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Greening urban areas in line with
population density and ecological zone
can reduce premature mortality

Check for updates

Michael D. Garber 1,2 , Tarik Benmarhnia1,3, Weiqi Zhou 4,5,6, Pierpaolo Mudu7,8 &
David Rojas-Rueda 2,9

Urban green space and urban compactness are each important principles for designing healthy,
climate-resilient cities. The principles can co-exist, but greeningmay come at density’s expense if not
considered deliberately. Existing studies estimating health impacts of greening scenarios have not
considered what level of greenness is attainable for different population densities. Here, using the
square kilometer as the unit of analysis, we estimate non-accidental mortality that could be prevented
among adults older than 30 by greening that small area to a level of greenness assumed to be
attainable based on its broader urban area (N = 15,917 globally), population density, and ecological
zone. Results suggest a large potential for urban greening even in the most population-dense parts of
cities such that on average 54 deaths per 100,000 could be prevented per year in those areas. That
estimate may be about 25% higher or lower due to uncertainty in the underlying model.

As the world’s population becomesmore urban1, urban design plays an ever-
more important role in human health2. Among the several urban-planning-
relatedactions that cansupportpopulationhealth3–5, two include theprovision
of accessible urban green space and compactness, that is, designing cities in a
dense manner3. As reviews on this topic describe6–9, exposure to urban green
space can mitigate exposure to urban heat, improve air quality10, sequester
carbon11, encourage physical activity and socialization, and improve mental
health12. Through these andothermechanisms, exposure tourbangreen space
may prevent premature mortality13. City compactness, often measured by
population density, can also lead to myriad health benefits for residents3,14,15.
For one, compact cities, exemplified by the European 15-minute-city
model16,17, encourage active transportation (e.g., walking, bicycling, and
rolling)4,18, which has individual- and community-level benefits, including
increasedphysical activity andreducedgreenhousegas emissions19.Combined
with other policy measures like zoning reform, compactness can also ease
constraints on housing supply, thereby improving housing affordability,
assuming housing is market-priced20,21. Finally, denser cities may use less
energy from the transportation22 and building sectors23, improving short-term
air quality and long-term climate resilience.

Urban green space and compactness are not inherently at odds, but, in
practice, onemay come at the other’s expense at the within-city scale24,25. As
a recent review states, “while densification policies contribute to the safe-
guarding of natural spaces at the regional level, they tend to reduce green
areas within urban areas”25. Nevertheless, strategies to promote both urban
green and compactness have been proposed26,27, highlighting that the two
principles can co-occur if planned deliberately28. In one proposed frame-
work, ideal levels of greenness vary with density26.

As evidence accumulates suggesting green-space exposure benefits
health6–9,13, several health-impact-assessment (HIA) studies have sought to
quantify prematuremortality that could be averted by adding green space in
urban environments29–32. These HIAs have not considered what level of
greenness is attainable for a given level of population density, however.
Urbangreeningmaynot have anet benefit for public health, for example, if a
city block becomes greener at the expense of residential density33, potentially
harming housing affordability and encouraging more motor-vehicle trips.
To inform global sustainability targets, such as United Nations Sustainable
Development Goal 11 to make cities and human settlements inclusive, safe,
resilient and sustainable34, there is a need for HIA studies estimating health
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benefits of urban greening while considering what is achievable for a given
population density within the urban area.

Our goal is thus to estimate the number of premature deaths that could
be averted annually by greening 15,917 global urban areas to empirically
derived levels assumed to be attainable for within-urban-area population
density and biome. We stratify analyses by biome because target levels of
greenness may vary by biome within urban area.

Methods
Using the square-kilometer gridded-cell pixel as the unit of analysis, we
conducted a quantitative HIA to estimate the potential reduction in all-
cause premature mortality among adults aged 30 years and older living in
15,917 urban areas worldwide. Specifically, within each urban area’s cate-
gory of population density and biome, we estimated themortality impact of
raising greenness of pixels in the bottom two greenness tertiles to that of the
83rd percentile.

Data sources
Data sources used for this analysis and corresponding web links, as
applicable, are described in Table 1.

Urban boundaries. To define distinct urban areas, we used the 2018
dataset of global urban boundaries (GUBs) prepared by Li et al.35. This
vector-format dataset uses a globally consistentmethod of defining urban
boundaries. The method builds upon the 30-m global artificial imper-
vious area data35. The data include 65,462 urban boundaries, each with an
area greater than 1 km2. We call the areas contained within these
boundaries urban areas, as the boundaries may not necessarily corre-
spond to the administrative boundaries of cities.

Countries. To define country boundaries, we downloaded the Natural
Earth vector dataset at the most detailed scale (1:10 m) using the rna-
turalearth R package36. We classified countries by income and region
using the 2022 World Bank classification37.

Population and population density. Population density, a measure of
population per unit of land area, is among the defining measures of the
compactness of an area38. To measure population density, we used the
LandScan Global dataset of estimated population counts from 2019. This
raster-format dataset classifies each gridded cell of the globe with 1 of 9
categories of estimated population counts: 0; 1–5; 6–25; 26–50; 51–100;
101–500; 501–2500; 2501–5000; 5001–185,00039. These gridded cells are
about 1 square kilometer and are slightly smaller towards the poles40. As
described further below, our analysis is stratified byurban area.Within an
urban area, we assume that grid cells have the same size and thus that each
LandScan population category is a category of population density.

To calculate the total population affected by the proposed green-space
scenarios, we made two adjustments to these LandScan bounds. First, our
preliminary analyses suggested that a simple mean of the two LandScan
boundswould yield implausibly highpopulation estimateswhen summed to
the country level. To avoid over-estimating population, we divided each
country’s United Nations 2019 population estimate (downloaded from the
United Nations Data Portal: https://population.un.org/dataportal/; accessed
January 18th, 2024) by the sum of its constituent pixels’ LandScan upper
population bounds. The median value of this quotient, which we call the
upper-bound population-correction factor, was 0.32 over all countries. We
multiplied each pixel’s upper LandScan population bound by its country’s
correction factor andused the resulting value as theoperational upperbound
for that pixel’s population.We did not correct the lower population bounds.

Second, we restricted the population at risk to adults 30 years old and
older (henceforth, adults 30+), as the average minimum age of the cohorts
included in themeta-analysis,weightingbycohortpopulation, fromwhich the
exposure-response function was estimated (described further below) is 29
years13. To do so, we first divided the country’s total population by its popu-
lation of adults 30+ using UnitedNations population estimates by 5-year age

group in 2019.We then multiplied this proportion by the adjusted LandScan
category bounds described above. Throughout analyses, we use the mean of
these adjusted bounds (i.e., [lower value+ upper value]/2) for point estimates
and the values of the adjusted bounds themselves for uncertainty intervals.

Mortality. The outcome of interest is non-accidental mortality, which we
define as mortality due to all causes except for injury, guided by cohort
studies on the topic41–43. We gathered the proportions of total deaths due to
injury (both unintentional and intentional) by 5-year age group (30–34,
35–39,…, 85+) and country in 2019 along with the all-cause mortality rates
in the same strata from theWorld Health Organization’s data portal. Of the
183 countries with age-group-specific all-cause 2019mortality data, the age-
group-specific proportion due to injury in 2019wasmissing in 105 (57% of)
countries. In countries missing this proportion, we used data from the latest
available year before 2019 and after 2009. If no data was available during this
period (n, countries = 67; 37% of total), we imputed the country’s values
using linear regression. In each 5-year age group among the 116 countries
with available data, we modeled the proportion of deaths due to injury as a
function of World Bank income group and World Bank region (additional
detail in Supplementary Notes 1). Using these age-group-stratified models,
we imputed the proportion of deaths due to injury among the 67 countries
where these data were missing. To consider modeling uncertainty, we re-
sampled the imputed proportion for each age-group and country from a
normal distribution (mean = predicted value, standard deviation = standard
error of predicted value) and calculated the 95% confidence interval as the
2.5th and 97.5th percentiles over 1000 bootstrap replications.

We then calculated non-accidental mortality rates by 5-year age group
and country bymultiplying the complement of the proportion of deaths due
to injury and its corresponding lower and upper confidence limits by the
corresponding all-cause mortality rate. We calculated age-standardized
non-accidental mortality rates and corresponding confidence intervals by
country among adults 30+ as theweighted average of the age-group-specific
mortality rates in 5-year age groups, where the weights are the proportions
of the global population in the corresponding age groups44.

Green space and greenness. We define green space as any vegetated
land within an urban area, which could be publicly or privately owned
and may include but is not limited to parks, landscaped streets, or resi-
dential gardens. Green space types will vary widely from place to place in
this global analysis, the implications of which we consider further in the
discussion section. We define greenness, our primary exposure of
interest, as a continuous measure of the level of vegetation of green
spaces45. We measured greenness using the Normalized Difference
Vegetation Index (NDVI), as it is globally available and the evidence
linking greenness and mortality from cohort studies is largely expressed
in terms of NDVI13.We gatheredNDVI data from theMODISNDVI 16-
day composite product at a 1 km resolution (MOD13A2 Version 6) in
2019.We used the 1-km spatial resolution to match that of the LandScan
global population data.We then calculated the maximum value of NDVI
for each pixel in 2019 on the Google Earth Engine platform, following the
rationale of Bille et al.46.

Global biomes. A biome, the largest geographic biotic unit47, “is an area
classified according to the species that live in that location”48. “Tem-
perature range, soil type, and the amount of light and water” are some
defining characteristics48. Examples of biomes include various types of
forests, deserts, grasslands,mangroves, rock and ice, and tundra.We used
the Ecoregions2017©dataset to classify biomes (Table 1). The vector data
classify the world into 846 ecoregions and 14 biomes49. A map of biomes
appears in Supplementary Fig. 1.

Names of urban areas. The urban-boundary dataset35 described above
does not name the vector features, as the boundaries do not necessarily
correspond tomunicipality boundaries. To facilitate the interpretation of
some results, we named these urban areas using two sources: the Pro
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version of the World Cities Database created by SimpleMaps.com (N,
cities and towns = 1.95 million when downloaded on October 6th,
2023)50, and the GeoNames dataset of global cities with a population
above 1000 (N, cities = 141,121 when downloaded on October 9th,
2023)51. Each dataset contains point coordinates (a latitude and longitude
value), the city’s name, the city’s population, and other administrative
information. We named GUBs first according to the most populous
named city contained within the boundary using city population values
from the SimpleMaps.com dataset. If no name was found therein (N,
missing name = 24,382), we named the city according to the most
populous city in the Geonames dataset contained within the GUB. Of the
65,606 GUBs, 46,470 were named with either data source.

We also used the Geonames dataset of cities with a population above
1000 to assess the completeness of the GUB data. Of the 230 countries and
territories represented in the GeoNames dataset, 170 had a GUB (Supple-
mentary Notes 2). Of the 141,121 cities in the GeoNames dataset, 52,347
(37%) were contained within a GUB (Supplementary Table 2). Most (83%)
of the total population of these cities (using that dataset’s city-population
figures) was within a GUB (Supplementary Table 2), and this population
sharewas highest inhigh-incomeOECDcountries (87%) and lowest in low-
incomecountries (53%; SupplementaryTable 3).Consistentwith this result,
the median population of cities missing in the GUB data was higher in low-
income (11,466) compared with high-income OECD countries (1504;
Supplementary Table 3). The share of Geonames cities contained within a
GUB stratified by country appears in Supplementary Table 4.

Combining data sources
We characterized each grid cell at the global scale with values of GUB, popu-
lation (density), country, non-accidental mortality rate, greenness, and biome.
Some datasetswere available in raster format (population,NDVI) and some in
vector format (urbanboundaries, countryboundaries, biomes).Were-sampled
the NDVI raster dataset to match the resolution of the Landscan raster. We
then converted the vector datasets to raster format to populate each LandScan
cell with values of global urban boundary, country (and thus corresponding
estimated country-level mortality rate, described above), and biome.

We restricted pixels to those in countries with available mortality data
and in urban areas with an area greater than 5 km2 (~5 pixels) and a total
population (sum of lower bounds of constituent LandScan pixels) above
1000 to allow for adequate variability in NDVI within population-density
categories and to exclude urban areas with very low population, resulting in
a final dataset of 1,015,551 pixels located in 15,917 distinct urban areas, 157
countries, and 14 biomes.

Quantitative health-impact assessment
We began the HIA by stratifying pixels by country, biome, urban area, and
population-density category such that all calculations are relative to their
stratum. That is, for a given pixel, calculations consider only pixels in that
pixel’s corresponding stratum. Most urban areas (91.3%) were completely
contained within one biome. We stratified by biome to ensure results are
relative tobiome for thoseurban areas (8.7%)whose boundaries include two
ormorebiomes.Wedefined the 83rdNDVIpercentilewithin stratumas the
target NDVI value. The 83rd percentile is the median of the top greenness
tertile (i.e., half-waybetween the 67th and100thpercentiles)within stratum,
and we assume this level of greenness is attainable for that population
density in that biome in that urban area. Adding notation for clarity, let
NDVI1;j denote this target NDVI value for stratum j. Then, for all pixels in
thebottomtwoNDVI tertiles (i.e., below the67thpercentile)of stratum j, we
calculated the difference, NDVI differencei;j, between their actual NDVI
value, NDVI0;i;j, for pixel i in stratum j, and their target value using Eq. (1):

NDVI differencei;j ¼ NDVI1;j � NDVI0;i;j ð1Þ

This hypothetical change in greenness—from the pixel’s actual NDVI
to its target value within stratum of biome, urban area, and population
density—is the proposed greening scenario.

To translate this NDVI difference to an estimated number of annual
non-accidental deaths prevented, we summarized risk ratios (RRs) from
3 cohort studies relating greenness exposure with non-accidental
mortality41,43,52 that were deemed to have a low risk of bias in a meta-
analysis on the topic13. We did not use the meta-analyzed risk ratio from
that meta-analysis because its endpoint was all-cause mortality13, and
our outcome of interest is non-accidental mortality. Two of the three
cohort studies were set in Canadian cities41,52, while the other was set in
Rome, Italy40. Their follow-up time ranged from 4 to 22 years. Each
adjusted for several potential confounders including age andmeasures of
socioeconomic status. We calculated the weighted mean RR over the
3 studies, k = 1,2,3, using Eq. (2):

weighted mean RR ¼ exp

P3
k¼1log RRk

� � � wk
P3

k¼1wk

 !

ð2Þ

where RRk is study k’s RR, and wk is proportional to the size of its study
population.

The weighted mean RR was 0.954 (95% confidence interval [CI] =
0.944, 0.961).

The unit of change in NDVI exposure within a residential buffer
between 250 and 500 meters corresponding to this RR was 0.146, which we
calculated using Eq. (3):

weighted mean exposure unit of NDVI ¼
P3

k¼1exposure unitk � wkP3
k¼1wk

ð3Þ

where exposure unitk is cohort study k’s unit of change in NDVI corre-
sponding to its RR, andwk is again proportional to study k’s population size.

In summary, pooling results from these cohort studies41,43,52, for
every 0.146 unit increase in residential exposure to NDVI within a
buffer of 250–500 meters, the relative risk of non-accidental mortality
decreased about 4.5% (pooled RR = 0.954; 95% CI: 0.944, 0.961).
We assume that the area covered by each pixel (about 1 square
kilometer) can reasonably approximate the exposure area used by
these cohort studies (250–500 m buffer). We then calculated the
population attributable fraction (PAF) for pixel i in stratum j, PAFi;j;
using Eq. (4)53:

PAFi;j ¼ 1� 1

RR
NDVI differencei;j

0:146

ð4Þ

where the RR is raised to the quantity,
NDVI differencei;j

0:146 , to allow it to change
multiplicatively per 0.146 of NDVI differencei;j.

We estimated both the age-standardized number of non-
accidental deaths prevented and the crude (i.e., not adjusted for
age) number of non-accidental deaths prevented in each pixel. Each
measure provides useful and distinct information. The age-
standardized prevented number of non-accidental deaths is useful
for comparing prevented mortality between locations holding
population age structure constant, and the crude number provides
the magnitude of prevented mortality in that location considering its
actual age distribution. In pixel i, to calculate the age-standardized
number prevented, we multiplied the pixel’s population (mean of
adjusted category bounds, described above), populationi, by the
pixel’s corresponding country’s age-standardized non-accidental
mortality rate in adults 30+, age� standardized ratei, and multiplied
that product by the pixel’s PAF, flipping the sign because the risk
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ratio is preventive, as shown by Eq. (5):

age� standardized number of non� accidental deaths preventedi ¼
populationi � age� standardized ratei � PAFi;j � �1

ð5Þ

We calculated the unadjusted number of prevented non-accidental
deaths analogously using Eq. (6):

crude number of deaths preventedi ¼ populationi � crude ratei � PAFi;j � �1 ð6Þ

Uncertainty
We quantified three sources of uncertainty: the population ranges esti-
mated by LandScan (e.g., 5001–185,000 people in a pixel), the pooled RR
relating a change inNDVIwith non-accidentalmortality (95%CI: 0.944,
0.961), and the imputed proportion of mortality due to non-accidental
causes in some countries. To consider these sources of uncertainty in our
estimates of mortality prevented, we repeated the analysis twice more,
once using the pixel’s lower adjusted LandScan bound, the weaker RR
limit (0.961), and the lower confidence limit of non-accidental mortality
and again using the pixel’s upper adjusted LandScan bound, the stronger
RR limit (0.944), and the upper limit of non-accidental mortality. The
resulting lower and upper bounds are our reported 95% uncertainty
intervals.

Fig. 1 | Distribution of NDVI by population density, biome, and World Bank
income classification. Box-and-whisker plots depicting the distribution of NDVI of
pixels plotted by categories of (A) density (upper bound of category) per square
kilometer, (B) biome, and (C) World Bank Income category of country. The pre-
sented population-density category upper bound is the unadjusted original Land-
Scan value, not the value adjusted for the upper-bound population-correction factor
or the proportion of the population 30+. The median in each boxplot is denoted by

the horizontal line between the upper and lower sides of the box. The upper side of
the box denotes the 75th percentile pixel, and the lower side denotes the 25th
percentile pixel. The mean is represented by the diamond shape. The width of each
box is proportional to the square root of the number of observations in that category.
Whiskers include observed values within 1.5 times the interquartile range (75th
percentile–25th percentile) from the lower or upper quartile. Outliers are shaded
in gray.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Distribution of NDVI and population density over urban areas
The distribution of NDVI among the 1,015,551 pixels by category of
population density, biome and World Bank income group is presented in
Fig. 1. The number of distinct population-density categories within a given
urban area ranged from 1 to 9 with a median of 3 (Supplementary Fig. 2).
Includingwithin-urban-area variation,medianNDVIwas roughly the same
throughout the lower six population density categories until the 100–500
residents-per-km2 category, after which average NDVI fell with increasing
population density (Fig. 1). This trend was broadly consistent when strati-
fied by biome (Supplementary Fig. 3) with some exceptions such as Deserts
&Xeric Schrublands,where themedianNDVIwas lowestwhere population
density was lowest.

Although median NDVI was lowest in the most population-dense
pixels (Panel A, Fig. 1), these pixels also presented the largest opportunity to
raiseNDVI. ThemedianNDVIdifference (the difference between the target
and actual NDVI values within stratum of country, global urban boundary,
biome, and population-density category among pixels in the lower two
NDVI tertiles) was highest in the most population-dense pixels (median
NDVI difference: 0.12; 25th–75th percentile: 0.08, 0.18; Table 2).

Non-accidental deaths prevented
Overall, we estimated that 702,956 (95% uncertainty interval (UI): 151,976;
1,488,762) non-accidental premature deaths would be prevented annually
by the greening scenario (Table 2), corresponding to an estimated 49 (95%
UI: 40, 60) deaths per 100,000 adults 30+. This estimated prevented mor-
tality corresponds to about 4%(UI: 3%, 5%)of the estimated 16,383,972 (UI:
4,436,450; 28,131,181) deaths that occurred in the adult 30+ population
living in the bottom two NDVI tertiles of the 15,917 included urban areas.
The estimated prevented mortality was highest in the most population-
dense pixels (5001–185,000 residents per km2), whether measured by the
age-standardized annual premature death rate prevented per 100,000 adults
30+ (54 [95 %UI: 42, 68)] or by the corresponding crude measure without
adjusting for age structure (50 [95%UI: 41, 61]). Variation in the prevented
rate between population-density categories was starker in the age-
standardized measure.

Summarizing results by biome, the age-standardized prevented pre-
mature death rate ranged from30 (95%UI: 28, 36) in the sparsely populated
Tundra to 65 (95%UI: 49, 82) per 100,000 adults 30+ in themore populous
Tropical & Subtropical Moist Broadleaf Forests (Table 2). When age
structure is not considered, the prevented death ratewas lowest inDeserts&
Xeric Shrublands (36 [29,45]) and highest in Flooded Grasslands &
Savannas (68 [50,82]) per 100,000 adults 30+. Low and lower-middle-
income countries had higher age-adjusted prevented death rates (62 [95%
UI: 51, 80] and 67 [95% UI: 52, 85], respectively) than higher-income
countries (e.g., (33 [25,41] in high-income OECD countries; Table 2). This
trend did not generally hold when population age structure was not con-
sidered, presumably because crude mortality rates are higher in higher-
income countries because of their older populations on average.

Figures 2–4 rank GUBs (top 50) by their age-standardized premature
mortality rate prevented grouped by GUB population, where population
bounds in the figure correspond to the summed mean adjusted values of
constituent LandScan pixels. Figures 5–7 rank included countries by their
estimated age-standardized prematuremortality rate prevented, grouped by
the country’sWorld Bank income classification.We have posted results for
all urban areas and countries on a public website: https://michaeldgarber.
github.io/global-ndvi-pop/results-by-city-country.html.

Discussion
At the nexus of public health and urban planning, there is increasing
agreement that both compactness and green space are beneficial for publicT
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health with co-benefits for climate change mitigation and adaptation13,16,54.
We have conducted a global health impact assessment estimatingmortality
prevented by greening 15,917 urban areas according to achievable levels of
greenness for within-area population density and biome. Compared with
other large-scale studies estimating health impacts of greening cities using
similar methods29,30, a unique aspect of our approach is that we empirically
consider what level of greenness is achievable given constraints of the local
context. By targeting empirically derived greenness levels within category of
population density within the urban area, our analysis acknowledges that
certain levels of greenness (those of a forest, for example)maynot be feasible
in locations with high population densities24,25. Nevertheless, an important
result of our analysis is that even in areas of high population density, there is

considerable potential for additional greenness and thus for preventing
premature mortality. In fact, on a per-population basis, we estimated that
preventable mortality was highest in the most population-dense areas.

Assumptions and limitations
This studymakes several assumptions and carries limitations that should be
consideredwhen interpreting the results. Themost important assumption is
that themeta-analyzed risk ratio fromthese three cohort studies,whichwere
set inCanada and Italy, is a validmeasure of the effect of green space onnon-
accidental mortality in the 15,917 urban areas around the world. The effect
of green-space exposure on mortality could depend, for example, on
population density, biome, climate, development status of the country55, or

Fig. 2 | Top 50 global urban areas (GUBs) ranked in descending order by the
estimated age-standardized non-accidental death rate prevented per 100,000
population (adults 30+) by the greening scenario among the most populous
urban areas. The areas are grouped by population (A: 5,715,001; 68,189,561; B:
1,570,000; 5,715,000). aThe bounds of the population ranges correspond to the
summed adjusted mean values of constituent LandScan pixels. Population groups

are adapted from the Atlas of Urban Expansion Volume 172. The horizontal lines
denote the 95% uncertainty interval. GUBs are named according to the largest-
population city contained therein. As described in the text, not all GUBswere named
by the city-name data sources. Unnamed GUBs are named in the figure using their
ID in the GUB dataset (e.g., 16266) prepared by Li et al.35.
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any of a range of other potential effectmodifiers9. While this assumption of
transportability is strong, evidence supports a fairly consistent effect of green
space onmortality. In themeta-analysis by Rojas et al. on the effect of green
space exposure on all-cause mortality, the 9 risk ratios of the included
studies—which are set in North America (4), Europe (3), Australia (1), and
Asia [China] (1)—range from 0.88 to 0.99, and the most common value is
0.92. More research is needed to represent Africa, Latin America, and other
regions ofAsia, but the evidence to date supports the notion that green space
can prevent premature mortality in various settings.

Related to the potential variability of the effect of green space on health
is the variability of the costs of adding green space across theworld. In desert
settings where water is scarce and drought is persistent such as the Middle

East or the Southwestern United States, urban greening efforts should be
weighed against their environmental consequences such as water con-
sumption. The desert city of Las Vegas, Nevada, United States (population:
650,000), for example, receives 90 percent of its water from the Colorado
River56, and that river basin has been in an extended drought over the last
two decades57. In response, local authorities have instituted seasonal water
restrictions, golf-course water budgets, a grass-replacement program, and
water waste penalties56. In such a water-constrained setting, urban greening
maybe tailored to the natural landscape by usingnative or drought-resistant
plants32 and may be informed by guidance on techniques for greening
settlements in arid lands in a sustainable manner58,59. It is also worth noting
that natural landscapes without abundant vegetation may confer health

Fig. 3 | Top 50 global urban areas (GUBs) ranked in descending order by the
estimated age-standardized non-accidental death rate prevented per 100,000
population (adults 30+) by the greening scenario among moderately populated
urban areas. The areas are grouped by population (A: 427,001; 1,570,000; B:
100,000; 427,000). aThe bounds of the population ranges correspond to the summed
adjusted mean values of constituent LandScan pixel. Population groups are adapted

from the Atlas of Urban Expansion Volume 172. The horizontal lines denote the 95%
uncertainty interval. GUBs are named according to the largest-population city
contained therein. As described in the text, not all GUBs were named by the city-
name data sources. Unnamed GUBs are named in the figure using their ID in the
GUB dataset (e.g., 16266) prepared by Li et al.35.
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benefits60. Exposure to desert landscapes dominated by rock and minerals,
for example,may improvemental health (e.g., by relieving stress, promoting
feelings ofwell-being, or focusing attention) in such away similar to that of a
verdant forest60, but epidemiologic research on this topic is limited. If we
exclude from the global total Desert & Xeric Shrublands and Tundra, two
biomes in particular for which greenness may be an incomplete measure of

the salubrity of the natural landscape60, the total number of estimated pre-
mature deaths prevented decreases by about 8% to 649,805 (calculatedusing
values in Table 2).

To a degree, our analysis considers the possibility that themeaning of a
greening intervention will vary from one urban area to another61, as the
proposed scenario’s target level of greenness is always relative to that urban

Fig. 4 | Top 50 global urban areas (GUBs) ranked
in descending order by the estimated age-
standardized non-accidental death rate prevented
per 100,000 population (adults 30+) by the
greening scenario among the least populous
urban areas (population: 1000; 100,000). aThe
bounds of the population ranges correspond to the
summed adjusted mean values of constituent
LandScan pixels. Population groups are adapted
from the Atlas of Urban Expansion Volume 172. The
horizontal lines denote the 95%uncertainty interval.
GUBs are named according to the largest-
population city contained therein. As described in
the text, not all GUBs were named by the city-name
data sources. Unnamed GUBs are named in the
figure using their ID in the GUB dataset (e.g., 16266)
prepared by Li et al.35.
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location. At the same time, our methods cannot discern the type of green-
ness, only its NDVI value45. The target greenness in the area may reflect the
greenness of a highly irrigated private golf course, for example, the envir-
onmental costs of whichmay outweigh its public-health benefit, or that of a
public park landscaped with native drought-resistant plants, which may
have a greater andmore sustainable return on public health. To increase the
chance that the target level of greenness is attainable for that area and does
not represent an unrealistic exception, we used the 83rd percentile of NDVI
within stratum of urban area and population density as the target value
rather than, say, the 95th percentile.

Another important consideration, as has been articulated previously32,
is the time scale for these health benefits to manifest. Depending on the
greenness-health pathway6, mortality benefits may appear relatively quickly
(e.g., if greenness prevents acute heat-relatedmortality) ormay take decades
to bear fruit (e.g., if greenness exposure encourages habitual physical

activity, preventing cardiovascular disease). The risk ratios in the cohort
studies represent an average over the life course comparing the risk of death
from non-accidental causes in those with more versus less residential
greenness exposure. Our aim is to quantify the potential health benefits
under this imaginary counterfactual scenario if the populations under
consideration had been exposed to this level of greenness over their life
course. The last limitation pertaining to the validity of the effect measure is
the potential for confounding. The cohort studies fromwhich the risk ratios
were obtained controlled formany possible confounders41,43,52, including the
possibility that higher-income individuals may live near greener areas, but
residual or unmeasured confounding remains possible. If such a con-
founding bias resulted in an overestimate of the strength of the effect, the
results from this HIA would also be over-estimated.

Other limitations pertain to the data sources for population, mortality,
and GUBs. We used a gridded population model (LandScan) because of its

Fig. 5 | High-income countries ranked in descending order by their estimated
age-standardized non-accidental death rate prevented per 100,000 population
(adults 30+) by the greening scenario. Panel A displays high-income OECD

countries, and panel B displays high-income non-OECD countries. The horizontal
lines denote the 95% uncertainty interval. OECD, Organization for Economic
Cooperation and Development.
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high spatial resolution and globally consistent coverage. Its limitation here
was the wide range between bounds, particularly at the highest population-
density range, leading to concern that populations would be over-
estimated., We adjusted each pixel’s LandScan value considering country-
level population data to ensure that the population values were within a
plausible range, but the resulting estimates remain imprecise.

Themortality data sources also have limitations. First, as described,
age-stratified injury mortality data are not available from WHO for all
countries; we have integrated the uncertainty from the imputation
model into confidence intervals of the results. Second is our inherent
assumption of no within-country variation in themortality rates, as only
country-level mortality data were available. Estimates of mortality rates
at a within-country scale are not available in a harmonized fashion
globally62, so this assumption is difficult to overcome. Violations of this

assumption may not consequentially affect summary estimates (such as
those presented in Table 2), where the country-level average mortality
rates may suffice. The validity of estimates at the level of the urban area,
however, is more susceptible to violations of this assumption, con-
sidering well-documented within-country variability in mortality in
many countries63–65. This analysis could be replicated as data on non-
accidental mortality become more complete for all countries and for
urban areas within countries.

Finally, thedataset ofGUBs spans65,462urbanareasbut is not globally
comprehensive (Supplementary Notes 2). As the GUB data are less com-
plete in low- and low-middle-income countries, absolute estimates of pre-
vented mortality may be relatively under-estimated in those countries.
Without knowledge of the distribution of NDVIwithin strata of population
density in the cities excluded from theGUBdata, it is difficult to speculate as

Fig. 6 | Middle-income countries ranked in descending order by their estimated
age-standardized non-accidental death rate prevented per 100,000 population
(adults 30+) by the greening scenario. Panel A displays upper middle-income

countries, and panelB displays lowermiddle-income countries. The horizontal lines
denote the 95% uncertainty interval.
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to the potential direction of any selection bias in the per-population esti-
mates of prevented mortality.

Implications for public health
With these limitations and assumptions in mind, the findings from this
health impact assessment have important implications for urban planning
and public health. The analysis suggests that there is a large potential to add
greenness to urban areas even within the most population-dense areas, and
that this added greenness could have a considerable preventive impact on
premature mortality (about 700,000 annual prevented deaths estimated
here among an estimated 1.4 billion adults affected by the proposed

scenario). For comparison, the global burden attributable to unsafe drink-
ing-water, sanitation and hygiene was estimated to be 1.4 million deaths in
201966. The analysis highlights that compactness and greenness need not be
mutually exclusive27,28. The results also have important implications for
global health equity, as the estimated preventedmortality was highest on an
age-standardized, per-population basis in lower middle-income and low-
income countries. This result is a function of both the relatively high NDVI
difference in these countries between the actual and target greenness sce-
narios and their relatively higher baseline age-standardized mortality rates.

Urban planners and policymakers may consider strategies to promote
both green space and density at the neighborhood scale while mitigating
potential adverse environmental consequences of adding green space such
as water consumption. For example, cities could aim to add green infra-
structure like street trees, green roofs, and parks even in the densest areas.
Building codes could incentivize green roofs andwalls. Inwater-constrained
settings, drought-resistant plants could be used for this green infrastructure.
Zoning policies could allowmixed-use development that integrates housing
with greenspace. Transportation planning could promote development of
protected pedestrian and cycling networks and replace on- and off-street
parking with green space32,54. To monitor progress, cities could track indi-
cators of greenness such as type and characteristics of green spaces, tree
canopy cover and NDVI by neighborhood67. Policies should prioritize
equitable distribution of urban green space to ensure benefits across
socioeconomic gradients. In closing, results suggest that green-space
interventions can improve public health even in dense urban areas. The
health impact modeling approach used here can help inform context-
specific urban greening strategies and quantify their potential health
benefits.

Data availability
All data gathered for this analysiswerepublicly available atnomonetary cost
at the time we downloaded them except for one dataset of city names, as
described inTable 1.Output data68 to replicate all results except for Figs. 2–4
can be found here: https://figshare.com/projects/Potential_of_greenness_
to_prevent_premature_mortality_in_15_917_urban_areas_considering_
within-area_population_density_and_ecological_zone/221455. We do not
provide data to re-produce Figs. 2–4 because their requisite data rely in part
on the purchased dataset of city names, which we do not have license to
publicly share.

Code availability
WeusedGoogle EarthEngine to retrieveNDVIdata andusedR for all other
datamanagement and analysis. InR,we used terra69, sf 70, and the tidyverse71

for most tasks. Our R code is publicly available on GitHub (https://github.
com/michaeldgarber/global-ndvi-pop). Specifically, code tocreateTable 2 is
here (https://github.com/michaeldgarber/global-ndvi-pop/blob/main/
scripts/tables-main-text.R), and code to produce figures is here (https://
github.com/michaeldgarber/global-ndvi-pop/blob/main/scripts/figures-
main-text.R).
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