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Machine learning coupled structure mining method
visualizes the impact of multiple drivers on ambient
ozone

Han Xu'2, Haofei Yu3, Bo Xu'?, Zhenyu Wang"?, Feng Wang'2, Yuting Wei2, Weiging Liang"?, Jinxing Liu*>,
Danni Liang"%®, Yinchang Feng® 2 & Guoliang Shi@ 12

Ground-level ozone affects Earth's climate and human health. The formation of ozone is a
complex process, depending on both atmospheric chemical processes and meteorological
factors. In this study, machine learning coupled with a structure mining analysis was applied
to investigate the ozone formation mechanism in Tianjin, China. The results showed isoprene
has the greatest individual impact on local ozone generation, which suggests the biogenic
emission of vegetation contribute significantly to native ozone pollution. The interaction
between isoprene and nitrogen oxides is the strongest among precursors, with an obvious
antagonistic effect between them. Reducing active volatile organic compounds is more
effective for mitigating ozone pollution. Visualized network diagram also clearly illustrated
the impacts of multiple drivers on ozone formation: isoprene, temperature and nitrogen
oxides were the key drivers among all the influencing factors, other drivers (such as relative
humidity) could assist the key drivers to collaboratively enhance or suppress ozone
formation.
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zone (O3) plays an important role in global public health

and land ecosystem!2. Long-term exposure to elevated

concentrations of O3 has been link to negative health
outcomes, such as cardiovascular and respiratory diseases, among
others>#, Studies have shown that fine particulate matter (PM, s)
concentrations in China have been reduced by 30-40% from 2013
to 2017, while ambient O3 concentrations have increased unex-
pectedly in many urban areas in China, since the implementation
of the Air Pollution Prevention and Action Plan in 2013°-7. The
O; annual average maximum 8h-average 90-percentile value
(M8A90) in China has increased by 28.8% in the past 7 years
since 20138. Consequently, O pollution has become an emerging
concern in China. Understanding the formation mechanism of
05 is crucial for effectively assessing and designing refined poli-
cies for O5 reduction in the future!0,

A number of drivers are involved in the formation of Os,
including precursors, chemistry process and meteorology!0-12,
All of these drivers increase the complexity of O; generation
mechanism. Nitrogen oxides (NO,) and volatile organic com-
pounds (VOCs) are the main precursors of 051314, The con-
version from NO to NO, will be accelerated in the presence of
VOCs; and O3 will form by the photolysis of NO, in the presence
of 0,17, In addition, a higher fraction of light absorbing
components in PM, 5 can enhance the reduction of O; formation
rates!31819. O; formation is also affected by meteorological
conditions such as temperature (T) and wind speed (WS).
Meteorology not only affects emissions of NO, and VOCs, but
also influences reaction rates that either produce or consume
0329-22, Therefore, it is essential to examine the impact of various
drivers on O; generation, and the relationships among multiple
drivers, to help developing corresponding regulatory strategy.
However, existing studies lack consensus on the above issues, due
largely to the complex and non-linear relationships among these
drivers, and it’s difficult to quantitatively estimate the effects of
above drivers on the formation of O;. In complex atmospheric
environment, unfortunately, the conditions and influencing fac-
tors will be even more complicated.

Machine learning (ML) methods are data-driven, and can
effectively establish the complex and non-linear relationships
between input features and output predictor variables23-22,
Recently, multiple ML methods such as random forest (RF),
convolutional neural network (CNN) and artificial neural net-
work (ANN) have been applied to predict air pollutant (O,
PM, s, NOy, and NH; et al.) concentrations and to analyze the
causes of air pollution20-2%, Studies have showed that the RF
model coupled with some model-unrelated interpretation meth-
ods (such as partial dependence plots (PDP) approach), can
specifically analyze the response relationship between features
and the dependent variables®%-3!, However, the above methods do
not attempt to examine the structure of the ML model itself, and
do not account for the interactions among multiple features.
Structure mining is a model-related interpretation method pro-
posed by Paluszynska32, Based on the generation rule of ML
methods (for instance, the decision tree of RF), structure mining
allows further exploring the interactions between pairwise fea-
tures (drivers on O; formation). The internal operations of ML
can be well visualized, which will clarify the relationship among
multiple features. Therefore, ML coupled with structure mining
method may have potential advantages in elucidating complicated
issues involving multiple drivers, though this method is rarely
applied in the field of atmospheric science, especially for inves-
tigating the causes of O; pollution.

In the work, we coupled structure mining analysis and a ML
method (RF), to reveal the effects of multiple drivers on O; for-
mation based on a multi-year dataset from Tianjin (an important
city in the Beijing-Tianjin-Hebei Urban Agglomeration of China

which is polluted by O3). ML result identifies the most important
drivers, while structure mining analysis explores the strength of
interactions between paired drivers. Visualized network diagram
clearly illustrated the most crucial key-drivers (isoprene, T and
NOy in this work) among all potential drivers, and showed
potential interactions between the key-drivers and other drivers.
The visualized results prove that the ML coupled structure
mining method will be a useful tool for clearly exploring the key
issues for Oz formation, and for providing guidance for the
precision control of Os.

Results and discussion

Overview of drivers on O3 formation from observed dataset.
Hourly online variations of O and its influencing factors for
multiple years (2017.10-2020.7) were collected in Tianjin, with
monthly variation illustrated in Fig. 1. Numerous previous studies
have proved that VOCs consumed during the transport from
sources to observation sites play an important role for O;
generation®3334, Complex chemical reactions lead to highly
reactive VOCs species being consumed to varying degrees from
sources to the observation sites, which can lead to biases in
studying the impact of VOC on Os. Thus, to account for such
process, we used initial VOCs (fresh VOCs emitted from sources)
obtained from simulations to compensate for VOC losses not
included in observed data (more details on initial VOCs can be
found in the Supplementary Note 4 and Supplementary Table 2).
Overall, VOCs, NO, and PM, 5 concentrations showed obvious
regular variation patterns, with lower levels in summer and
higher in winter. O; concentration exhibited a characteristic of
lower levels in winter and higher in summer, mainly due to
increased photochemistry in warmer months. Considering that
different VOC species have different photochemical activities on
O; formation, monthly variations of four VOCs categories
(alkanes, alkenes, alkynes, and aromatics) were also illustrated
(Fig. 1b). VOCs compositions were not consistent among months
though alkanes were generally the most abundant species.
Besides, the variation of alkenes was similar to that of O,
implying that alkenes may be important for O3 generation. We
also distinguished between biogenic and anthropogenic VOCs
(Supplementary Fig. 9). The same variation of biological VOCs
and O; also suggests the important role of plant emissions.
Among meteorological parameters, T and relative humidity (RH)
were higher in summer and autumn, and lower in winter and
spring. The mean wind direction (WD) was dominated by
southeast winds (detailed descriptions of data were shown in
Supplementary Table 1).

From the observations, we observed that the above drivers
(especially alkenes, NO,, and T) had obvious similar or opposite
variation characteristics as compared with Oj. Therefore, there
may exist a complex non-linear relationship between O; and its
drivers. Based on this assumption, a “data-driven” ML approach
can be considered to reveal the effects of various drivers on Os
formation.

Effects of individual drivers on Oz formation. In order to
illustrate, using visual network diagram, the effects of multiple
drivers on O3, we need to first quantify the effects of individual
drivers. A ML method called random forest (RF) was applied here
to explore such individual effects. The selection process of the ML
model is shown in Supplementary Fig. 8. In light of the previous
work, the precursors (mainly VOCs and NO) and meteorological
conditions are usually considered as the main drivers for Os;
formation®13-28, Therefore, we selected the most important VOC
species (top 10 VOCs calculated by ozone formation potential,
OFP, see Supplementary Note. 4), NO;, meteorology conditions

2 COMMUNICATIONS EARTH & ENVIRONMENT | (2023)4:265 | https://doi.org/10.1038/s43247-023-00932-0 | www.nature.com/commsenv


www.nature.com/commsenv

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00932-0

ARTICLE

_ 100 100
>
2
L(a —~
ERY (a) 1s0 7
£ 60 [ -
S Jeo =
= 40 EN
= 20} {40 =
=]
0 20
50
240 —e— VOCs
2
230 [ Alkyne
5 20 I Aromatic
o) I Alkene
> 10 I Alkane
0
30k e e -
(c) - o e _l\.\ — T 1s0
~20F . TNa RH 2
$ - i <. s
< ok - = 160 =
8 = o= = h e e N ~
OF = ~._
- A, £
- N — WS Gm/s) SR
z (@ 1750 _
E E
b 1500 =
= <
2 [ ‘ \ \ ‘ {250 &
L L L L L L L L N L L L 0
Jan. Feb. Mar, Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fig. 1 Monthly variation patterns of precursors and meteorological conditions during observation period. a Shows monthly variations of O3 (ppbv),
PM,.s (ng/m3) and NO, (ppbv). b Shows monthly variations of VOCs (ppbv) and four VOCs categories (alkanes, alkenes, alkynes, and aromatics).

¢ Shows monthly variations of T (°C) and RH (%). d Shows monthly variations of solar radiation (SR, W/m?2), wind speed (WS, m/s) and WD. Monthly
variations showed similar trends for alkenes, temperature and Os, but opposite for NO,.

(T, RH, SR, WS, WD) and PM, 5 (the effects of secondary organic
carbon (SOC), primary organic carbon (POC), particle surface
area (PSA) were considered) as the variables for building the RF
model (daytime dataset only, since O; generation exclusively
occurs during daytime). RF can provide an initial assessment of
variable importance (namely the effects of individual drivers on
O; formation in this work) using increases in MSE increase and
node purity>>-37 (see Supplementary Note 3). Through impor-
tance analysis, we can preliminarily explore the impact of indi-
vidual drivers.

The results of RF are shown in Fig. 2. Isoprene, as the
dominant species of biogenic volatile organic compounds
(BVOCs), has the highest impact (21.09%), likely due to its high
kinetic reactivity among alkene species. Previous studies have
confirmed that isoprene has a high maximum incremental
reactivity>® (as quantified by maximum incremental reactivity,
MIR, reflecting the sensitive of O3 to VOCs emissions. The MIR
of isoprene is 10.61, about 10 times that of some inactive alkanes).
Other than isoprene, NOy had the secondary highest impact
(10.83%) among all precursors. The photochemical reaction cycle
among NO, NO, and O; is the basis of atmospheric
photochemical process and the photolysis of NO, is the main
source of O;. Therefore, NOy can provide a substantial pool for
O;. The coexistence of NO, NO, and VOCs in the atmosphere
can lead to photolysis production of O; from NO,, under the
presence of ultraviolet radiation (Eq. 1 and Eq. 2)°. As for
meteorological factors, the most important driver was T (20.42%).
Theoretically, high temperature directly enhances the photo-
chemical reaction rate, resulting in high O3 production®. RH also
has important impact (5.53%) among all meteorological

conditions. It is worth noting that RH may have negative effects
on the formation of 034041 (some important negative effects may
also be considered as important by variable importance analysis).
Following RH are SR (2.62%), WS (2.11%) and WD (2.02%).
Changes in RH and WD are often closely related to monsoons.
When the East Asian summer monsoon arrives, the West Pacific
subtropical high is strong, which will cause high temperature, low
humidity, and little cloud in northern China, causing an increase
in O3 concentration3+*2. Higher SR will intensify photochemical
reactions, subsequently increase Os; mass concentrations. WS
significantly affect the diffusion or accumulation of pollutants,
and O3 accumulation is easier under low wind speed.

NO, +hv — NO + O(°P) 1)
OC’P)+0,+M — O, + M Q)

In addition, in order to better investigate the impact of PM, 5
on Oj; generation, we also considered the impact of SOC, POC
and PSA (calculation method can be found in Supplementary
Note 5) in RF calculations. It can be found that SOC has the
greatest impact (7.79%), and there exists a competitive relation-
ship between SOC and O; due to their sharing of the same
precursors3. The next driver was PSA (4.19%). A higher PSA will
facilitate heterogeneous reactions on particle surface to generate
NOj;-, which will compete for NO, required for O; generation!!.
Besides, the light absorption capacity of POC also affects the
formation of Os. These result shows that the impact of particulate
matter on O; cannot be ignored. We also used other interpretable
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Fig. 2 Effects of individual drivers on O3 formation as estimated by RF. a and

b Briefly show the process of RF operation. € Shows the effects of individual

drivers as estimated by variable importance analysis. d Shows the prediction performance of RF model in the test set. Among all drivers, isoprene, T and

NO, have the most important individual influence.

tools to verify the robustness of the importance of variables
(Supplementary Fig. 6 and Supplementary Fig. 7).

In above analysis, RF method quantified the effects of
individual drivers on Os, though the direction of such impacts
(positive or negative, or P/N) cannot be directly derived by RF.
Understanding the P/N effects is helpful for gaining deep insights
into relevant processes governing O formation. For this reason,
we further explored P/N effects based on RF-PDP method
(sensitivity curves of individual drivers) in the actual atmospheric
environment. PDP curves can be obtained by separately
controlling values of the specified drivers to change within a
specific range, and averaging the corresponding changes of O;
concentrations predicted by the RF model. The curves of
important drivers were presented in Fig. 3. Overall, among the
precursors of Os, the majority of VOCs species showed P effects
(especially alkenes which was dominated by isoprene, Fig. 3a and
Supplementary Fig. 3). Interestingly, as the concentrations of NO,
increased, O; decreased, indicating a N effect of NO,. Although
NO, can generate O3, excessive NO, would titrate O3 which led
to the reduction of O; concentration!!4344, Moreover, based on
Empirical Kinetics Modeling Approach (EKMA curve analysis,
see Supplementary Fig. 2), the study region is located within
VOC-limited regime*>46, which further confirms that excessive
NO, will consume Os;. In addition to precursors, among
significant meteorological conditions, T shows obvious P effect,
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while RH posed a N effect. More details on the effects of
individual drivers are provided in Supplementary Fig. 3. For
further exploring the causes of severe O pollution, we also used
the local interpretable model-agnostic explanations (LIME) to
explain individual samples with O3 concentration closed to the
MS8A90 (70.38 ppbv), which reflects the level of O; pollution
(Fig. 3e and Supplementary Figs. 4-5). We can detect that under
extreme conditions, temperature plays an important role in Oj
generation, and isoprene emitted by plants is also an important
source of O; generation. NO, and RH have side effects on O,
production.

Since the response of Oz to drivers may be different from
season to season, we have divided the months from different
seasons, trained RF models for each season and estimated feature
importance of each driver. Also, PDP plots were also plotted to
study the response of O3 concentration to drivers in each season.
The results (Fig. 4) show that in spring, the impact of
meteorological conditions is relatively large (especially T and
RH). While in summer, the effect of SOC is important which
mainly because meteorological conditions in summer are also
conducive to the formation of secondary organic aerosols, which
have same precursors as O;. Therefore, due to their similar
changing trends, the impact of SOC measured by data-driven
based ML method is significant. Drivers following SOC are RH
and isoprene. In autumn, it is more influenced by T, closely
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Fig. 3 Positive or negative (P/N) effects of individual drivers on O3 formation as estimated by RF-PDP and effects as estimated by LIME. a and b Show
P effects of isoprene and T. ¢ and d Show N effects of NO, and RH. e Shows effects of drivers as estimated by LIME when O3 concentration closed to the
MB8A9. When Os pollution is severe, temperature and important active VOCs have a significant positive impact on Oz generation, while RH and NO, have

an obvious negative impact.
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Fig. 4 Effects of individual drivers on O3 formation in each season. a Shows the effects of individual drivers as estimated by variable importance analysis
in each season. b-e Show positive or negative (P/N) effects of isoprene, T, NO, and RH on Os formation as estimated by RF-PDP in each season,

respectively.

followed by NO,. Winter is more affected by NO,. This is mainly
due to the higher concentration of NOy in winter compared to
other seasons, which seriously affects the generation of O;. The
RF-PDP results show that Oj; concentration tends to increase
with the increase of the majority of VOCs species which was
dominated by isoprene in all seasons, especially in summer and
autumn (the increase relatively small in winter when the
concentration of isoprene is low), and decrease with the increase
of NOy in all seasons. In addition to these precursors, the
important meteorological conditions T and RH responded
approximately the same across seasons, with T showing a positive
impact on O; generation and RH a negative.

Interactions of paired drivers. Above analysis of drivers on O;
by RF briefly explained their individual effects. The interactions

among multiple drivers also play crucial roles on Oz formation,
due to the fact that O; is affected by multiple complex drivers.
Therefore, the potential interactions among pairs of drivers need
to be investigated. Although the RF model cannot be used to
directly investigate such interactions between paired drivers,
exploring the structure of decision trees in RF can help extracting
information on the paired drivers. The main way of such struc-
ture mining analysis is based on the concept of mean minimal
depth (MMD, the mean distance from the depth of one driver to
the root of the tree, Fig. 5a). For a single driver, it’s considered to
be more important to the generation of O, if its MMD is shal-
lower. Based on the concept of MMD, we can further quantify
potential interactions between paired drivers by exploring their
conditional minimal depth (CMD, the mean distance between
two drivers in trees, Fig. 5b). Similar to MMD, the interactions
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Fig. 5 Structure mining analysis of drivers. a and ¢ Show the schematic diagram of mean minimal depth (MMD) and conditional minimal depth (CMD) in
the RF model; A represents an important driver such as isoprene, B represents another important driver such as NO,. b Shows MMD for different drivers.
Isoprene, T and NO, were closer to the root of the trees than the other drivers. d Provides CMD for the 20 strongest interactions. Isoprene-T, T-NO,,
isoprene-NO,, isoprene-SOC were paired drivers with the strongest interactions.

between paired drivers will be considered stronger, if their CMD
is shallower.

The results of MMD and CMD by structure mining were
shown in Fig. 5c¢ and Fig. 5d. For MMD, isoprene, T and NOy
were closer to the root among all the drivers, indicating they were
the key drivers. Isoprene had the lowest MMD (1.24); T and NO,
also had low MMD (below 2). On the other hand, MMDs of other
drivers were higher than 2.5, suggesting they were not as
important for the formation of O; as the three key drivers.
Figure 5d showed CMD values for 20 most important interac-
tions. We observed that isoprene-T had the shallowest CMD
values, indicating that the interactions between isoprene and T
had the most important impact on the formation of O;. Higher
temperature will generally promote the emission of biogenic
volatile organic compounds (BVOCs, mainly isoprene), and
accelerate photochemical reactions that produce O333. Paired
drivers following isoprene-T were T-NO,, isoprene-NO,, and
isoprene-SOC, etc. Previous researches confirmed that the
potential connections between the above paired drivers can
substantially determine O; formation. The interaction between
paired T-NO, is also important because temperature can
determine the reaction paths of NO,!147. Isoprene-NO, had
the shallowest CMD values among precursors. Previous studies
have also suggested that the presence of isoprene will affect the
“NOy cycle”, which will produce O;'!. The strong interactions
between isoprene-SOC suggest that isoprene is also the precursor
of secondary organic aerosol which can accelerate the formation
of SOC34849 Tn order to further display the interactions, we used
RF-3dPDP to estimate how the O; was influenced by the synergy

6

of paired drivers. RF-3dPDP can strip other feature parameters
and specifically analyze the effects of paired feature parameters on
the model. The strongest four pairs of interactions screened out
by CMD were further displayed through RF-3dPDP, and the
results were shown in Fig. 6. The results provided us with more
insights into the impact of paired drivers on O; formation and
some most effective pathways to reduce the O; concentration
based on paired drivers. We can more clearly detect that reducing
isoprene is more effective for local O3 reduction than reducing
NO, (Fig. 6¢); The presence of isoprene and high temperature
simultaneously lead to an increase in 03°C.

Visualization of network diagram. Visual diagram can clearly
illustrate network relationships among all drivers and O3, espe-
cially under complex ambient conditions. Hence, we built the
network diagram among multiple drivers using visualization tools
based on CMD obtained from structure mining. We firstly
screened 54 paired driver interactions as determined by the
aforementioned CMD metrics (CMD < 4). Then, we further cal-
culated interaction coefficients (IC), which are important visua-
lization parameters for building network diagram. The calculation
formula and details of IC are shown in Methods (for IC, a higher
value indicates stronger interaction of the paired drivers, Sup-
plementary Table 3). Finally, we created the network diagram
(Fig. 7) based on the IC values of paired drivers, using visuali-
zation tool Gephi.

The advantage of network diagram is that it can intuitively
display key drivers (placed in network centers with deep colors)
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among all influencing factors, and illustrate the strengths of
interactions between drivers (line thickness). From the network
diagram, we can clearly identify isoprene, T and NOj as key
drivers (they have the shallowest MMD and interact frequently
with other drivers), indicating that they are the most critical
drivers for O; formation. Although other drivers are less
important than the key drivers, they do collaborate with the
key drivers to promote O; formation. In this paper, we call these
factors assistant drivers. Both the interactions between key
drivers, as well as between key drivers and assistant-drivers,
cannot be ignored. Among the most important key driver,
isoprene maintains strong interactions with multiple drivers
(including other key drivers NOy and T; assistant drivers such as
RH, SOC). As a crucial precursor of O, it is inextricably linked
with NO,. As with other alkenes, the reaction of isoprene with
OH proceeds at nearly the limit of gas kinetic and almost entirely
by addition. Rich organic peroxy radical (RO,) react with NO to
generate Os; a small yet important, branch yields organic nitrate
and, thereby, removes NO, from the atmosphere’’>2. The
simultaneously presence of isoprene and NO, might slow down
the growth of O3, compared with one critical driver alone due to
the antagonistic effects between them. Similarly, there also exists
antagonistic effects between isoprene and RH. In addition,
isoprene and T have an obvious additive effect (both drivers
play positive roles), both high concentrations of isoprene and
high temperature promote O; pollution. For another important
center-driver, NOy has strong interaction with T and RH. The
results were in agreement with previous studies in which
meteorological drivers mainly influence reactive nitrogen (Nr)’s
reaction pathways!!. Higher temperature and lower RH enhanced
photochemical pathway’s reaction rate*3, For another meteor-
ological key driver T, RH is its main assistant drivers. While
under sunny summer conditions, high temperature and low
relative humidity always occur at the same time at the observation
site, which leads to the frequent occurrence of O; pollution in
summer.

Conclusion and implications

The complicated non-linear relationships between Oz and its
many drivers (mainly precursors and meteorological parameters)
make it difficult to explore O3 formation mechanism. In this
study, we used machine learning coupled structure mining
method to study the causes of O; and established a network
diagram that clearly illustrated the effects of multiply drivers on
O5. The established RF model has favorable performance and the
results well indicated the individual impact of drivers on Os.
Among all precursors, active VOCs especially isoprene, are the
most important since the sampling site is located in suburbs with
high reactivity of alkenes. Among all meteorological factors,
temperature plays a dominant role, mainly because higher tem-
perature enhances photochemical pathway’s reaction rate. RF-
PDP further shows the P/N effects of drivers. The majority of
VOCs species show P effects. Interestingly, NOy exhibits a N
effect because the study region is located in VOC-limited regime.
It also suggested that controlling the generation of most VOCs
(especially isoprene) is more effective than controlling NO, at the
research location. However, it does not mean that NO, control is
not important. ML also shows that NO, is a key driver. Based on
the analysis of theoretical modelling, it is also necessary to control
NOx as a long-term strategy.

Rather than being driven by one key driver alone, O3 formation
is affected by multiple intertwined drivers. The interactions
between paired drivers were further quantified by structure
mining method which was helpful for policy-makers to develop
target solutions. Among all paired driver groups, isoprene-T had

high interaction strength which highlighted its importance. Iso-
prene and NOy have the highest interaction between precursors.
In addition, the network diagram clearly illustrated these key
interactions and drivers. The results are consistent with those
found in previous theoretical analysis. Meteorological drivers
dominate the Nr reaction pathways. The presence of active VOCs
will affect atmospheric “NOy cycle”, which will produce Os. But
the simultaneous presence of isoprene and NOy might slow down
the growth of O;, compared with the presence of one critical
driver alone.

The application of ML techniques in atmospheric environment
research field is still in its infancy, but ML methods are expected
to provide further insights into the pollution formation process.
In the ambient environment, air pollution is the result of multiple
drivers. However, it’s difficult for traditional laboratory studies or
models that were based on chemical mechanisms to fully account
for the wide breadth of conditions during the formation of pol-
lution, and it is also exceedingly difficult to analyze the network
effects among multiple factors. Machine learning and structure
mining technology could at least partially overcome the above
shortcomings. Starting from the structure of ML method and
visualizing its internal operation, we were able to identify key
drivers and their assistant drivers from their complex interac-
tions, and established a network diagram, which provide deeper
and clearer insights into the causes of O; pollution. Our study
provides a framework for building robust models and for iden-
tifying the critical drivers of O; among multiple potential pre-
cursors and the influence of meteorological conditions. We
believe that the visualization techniques of ML can play a more
important role in the field of multi-factor studies such as carbon
reduction, human disease or anticancer drug research.

Methods

Sampling and monitoring. The sampling campaign was conducted at the campus
of Nankai University (38°59’ N, 117°19’ E) in the Jinnan district of Tianjin, from
October 2017 to July 2020. It is a typical rural area, surrounded by park and several
universities, and located far from major highways and high traffic zones with
relatively small population density. Hourly concentrations of VOCs, NOj, Os, and
PM, 5 were measured at 5m above ground level by multiple instruments. Con-
centrations of fifty-four VOCs species, and chemical components of particles were
also measured. Meteorological parameters, including T, RH, WS, WD, and SR,
were monitored by an automatic meteorological observation system (WS600-UMB,
LUFFT). More details about the observations can be found in the Supplementary
Note 1.

Random forest. RF is an ensemble supervised learning method, which can be
regarded as an extension of decision tree>3->. In this work, RF prediction models
were constructed using the “randomForest” package in R programming language
(R 4.1.2). The RF model used 500 random decision trees and selected 1/3 random
features at each node. The R2 (coefficient of determination) and RMSE (Root Mean
Square Error) values between predictions and observations were calculated to
evaluate model performance, and the calculation formula can be found in Sup-
plementary Note 3. RF provide two tools to estimate the importance of individual
features, mean-square error (MSE) increase and node purity increase®>7. Here, in
order to improve the robustness of the importance, we convert MSE increase and
node purity into percentages, and calculated their average value as the ultimate
variable importance. The RF modeling in this study included multiple years
(2017.10-2020.7) daytime dataset to examine the individual effect of drivers on Os.
A total of 3614 valid samples were acquired during this period (including 2529
training samples and 1085 testing samples). We included some explanations on RF
and other relevant interpretable tools in Supplementary Note 3.

RF-PDP method. Sensitivity curve of individual driver can be further explored by
RF-PDP method which allows us to study P/N effects. PDP38? can isolate other
factors, and specifically estimate the relationship between individual or paired
feature parameters and predictor variables. Here, the sensitivity analysis of indi-
vidual or paired drivers on O were calculated by RF-PDP or RF-3dPDP method,
which was implemented by R package “PDP”. The calculation function of RE-PDP
was shown in Eq. 3.

1 n -
f(Xg) = - 32 RE(X;, X) 3
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where f(Xg) stands for the prediction value of random forest model when with
inputs of Xg; RF stands for a trained random forest model; Xg is the feature
selected to calculate the partial dependence function in the random forest model;

X(Cl:) stands for the features unselected in the random forest model which are input
into the model as a fixed value; n is the number of samples.

Structure mining method. Understanding the internal structure of RF can reveal
and quantify the relationships among multiple features. However, RF is a “black
box” model, which cannot directly reveal the relationships among various features
in its internal structure. Hence, we utilized the structure mining method to mine
and analyze the structure of the “tree” of RF for quantifying the interactions
between paired drivers, based on the concept of mean minimal depth (MMD). For
an individual variable X;, the minimal depth measures the distance (measured by
the number of edges in the decision tree) from the root of the entire tree to the
closest root of a maximal A-subtree, and the mean minimal depth is the average of
the minimal depths of the variable X; across all trees2. If the MMD of variable X; is
shallow, it indicates that X; has a better segmentation effect on the data, implying
that it is more important to the predictor variable. More importantly, conditional
minimal depth (CMD, based on MMD) between paired drivers can also be utilized
to calculate their interaction strength®, which measures the mean minimal depth
of variable X; in the maximal X;-subtree (X; represents another variable different
from X;). Similarly, a shallow CMD between X;-X; indicate that their interaction is
stronger. The MMD and CMD of features were initially calculated using the
“randomForestExplainer” package in R programming language (R 4.1.2).

Network diagram by visualization method. Network diagram can clearly show
the interactions among multiple features, which can visualize the internal structure
of the RF model. The relationship between paired features (visualization values) are
the basis for visualizing the network diagram. Here, we calculated interaction
coefficient (ICp_p, significant visualization value) by integrating the CMD of
paired features obtained from structure mining, and the frequency factor (occur-
rence of the interaction of B and the maximal A-subtree among the trees). Fre-
quency factor reflects the closeness of paired feature, and combining with CMD
can improve the physical meaning and stability of the interaction coefficient. The
specific calculation formula of IC,.p was provided in Eq. 4. A greater IC4.p sug-
gests that the interaction between feature A and B is stronger.

Opp, 1
Nyee ~ CMD,

Where IC, p is interaction coefficient of A and B, which represents the interaction
strength between A and B, O _p is the occurrence of the interaction of B and the
maximal A-subtree among the trees, Niyee is the total number of trees in the forest,
CMDy _p is the mean minimal depth of B in the maximal A-subtree, that is, the
conditional minimal depth.

Finally, we import the visualization data based on IC into the visualization
model (Gephi 0.9.2), to establish the network diagram.

ICyp =

4

tree
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