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After large-magnitude earthquakes, a crucial task for impact assessment is to rapidly and accurately
estimate the ground shaking in the affected region. To satisfy real-time constraints, intensity measures
are traditionally evaluated with empirical Ground Motion Models that can drastically limit the accuracy
of the estimated values. As an alternative, here we present Machine Learning strategies trained on
physics-based simulations that require similar evaluation times. We trained and validated the
proposed Machine Learning-based Estimator for ground shaking maps with one of the largest existing
datasets (<100M simulated seismograms) from CyberShake developed by the Southern California
Earthquake Center covering the Los Angeles basin. For a well-tailored synthetic database, our
predictions outperform empirical Ground Motion Models provided that the events considered are
compatible with the training data. Using the proposed strategy we show significant error reductions
not only for synthetic, but also for five real historical earthquakes, relative to empirical Ground Motion

Models.

Large earthquakes are amongst the most destructive and unpredictable
natural phenomena, yet our ability to rapidly and accurately estimate their
impacts remains limited. Due to its complexity, numerical wave propaga-
tion tends to be too computationally expensive for disaster mitigation
purposes, even when massive High-Performance Computing (HPC)
resources are available. Simulations also are sensitive to model inputs—in
particular for large events where shaking is especially hard to correlate with
standard inputs such as topography or wave amplification at basins—but
can provide high spatial resolution of ground motions when the underlying
physical models are sufficiently accurate. Recent urgent HPC workflows'?,
designed for fast physics-based earthquake simulations for emergency relief
measures, using top-tier HPC facilities can provide sets of synthetic solu-
tions that aim to capture the input variability within one hour. Although
such computing times are extraordinary for rapid post-event analyses, they
do not meet the requirements of decision-makers for near real-time societal
alerts.

Empirical ground motion models (GMM:s) are the traditional solution
to fast estimations of intensity measures (IMs) that circumvents the use of
physics-based approaches’. Empirical GMMs, proposed in a range of model
functional forms, give mean and variability values for IMs (e.g., peak ground
acceleration (PGA) or pseudo-spectral acceleration (PSA)) as functions of
seismic observations (e.g, earthquake magnitude or site-to-source
distance®). An explicit evaluation of these models generates near real-time
estimates of IMs. As a result, empirical GMMs serve as the fundamental
technique in many software packages used for earthquake analysis (e.g.,
ShakeMap®). However, the sparsity of catalogs and datasets, together with
regional differences and large variability in the characteristics of large
earthquakes, compromise their predictive capacity.

Given these limitations, a functional earthquake analysis demands
research on complementary strategies that retain the evaluation speed of
empirical GMMs while providing physics-based precision. We propose a
Machine Learning (ML) methodology that combines the best of both
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approaches, capturing physical information from well-curated simulations
(directivity, topography, site effects) with times-to-solution analogous to
empirical GMMs, helping to produce the next generation of shaking maps.
The ML-based EStimator for ground-shaking maps (MLESmap) exploits
two supervised ML algorithms—an ensemble learning model, Random
Forest, and a connectionist method based on Deep Neural Networks—
trained with data from a CyberShake Study 15.4%” (CSS-15.4) database of
physics-based simulations to generate regional ML-based models that
accurately estimate an IM within a few seconds of an earthquake occurrence
given its location and magnitude.

With a wide range of ML applications on the rise in earthquake
seismology™’, many recent studies explored ML approaches using seismic
observations to train ML-based GMMs and infer IMs'’™™* or even to syn-
thesize acceleration time-histories”” and to predict damage states from
IMs'. Even though improvements with respect to traditional regression-
based GMMs are reported when sufficient data is available, the existence of
such data is not guaranteed for all regions: data availability and its quality
can compromise the accuracy and limit applicability. Moreover, there is a
paucity of data from large-magnitude events, which have the greatest impact
potential, while ML models tend to be poor at extrapolation. Finally, the data
is spatially sparse, while synthetics can be generated on a dense and uniform
grid. More recently, Withers et al.”” proposed an artificial neural network
(ANN) GMM trained on CyberShake Study 15.12 synthetics® (CSS-15.12),
with promising results. The authors choose the same predictor variables as
Next Generation Attenuation-West2 (NGA-West2) empirical GMMs'®,
including rupture, velocity, and site effect parameters (e.g., fault width, V30,
Z10, Z,5) in order to compare results and explore ML approaches to
complement empirical GMMs in data-poor areas.

We present an MLESmap application in Southern California, pro-
posing regional ML-based GMMs trained on more than 150,000 physics-
based CSS-15.4 scenarios. Unlike Withers et al."/, to maximize applicability,
we choose only elementary information as predictor variables, namely the
event location and magnitude, which are rapidly estimated and made
available by international agencies. We assume that site effects and other
complexities are learned implicitly by the models and do not need to be
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accounted for explicitly. In particular, uncertainty in rapid estimates of such
complex predictors can become an issue at the time of application to the
detriment of prediction accuracy. In the presented work, RotD50"—also
typically used by empirical GMMs—is the target of the learning process.
Given the well-tailored synthetic database, the algorithms used and the
elementary input characteristics prove efficient in estimating RotD50 values
in the region. For events that are within the parameters range of the training
database, our predictions using MLESmap-generated models outperform
empirical GMM solutions requiring similar evaluation times both for syn-
thetic events (reduction up to 45% in median RMSE) and for real historical
earthquakes in Southern California (reduction of 11-88% in RMSE).

Results

MLESmap training and predictive capacity

MLESmap was used to train ML-based GMM:s for Southern California
using a CyberShake 15.4 database®” (CSS-15.4) of 3D simulations. Figure 1a
shows the region of study with the considered faults and the network of sites
in CSS-15.4, Fig. 1b shows the RotD50 distribution at different periods, and
Fig. 1c summarizes the magnitude distribution of all scenarios.

The dataset was subdivided into training and validation subsets, which
contain synthetic IMs for 153,628 scenarios. Two ML algorithms—the
Random Forest (RF) and Deep Neural Networks (DNN)—were used to
generate eight independent ML models with four-period bands per algo-
rithm (T'=2, 3, 5, and 10 seconds). The hypocentral location (latitude,
longitude, and depth), magnitude, site latitude, and longitude, and the
spatial relation between the hypocenter and the site (the Euclidean distance
and the azimuth) were used as the predictors, while the logarithm of
RotD50" was chosen as the supervised learning target due to the high
dynamic range in its values.

Regression metrics remain consistent for all models and imply high
predictive power (Supplementary Table 1). In particular, the average R* of
0.86 indicates the very high likelihood of correct predictions for unseen
samples, while the MAPE indicates that the average absolute percentage
difference between the predictions and the actual values is below 15%. This
robust predictive capacity of RF and DNN algorithms is illustrated in Fig. 2,
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Fig. 1 | Relevant statistical characteristics of the CyberShake Study 15.4 (CSS-
15.4) datasets. a Map of ground motion sites (magenta dots) and faults (red lines)
that are accounted for the dataset, together with the Los Angeles city center (blue
dot) as reference. b Histogram of RotD50 distribution for all events (number of
events in logarithmic scale versus RotD50). ¢ Histogram of magnitude distribution

Magnitude

for all seismic scenarios (number of seismic scenarios in thousands versus magni-
tude), where a predominant magnitude of 7.6 is observed. CyberShake uses a
magnitude cutoff of 6.5, so only events with a median magnitude of at least 6.5 are
considered, though aleatory magnitude variability implies that some events with
lower magnitudes are included.
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Fig. 2 | Model evaluation on the validation dataset. True vs. predicted values for the
3.8M event realizations from the validation subset, where an event realization is a

single log(RotD50) recording on a single site for one hypothetical scenario from the
validation dataset. True refers to RotD50 values in logarithmic units directly for the
synthetics, while predicted refers to ML inferences. a shows the results for the RF

algorithm in blue and b for the DNN algorithm in green. Columns, from left to right,
correspond to the four considered periods, namely T = 2s, 3s, 5s, and 10s. Given the

number of data values, a color intensity map has been used to display the density of
data counts in each of the 100 x 100 cells of each plot, with dark hues indicating a
high count. The dashed black line shows a perfect prediction for reference. The
predictions are consistent for all models. The corresponding averages of the six
considered score metrics for all event realizations are summarized in Supplementary
Table 1.

where the log(RotD50) predictions are plotted against the synthetic refer-
ence. The statistical distribution of the histograms of the RotD50 predicted
values closely reflects the distribution of the reference values for each
magnitude bin, with the corresponding low average RMSE of the RotD50
median for all magnitudes, further reflecting the high coherence of pre-
dictions (Supplementary Fig. 1).

Refer to the Methods section for further information on the CSS-15.4
dataset, the MLESmap methodology, the ML algorithms, and the validation
score metrics.

MLESmap v.s. empirical GMM for synthetic earthquakes

To assess the applicability of the ML approach in Southern California, the
regression score between the actual RotD50 synthetic values from CSS-15.4
is compared both with the predictions from the ML models as well as with
predictions from the empirical ASK-14 Ground Motion Model (GMM)®.
Such GMMs, obtained by statistical regression from empirical observations
in a given region, are the foundation of seismic hazard analysis, so mea-
suring the relative performance of the two approaches is important to
showcase the operational relevance of MLESmap. ASK-14 serves as a state-
of-the-art benchmark for our ML results.

Figure 3 shows the RMSE distribution in 0.1 magnitude bins. Since
RMSE scales with amplitude, an increase in the RMSE values can be
observed with increasing periods for all models: the values differ for similar
relative errors and broadly different amplitude ranges. Both MLESmap
models show a similar predictive capacity and in this particular case out-
perform the ASK-14 predictions, with a reduction of up to 45% in the
median RMSE. Since RMSE does not provide information on prediction
bias, we also consider the geometric mean ratio of Aida’s number K*', with
its distribution in 0.1 magnitude bins shown in Supplementary Fig. 2.
Underestimation and overestimation correspond to K>1 and K<1,
respectively. The RF and DNN predictions do not show a particular bias,
whereas ASK-14 tends to underpredict RotD50 for larger events (>My6.5)
and overpredict for smaller events (<Mw®6.5).

The plots in Fig. 4, Supplementary Fig. 3, and Supplementary Fig. 4 show
examples of RotD50 maps for three events of magnitudes My = 6.85, 7.45,
and 8.05, respectively. As in Fig. 3, the RMSE between the inferences and the
reference values indicates a better fit for the MLESmap models than for ASK-
14, with ASK-14 consistently underestimating RotD50 (as indicated by Aida’s
number K for events larger than M6.5). Qualitatively, the spatial distribution
of RotD50 in MLESmap models reflects that of the reference maps.

MLESmap v.s. empirical GMM for real earthquakes

We further benchmarked MLESmap and ASK-14 prediction with observed

seismological records from five significant earthquakes that occurred in the

region, namely:

1. M7.2 1992 Landers (LND) with hypocenter at 116.44°W, 34.19°N, and
76km deep. The LND earthquake was a right-lateral strike-slip
event”. It was the largest event in Southern California in the last
century, causing severe damages including over 400 casualties™.

. M7.1 1999 Hector Mine (HM) with hypocenter at 116.27°W, 34.57°N,
and 8.05 km deep. Evidence suggests that HM was triggered by the
LND earthquake™. It was classified as a very strong event on the
Merecalli Intensity scale™.

. M6.7 1994 Northridge (NOR) with hypocenter at 118.54°W, 34.203°N,
and 17.4 km deep. NOR was close to the Los Angeles downtown on an
undiscovered blind thrust fault™. It caused more than 5000 injuries and
an economic loss of 50b US$™.

. M6.1 1986 North Palm Springs (NPS) with hypocenter at 116.61°W,
34.00°N and 10.9 km deep. NPS occurred along the San Andreas Fault
producing very strong shaking up to 0.778 g***.

. M5.9 1987 Whittier (WHI) with hypocenter at 118.08°W, 34.05°N,
and 14.6 km deep. WHI mainly affected Los Angeles and Orange
counties and generated economic losses of up to 400M US$*.

The ground motions for the earthquakes were extracted from the
SCECbroadband platform (BBP)', with the stations available for each event
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Fig. 3 | RMSE distribution comparison of log(RotD50) for ASK-14 GMM, RF,
and DNN estimations on the synthetic result. RMSE distribution of log(RotD50)
for the ASK-14 GMM (green boxplots), RF (blue boxplots), and DNN (orange

boxplots) estimations against the synthetic results shown per magnitude bin for
aT=2s,bT=3s,¢cT=5s,d T=10s. The median value of the RMSE, marked with a
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circle for each boxplot, is reduced up to 45% for the ML estimates relative to ASK-14.
The mean of the median RMSE value for all magnitudes is summarized in Sup-

plementary Table 2. Boxplot bars represent the first and third quartiles of the metric
distribution.

shown in blue in Fig. 5. As some stations are located far from the region used
for training the ML models, the models need to extrapolate information to
make predictions. We expect this to negatively affect performance since IMs
can exhibit significant spatial variations, and the LA basin is known for its
strong local site effects. Therefore, we separate station locations into two
distinct groups depending on their distance to the sites used for model
training: those that are further than the first quartile (Q1) value of all inter-
site distances are considered as ‘outside’ stations, while the remaining ones
as ‘inside’. The percentage of the ‘inside’ stations is 80%, 67%, 97%, 33%, and
100% for LND, HM, NOR, NPS, and WHI, respectively.

We evaluated the predictions of the models at the BBP station locations
(rather than synthetic training sites). As in the synthetic comparisons, the
RF, DNN, and ASK-14 RotD50 were evaluated for each period. The RMSE
obtained for the ‘inside’ and ‘outside’ stations are shown in Fig. 6 and
Supplementary Fig. 5, respectively. The percentage improvement (positive
values) or deterioration (negative values) relative to the ASK-14 predictions
are annotated for both RF and DNN algorithms. For the ‘inside’ stations
(Fig. 6), the ML models prove to be significantly better at predicting RotD50
values for earthquakes that fall within the magnitude range of the events in
the synthetic training set (14-73% improvement for RF relative to ASK-14,
19-88% improvement for DNN). The ML models, however, fail to match
the ASK-14 inferences for the Whittier earthquake. As Myy < 6.0 events are
not included in the CSS-15.4 dataset (see Fig. 1c), the models are extra-
polating in this case and, as for the spatial extrapolations for ‘outside’ sta-
tions (Supplementary Fig. 5), underperform relative to ASK-14.

In Fig. 7, we show the spatial distribution of the 2s RotD50 predictions
for all real events. The RF and DNN maps are consistent for LND, HM,
NOR, and NPS, where the algorithms do not extrapolate beyond the bounds
of the training data. The ML predictions also show more spatial variability
than the ASK-14 predictions, reflecting the realistic physical assumptions
embedded in the CSS-15.4 simulations. In particular, the local amplification
is most pronounced for the >My7 events (LND and HM), while ASK-14
does not capture such effects. Finally, the NPS maps reflect the very large
reduction in RMSE relative to AKS-14 (in Fig. 6) for this event, as ASK-14

clearly fails to provide a realistic spatial distribution of RotD50. The cor-
responding maps for periods of 3, 5, and 10 s are shown in Supplementary
Figs. 6-8, respectively. It should be noted that the results on real earth-
quakes, combined with the results on the synthetic events, are a good
indication that synthetics in the database represent the physics well and can
accurately predict earthquake motion in the region.

Discussion

MLESmap prediction capacity of ground motions

We generated the MLESmap methodology and associated models toward a
more accurate rapid response solution by combining the accuracy of the
physics-based simulations with the fast estimations given by empirical
GMMs. Our methodology, applied to a high-quality simulation dataset, can
predict RotD50 for real earthquakes more accurately than ASK-14, in a
similar time, and using only primary information available shortly after an
event. The ML models can be evaluated instantaneously and provide a
reliable complement or alternative for the early assessment of the impact of a
future earthquake in Southern California.

It should be noted that MLESmap models perform better than
empirical GMMs as long as the earthquakes are compatible with the CSS-
15.4 dataset, that is, the locations, frequencies, and magnitudes interrogated
are within the bounds of the training dataset (see Fig. 1). Predicting any kind
of temporal information related to the events such as travel times, shaking
duration, or phases is not included in the current implementation of
MLESmap, although ML models have also been employed to synthesize
time-series'”. Nevertheless, IMs such as RotD50 are often preferred for their
direct relation to the impact of an earthquake and are a key component in
rapid post-disaster analyses™.

Outlooks for synthetic training databases of ground motions

MLESmap has been validated using a pre-existing high-quality synthetic
database. At present, new CyberShake studies are being carried out using
updated velocity models, rupture generators, and higher, stochastically
simulated frequencies’. A direct follow-up of the present study is the
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application of MLESmap to such databases and the evaluation of their
impact both on the training and on the predictive capabilities of the models,
in particular for shorter periods relevant to seismic risk mitigation strategies.
Other applications could use databases tailored specifically for MLESmap,
allowing for applications in areas other than Southern California™. Popu-
lating ad-hoc databases for use in MLESmap, however, poses problems in
finding the optimal set of input parameters. Accounting for large and rare
earthquakes is particularly important, as they have the highest damage
potential and are poorly represented in empirical GMMs due to the scarcity
of high-quality data. In a process sensitive to input parameters and strongly
constrained by computing power, designing a new database requires a
detailed analysis, benchmarking, and validation™ prior to implementation.

Implications for ML in rapid ground motion IM estimates

Since ML models trained on synthetics can predict the IMs of real earth-
quakes more accurately than empirical GMMs and at a similar time, they are
bound to become the next-generation tool for post-disaster analysis that
complements existing data-based approaches in guiding relief efforts. Rapid
hardware and software developments will progressively decrease the asso-
ciated computational costs and render the generation of high-quality syn-
thetic databases and the subsequent model training more accessible and,
thus, more suitable for routine use.

As decreasing uncertainty in predicted IMs is of paramount impor-
tance, further event features, such as the focal mechanism or rupture extent,
could be included to train MLESmap models, provided that such parameters
can be assessed rapidly for a new earthquake. Such additional input char-
acteristics may result in ML models that yield even more accurate inferences.
Integrating the scope-limited MLESmap with the more general empirical
GMMs in a hybrid approach'' could also lead to significant improvements

and render the approach more generally applicable. While MLESmap, in its
current implementation, will potentially perform poorly at predictions for
earthquakes outside of the parameters of its training dataset, our results
suggest that empirical GMMs could cover such gaps. Another way to
address the scope limitations would be to explore transfer learning”, a
technique where learning from one task can be reused to improve the
performance of a related task (with tasks here understood as region-specific
predictions).

We also foresee interesting applications where massive computations
of IM inference are needed, for example for uncertainty quantification.
Finally, quick estimates of IMs could be used to provide fast PSHA estimates
for operational earthquake forecasting, for example whenever aftershocks
are expected.

Methods

Synthetic physics-based earthquake ground motions

In this work we leveraged a large dataset generated via physics-based wave
propagation simulations to generate ground motions from hundreds of
thousands of hypothetical earthquakes to train ML algorithms. The data was
generated using the CyberShake platform and, in particular, the CSS-
15.4 study for the Southern California region.

CyberShake, developed by the Southern California Earthquake Center
(SCECQ), is an integrated collection of scientific software that performs
PSHA by using 3D physics-based modeling. It simulates ground motions for
a large suite of earthquakes derived from an earthquake rupture forecast
(ERF) and has been used to assess seismic hazards in California in multiple
studies®’. Simulations are based on seismic reciprocity, so two unit impulses
at a given ground site, one in each horizontal direction, are propagated to
fault surfaces to calculate their Strain Green Tensor (SGT) response.
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Fig. 5 | Spatial configuration of historic earthquakes and BBP stations. The
epicentral location and focal mechanism are shown as a beachball for a Landers,
b Hector Mine, ¢ Northridge, d North Palm Springs, and e Whittier earthquakes.
The BBP stations where the observations analyzed in this work were acquired are
plotted in blue and separated into ‘inside’ (stars) and ‘outside' (triangles) stations,

referring to whether the stations are within or beyond the area covered by the
synthetic training sites (magenta dots). This division stems from the generally poor
extrapolation performance of ML models—we expect lower-quality predictions for
stations that are far from the training locations. See the main text for a full definition
of ‘inside' and ‘outside' locations.

Then, the SGT's are convolved with slip time histories for each event to
produce a seismogram at the site of interest. Thus, CyberShake simulations
computationally scale with the number of sites (generally on the order of
hundreds), and not with the total number of potential earthquakes (usually
in the order of tens to hundreds of thousands), allowing to model an arbi-
trary number of earthquakes for a given area. Although this platform was

developed to perform PSHA, the rich suite of its data products makes it an
ideal source of data to feed the MLESmap method.

CSS-15.4 used in this paper is a well-curated computational study to
calculate a physics-based PSHA for Southern California at 1 Hz, using the
tomographically-derived Community Velocity Model CVM-54.26-M01,
the GPU implementation of AWP-ODC-SGT*, the GP-14 kinematic
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Fig. 6 | RotD50 predictions for real events for the ‘inside’ stations. RMSE for RF
(red bars), DNN (blue bars), and ASK-14 (green bars) for the ‘inside' stations shown
as blue circles in Fig. 5. Each row indicates the RMSE for T'=2s, 3s, 5s, and 10s,

respectively. The value annotated above each bar indicates the improvement of the
MLESmap predictions with respect to the ASK-14 predictions. The vertical red line
divides the earthquakes that have magnitudes that fall in the range of hypothetical
events included in CSS-15.4 (left of vertical line) from the event with a magnitude
outside the simulated magnitude range (see Fig. 1c). The MLESmap predictions

outperform the ASK-14 predictions as long as no extrapolations are necessary, that

is, the considered event is representative of the synthetic training events (left v.s.
right of the vertical line), and the station locations fall within the area covered by the
synthetic training sites (the ‘inside’' stations in this figure v.s. the "outside' stations in
Supplementary Fig. 5). Note that RMSE scales with amplitude, so the RMSE mag-
nitude in each case depends on the event magnitude and on the location of the
‘inside’ stations relative to the event. The relative performance of the ML-based
predictions vs. the empirical GMM is of interest rather than absolute values for
each event.

rupture method with uniform hypocenters”, and the UCERF2 ERF'. The
computation of the CSS-15.4 study required a total of 37.6M hours in tier-0
supercomputing facilities. In particular, the database contains IMs (derived
from simulations) for 153628 scenarios (i.e., hypothetical earthquakes) from
the UCERF?2 earthquake rupture forecast. Those scenarios were recorded at
a collection of sites, i.e., discrete points in space on the free surface, where
seismic IMs were extracted from each scenario. Such IMs can be further
analyzed to obtain discrete spectral intensity values.

Some relevant characteristics of the CSS-15.4 dataset are shown in Fig, 1.
The faults are marked with red lines, the Los Angeles city center with a blue
dot, and the network of ground sites where RotD50 is computed with magenta
stars in Fig. la. Figure 1b shows the RotD50 distribution for the events at
different periods. As expected, lower periods attain higher RotD50 values. The
magnitude distribution of all synthetic scenarios is shown in Fig. 1c, where a
predominant 7.6 magnitude is observed. CyberShake uses a magnitude cutoff
of 6.5, so only events with a median magnitude of at least 6.5 are considered,
though aleatory magnitude variability implies that some events with lower
magnitudes are included. Since CyberShake considers multiple realizations
with varying hypocenter locations and slip distributions to sample variability,
the distribution of earthquakes in the event set is not directly related to actual
earthquake magnitude distribution in the region of study.

Finally, it should be noted that the MLESmap methodology is not
limited specifically to training on CyberShake-like databases. In Cyber-
Shake, although multiple kinematic rupture scenarios are derived for each
rupture in the ERF by varying slip distributions and hypocenter locations
across an input fault system, the rupture speeds and slip distributions in each
simulation are pre-set. Having a richer set of rupture conditions by con-
sidering a synthetic database of dynamic rupture simulations could further
improve the applicability of the method.

MLESmap: methodology

The goal of the MLESmap methodology is to rapidly predict IMs with high
spatial resolution given, as inputs, the earthquake’s magnitude, hypocentral
location, and the relationship between the earthquake hypocentre and the
site of ground motions recordings (see Supplementary Fig. 9 for a graphical
summary of the MLESmap methodology). In particular, the MLESmap
methodology provides a framework for training region-specific ML models
of ground motion on databases of synthetic IMs with two algorithms:
Random Forest (RF) and Deep Neural Networks (DNN). The resulting ML
models, the RF-based GMM and DNN-based GMM predict the distribution
of a selected IM at a given period for given source characteristics of a new
event in the region.
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Given our objective and the associated time constraints, we choose
parameters that can be quickly inferred from early data records and are
readily provided by international agencies immediately after an event. It
should be noted that despite the simple inputs, the methodology takes into
account the complex relationship between the finite fault models used in the
ground motion simulations that generate the synthetics, the associated
hypocentral location, and the resulting spatial distribution of the chosen IM.

In this paper, the MLESmap predictions are made by means of ML
models for Southern California trained with CSS-15.4 events only™. The
CSS-15.4 database is one of the largest and best-calibrated datasets of syn-
thetics worldwide, thus serving as an ideal first implementation of MLES-
map. For both RF and DNN algorithms, four independent ML models
considering the data for a single maximum period (T = 2, 3,5,and 10 s) were
built. The logarithm of the RotD50—which represents the median pseudo-
spectral acceleration (PSA) value selected from all azimuth directions at
each recording station”—was used as a target, as the logarithmic scale was
shown to increase the score performance for the four periods considered
(see Supplementary Fig. 10). It should be noted that other IMs could serve
targets without significant impact on the performance of the MLESmap
models.

We refer to the collection of all scenarios recorded at all sites for
a discrete spectral intensity, or in general for all spectral intensities,
as events. The dataset of 153,628 scenarios was split into 90% for
training and 10% for testing and validation. Therefore, considering
253 stations in our dataset (Fig. 1a), a total of 155M events were used
for training the models generated with the MLESmap methodology,
involving 4 discrete values of RotD50 (at different periods), which
were used independently from each other. A total of 3.8M events
belonging to the validation subset were used to compute the score
metrics and evaluate the MLESmap models’ accuracy. The training
dataset constitutes 3.8 GB on disk, while the validation subset
is 0.5 GB.

MLESmap: RF regression algorithm

The training and model generation for the RF regressor has been performed
using the Distributed Computing Library (dislib)*’, a Python software built
on top of PyCOMPSs*'. dislib is inspired by NumPy and scikit-learn, pro-
viding various supervised and unsupervised learning algorithms through an
easy-to-use APL dislib has been used due to its efficiency to handle models
with a large number of events.

To find the best hyperparameters for a model with the selected input
characteristics (magnitude, hypocentral latitude, longitude, and depth,
latitude and longitude coordinates of the site, and the Euclidean distance
and azimuth that define the spatial relationship between the hypocentre and
the site) we use a grid search on the training set, and the k-folds cross-
validation functions over the three available parameters in dislib for the
algorithm:

* maximum tree (d,,,,): number of levels in each decision tree,

» number of estimators (7.¢): number of trees in the forest, and

* try-features (f): maximum number of features considered for
splitting a node.

The metric to measure the performance of the models given a specific
set of hyper-parameters is the coefficient of determination (R®) score.
Supplementary Fig. 10 shows the R*-score values for different diy,,, values
using two different target scales: (a) logarithmic and (b) non-logarithmic.
The results show that the treatment of the target on a logarithmic scale
increases the score performance for the four periods considered. Moreover,
the best parameters are dpax = 30, i = 30, and tr= ‘third’ for all periods.

MLESmap: Deep Neural Network topology

MLESmap uses a fully connected neural network. Many factors were taken
into account in determining the DNN architecture, including the nature of
the application. Specifically, it is a regression problem with only 8 inputs and

a single output. Tackling it with a “sophisticated” neural network model,
such as a Convolutional Neural Network (CNN), a Recurrent Neural
Network (RNN), or even a Transformer, was considered unnecessary.

In order to select an appropriate network topology for the target
problem, we started from the most basic multilayer perceptron
(MLP) with eight neurons in the input layer, corresponding to the
eight features of the earthquake that are taken into account (mag-
nitude, hypocentral latitude, longitude, and depth, latitude and
longitude coordinates of the site, and the Euclidean distance and
azimuth that define the spatial relationship between the hypocentre
and the site), and one neuron in the output layer which determines
the RotD50 component of the earthquake. The exploration of the
topology space was carried out with different numbers of hidden
layers and units (neurons) on those layers.

The classical “non-generalization” problem in neural networks was
tackled by applying regularization, data normalization, and batch normal-
ization. In addition, distinct learning rate schedulers were evaluated to deal
with the local minimum deadlock optimization problem. Finally, to avoid
problems due to the vanishing and explosion of gradients, we tested dif-
ferent dropout and activation functions.

After concluding this phase of experimentation with the different
periods, the best results were obtained with MLPs consisting of either seven
or nine hidden layers, respectively, with 32, 64, 128, 256, 128, 64, and 32 or
16,32, 64,128,256, 128,64, 32 and 16 units per layer. The MLPs, in addition,
integrate pre-batch normalization (before the activation function) and a
warm anneal learning rate scheduler. Softplus was adopted as the activation
function for the hidden layers and sigmoid for the output layer since the IM
values were previously normalized between 0 and 1.

The different experiments with neural networks were carried out in
Python, making use of the open-source TensorFlow library®, and the high-
level framework Keras?. These libraries rely on other auxiliary Python
libraries such as os, NumPy, matplotlib, etc.

Validation score metrics
In this work, we used different metrics to validate the accuracy of the
MLESmap inference on synthetics and real events (see Results section).

To quantify the accuracy of the ML predictions on the synthetic data in
Fig. 2, we use common regression metrics such as mean absolute error
(MAE), mean squared error (MSE), root mean squared error (RMSE), mean
absolute percentage error (MAPE), coefficient of determination R* and
Pearson’s coefficient"’. The MAE is calculated as the mean or average of the
absolute differences between predicted and expected target values, so the
units of the error score correspond to the units of the predictions. The MSE
is the mean of the squared differences—the units of the error and of the
prediction do not match, but the metric is useful to emphasize and penalize
large errors, as the errors are squared before they are averaged. RMSE is the
square root of the MSE, so it is measured in the same units as the target
variable, yet it still gives a relatively high weight to large errors. MAPE is
sensitive to relative errors and so remains insensitive by the scaling of the
target variable. R* represents the proportion of variance explained by the
independent variables in the model and indicates how well-unseen samples
are likely to be predicted by the model. Finally, Pearson’s correlation coef-
ficient measures the strength of the linear association between two variables.
Note that all the metrics summarize performance in ways that disregard the
direction of over- or under-prediction.

In particular, to evaluate the ML predictions on the validation subset
against empirical GMMs, we focus on the RMSE as score metrics, as it is
widely used in the community to compare and validate empirical GMMs
with observations'**~**. RMSE ranges from 0 to infinity, is in the same units
as the target variable and is most useful when large errors are particularly
undesirable, as in the case of the prediction of ground motion IMs for
assessing associated risks. However, since RMSE does not provide any
information on prediction bias, we also consider the geometric mean ratio of
Aida’s number K*', where underestimation and overestimation correspond
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to K> 1 and K < 1, respectively. We compute the logarithm of K as

1 0
log (K) = N E log S
i=1 1

where O; is the observed (target) value, and §; is the simulated
(predicted) value.

It should be noted that multiple other empirical GMMs were proposed
for Southern California (e.g., BSSA”, CB*, and CY") that generate similar
results and thus result in comparable RMSE metrics. We deem ASK-14" the
most suitable for our validation, as it was constructed using the NGA-West2
database™ that contains worldwide ground motion data recorded from
shallow crustal earthquakes in active tectonic regimes post-2000, as well as a
set of small to moderate magnitude earthquakes in California between 1998
and 2011. The ASK-14 values were computed using OpenSHA software”
with the Vg3 values from the Thompson model™.

(1
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