAMMPS96. AIMD simulations for construction of the initial training
dataset were performed using Parrinello–Rahman dynamics103,104 with a
Langevin thermostat. A 0.5-fs time step was used in the AIMD simulations.
To analyze the hydrogen-diffusion transition states, the transition paths
between the initial and final atomic configurations were determined using
the climbing-image NEB (CI-NEB) method85,86. Phonon dispersion was
calculated using the Phonopy package105,106.

Data availability
The data that support the findings of this study are available from the
corresponding author, K.I., upon reasonable request. The data are not
publicly available due to restrictions imposed byNippon Steel Corporation;
access may be granted only with permission from the company.

Code availability
The main codes utilized in this study—DeePMD-kit94, LAMMPS96—are
open-source and can be accessed online, with their licensing information
and user manuals detailed in the respective references. GeNNIP4MD75 is
proprietary software and is not open-source; however, the code may be
made available upon reasonable request. Requests for access should be
directed to fj-mi-tech-contact@dl.jp.fujitsu.com.
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