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Experimental evidence for a shallow
cumulate remelting origin of lunar high-
titanium mare basalts
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High-titanium mare basalts were among the earliest rocks to be returned from the Moon, but key
aspects of their formation remain enigmatic. Here we show twenty partial remelting experiments
conducted on three bulk compositions based on shallow ilmenite-bearing cumulate compositions
from experimental studies of lunar magma ocean crystallization, with varying amounts of plagioclase.
Melts produced at about 1200-1250 °C and 0.4 gigapascal with residual iron metal, representing
approximately 40 percent partial melting, are close to high-Ti mare basalt compositions in terms of
both TiO, content and magnesium number. These results, compared with Monte-Carlo simulations
and modelled rare earth element abundances and samarium-neodymium-lutetium-hafnium isotopic
signatures of the experimental melts, remove the requirement of a deep origin of the lunar high-Ti mare
basalts. Instead, they provide new evidence supporting the hypothesis that high-degree impact-
induced partial melting at shallow depth, with minor post-formation modification, played a key role.

Titanium contents of lunar volcanic rocks

Lunar mare basalts and ultramafic glass beads retrieved by sample
return missions (Luna, Apollo, and Chang’E) show ranges of compo-
sitions and formation times that differ substantially from the most
abundant terrestrial basalts'”. One key difference is in their TiO,
content. Mid-ocean ridge basalts (MORBs) exhibit a narrow range of
TiO, contents, with an average of approximately 1.6 wt.%°. In contrast,
lunar mare basalts as well as ultramafic glass beads exhibit a wide range
of TiO, contents'™, which is used as a basis for subdivision into three
major groups (i.e., <1 wt.% TiO, = very low-Ti or VLT basalts, 1-6 wt.%
= low-Ti basalts; >6 wt.% = high-Ti basalts) (Fig. 1)’. Petrological, trace
element, and isotopic studies suggest that neither the mare basalts nor
the ultramafic glass beads were formed by partial melting of primitive,
undifferentiated lunar mantle material®"’. Instead, remelting of com-
ponents of a chemically differentiated and stratified lunar mantle,
resulting from cooling and crystallization of the lunar magma ocean
(LMO), played a key role in their formation' ™", The ultramafic glass
beads formed through rapid cooling of lunar magma'’, whereas the
coarse-grained texture of mare basalts indicates slower crystallization
rates’. Although both materials exhibit a similarly wide range of TiO,
contents’, their diverse trace element characteristics suggest that the
mantle source of mare basalts is compositionally distinct from that of
the glass beads'’. Consequently, the genetic relationship between lunar

high-Ti mare basalts and high-Ti glasses also remains uncertain">**°.

This study focuses specifically on the origin of the high-Ti mare basalts.

Origin of high-titanium signal

The very high abundances of titanium in the high-Ti mare basalts require
involvement of one or more titanium-rich subsurface mineral phases"*”'""*,
Ilmenite, armalcolite, and rutile appear to be the only lunar minerals suf-
ficiently rich in Ti to provide a viable source for the Ti in these samples'’. The
formation, chemical composition, and dynamic behavior of lunar subsur-
face reservoirs containing these TiO,-rich minerals in the context of the
LMO model have been studied extensively over the past decades'’ ™.
Nevertheless, key aspects of the formation of the high-Ti mare basalts,
including the composition of their source, their depth(s) of origin, as well as
the process(es) that caused partial melting in the first place, have not been
resolved. This continues to hamper the development of comprehensive, self-
consistent models tying together the timing and compositions representa-
tive for mare volcanism (recently expanded with the identification of young,
~2 Ga mare basalt samples with an average TiO, content of 5.7 wt.%
returned by Chang’e-5*°) with the interior thermal and chemical evolution
of the Moon. There is broad consensus that the initial formation of the Ti-
rich reservoir involved in the generation of the high-Ti mare basalts took
place at shallow depth (from ~100 km depth to lunar surface) in the Moon
(pressure from 0.5 gigapascal (GPa) to atmospheric pressure), during the
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Fig. 1 | The TiO, versus Mg# (molar Mg/(Mg + Fe)) of lunar basalts (compilation from ref. 49 and average mid-ocean ridge basalts (MORB)®, modified after ref. 70.

last stages of the crystallization of the LMO"*™. Experimental and
numerical models of LMO crystallization indicate that during LMO cooling,
olivine and orthopyroxene crystallized first to form a deep dunite to harz-
burgite lunar mantle, with plagioclase and clinopyroxene appearing later at
>68% LMO solidification®***. The density contrast between relatively low-
density plagioclase and the residual magma ocean melt from which they
crystallized led to their buoyant rise, forming the plagioclase-rich anor-
thosite crust. Once crystallization reaches ~95% solid, a titanium-rich, dense
cumulate layer, the ilmenite-bearing cumulate layer (IBCL) forms at shallow
levels just underneath this floatation crust™”. Scientists agree on the fact
that the density structure of the lunar mantle after solidification was
unstable” ™. High-density (~3719kgm ™) IBCL overlying less dense
(~3396kgm™) harzburgite lunar mantle introduced a gravitational
instability”, that is thought to have driven a mantle overturn of the LMO
cumulate pile**>. Dense IBCL would then sink down into deep lunar mantle
until the core-mantle boundary (CMB)'”***. The sinking of IBCL would also
result in a heterogeneous lunar interior, mixing Fe-Ti rich cumulates with
primitive harzburgite, which has been considered to serve as the mantle
source of high-Ti magma'”'®. This hypothesis is supported by the observed
attenuation of seismic waves near the lunar CMB which could be caused by
the presence of IBCL**. The hypothesis is also supported by experimental
studies on Multiple Saturation Points (MSPs) of lunar high-Ti picritic glass
beads™”. MSPs are considered to give an indication of the minimum depth
at which a melt last equilibrated with its source'”. Petrologic experiments

suggest high-Ti pyroclastic glasses originated from a heterogeneous lunar
interior at depths between 250 and 550 km, corresponding to pressures of
~1.3-2.5 GPa™ ™,

Deep versus shallow formation

These models are not without challenges. There is no agreement on whether
high-Ti melts in the deep lunar interior could have been buoyant relative to
the surrounding mantle””*"*!, allowing them to erupt at the surface.
Previous studies indicate that the sinking of IBCL is inefficient'”***, with
~30-50% of the primary IBCL remaining at shallow depths throughout
lunar history”. Moreover, melting experiments on Apollo high-Ti mare
basalts 70017 and 70215 indicated that they can be generated from
100-150 km depth within the Moon". These considerations all contribute
to continued uncertainty over the role of deep and/or shallow processes in
high-Ti mare basalts genesis.

Here, we show the results of a series of partial melting experiments at
low pressure (~0.4 GPa) and a range of temperatures (1050-1350 °C) on
three bulk compositions. All three are based on LMO crystallization step
LBS10 from the experimental study of Lin et al. . This is the first step that
yielded ilmenite and thus an IBCL. Varying amounts of plagioclase were
added to the LBS10 composition to assess the effect of inefficient plagioclase
extraction during the late stages of LMO crystallization. Experimental
results were augmented with thermodynamic modeling of partial melting of
the second ICBL formed during later LMO crystallization step LBS11%*. Our
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Table 2 | Experimental conditions and run products

Starting composition T Duration Silicate and oxide phases Iron metal
HTP1 1070 0.4 84 gl(10)+ opx(78) + arm(1) + ilm(5) + qtz(1) 5
1150 41 gl(24)+ opx(66) + arm(4) + iim(1) + ol(2) 3
1200 19 9l(38) + opx(58) + arm(1) + ol(3) /
1250 12 9l(47) + opx(47) 6
1300 10 gl(67) + opx(27) +ol(6) /
1350 12 gl(81) + opx(15) 4
HTP2 1070 0.4 96 gl(19) + opx(72) + ilm(7) 2
1100 70 gl(24) + opx(70) + iim(6) /
1150 40 gl(29) + opx(61) + arm(4) 6
1200 24 9l(47) + opx(47) 6
1250 14 gl(56) + opx(42) +ol(1) /
1300 17 9l(59) + opx(41) /
1350 8 gl(79)+ opx(19) +ol(1) /
HTP3 1050 0.4 96 gl(24) + opx(69) + ilm(6) 1
1090 86 9l(34) + opx(59) + arm(1) + ilm(1) + rt(1) 4
1150 45 9l(40) + opx(49) + arm(3) 8
1200 15 9l(48) + opx(49) 2
1250 18 gl(60) + opx(35) 5
1300 12 9l(64) + opx(33) 3
1350 6 9l(87) + opx(10) +ol(1) /

Temperature (T) is in °C, pressure (P) is in GPa, duration is in hours and the proportions of all phases are in %.

increasing of MgO content from 3.60 wt.% to 15.31 wt.% and Mg# ranges
from 33-56 (Supplementary Fig. 7). In contrast, melt CaO and ALO;
decrease steadily from a maximum of 10.77wt.% to a minimum of
3.60 wt.% and a maximum of 15.83 wt.% to a minimum of 3.76 wt.%,
respectively. SiO, concentration of melt remains in a fairly restricted range
of 40.62 wt.%-53.52 wt.% in all the experiments. The FeO content of the
silicate melt ranges between 11.93 wt.% and 24.38 wt.% among the three
experimental series. TiO, is highest in melts formed after melting out of
ilmenite and armalcolite (12.96 wt.% in HTP1, 11.06 wt.% in HTP2 and
9.72 wt.% in HTP3) and then decreases with further heating (Fig. 2).

Discussion
The evolution of TiO, content of experimental melts is shown in Fig. 2, and
representative TiO, content ranges (9-13 wt.%) of Apollo mare basalts are
reached at 1150-1300 °C. Although the TiO, contents of some high-Ti mare
basalts are higher than 13 wt.%, the average TiO, content of high-Ti mare
basalts is approximately 11 wt.%", and a density plot of high-Ti basalts
shows that the TiO, content of most samples is concentrated around
12 wt.%™. This is consistent with our experimental results shown in Fig. 2.
Figure 3 further shows a comparison between the major element compo-
sition of melts produced in the three series of experiments from this study,
and the compositions of Apollo high-Ti mare basalts™. At experimental
temperatures of approximately 1220-1260 °C, corresponding to partial melt
proportions of ~35-55 per cent (Supplementary Fig. 6), abundances of
TiO,, MgO and FeO in melts, and melt Mg#, from the three experimental
series are consistent with the compositions in high-Ti mare basalts
(Fig. 3b-d). Partial melts generated from the starting composition of the
IBCL mixed with 5wt.% plagioclase best fit the compositional character-
istics of high-Ti mare basalts. In contrast, the melts have SiO, contents over
40 wt.%, whereas the average SiO, content of the high-Ti mare basalts is
lower than 40 wt.% (Fig. 3a)”. All partial melts yield lower CaO content
compared to high-Ti mare basalts, irrespective of the percentage of plagi-
oclase added to the source (Fig. 3e).

Previous phase equilibrium experiments were performed on a hybrid
lunar mantle with a small amount of entrained plagioclase (MOCH,

Table 1)*. The experimental melts in their study failed to match the ALOs
contents of high-Ti mare basalts. Since the Al,O; content of the MOCH
composition was only 2.64 wt.%, we propose that the amount of added
plagioclase may be insufficient to generate melts with adequate Al,O;
content". The same problem was encountered in petrologic studies on
melting a hybrid lunar mantle without plagioclase (TiCum+TWMS50,
Table 1). Experiments based on TiCum+TWM50 compositions produced
melts with lower ALO; content compared to high-Ti mare basalts'*,
highlighting the role of plagioclase in the source to generate the right
amount of AL,O; component during melting'’.The latest remelting study
proposed a harzburgite lunar mantle cumulate (CMV, Table 1), consisting
of 50-60% harzburgite, 9-20% IBCL (0.2cpx + 0.8ilm), and 30-40% urK-
REEP, to produce the lunar high-Ti pyroclastic glasses'’. However, a large
amount of urKREEP addition will lead to very high concentrations of
incompatible elements™, resulting in a mismatch with the REE concentra-
tions of high-Ti mare basalts. In addition, the model of ref. 18 cannot fully
reproduce the natural composition of the most primitive lunar high-Ti
basaltic glass beads.

The IBCL composition used in our piston-cylinder experiments
(0.97cpx + 0.03ilm) was based on step LBS10 from ref. 28, which produced
melts with slightly higher SiO, and lower CaO compared to high-Ti mare
basalts (Fig. 3a, e). In contrast, the later formed IBCL in ref. 28 (step LBS11)
consists of 0.98cpx + 0.02ilm, and it has lower SiO, (37.46 wt.%) and higher
CaO (3.95 wt.%) contents than the ICBL formed in LBS10. We hypothesize
that it may be possible to eliminate the gap in Fig. 3a, e and achieve the
composition of high-Ti mare basalts by remelting LBS11, or a mixture of
LBS10 and LBS11, or a combination of LBS10, LBS11, plagioclase, and
additional clinopyroxene (cpx) to account for the low CaO content observed
in our experiments at shallow depths.

In order to test this hypothesis, melting simulations were conducted by
combining the Monte Carlo method with alphaMELT' software (Supple-
mentary Fig. 8). Out of 100,000 simulations, 1955 successfully reproduced
the compositions of the high-Ti mare basalts (Fig. 3). These successful
simulations are characterized by melting temperatures in the ranges of
1180-1200 °CC and melt fractions exceeding 30%, for sources containing
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Ti mare basalts (pink and blue crosses, from ref. 49), in experimental melts from
this study (green symbols) and in Monte Carlo-alphaMELTS simulated melts
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approximately 0-15% LBS10 cumulate, 55-70% LBS11 cumulate, and
minor plagioclase and clinopyroxene. The addition of a LBS11 cumulate
component decreases the SiO, content of partial melts compared to the
results of our experiments based on LBS10, and the addition of plagioclase
and clinopyroxene largely elevate the Al,O5 and CaO concentration as well
as the ratio of CaO/ALO; of partial melt. In summary, remelting experi-
ments and simulations support the idea that high-Ti mare basalt compo-
sitions can be reproduced by remelting of a shallow-depth hybrid lunar
mantle, composed of IBCL+plagioclase-+clinopyroxene.

Previous studies suggested that the high-Ti magmas could come from
partial melting of heterogeneously mixed olivine +clinopyroxene +Fe-Ti-
oxide sources at depth after overturn®*'”'**"*>**, High-pressure melting
experiments on Apollo high-Ti mare basalt compositions indicate that they

could only be generated by partial melting of an harzburgite +Fe-Ti-oxide
source at pressures exceeding 0.5-0.75 GPa'’, higher than the pressure of
0.4 GPa used in our work. The reason for this discrepancy in estimated
depth of origin is likely due to the fact that the Apollo sample compositions
used in this previous work did not represent the high-Ti mare basalts parent
composition”. Remelting experiments on a clinopyroxene-ilmenite
cumulate composition containing 9.1 wt.% TiO, had been conducted at
pressures of 1atm and 1.3 GPa to investigate the origin of lunar high-
titanium ultramafic glasses™. The evolution of melt TiO, content as a
function of melt fraction in previous studies'”” is consistent with our results
(Fig. 2b). Our experiments at 0.4 GPa yield high melt TiO, contents com-
parable to those achieved in ref. 53 at lower melt fractions and lower starting
material TiO, contents. To complement major element abundance
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Fig. 4 | CI-normalized REE patterns of high-Ti mare basalt parental melts" and
modeled lunar mantle camulate melts. The horizontal green line refers to the initial
bulk LMO trace element concentration.

considerations, we assess if a shallow remelting mechanism is consistent
with the observed trace element patterns and isotope systematics of the
high-Ti basalts. We focus on the rare earth elements (REE), and on Sm-Nd-
Lu-Hf isotopic systematics. Because high-Ti mare basalt samples may have
experienced post-formation modification by processes such as assimilation
and/or fractional crystallization, the REE concentrations of estimated par-
ental magmas of high-Ti mare basalt'’ were used in this study. The parental
magma of high-Ti mare basalt refers to the most primitive (high Mg#) high-
Ti mare basalt sample (among Apollo 11 and 17 samples), which contains
the lowest incompatible element abundances alongside relatively high
abundances of compatible elements'’. The parental magma for high-Ti
mare basalts” exhibits a medium REE-enriched pattern with (La/Sm)n < 1
and a negative Eu anomaly (Fig. 4 and Supplementary Table 2).

We began by calculating the REE patterns of IBCL* used in this study.
Due to the low REE concentrations in IBCL (Fig. 4), only very small partial
melt percentages of 1-5% could yield melt REE concentrations consistent
with observations. This degree of melting is far lower than the degree of
melting required for major elements (Fig. 2b). The very low incompatible
trace element contents in pure IBCL have been noted in trace element
modeling of lunar basalts many times before***. Therefore, various per-
centages of incompatible-enriched TIRL (trapped instantaneous residual
liquid) are required to match source compositions with observed parental
magmas'>**”. In general, TIRL percentages are thought to be less than
5%'*°*". We assume addition of 2% TIRL in our trace element models. The
REE pattern of this TIRL-bearing source is shown in Fig. 4, as is the REE
pattern of a 40% partial melt of TIRL-bearing IBCL source. The slope of
modeled REE contents of middle to heavy REE are consistent with the high-
Ti parental magma (Fig. 4). However, the modeled Eu anomaly is slightly
shallower than observed, the melt light REE concentrations are lower than
observed, and the light REE slope is steeper. The models described above do
not take into account the effect of the participation of small amounts of the
very LREE-enriched and Eu-depleted urKREEP reservoir'**** in the for-
mation of the high-Ti mare basalts. Because this reservoir initially forms
between the proposed source depth of the high-Ti mare basalts and the
surface during LMO crystallization, it is likely that high-Ti melts interacted
with the overlying urKREEP reservoir during their ascent. Figure 4 shows
that post-formation melt modification by assimilation of a very small
amount of the urKREEP reservoir (<1%) is sufficient to both increase the
light REE concentrations, flatten the light REE slope, and decrease the Eu
anomaly, all to levels found in the parental high-Ti mare basalts, while
keeping the slope of HREE concentrations constant.

Independent constraints on the extent of urKREEP participation in
the formation of high-Ti mare basalts is provided by the Lu-Hf-Sm-Nd

isotopic systematics of high-Ti mare basalt samples™”. We calculated the
'’Sm/'**Nd and ""°Lu/"”’Hf ratios of high-Ti melts based on the same
evolution pathway that was used in the REE modeling (i.e., the IBCL
from ref. 28, with 5% added plagioclase and 2% TIRL). Supplementary
Fig. 9 shows a compilation of recent measurements of the source
"Sm/"*Nd and "‘Lu/"”Hf ratios of lunar high-Ti basalt samples”,
together with the modeled source isotopic characteristics. The modeled
"Sm/"*“Nd and "°Lu/"”’Hf ratios are both higher than observed in the
samples. If we include a small percentage (<0.6 wt.%, consistent with the
percentage needed to fit the REE observations) of urKREEP reservoir**®,
our model results match the observed result. Taken together, REE
abundances, Lu-Hf-Sm-Nd isotopic data, as well as major element
considerations all support the hypothesis that the lunar high-Ti mare
basalts were formed by low-pressure, high-degree partial melting of an
ilmenite-bearing source. This source contained small percentages of
imperfectly segregated plagioclase, TIRL, and a small but important
amount of urKREEP component. Many driving forces for lunar mare
basalt and lunar picritic glass bead volcanism have been proposed,
including external heat induced by impact®"®, convection caused by
mantle overturn®, internal heat driven by high abundances of radiogenic
heat-producing elements***, core-mantle friction®, the release of latent
heat that accompanies the growth of an inner core growth®, and tidal
heating”. The high cooling rates of lunar glass beads indicated a fast
transport mechanism that they were formed and transported into the
cold lunar vacuum' during volcanic fire-fountain eruptions®™®.
Although the lunar interior was thermally inhomogeneous at various
scales™***, lunar interior heating sources were insufficient to produce a
high degree of partial melting of LMO cumulates at the time of high-Ti
mare basalts formation”. The high-Ti mare basalts sampled to date
contain only 0.4-2.9 ugg™" Th, 0.1-0.8 ugg ' U, and 460-2440 pgg ' K
on average’', showing there is no evidence for highly elevated con-
centrations of these radioactive elements”.

Elevated volatile element abundances can potentially lead to high
partial melt fractions. Estimates of the volatile contents of high-Ti mare
basalt source region, based on measurements of the volatile content of
apatite crystals, are relatively low (4-28 ppmw)”>. However, recent studies
on high-Ti pyroclastic glass beads in sample 74,220 indicate that some pre-
eruptive melts can contain up to nearly 1600 ppmw H,O0”*"*. Although the
timeline of the volatile depletion from the Moon is not fully clear’>’, pre-
vious research has shown that the carbon amount in lunar glasses and melt
inclusions is sufficient to trigger fire-fountain eruptions”, explaining the
formation of microscopic glass beads™.

Based on our modeling results, we argue in favor of shallow high-
degree partial melting caused by an external source: impact heating’".
Numerical simulations reveal that interior convection in the Moon
caused by the larger impacts during late accretion of material to the
Moon could cause extensive periods of decompression melting lasting
many millions of years®. This is consistent with the starting time as well
as duration of lunar volcanism*>’*. Numerical models” suggest that a
large impact can lead to temperatures of 1250 + 10 °CC at the depth of
~80 km (~0.4 GPa), which is consistent in both pressure and temperature
with required partial melting conditions in our experimental and mod-
eling results.

Conclusions

Partial melting experiments of late-stage lunar cumulate compositions with
variable proportions of plagioclase formed during the crystallization of the
lunar magma ocean at low pressure were conducted. These experiments
indicate that the lunar high-TiO, mare basalts were formed by large-degree
partial melting of a shallow source. A deep source suggested by studies of
multiple saturation points is not required. Our hypothesis is supported by
major and trace element observations as well as isotopic considerations. This
formation process is consistent with an impact-induced triggering
mechanism for lunar volcanism. Large impacts may have had an important
role in the history of volcanism on the Moon.
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Methods

High-pressure and high-temperature experiments

This study aims at simulating partial melting of a IBCL at shallow depth
(~80 km), corresponding to a pressure of 0.4 GPa, based on the assumption
of the LMO cumulate remelting hypothesis. As illustrated in Table 1,
experimentally derived estimates for the major element composition of the
IBCL are model-dependent™. They vary as a function of the assumed bulk
initial LMO composition, the assumed initial LMO depth, assumptions
about the dominance of equilibrium or fractional crystallization during
LMO crystallization®®**”, and the assumed efficiency of the density-driven
segregation of plagioclase from more mafic cumulate minerals during late-
stage LMO crystallization™. We selected a late-stage cumulate composition
(LBS10 cumulate, formed after 96.4% solidification) reported in ref. 28 as a
basis for our starting materials. The bulk silicate Moon composition used in
ref. 28 contains ~ 0.53 wt.% TiO,, which is higher than other initial LMO
compositional models. The higher TiO, content accelerates the crystal-
lization of ilmenite and leads to a high Mg# of the IBCL components used in
this study.

For the first compositional end member of our experiments, we assume
perfect segregation of plagioclase from the more mafic minerals in LBS10,
leaving a pure pyroxene-ilmenite cumulate (starting material HTPI,
Table 1). It is well established that an idealized end member is unlikely to
provide a realistic source for high-Ti mare basalts’. Observations of magma
chamber processes on Earth indicate that mineral-mineral and mineral-
magma separation during crystallization are never completely efficient’™".
This is also underlined by high (> 8 wt.%) ALO; contents of the high-Ti
basalts, suggesting inefficient separation of plagioclase from more mafic
minerals crystallizing from the LMO at the same time during formation of
the IBCL. We attempt to quantify the effect of the addition of plagioclase on
remelting the IBCL by studying the melting behavior of two additional
starting compositions, derived from HTP1 by adding 5% (HTP2) and 10%
(HTP3) plagioclase to the plagioclase-free LBS10 cumulate composition of
ref. 28 (HPT1). Nominal bulk compositions synthesized for this study are
shown in Table 1, and contain between 5.4 and 6.1 wt.% TiO, and between
2.9 and 5.7 wt.% AL O;. The effect of inefficient magma separation from the
IBCL cumulates, leading to the incorporation of small percentages of trapped
instantaneous residual liquid (TIRL, LBS10 liquid® in this study), will be
assessed in the trace element modeling of the high-Ti basalts, and is not
taken into account in our choice of major element starting compositions.

Starting compositions were prepared by mixing appropriate amounts
of high-purity powdered oxides (MgO, Fe,0;, ALO;, TiO,, SiO,) and
carbonate (CaCOj3). The oxides MgO, AL, O3, TiO, and SiO, were first fired
overnight at 1000 °C and then stored at 110 °C until required. The other
oxides and calcium carbonate were dried at 110 °C overnight prior to use.
The nominally dry starting materials were mixed using ethanol in an agate
mortar for 1 hour, dried in air, and decarbonated in a Pt crucible in a box
furnace by gradually raising the temperature from 650 to 1000 °C in
approximately 7 h. The platinum (Pt) crucible had previously been iron-
saturated to minimize iron loss. The resulting mixtures were melted at
1550 °C for 20 min to ensure homogeneity and quenched to glass by
immersing the bottom of the Pt crucible in water. Small aliquots of the
glasses were collected for compositional analyses. The remaining powder of
the material was subsequently crushed, dried, and reground under ethanol
in an agate mortar for 1 h, and kept at 110 °C until use.

High-pressure, high-temperature experiments were conducted in an
end-loaded piston cylinder device at Center for High Pressure Science
and Technology Advanced Research, using 3/4-inch diameter talc-pyrex
assemblies. The pressure was calibrated based on the NaCl melting curve
at 0.7 GPa-940 °C and 1 GPa-1000 °C*** and the quartz-coesite phase
transition at 3.18 GPa and 1100 °C*. The resulting friction correction is
~3%, consistent with literature values for comparable high-pressure
assemblies™.

Starting material powder was packed tightly into a hand-machined
graphite capsule (0.7 mm inner diameter), closed with a graphite plug and
inserted in a Pt capsule (1.7 inner diameter). In order to ensure a minimal

thermal gradient across the samples of less than 10 °C*, the sample lengths
were limited to a maximum of 3 mm, and capsules was carefully placed at
the center of the graphite heater and surrounded by crushable MgO spacers.
MgO inner spacers and four-bore alumina tubes were dried at 1000 °C for at
least 10 h to remove impurities. Assembly parts were stored at 120 °C for at
least 24 h before use. Temperature was monitored using W5Re-W26Re
(type C) and W3Re-W25Re (type D) thermocouples without an electro-
motive force (emf) pressure correction. Experiments were cold pressurized
to target pressure and then heated to 800 °C with a ramp of 100 °C/min. This
temperature was maintained for 1 h to compact the pores in the graphite
inner capsule. For experimental final temperatures 1300 °C, the samples
were further heated to the temperature of interest with the same ramp. For
target temperatures <1300 °C, the experiments were first heated to a tem-
perature of 1300 °C and maintained for 20 mins. Afterwards, the samples
were cooled to the temperature of interest at a rate of 50 °C per minute while
maintaining target pressure. Experiments were kept at their final target
temperatures for 6-96 h.

The pressure was 0.4 GPa in all experiments. The experimental pres-
sure was chosen based on the depth at which the ilmenite-bearing cumulates
initially form. Previous lunar magma ocean crystallization studies”
showed that the ilmenite phase appears at ~ <0.3-0.5 GPa. The pressure
corresponding to the LBS10 chemical composition was identified as
0.4 GPa™. Although 0.4 GPa is around the lower limit for a piston-cylinder
device®, this specific pressure is not strictly required for the generation of
mare basalt liquids, making potential pressure errors in such piston-cylinder
experiments (+ 30%) acceptable. Runs were quenched by cutting power to
the heater and the temperature typically dropped below 100 °C in <50s.

Experimental run products were mounted in epoxy, polished and
carbon-coated for back-scattered electron (BSE) imagery and EMPA. The
chemical composition of the run product phases (minerals and quenched
melts) was determined using a JEOL JXA-8230 Electron Microprobe at the
Testing Center of Shandong Bureau of China Metallurgical Geology Bureau.
Analyses were performed using an accelerating voltage of 15 kV and a beam
current of 20 nA for Si, Ti, Al, Fe, Mg and Ca. The mineral and melt
proportions were determined by mass balance calculations, using compo-
sitional analyses of super-liquidus glass samples as bulk composition con-
straints. We used properly beams of 1 and 10 um diameter for the mineral
phases and quenched melts, respectively. Analyses were calibrated against
primary standards of diopside (Ca, Si), fayalite (Fe), ilmenite (Ti), olivine
(Mg) and orthoclase (Al). Peak areas were converted to concentrations
using standard values. Peak count times were 20 s and background count
times 10's.

To assess the presence of hydrogen and/or carbon-bearing species in
the experimentally produced melts, unpolarized Raman spectroscopic
measurements were performed by a HORIBA LabRAM HR Evolution laser
Raman spectrometer with a 50x microscope objective at Center for High
Pressure Science and Technology Advanced Research (HPSTAR). All
spectra were excited by a 532 nm solid-state laser and collected in the
wavenumber range from 200 to 3600 cm™, using 10 s exposure time and 3
accumulations and with a spectral resolution of 4 cm™.

Rare earth element and Sm-Nd-Lu-Hf isotope modeling

To complement major element abundance considerations, we assess if a
shallow remelting mechanism is consistent with the observed trace element
patterns and isotope systematics of the high-Ti basalts. We focus on the rare
earth elements (REE), and on Sm-Nd-Lu-Hf isotopic systematics. In recent
studies discussing the evolution of incompatible trace element concentra-
tions in the Moon, typically a 1-2.5 times CI chondritic pattern is assumed
to represent concentrations in a fully molten initial bulk Moon™*. Given
that the experiments in this study are based on a 700 km deep initial lunar
magma ocean’®, initial incompatible concentrations in this LMO should be
higher than these values regardless of the exact mineralogy in the Moon
between 700 km depth and the core-mantle boundary". Therefore, we
assume initial concentrations of the REE in the 700 km deep LMO were
4-5x CI chondritic values”™ following that in ref. 13.
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The evolution of REE and Hf concentrations in magma and minerals
during LMO crystallization were quantified using methods used in previous
studies”***. To maintain consistency with the LMO crystallization study
that formed the basis of our choice of experimental starting materials™, we
modeled trace element and isotopic evolution assuming a two-stage model
involving equilibrium crystallization followed by fractional crystallization,
starting from an initial magma ocean with a depth of 700 km. The residual
melt from the equilibrium crystallization stage serves as the initial melt for
the fractional crystallization stage. Similarly, the residual melts from step i of
fractional crystallization become the initial melt for the subsequent frac-
tional crystallization step i 4 1. REE and Hf concentrations in magma at the
first equilibrium crystallization stage are calculated using the equation:

_ Go
" Dy + F*(1 — Dyy)

C, )]

REE and Hf concentrations in the liquid at the second fractional
crystallization stage are calculated using the equation:

Cp = Cp X FPmD @
REE concentrations in the minerals are calculated using the equation:
Cs, = Cp, X Dpuy (3

In Eq. (1)-(3), C,, is the initial bulk LMO trace element concentration,
C,, is the trace element concentration of residual melt in equilibrium
crystallization stage and C; (i>2) is the trace element concentration of
residual melt in fractional cr‘ystallization stage, where i indicates the specific
fractional crystallization step. C; is the trace element abundance of minerals
and cumulates in each crystallization step, F is the melt fraction, and D Bulk 1
the weighted average bulk partition coefficient for each trace element cal-
culated based on the nature and modes of all mineral phases present in each
step. The REE partition coefficients between minerals and melts used in this
study are listed in Supplementary Table 3.

Towards the final stages of LMO crystallization, the residual magma
ocean becomes progressively enriched in incompatible elements including
potassium, rare earth elements, and phosphorus (KREEP). The resulting
geochemical reservoir, originally situated at the bottom of the plagioclase-
rich crust, is termed urKREEP**. An urKREEP signature has been identified
in several suites of lunar magmatic rocks, both in terms of REE elemental
concentrations and isotopic data. Isotopic studies of the '“Sm/'*Nd,
¥Rb/*Sr, and Hf isotopic ratios of lunar basalts indicate that the con-
tribution of urKREEP into high-Ti mare basalts is limited™***”. To quantify
the extent of urKREEP involvement in high-Ti basalt formation, we first
calculated the REE concentrations as well as '’Sm/**Nd and "*Lu/"”"Hf
ratios” of urKREEP following 99.9% crystallization. Then we modeled the
REE and isotopic evolution of the proposed high-Ti mare basalts mantle
source with the involvement of urKREEP. This calculation was based on the
LMO crystallization sequence proposed in ref. 28.

Monte-Carlo remelting simulations

To better quantify whether using LBS11 cumulates, or a combination of
LBS10 and LBS11 cumulates in the source region, with varying amounts of
added plagioclase and clinopyroxene would yield melts with major element
abundances even closer to those of the high-Ti basalts, we performed
remelting simulations by combining the Monte-Carlo method with
alphaMELTs software. We followed the approach used in ref. 83. By varying
temperatures and source major element compositions, we carried out
100,000 remelting simulations using alphaMELTS software®. The pressure
and f, used in each run are 0.4 GPa and IW-1, respectively. The thermal
conditions were constrained to a range of 1100-1300 °C, based on our
experiments. The mantle source compositions were assumed to be a mixture
of four components: LBS10 cumulate (0-100%), LBS11 cumulate
(0-100%)**, plagioclase (0-20%)™ and clinopyroxene (0-15%)”". A uniform

distribution was assumed for each parameter within the specified ranges.
Given the relatively wide compositional range exhibited by the Apollo high-
Ti samples, simulations were deemed successful if the liquid composition
returned by alphaMELTS fit within the component oxides’ mean
value + 2 wt.% of high-Ti mare basalt compositions”. This minimizes the
effect of data points located at the edges of each oxide concentration ranges.

Data availability
The datasets of this paper are available through Mendeley at: https://doi.org/
10.17632/gxknx2vd25.1.

Code availability

Monte-Carlo simulation was performed based on the alphaMELTS soft-
ware, available at https://magmasource.caltech.edu/alphamelts/, and the
simulation code is available on Github at https://github.com/778aha/
Lunar-MC.
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