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Malaria transmission risk is projected to
increase in the highlands of Western and
Northern Rwanda

Check for updates

Lian Zong1,2,14, Jean Paul Ngarukiyimana1,3,4,14, Yuanjian Yang 1 , Steve H. L. Yim 5,6,7 , Yi Zhou 8,
Mengya Wang1, Zunyi Xie9, Hung Chak Ho10, Meng Gao 11, Shilu Tong 1,12,13 & Simone Lolli 2

Malaria is one of the major health threats in Africa, and the risk of transmission is projected to be
exacerbated by global warming. Rwanda experienced an 11-fold increase in malaria incidence from
2011 to 2015 despite extensive funding and implementation of control measures. Here, we focus on
Rwanda as a case study and simulate monthly malaria incidence between 2010 and 2015, employing
an ensemble learning method. Next, we project future malaria prevalence using shared socio-
economic pathways (SSP2-4.5 and SSP5-8.5). We find that the projected increases in temperature
andprecipitationmay shiftmalaria transmission risk to the highlands ofwestern and northernRwanda.
These two regions that currently experience lowmalaria transmission. The seasonal effects of malaria
incidencemay be less apparent from January to June, and the peak season formalaria transmission in
the highlands could occur one month earlier. Our findings highlight the impacts of climate change on
malaria epidemics in Rwanda, which have implications for other world regions.

Malaria remains as one of the most substantial public health challenges
in the Global South, especially in sub-Saharan Africa and Southeast
Asia1–3. As a representative region of the Global South, Africa accounted
for 95% of global malaria cases in 20214. Fortunately, the effectiveness of
control measures against Plasmodium falciparum has reduced the
incidence of clinical malaria by 40% in Africa between 2000 and 20153,5.
However, some regions in Central Africa, especially those countries with
savannah climates (e.g., Rwanda, Nigeria and the Republic of the
Congo), still experience a large number of malaria cases due to local
environmental conditions. For example, Rwanda—one of the most
densely populated countries in Africa—experienced an increase in
malaria cases from 0.64 million in 2010 to 3.4 million in 20166. As a
result, Rwanda is one of the countries with the highest incidence of
malaria in Africa, with approximately 90% of all Rwandans at high-risk6,
even if a considerable amount of funding was consistently allocated to
mitigate malaria risk efforts during this period.

To help mitigate global risk of malaria incidence, previous studies have
developed mathematical models driven by precipitation and temperature to
simulate mosquito population (e.g., birth and bite rates of adult mosquitoes)
and malaria-vulnerable, exposed, and infected human populations2,7–10.
Forecasted changes in global malaria transmission patterns pointed the
changes in the seasonal and spatial characteristics of futuremalaria risk as an
important concern under various climate change scenarios8,11–13. Further-
more, most dynamic malaria models also considered the time-lag effect of
precipitation and temperature on the life cycles of mosquitoes and their
sporogonic cycles to improve malaria forecast10,14. These results can support
local governments in generating evidence-based policies and control mea-
sures to effectively mitigate malaria risk under a warming climate. These
modelsmainly reliedona linear growthassumption topredict thedensities of
future infected human populations and malaria transmission. However,
according to the United Nations projection of the world population15, Africa
is experiencing an exponential increase in its population. The integrated

1School of Atmospheric Physics,NanjingUniversity of InformationScienceandTechnology,Nanjing,China. 2Institute ofmethodologies for environmental analysis,
National research council of Italy, Tito Scalo, PZ, Italy. 3School of Science & Technology, University of Rwanda, Kigali, Rwanda. 4School of Nursing andMidwifery,
College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda. 5Asian School of Environment, Nanyang Technological University,
Singapore, Singapore. 6LeeKongChinaSchool ofMedicine, Nanyang Technological University, Singapore, Singapore. 7EarthObservatory of Singapore, Nanyang
Technological University, Singapore, Singapore. 8School of Management Science and Engineering, Nanjing University of Information Science and Technology,
Nanjing, China. 9College of Geography and Environmental Science, Henan University, Kaifeng, China. 10Department of Public and International Affairs, The City
University of Hong Kong, Hong Kong, China. 11Department of Geography, Hong Kong Baptist University, Hong Kong, China. 12National Institute of Environmental
Health, China Centre for Disease Control and Prevention, Beijing, China. 13School of Public Health and Social Work, Queensland University of Technology,
Brisbane, Australia. 14These authors contributed equally: Lian Zong, Jean Paul Ngarukiyimana. e-mail: yyj1985@nuist.edu.cn; yimsteve@gmail.com

Communications Earth & Environment |           (2024) 5:559 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01717-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01717-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01717-9&domain=pdf
http://orcid.org/0000-0003-3486-6286
http://orcid.org/0000-0003-3486-6286
http://orcid.org/0000-0003-3486-6286
http://orcid.org/0000-0003-3486-6286
http://orcid.org/0000-0003-3486-6286
http://orcid.org/0000-0002-2826-0950
http://orcid.org/0000-0002-2826-0950
http://orcid.org/0000-0002-2826-0950
http://orcid.org/0000-0002-2826-0950
http://orcid.org/0000-0002-2826-0950
http://orcid.org/0000-0003-1844-178X
http://orcid.org/0000-0003-1844-178X
http://orcid.org/0000-0003-1844-178X
http://orcid.org/0000-0003-1844-178X
http://orcid.org/0000-0003-1844-178X
http://orcid.org/0000-0002-7323-1630
http://orcid.org/0000-0002-7323-1630
http://orcid.org/0000-0002-7323-1630
http://orcid.org/0000-0002-7323-1630
http://orcid.org/0000-0002-7323-1630
http://orcid.org/0000-0001-9579-6889
http://orcid.org/0000-0001-9579-6889
http://orcid.org/0000-0001-9579-6889
http://orcid.org/0000-0001-9579-6889
http://orcid.org/0000-0001-9579-6889
http://orcid.org/0000-0001-6111-152X
http://orcid.org/0000-0001-6111-152X
http://orcid.org/0000-0001-6111-152X
http://orcid.org/0000-0001-6111-152X
http://orcid.org/0000-0001-6111-152X
mailto:yyj1985@nuist.edu.cn
mailto:yimsteve@gmail.com
www.nature.com/commsenv


population growth of African countries may contribute tomore than 50% of
global growth by 2050. This rapid population change is expected to have a
pronounced effect on the intensity of malaria transmission in the Global
South, especially inAfrican countries. Specifically, population growth is likely
to increase exposure and thereby enhance transmission.On the other hand, a
growing urban population means better access to medical services and
healthcare infrastructure, which, in turn, would reduce levels of malaria
transmission16. Furthermore, altitude plays a fundamental role in tempera-
ture variation; for example, high elevation areas, characterised by cooler
temperatures, are typically less prone to mosquito development, resulting in
lower malaria incidence17. Therefore, we believe that the malaria projections
that incorporate human populations and elevation information would fur-
ther improve future malaria assessments.

This study conducted a comprehensive malaria risk assessment to
evaluate the spatiotemporal variability of malaria incidence in Rwanda.
Rwanda is representative in researchbecause of its suitable climate conditions
and rapidpopulationgrowth, and it can serve as a reference for othermalaria-
endemic countries because of its extensive experience inmalaria control. The
Rwanda Malaria Operational Plan FY 201718 highlighted a potential
mechanism of local transmission due to a multifaceted interplay of various
factors, including increased temperature, modification of rainfall and agri-
cultural lands, a substantial decline in the coverage of insecticide-treated
mosquito nets (ITNs), increased mosquito resistance to pyrethroid insecti-
cides, increased availability of rapid diagnostic tests (RDTs) and artemisinin-
based combination therapies (ACTs). The Rwandan government has also
developed several strategic plans, including vigilantmonitoring of insecticide
resistance, a rigorous biannual rotation of insecticides and prioritisation of
high-risk malaria transmission regions, with a primary focus on the dis-
tribution of long-lasting insecticidal nets (LLINs) in districts with high
malaria burden19,20. However, the relationship between changing climatic
factors and malaria incidence has not been sufficiently investigated at the
regional scale, hindering the effectiveness of malaria control strategies21.

In recent decades, Rwanda has taken good steps to alleviate the burden
of malaria through the effective implementation and expansion of malaria
control measures. However, unexpectedly, the incidence of malaria in
Rwanda increased after 2011. Malaria cases reached a staggering 2.66 mil-
lion in 2015, which present a formidable challenge tomalaria control efforts
in the country. Here, we use Rwanda as an example because Rwanda
experienced slight changes in annual total funding (~$42 million) for
malaria control between 2010 and 2015 (Supplementary Table 1). This
relatively stable funding situation allows us to attribute changes in malaria
incidence primarily to meteorological variables, minimizing the impact of
changes in malaria control efforts. Therefore, we applied an ensemble
learning method, namely, the Random Forest Model (RFM), to compre-
hensively estimate the effect of changing climate on malaria incidence
according to historical observations in Rwanda. Based on this forecasting
model, we predicted the future risk of malaria and its spatiotemporal
changes under two distinct shared socioeconomic pathways (SSPs). Since
projections for the impacts of climate changeon futuremalaria transmission
at district levels in theGlobal South have not been rigorously examined, this
knowledge is also critical for the development of early warning systems in
Rwanda and other malaria-endemic regions.

Results
Spatiotemporal Variability of Malaria Incidence Between 2010
and 2015
Large incidence values in Rwanda are spatially clustered in the east and south
during 2010–2015, while the western and northern areas experienced low
incidence (Fig. 1a). This spatial pattern suggests that temperature is themain
factor affecting malaria incidence but not precipitation, which is associated
with local topography (Fig. 1b). In general, elevation inRwanda is above 1000
metres, with an extensive north-southmountain plateau in western Rwanda.
This plateau is above 1500 metres, with some areas reaching approximately
4500metres. Thewest-facing slope is steepwhile east-facing slope is relatively
gentle.Consequently, thepopulationofRwanda ismainly concentrated in the

low-elevation eastern and southwestern regions (Fig. 1c). This terrain also
induced a rain shadow effect in eastern Rwanda, as a result, higher tem-
perature conditions in the east during 2010–2015 provided optimal condi-
tions for the extrinsic development of mosquitoes even when precipitation
was low (Fig. 1d–f). However, when ambient temperatures are below
15–16 °C, the predominantAnophelesmosquitoes cannot develop fromeggs
to adults22. Due to the absence of optimal temperature conditions (Tmin

>16 °C), high rainfall inwesternRwandadidnot result in a significantmalaria
transmission as modelled in the eastern part of the country. Observing the
monthly dynamics, a distinctive bimodal pattern in malaria incidence
becomes evident, featuring double peak seasons in June, themonth following
the long rain season, and inDecember, the lastmonthof the short rain season
(Fig. 1a, f). The prevailing warm conditions in eastern Rwanda created an
idealhabitat for thedevelopmentof theparasite in themosquitovector,which
promoted malaria transmission (Fig. 1a).

High consistency was observed between interannual variations in
malaria incidence and meteorological conditions. Specifically, malaria
incidence was lowest in 2011, coinciding with the lowest annual average
monthlymaximum temperature (Tmax) andminimum temperature (Tmin),
and the highest rainfall, conditions that were not suitable for mosquito
development (Fig. 2). In contrast, 2015was the yearwith the highestmalaria
incidence, while Tmax and Tmin were the highest and rainfall was the lowest.
Generally, both Tmax and Tmin demonstrated a similar pattern of inter-
annual variability withmalaria incidence, while rainfall displayed an inverse
relationship.

Thus, spatiotemporal variability and the intricate interplay amongTmax,
Tmin, and rainfall may substantially induce the uncertainty in estimating
malaria transmission in specific areas. Furthermore, the time-lag effects of
individual or combined meteorological factors play a pivotal role in shaping
favourable environments for malaria vectors23. As such, the RFM was
developed to incorporate climate variables for the currentmonth alongwith a
delay of 1 to 3 months, acknowledging the lagged effects of temperature and
rainfall on the incidence of malaria. Based on the RFM with Tmax (lag 0 to
3 months), Tmin (lag 0–3 months), rainfall (lag 0–3 months), geographic
location (latitude and longitude), month of year, elevation and total human
population as predictors, our prediction was accurate, with R square (R2),
mean square error (RMSE), and mean relative error (MRE) values of 0.79,
0.64, and 24.74%, respectively (Fig. 2e). The main determinants of malaria
incidence were human population and geographic factors (latitude and
longitude), followed by factors related to elevation and temperature, while all
variables of precipitation had the lowest contribution to the model (Fig. 2f).
Specifically, rainfall had a strong lag effect on malaria incidence, especially
rainfall (lag 2months).All lagged rainfall valueswereof greater significance in
malaria incidence compared to rainfall in the same month (lag 0 month).

Partial dependent plots of the RFM models further identified a com-
plex spatiotemporal variability between all factors and malaria incidence
from 2011 to 2015 (Supplementary Fig. 1). Specifically, the human popu-
lation had a clear J-shaped association with malaria incidence, with a sharp
increase in malaria incidence when the population ranged from 0.3 and 0.4
million people. Geographic locations had relatively linear associations with
malaria incidence,wherehigher incidence tended tobe in the southandeast.
Elevation had a complex associationwithmalaria incidence, with the lowest
incidence in areas at approximately 1600 metres between 2010 and 2015.
Furthermore, the accelerating effects of Tmin on malaria incidence were
high, while the impacts of Tmax variables onmalaria incidencewere gradual,
except for Tmax at a 3-month lag. Importantly, rainfall in the currentmonth
showed a gradual negative association withmalaria incidence, while rainfall
at a 1-month lag and at a 2-month lag showed a positive association,
especially rainfall at a 2-month lag. These results underline the delayed
effects of rainfall on malaria incidence in Rwanda.

Seasonal advance and elevation dependence of malaria inci-
dence in the future
Under both the SSP2-4.5 and SSP5-8.5 scenarios, there is a discernible and
substantial increase in both Tmax and Tmin. The complete maturation
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process of mosquito sporozoites is highly sensitive to temperature, P. vivax
in vectors grows at minimum temperatures above 16 °C, whereas P. falci-
parum develops at temperatures above 18 °C24. It is particularly noteworthy
that Tmin basically exceeds 16 °C and 18 °C under both SSP2-4.5 and SSP5-
8.5, creating a more favorable environment for the development of the
parasite in themosquito vector (Supplementary Fig. 2b and 2f). In addition,
the historical dry season (in 2010–2015) could experience an increase in
rainfall in the future, especially under SSP5-8.5. Thus, the dry season is
projected to become a susceptible period for future malaria transmission,
this finding is consistent with the 2-month lagged relationship between
rainfall and observed malaria in 2010–2015. Overall, the increase in tem-
perature and rainfall is expected to create suitable environmental conditions
for the development of mosquito vectors, resulting in a marked increase in
malaria incidence for both future climate change scenarios (Fig. 3, Sup-
plementary Figs. 1 and 2). In terms of seasonal variations, the national
average relative change (RC; %) inmalaria incidence shows a positive trend
under the SSP2-4.5 and SSP5-8.5 scenarios (Fig. 3d, h). The two peak sea-
sons of increased malaria may occur between (1) February to April and (2)
August toOctober, whichwere historically documented as periodswith low
malaria incidence during 2010–2015 (Fig. 1a). In the future, a substantial
increase in malaria incidence is simulated in the dry season; consequently,
seasonal fluctuations in malaria incidence in Rwanda are expected to
weakenand fadeout fromJanuary to June.Ultimately, themalaria incidence
pattern is expected to transition to a single peak, with the highest incidence
occurring in November and December in future simulations (Supplemen-
tary Fig. 2).

Additionally, the high-resolution climate simulation indicates that
spatiotemporal patterns of variability in malaria incidence will shift to

higher altitudes in the future due to global warming (Fig. 4). Under the
SSP2-4.5 scenario, the spatial pattern of RC in malaria incidence shows a
positive trend over the central plateau region for 2030–2035, including the
Muhanga, Nyamagabe and Rubavu districts. Similarly, Ruhango and
Kamonyi will cluster with the aforementioned districts, experiencing more
prevalent malaria transmission during 2050–2055. Furthermore, the pro-
jection for 2090–2095 shows that there will be three more districts (Nya-
magabe, Nyamasheka and Muhanga) with annual malaria prevalence >1%
compared to 2010–2015 (Fig. 1 and Supplementary Fig. 3). Notably, the
model shows a marked increase in malaria incidence in the mountainous
areas in thenorthern regionunder both SSP2-4.5 andSSP5-8.5.Historically,
the northern part has recorded fewer malaria cases, primarily due to its
lower temperatures. However, it is expected that the northern region will
becomemore suitable for malaria transmission in the future, drivenmainly
by the increase in Tmax and Tmin. For low altitudes, where malaria trans-
mission is already a concern, warmer temperatures can alter the parasite
growth cycle inmosquitoes, with faster development, ultimately amplifying
the local malaria burden25. Districts with high variability in malaria inci-
dence are projected to gradually shift from medium altitude (~1800 m) to
medium high altitude (1800–2000m) by the 2090 s. While malaria classes
are not expected to change in most parts of Rwanda in the future, the
duration of malaria transmission season might lengthen in eastern and
southern Rwanda in the future. Approximately 15 districts are projected to
experience 6-month transmission season by 2090–2095 according to SSP5-
8.5, and 12 districts are expected to become year-round endemic areas
(Supplementary Fig. 4). Additionally, the human population is the most
important variable in predicting malaria incidence, while future changes in
malaria incidence are characterised primarily by seasonal variation, as well

Fig. 1 | Overview of malaria incidence, terrain elevation, human population and
meteorological factors in Rwanda during 2010–2015. Annual mean pattern of
malaria incidence in Rwanda during 2010–2015, with monthly variation of malaria
incidence are shown at the top of the map, with black dots indicating endemic areas
(a); Map of 30 districts in Rwanda with meteorological stations (red triangles) and

topography (contour color) (b);Map of human population distribution (c); (d–f) are
the same as (a), but for Tmax, Tmin, and rainfall. Blue areas denote the lakes, and error
bar denotes one standard deviation, n = 180. The base map is retrieved fromGADM
data54.
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as elevation dependence through the influences on temperature and
humidity. These seasonal and spatial variations in malaria incidence are
largely attributable to projected changes in rainfall (Supplementary Fig. 5).

Due to the co-effect of meteorological factors and elevation in the
future, a change in the peak season of malaria incidence is also found from
the simulation. Specifically, in high-elevation western Rwanda, future
warmer temperatures, supported by the rainy season, may lead to more
severe malaria epidemics. In the low-altitude areas of eastern and southern
Rwanda, the peak season for malaria is largely influenced by changes in
precipitation in the previous 1–2 months, due to the lag effect of pre-
cipitation. As a result, the peak of futuremalaria incidencewill shift to a later
time in December in southeastern Rwanda and to an earlier time in
November in western Rwanda. For the eastern region, the future peak in
malaria incidence will still occur in December as it did in 2010–2015 (Fig. 5
and S6). Generally, high variability in future malaria incidence at high
elevations, including amarked increase andanearlierpeak seasonofmalaria
incidence, should be of concern for citizens and malaria control policy-
makers, as it matters for future malaria prevention and control priorities.

Discussion
Our results reveal a pronounced change in future malaria incidence in
Rwanda under different climate change scenarios (SSP2-4.5 and SSP5-8.5).
In the western and northern highlands of Rwanda, currently experiencing
low malaria transmission, malaria incidence is projected to face an expo-
nential increase in the future, likely due to increases in temperature and
precipitation. This change is likely to create a more favorable environment
for Plasmodium-carrying mosquito breeding and survival at higher
altitudes26. Furthermore, seasonal variation in malaria transmission is
expected to differ significantly from the present pattern. The bimodal
malaria transmission season has a high probability of shifting to a single
peak pattern in Rwanda in the future, extending the duration of the trans-
mission season. Changes in precipitation patterns will emerge as the

predominant driver of seasonal and spatial variability in malaria (Supple-
mentary Fig. 5), with increasing rainfall in January and lag effects thatmight
enhance mosquito habitability and reduce seasonal differences in the first
half of the year in the future. The peak malaria season in the western and
northern highlands is likely to occur earlier approximately one month due
to seasonal shift in precipitation. In summary, temperature changes create
conducive conditions formalaria transmission.This statement, is supported
by studies have already confirmed that climate change is already exacer-
bating malaria transmission in the eastern African highlands17,27. Not only
do the results of RFM in this study, but other dynamical malaria models
driven by climatic factors also forecast an increase in malaria burden in the
Indian and African highlands in the future9,13,26,28. Furthermore, our results
suggest that the projected future shift in the high variability of malaria
incidence and its peak seasons should be of concern to the relevant public
health stakeholders in Rwanda and other countries with similar environ-
mental conditions.

The impacts of climate change on the dynamics of malaria have been
widely debated. Some studies have stated that climatefluctuations only exert
a relatively minor influence on malaria transmission, with their effects
considerably overshadowed by factors such as the state of public health
infrastructure, resistance to antimalarial drugs, reductions in mosquito
control measures, population growth, and migration patterns27,29. In con-
trast, other studies highlighted that climate change will have a non-
negligible influence on malaria transmission dynamics2,9. Evidently, the
recent increase in malaria incidence observed in East African highland
regions and specific South American countries is linked, in part, to the early
impact of global warming13,17,30. Climate change will directly or indirectly
impact the evolving vulnerability of populations and their ability to address
and respond to disease burdens8,31–33. Specifically, rainfall, temperature, and
humidity play a central role inmodulatingmalaria incidences, through their
impacts on ecosystems, parasite life traits and mosquito survival34–37. Pro-
jections on the impacts of future climate change underscore the increased

Fig. 2 | Annual variations and trends in meteorological factors and malaria
incidence during 2010–2015, and malaria incidence projections by RFM. Time
series of annual-averaged malaria incidence (a), Tmax (b), Tmin (c), Rainfall (d)
during 2010–2015. Mean (square), 1st and 3rd interquartile ranges (box caps),
minimum andmaximum values (whiskers), outliers (asterisk), and the inter-annual

trend (dashed line), n = 30. e Accuracy of malaria incidence projections by RFM
compared to observed malaria incidence, f Variable importance derived by RFM.
Note malaria incidence (MI) scaled by the natural logarithm in the RFM. The
variables 1–3 respectively denote the lag effect of the variable for 1–3 months.
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susceptibility to malaria resurgence in specific regions of East Africa and
Ethiopia by 205035,38. Furthermore, another study predicted that previously
malaria-free African highlands (including the western highlands of
Rwanda) may become endemic by 204013.

Specifically, malaria control measures are paramount for reducing and
eliminating malaria39. Since 2007, Rwandan health authorities have devel-
oped more flexible and detailed malaria control interventions, prioritizing
high-risk regionswith limited resources20. For example, funding andmalaria
control programs implemented by relevant authorities since 2008 have
prioritized the distribution of LLINs and indoor residual spraying in areas
with high malaria endemicity20. Furthermore, high-burden malaria areas
have also been prioritized for insecticide spraying before the rainy season18.
As reported, Rwanda reduced malaria cases by at least half from 2005 to
2010 after expanding control interventions40.However, thesemeasures have
also led to a reduction in malaria control coverage and a failure to provide
adequate and timely malaria control interventions in areas of lower risk. In
particular, Rwanda has experienced a persistent surge in malaria across its
30 districts since 2012, despite stable malaria control funding efforts. The
country attributes this to meteorological factors such as increased tem-
perature and rainfall, mosquito insecticide resistance, and low coverage of
malaria control interventions18,41. Indeed, changes in the climatic environ-
ment directly affect the growth of Plasmodium-carrying mosquitoes,
thereby influencing malaria transmission8. Therefore, changes in endemic
areas and seasonal variations in malaria due to climate change must be
considered in future malaria control measures undertaken by relevant

authorities. Our study reveals a substantial increase in malaria incidence
during the off-season due to climate change. Consequently, sustained
insecticide spraying initiatives and ITN distribution should be extended
throughout the year, especially before the peak season. Given the projected
year-round prevalence of malaria, it is recommended that the insecticide
rotation be adjusted to the corresponding pre-peak months
(August–October) to mitigate vector resistance. Furthermore, ongoing
prioritization of high-risk malaria regions is crucial to prevent post-control
resurgence, necessitating stringent control measures in potential malaria
surge areas (e.g., west-central Rwanda) to prevent them from becoming
high-burden zones.

This model still has some limitations. Firstly, to improve predictive
accuracy and provide more scientifically robust recommendations for
malaria elimination, it is useful to consider quantifiable indicators related to
mosquito resistance and malaria interventions. While such data were not
available in this study, future research should include them. Secondly, to
enhance the modelling outcomes, it is necessary to include longitudinal
evaluations ofmosquito resistance to specific insecticides and variables such
as the allocation of malaria funding and the coverage of insecticide-treated
bednets in the training regimen of the RFM.Hence, further research on this
topic should be carried out. Finally, establishing models to project global
malaria trends is a forthcoming endeavor, contingent on, for instance, the
accumulation of more extensive health and climate data at the district level.
This type of database is vitally important for Rwanda and other African
countries experiencing malaria transmission.

Fig. 3 | Temporal changes in climate factors andmalaria incidence under climate
scenarios. Violin plots for absolute changes in Tmax, Tmin, Rainfall and the relative
changes inmalaria incidence for the periods 2030–2035, 2050–2055, and 2090–2095
under SSP2-4.5 (a–d) and SSP5-8.5 (e–h) in Rwanda compared to 2010–2015.

* indicates: p < 0.05, ** indicates: p < 0.01, *** indicates: p < 0.005. White scatters
indicate the average, colored scatters indicate distribution, and shadings indicate
kernel density estimation.
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In summary, evaluating the impact of climate change on malaria
incidence contributes to the development of more targeted and sustainable
publichealthpolicies, drives actions for adaptationandmitigationof climate
change, and fosters international collaboration to address this global health
challenge.

Materials and methods
Study area
Rwanda, despite its relatively small area (26,338 km²), is one of the most
densely populated countries in Africa42. In 2015, 19 of its 30 administrative
districts were classified as at-risk areas, and 90% of the population faced a

Fig. 5 | Changes in peak season of malaria incidence under climate scenarios.
Spatial pattern of shift in the month of peak season of malaria incidence for the
periods 2030–2035, 2050–2055, and 2090–2095 under SSP2-4.5 (a–c) and SSP5-8.5

(d–f). Green means an earlier occurrence, fuchsia means a later occurrence, white
means no change, and blue areas indicate the lakes. The base map is retrieved from
GADM data54.

Fig. 4 | Spatial changes in malaria incidence under climate scenarios. Spatial
pattern of relative change (%) in malaria incidence (denoted as RC in MI) for the
periods 2030–2035, 2050–2055, and 2090–2095 under SSP2-4.5 (a–c), SSP5-8.5
(d–f). The scatter in the subplot on each panel indicates the relationship between RC

inMI and elevation, while the solid line represents the fitted Gaussian curve relating
RC in MI to elevation, and blue areas indicate the lakes. The base map is retrieved
from GADM data54.
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high risk of malaria exposure18. Generally, malaria transmission in Rwanda
persists throughout the year in endemic regions with two distinct peak
seasons (May to June and November to December)43. These peaks are
associated with two rainy seasons throughout the year. Due to the topo-
graphy of Rwanda, eastern areas with lower altitudes are at higher risk of
malaria parasitemia than other regions40,44. The diverse topography of
Rwanda, with elevations ranging from 1000 to 4500 meters above sea level,
offers an ideal case study for examining the impact of future climate
warming on malaria transmission at different altitudes.

Collection of retrospective and observational data
Monthly malaria cases (2010–2015) were recovered from the Rwandan
HealthManagement InformationSystem (HMIS).MonthlyTmin, Tmax, and
rainfall data for 30 districts were retrieved from the RwandaMeteorological
Agency (specific locations of meteorological sites are shown in Fig. 1b).

It is important to note that HMIS provided the most complete, accu-
rate, and timely information for routine programmonitoring of diseases at
the national level. PMI (President’sMalaria Initiative), Global Fund, and the
Malaria and Other Parasitic Diseases Division (MOPDD), in collaboration
with the HMIS Unit at the Rwanda Biomedical Center (RBC) also conduct
annual data quality audits (DQA) across the country to validateHMIS data.
Thus, Rwanda’s surveillance, monitoring, and evaluation (SM&E) systems
constitute one of the most robust and comprehensive SM&E systems in
Africa18.

To stratify the extent of malaria transmission, endemicity classes are
identified by annual prevalence rates (PR) in children (malaria-free areas for
PR < 1%, hypoendemic areas for 1 ≤ PR < 10%; mesoendemic areas for
10 ≤ PR < 50%; hyperendemic for 50% ≤ PR< 75% and holoendemic
areas for PR ≥ 75%)45,46. In the absence of infection rates in children, we
identified endemic areas with an PR for all-age greater than 1% and
examined the duration of malaria endemic transmission.

Climate and population data projections and downscaling
This study employed eight General Circulation Models (GCMs) based on
the accessibility of monthly data for Tmin, Tmax, and rainfall from the sixth
phase of the Coupled Model Intercomparison Project (CMIP6) archives47.
To ensure the fairness and consistency of the data, GCMs (e.g., ACCESS-
CM2, CanESM5, IPSL-CM6A-LR, GFDL-ESM4, MIROC6, MPI-ESM1-2-
HR, CMCC-ESM2, BCC-CSM2-MR) were selected with variant labels of
r1i1p1f1 (details about these GCMs can be found in Supplementary
Table 2). The data used in this article comprise a set of historical simulations
(2010–2015) and future projections (2030–2100) under two distinct SSPs,
namely, SSP2-4.5 and SSP5-8.5. Global mean air temperature at the end of
the 21st century is expected to increase by approximately 1.27 to 3.00 °C
under the SSP2-4.5 scenario and 2.40 to 5.57 °C under SSP5-8.5, relative to
the average of 1995–2014. Simulated changes in precipitation show a var-
iationbetween4.2%and7.3% for SSP2-4.5 andSSP5-8.5,which is attributed
to greater variability and uncertainty of the model response48.

All gridded climate datasets were interpolated to 1.0° × 1.0° grid using
bilinear interpolation. We compared changes in Tmax, Tmin, rainfall, and
malaria incidence in the future using two IPCC (Intergovernmental Panel
on Climate Change) scenarios, SSP2-4.5 and SSP5-8.5, for the periods
2030–2020, 2050–2055, and 2090–2095. Future climate variables in
Rwanda’s 30 districts under SSP5-8.5 and SSP2-4.5 were estimated by
considering 30-site historical observedmeteorological elements and gridded
climate change signals from eight GCMs49. For example, monthly meteor-
ological factors for the period of 2030–2035 can be calculated by Eq. (1):

CMIP6site;2030�2035 ¼ Observationsite;2010�2015 þ ΔCMIP6Rwanda;2030�2035

ð1Þ
where Observationsite;2010-2015 represents the monthly meteorological fac-
tors detected in Rwanda’s 30 districts from 2010 to 2015, and
ΔCMIP6Rwanda;2030-2035 indicates the differences calculated between

2030–2035 and 2010–2015 using CMIP6 GCMs. Similarly, monthly
meteorological factors for the periods 2050–2055 and 2090–2095 are
defined by Eqs. (2) and (3), respectively:

CMIP6site;2050�2055 ¼ Observationsite;2010�2015 þ ΔCMIP6Rwanda;2030�2035

ð2Þ

CMIP6site;2090�2095 ¼ Observationsite;2010�2015 þ ΔCMIP6Rwanda;2090�2095

ð3Þ

Furthermore, the global gridded population data with spatial resolu-
tion of 0.5° under SSP2 and SSP550 were taken into account in future pre-
dictions of themalaria incidencemodel. It isworthnoting that since the data
represent the total population of the grid, we scaled the changes in human
population according to the proportion of each district’s area within
the grid. Then, the human population of 30 districts was calculated by
historical populationdata and future changes according to SSP2andSSP5. It
is also important to note that the population data is annual, so there is no
change inmonthly human population data for the same year in our training
and validation set of simulation.

Statistical analysis
Linear regression and Pearson’s correlation analyzes were used to explore
the relationship between malaria incidence and climate variables. Addi-
tionally, trend analysis was conducted to assess the variability of the climate
conditions.

Characterised by its use of multiple randomized decision trees, RFM
serves as a powerful machine learning technique capable of efficiently dis-
cerning and predicting complex nonlinear associations, while offering
valuable insights into the importance of variables51.Widely embraced for its
versatility, the RFM demonstrates remarkable proficiency in elucidating
intricate classifications with unwavering robustness52. To address the issues
associatedwithone-sided test results and limited trainingdata,weused a10-
fold cross-validation technique to assess the accuracy of RFM. Variable
importance analysis was also performed based on the estimation of the
increase in mean error after removing a specific variable from the model.
Partial dependence plots were used to report the non-linear associations
between malaria and all factors.

We used RFM to assess and forecast the impact of meteorological
factors on malaria incidence. This framework considers the impacts of
environmental factors (e.g., monthly Tmax and Tmin, rainfall, and topo-
graphic) andhumanpopulationonmalaria cases basedonmultiple decision
tree processing, which improves the prediction of malaria incidence. In
addition, taking into account the lag effect of climate factors, laggedvariables
(e.g., Tmax, Tmin, and rainfall) with delays of 1 to 3months were included in
themodel training. This study explored the impacts of climate changeon the
monthly incidence ofmalariawithin the country, dissecting the implications
at the district level under different scenarios of global warming (SSP2-4.5
and SSP5-8.5).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data supporting this article, including meteorological observations and
malaria incidence inRwanda are available in theZenodo53 at https://doi.org/
10.5281/zenodo.13143289. Simulations from ACCESS-CM2, CanESM5,
IPSL-CM6A-LR, GFDL-ESM4, MIROC6, MPI-ESM1-2-HR, CMCC-
ESM2 and BCC-CSM2-MR are available at https://aims2.llnl.gov/search/
cmip6.Thegriddedpopulationdataunder SharedSocioeconomicPathways
is available at https://doi.org/10.57760/sciencedb.0168350. The base map for
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Rwanda’s administrative districts is retrieved from GADM data at https://
gadm.org/data.html54.

Code availability
The analysis was carried out and thefigureswere generated usingMATLAB
R2022b (https://in.mathworks.com/products/matlab.html) and R 4.2.3
(https://www.r-project.org/about.html). Thesemaybe sharedon reasonable
request.
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