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Generalizable deep learning models for
predicting laboratory earthquakes
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Machine learning models can predict laboratory earthquakes using Acoustic emission, the lab
equivalent ofmicroseismicity, and changes in fault zoneelastic properties during the lab seismic cycle.
Applying them to natural earthquakes requires testing their generalizability across lab settings and
stress conditions. Here, we show a fine-tuned convolutional neural network (CNN) model effectively
transfer across different conditions. Our model employs techniques from natural language
processing, includingdecoder techniques, to capture the relationship betweenAEand fault stress.We
fine-tune the regression head of a deep CNN while fixing the decoder’s weights and successfully
predict lab seismic events for a range of conditions. With fine-tuning, CNNmodels trained on one lab
fault configuration predict time to failure and shear stress for another configuration at varying fault slip
rates. These results demonstrate the potential of extending lab-basedmethods to different conditions
that could eventually include tectonic earthquakes and seismic forecasting.

Enhanced abilities to predict geohazards bear substantial societal and eco-
nomic benefits1. Geoscientists and engineers have long been interested in
predicting catastrophic events like earthquakes, with the hope of under-
standing their mechanisms and mitigating associated hazards. Laboratory
studies simulating seismic events have played a central role in earthquake
physics, providing insight into the importance of stress drop and dynamic
rupture physics2. Therefore, data on lab earthquakes have been adopted to
check the applicability of machine learning (ML) to earthquake prediction3.
Existing studies show that ML algorithms can use acoustic emissions (AE)
and other data sets including seismic wave speed, spectral amplitude, and
frequency-magnitude statistics to effectively forecast fault zone stress state
and the timing and magnitude of laboratory earthquakes4–23. The success
implies that microearthquakes (AE) early in the seismic cycle contain
information about future fault ruptures24,25.

However, while a few studies have addressed the challenge26–28, direct
application of machine learning to natural earthquakes faces considerable
issues, including the scarcity of seismic data covering multiple seismic
cycles29. In contrast to the controlled conditions of laboratory experiments
where 100’s of seismic cycles can be studied, tectonic faults are more
complex, and data rarely include more than a single seismic cycle. The
recurrence intervals of natural faults often span decades or centuries,
making it impractical to accumulate sufficient seismic data for training ML
models4,29–31. Thus, the logical alternative involves adapting models trained
on laboratory data or numerical simulations to real-world scenarios, and for

this purpose the integration of deep neural networks with fine-tuning
techniques32–37 is a promising solution. Such models are akin to natural
language processingmethods that include extensive training to identify and
learn the critical patterns indicative of future events. For our purpose, the
fine-tuning process across varied conditions and settings is crucial to build
adaptable models that might generalize laboratory-derived insights to real-
world conditions. Such an approach would bridge the gap between simu-
lated faults in the laboratory and their natural counterparts, leveraging the
strengths of machine learning to enhance our understanding and fore-
casting capabilities in seismology.

However, current methods for predicting laboratory earthquakes,
particularly in demonstrating the generalizability of ML models, face
notable challenges. Todate, oneof the fewattempts in this direction involves
a model initially trained on numerical simulations and applied to lab
experiments to illustrate the potential of using suchmodels with fine-tuning
for application to Earth29. However, this approach is limited because it
involves yet another step, basedonnumerical simulations, rather thandirect
experimentation or the use of field data. This highlights the need, as a first
step, to develop ML models that transfer across diverse lab configurations
and conditions. In particular, many studies have focused on just one type of
test using double-direct-shear (DDS). There is a need to expand these
methods to a broader array of lab approaches, such as biaxial-loading and
triaxial tests, which have played a key role in developing our current
understanding of earthquake physics38–49.
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Here, we develop a deep learning (DL) convolutional model using AE
signals from lab earthquakes in the DDS configuration and also for larger
samples sheared under biaxial loading. Our model uses a decoder-only
architecture and is designed to learn from and interpret the time-varying AE
signals for predicting the evolving shear stress during seismic cycles. Initially,
the model is trained on data fromDDS experiments, establishing a mapping
between AE signals and shear stress states. Subsequently, the majority of the
model (~97%, encompassing the decoder architecture) is fixed, with only the
remaining layers (constituting about 3%) retrained using limited data from
other types of shear experiments. There are unavoidable trade-offs between
freezing components of the network and fine-tuning. We explored a range
of values and found that this approach works the best (see Methods for
further information). Fine-tuning enables the model to predict various
outcomes, such as friction coefficient and time to failure, in previously
unseen data.We propose that our method could be pivotal in adapting data-
driven techniques, successful in lab settings for predicting fault-slip char-
acteristics, to real-world earthquake scenarios. The purpose of this paper is
to describe this transfer learning approach and demonstrate its effectiveness
in predicting laboratory earthquake events across different experimental
configurations and conditions of stress, slip rate, and fault zone properties.

Results
Biaxial-loading experiments
The biaxial-loading experiments use a 500mm× 500mm× 20mm poly-
methyl methacrylate (PMMA) plate with an inclined fault, and a layer of
simulated fault gouge with mean particle size of 0.325mm (Supplementary
Fig. 1). The fault is loaded under biaxial stresses in a servo-controlled
machine with four hydraulic rams. Following a standardized procedure for
reproducibility47, we apply loads slowly using both the horizontal (σx)
and vertical (σy) rams to establish fault normal stresses that are initially
1MPa (Fig. 1). After maintaining these stresses for 15min, the horizontal
stressσx is held constantwhile the vertical load ram is advancedat 0.12mm/
min using displacement-controlled mode. This process increases the dif-
ferential stress (σy � σx),which ismeasuredwith load cells to a resolutionof
0.005MPa. The ram displacement is measured to 1 μm accuracy. All
mechanical data are recorded at 100Hz.

The increasing differential stress increases fault zone shear stress,
which triggers stick-slip events, releasing the accumulated stress (Fig. 1).The
slip events are the lab equivalent of earthquakes andwemonitor themusing
a lab seismometer consisting of a PZT sensor (300 kHz central frequency
and 0.312 inch in diameter) from Physical Acoustics Corporation,

Fig. 1 | Biaxial loading experiment data.The upper
panel shows the portion (red box) we studied. The
lower panel illustrates the temporal evolution of
Force_x (in green), Force_y (in blue), and Dis-
placement_y (in red) for a fault zone shearing rate of
0.12 mm/min. The horizontal force, Force_x,
remains consistent during non-slip stages, and
exhibits disturbances during slip events.
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positioned near the fault (Supplementary Fig. 2). The lab seismic signals are
recorded at 2MHz, throughout each experiment. An additional sensor
synchronizes data from the mechanical and acoustic systems. The biaxial
loading dataset in this study includes hundreds of lab earthquakes with
continuous seismic records of acoustic emissions (Fig. 1). We focus on 21
stick-slip cycles over a period of 400 s, which includes approximately 800
million AE signals and 40,000 mechanical data of forces and displacement.

Double-direct-shear (DDS) experiments
In addition to the primary dataset used for training our CNN, we also used
lab data from another configuration10,23. Those experiments used a double
direct shear configuration and they provide additional data to assess the
generalizability of ourmodel across different types of laboratory earthquake
data. We used data that are freely available and have been used in ML
competitions50 designed to encourage broad participation of ML experts.
These data enabled us to apply large-scale, pretrained models to different
experimental scenarios.

TheDDS experiments involve shearing two fault zones simultaneously
between three blocks, using different granular materials. For our study, we
focused on experiments p4581 (glass beads), p4679, and p5198 (both quartz
powder), which have been used in previousML/DL research (e.g., Bolton et
al., 2021, Laurenti et al., 2022). This allows for a direct comparison of our
methods with previous work. Details of the experiments are summarized in
Table S1.

Performance of model across different datasets
We use data from both types of laboratory experiments to train a deep
convolutionalmodel with a decoder-only architecture (seeMethods section
for details). The model is trained with a regression-based supervised
learning approach, focusing on predicting key slip characteristics like shear
stress and time to failure by analyzing the AE signals from the experiments.

As a baseline, we assess the model’s performance by training and
validating it exclusively on DDS data, followed by testing its efficacy on the
biaxial-loading experiment data.Notably, during its trainingwithDDSdata,
the model does not see any data from the biaxial experiment. The results of
Fig. 2. showcase the model’s ability to generalize across different appara-
tuses. Note that our DL model successfully applies DDS-trained insights to
the biaxial dataset. However, transferability is not always consistent. For
instance, a model trained on biaxial-loading data shows poor performance
when applied to the DDS dataset p4679. Rather than pinpointing a specific
cause for this variation, these results underscore the nuanced and complex
nature of seismic data. Each dataset possesses unique characteristics that
may affect model performance in complex ways (Fig. 3). The DDS dataset,
for example, includes certainpatterns that arenot asprevalent inourbiaxial-
loading data. These distinctions highlight the intricacies involved in training
models that can accurately interpret diverse seismic datasets. As such, our
findings illuminate the need for further research to unravel these com-
plexities and enhance the robustness of predictive models in seismology.

The model’s transferability is also influenced by variations in the lab
seismic cycles. For instance,when applying the pretrainedmodel to another
DDS dataset (p4581) its performance markedly drops (see the red curve in
Fig. 4).This decline canbe attributed to thediffering fault zonematerials and
character of the seismic cycles across the datasets. DDSdataset p4679 has an
average repeat cycle of 35 s, which reduces to ~17.5 s when pre-slips are
considered asminor slip events. This is relatively close to the biaxial dataset’s
average cycle of 20 s, allowing for effective cross-experimental application.
In contrast, datasets p4581 and p5198 have a much shorter average cycle of
6 s, which is less than a third of the biaxial experiment’s cycle length. These
discrepancies in repeat cycles, possibly due to variations in normal stress,
displacement rate, and other experimental conditions51, hinder the model’s
direct applicability to these datasets.

To address this, we implement a fine-tuning method, akin to techni-
ques used in image recognition and natural language processing. Fine-
tuning involves adapting a pre-trained model to a new task by updating its
parameters through minor additional training on the target task data52,53.

This process typically starts with a large-scale pre-trained model, often
referred to as the basemodel, which has been trained on amassive dataset to
learn general features and representations. By initializing the target task
model with the weights of the base model and subsequently updating them
during the further training on the new task, the model can efficiently learn
task-specific features, often requiring less data and training time compared
to training from scratch54. A famous example is GPT-3, which is pretrained
on vast text data and then fine-tuned for specific applications, like GitHub
Copilot when fine-tuned with programming or ChatGPT55,56 when fine-
tuned with human instructions.

In our approach, we fine-tuned the Regression Head of the deep
convolutionalmodel (the layers following the decoder) with newDDS data,
whilefixing the decoder’sweights trained onbiaxial-loading data.We adjust
the decoder to match the differing time scales of the two datasets (Supple-
mentary Table 1). This decoder comprises several layers, each of which is
composedof a Temporal ConvolutionalNetwork (TCN)block57 containing
dilated convolutional layers (details can be found in the Methods). The
dilation factor of each layer increases exponentially as the depth of the
network grows, allowing for a substantial expansion of the decoder’s
receptive field to capture and process information from longer sequences.
For shorter sequences like the DDS dataset p4581, we retain only the initial
layers, reducing the receptive field to suit the dataset’s characteristics. Our
model originally includes 9 layers, suitable for the biaxial dataset. When
adapting to DDS data, we utilize only the first five layers, aligning with the
sequence length and complexity of theDDS data. It’s important to note that
weights of the first five layers are fixed in post-training on biaxial data and
remain nontrainable during fine-tuning with DDS data, with only the
Regression Head being adjustable. This fine-tuning process is illustrated in
Fig. 3. In the pretraining phase, usually 70% of the data are used as the
training set, while in the fine-tuning stage, only ~50% of the data are
required. Furthermore, the adaptability of our model to different datasets is
achieved by fine-tuning only a small fraction of the model, i.e., the
Regression Head that comprises just 3.3% of the total model weights. This
demonstrates the model’s flexibility, where minor modifications can effec-
tively tailor it for varieddatasetswith reduceddataset size,while themajority
of the model (i.e., the decoder) remains unchanged, as shown in Fig. 3.

To provide a direct comparison, we utilize datasets p4581 and p5198,
previously studied15, and apply the same metric, Root Mean Square Error
(RMSE) as in the previous work for consistency. The results with finetuning
are shown inFig. 5a. Remarkably, ourmodel,with 97%of itsweights derived
from the biaxial dataset and only 3%fine-tunedwith theDDSdata, achieves
RMSEmetrics comparable tomodels trained exclusively onDDS data. This
underscores the efficiency of our CNN and decoder based fine-tuning
approach.

Moreover, our method demonstrates an ability to extend learning
capabilities. Initially, themodel is trained to predict shear force in the biaxial
dataset. However, after fine-tuning with DDS data, it adeptly predicts new
targets like Time to end of Failure (TTeF) and Time to start of Failure
(TTsF), as shown in Fig. 5b, c. These targets, absent in the biaxial dataset, are
learned effectively throughfine-tuning, despite the pretrainedmodel having
no prior exposure to them. The success of these predictions, achieved by
adjustingonly theRegressionHead– amere3%of themodel’s totalweight–
highlights our model’s flexibility in adapting and potential for applications
to different conditions.

Discussion
Our study validates previous machine learning results for lab earthquake
prediction and extends those works to predict results of different experi-
ments. This is a breakthrough in generalizing ML/DLmethods for broader
application to lab earthquakes. Moreover, the successful application of a
model, pretrained on DDS dataset p4679, to biaxial-loading data demon-
strates its cross-apparatus generalization ability. However, when the direc-
tion is reversed, the results are less predictable. This suggests a nuanced
landscape of deep learningwhere the intricate nature of one datasetmay not
uniformly translate to the competency in another.
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The mechanism enabling our model’s cross-experimental transfer-
ability, while not entirely transparent, is likely rooted in the shared char-
acteristics of the lab earthquakes. In both biaxial-loading and direct shear
tests, we see similar patterns of stress accumulation and release, coupled
with consistent relationships between microearthquakes (AE) occurring
within the fault zone prior to macroscopic failure and slip characteristics
during the labquakes. This commonality likely plays a key role in the
model’s ability to adapt across different types of experiments. Supporting
this hypothesis, numerous laboratory studies spanning various testing
apparatuses have consistently linked the evolution of acoustic emission
signals with fault stick-slip behaviors16,21,22,58–75. These studies reinforce the
idea that the observed correlations between acoustic signals and seismic
events are a fundamental aspect of seismic phenomena. Although the exact
nature of these correlations cannot be explicitly outlined yet, they are
implicitly captured and utilized by our deep learning model. This implicit
understanding enables our deep learningmodel to successfully transfer and
apply its learned insights across varying experimental contexts, despite
differences in the specifics of each setup.

However, this transferability isn’t always reliable. When applied to
other DDS datasets with substantially different repeat cycles, performance

drops. The cycle length discrepancy affects the model’s applicability, illus-
trating the need for dataset-specific adjustments. Here, fine-tuning proves
effective. Remarkably, a model trained on biaxial data with PMMA plates
and corundum gouges, retaining 97% of its original weights, can adapt its
regression head to new DDS datasets with different materials and settings.
This results in successful predictions of various targets. This adaptability is
also crucial in real-world scenarios, where the recurrence of large earth-
quakes is influenced by factors such as strain rate, kinematics, and tectonic
setting76, introducing complexity and variability similar to lab quakes with
varying repeat cycles77. Thus, the pretrain-finetuning strategy has the
potential to be highly valuable for real-world earthquakes, allowing models
to be refined based on the unique geological characteristics of different
regions.

In summary, our deep convolutional model, enhanced by fine-tuning,
shows promising results in bridging gaps between laboratory experiments
and potential for extending lab-based models to tectonic faults. This pro-
gress is a crucial step towards using continuous seismic waves to predict
seismogenic fault slips. Looking to the future, an essential strategy for
effectively bridging the gap between simulated laboratory faults and natural
faults involves creating laboratory datasets that encompass the broad
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Fig. 2 | Cross-experiment application of the model between biaxial-loading and
DDSExperiment p4679. aThemodel, trained on theDDSdataset p4679, accurately
predicts seismic events in the biaxial-loading experiment. Notably, it effectively
forecasts the third event in the biaxial dataset, despite its unusually small magnitude,
demonstrating the model’s robust generalization across diverse seismic scenarios.

bConversely, themodel trained on the biaxial dataset performs poorly when applied
to the DDS dataset p4679. This illustrates the limitations in the generalization
capabilities of deep learning models, highlighting that effective transfer typically
occurs from complex to simpler datasets.
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spectrum of natural fault behaviors. By ensuring that these laboratory
experiments mimic the complexity and diversity of natural fault activities,
deep learning models can be better trained to apply insights from the lab to
real-world scenarios. This approach aims to cover the full range of natural
fault characteristics in laboratory settings, facilitating the transfer of model
learning from controlled experiments to natural fault predictions.

Training a large, comprehensive model becomes essential in this
context. The fine-tuning technique, applied to a small segment of this

model, proves invaluable. It not only conserves time and resources by
avoiding the need to extensively retrain the model with scarce seismic
data, but also addresses the challenge posed by the vast difference in
time scales between laboratory and natural seismic events. This
approach of using a broadly trained deep learning model with targeted
fine-tuning holds considerable promise for advancing our ability to
predict natural earthquakes and other geohazards. Moreover, incor-
porating Physics-Informed Neural Networks (PINNs) could further

Fig. 4 | Comparison of results of predicting shear stress of p4581 with and without finetuning on the test set.The orange line shows the result (RMSE = 0.1122) achieved
through fine-tuning, while the red line shows the result (RMSE = 0.5452) without fine-tuning. Both models are pretrained with the biaxial loading dataset.
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enhance this process4. By integrating physical constraints into
machine learning models, PINNs can substantially reduce the amount
of required training data4. However, identifying appropriate physical
constraints that are applicable in both laboratory and field settings
remains a challenge.

Methods
Biaxial experiments
The biaxial laboratory data is from a servo-controlled loadingmachinewith
four independent hydraulic rams to apply stresses to the fault. Polymethyl
methacrylate (PMMA) has been commonly used as an analog to rock

Fig. 5 | Performance of the fine-tuned model on
various targets. a displays predictions for shear
stress, (b) the time to the start of failure (TTsF),
defined as the time of maximum shear stress pre-
ceding slips, and (c) the time to the end of failure
(TTeF), defined as the time ofminimum shear stress
after slips. The left-side figures represent results
from our fine-tuned model, while the right-side
figures compare thesewith results fromamodel fully
trained on the same dataset in a previous study15.
The evaluation metric utilizes RMSE for direct
comparison. Results demonstrate that our model,
initially pretrained on the biaxial loading dataset and
fine-tuned with only 3% of its total weights on the
new datasets, performs nearly as well as a model
entirely trained on these datasets.
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material in laboratory earthquake investigations78–80. In this work, square
PMMA plates with a dimension of 500mm× 500mm× 20mm are used.
PMMA has the physical and mechanical properties as follows: density
ρ = 1190 kg/m3, the Young’s modulus E = 6.24 GPa, the shear modulus
μ = 2.40GPa, and the Poisson’s ratio ν = 0.3. The seismic wave velocities are
CS = 1.43 km/s and CP = 2.40 km/s for plane stress conditions.

The square PMMAplate is cut diagonally into two identical triangular
plates, using a computer-numerical control (CNC) engraving and milling
machine. Then the cut faces are polished to remove the machining lines.
Subsequently, a layer of fault gouge is evenly spread across the fault plane.
The fault gouge consists of white corundum particles with a mean size of
0.325mm. We selected it owing to its dense texture, hardness, and angular
particle shape. The corundum particles simulate wear material found in
tectonic fault zones.Upon shearingweobserve 100’s ofmicroearthquakes in
the form of acoustic emission events, which mimic seismic activities in
natural faults during tectonic movements.

Data preprocessing
The acoustic emission data used in this study, either from our experiments
or from the previous work with the DDS configuration follows the same
processing. It is first downsampled according to its sampling frequency.
Earlier studies employed a moving window to calculate various statistical
features within eachwindow3. Among these features, signal energy has been
recognized as the most important feature. Since variance is proportional to
the acoustic energy release,we limit our computations to the variancewithin
each window. However, one challenge with this variance-centric approach
lies in its responseduring the slip stageof each seismic cycle,whichwitnesses
a substantial surge in AE events. This surge causes the variance during this
period to dwarf the rest of the time by several orders of magnitude. This
imbalanceposes a barrier for thedeep learningmodel in learning inter-event
representation. To address this, we propose to calculate the log value of the
variance,whichhelpspreserve the temporal evolutionofAEvarianceduring
events while reducing the impact of extreme values. Other approaches are
certainly possible, including the use ofmultiple features. In our experiments,
the target data, shear force, is recorded at 100Hz whereas acoustic signals
are recorded at 2MHz. To align with the target data, the time window is set
to 0.1 s, equivalent to 200,000 points and the interval is chosen to be 0.01 s
equivalent to 20,000 points. For DDS data, to better compare the finetuning
results with those from the model entirely trained on DDS data, we use the
exact samedata thatwereused in theprevious research15,with the same time
window and sliding settings. The only difference is that we use the log value
of the AE variance instead of the original AE variance that was used in
previous study.

For target data in our experiment, we only use shear force as the target
to train ourmodel. There is no difference between using shear force or shear
stress in the context of deep learning, especially since we scale the data in
practice. The raw shear forces recorded in experiments are often laden with
high-frequency noise that originates from both the system and the sur-
rounding environment. To mitigate this noise, a common method is to
employ a Butterworth low-pass filter. This method eliminates high-
frequency noise while preserving the integrity of the original signal’s lower
frequency components. The sampling frequency of shear force is 100 Hz,
and the cutoff frequency of the filter is 15Hz.

After the denoising step, the target datamay still contain trends, which
could be either linear or nonlinear, that arise from non-stationary experi-
mental conditions or systemic drifts over time. These trends, if not
accounted for,mayovershadow the actual seismic patternswe are interested
in and consequently interfere with model learning. Therefore, a common
preprocessing step in time-series analysis is detrending, which involves
removing these underlying trends from the data. A simple and commonly
used method for detrending involves fitting a linear model to the whole
target data and thensubtracting the linearpredictions fromtheoriginal data.
This method assumes that the trend is linear and can be captured using a
simple linear model.

For the target data in DDS configuration, we directly used the same
data that was used in previous study, tomaintain the consistency for further
comparison.

The Min-Max scaler is employed to normalize the entire dataset,
ensuring that the input features fall within 0 and 1. To prevent data leakage,
only the training set is utilized to fit the scaler.

Training, validation, and testing splits
Given the time-series nature of our dataset, it is crucial to preserve the
temporal order during the data partitioning process. We therefore adopt a
contiguous splitting approach.Moreover, the partitioning is taken based on
events instead of percentiles to enhance the model’s ability to learn com-
prehensively fromeach seismic cycle. Taking our experiment as an example,
the dataset contains 21 events. We designate the first 14 events as the
training set, the 15th and 16th event as the validation set, and the remaining
5 events as the test set. The same contiguous partitioning is done to DDS
datasets. When pretraining, the dataset of the biaxial experiment is parti-
tioned into training, validation, and test setswith approximate ratios of 7:1:2,
respectively. In contrast, during the finetuning phase on DDS datasets, the
allocation differs, comprising approximately 50% for training, 10% for
validation, and40%for testing.Detailed specificationsof thepartitioning are
provided in Supplement Table 2.

Deep convolutional neural network
Inspired by the recent advancements in large languagemodels, ourmodel is
designed with a decoder-only structure81(See Supplementary Fig. 3). It
beginswith aBatchNorm1d layer to acceleratemodel training. Thedecoder,
constituting the core of the model, is equipped with multiple layers. Each
layer is one Temporal Convolutional Network (TCN) block57, responsible
for learning temporal patterns within the input sequence. Each TCN block
consists of two identical dilated causal convolutions.Thedilation factor is set
to 2i for the i-th layer, where i = 0, 1, 2,…, N, indicating the index of the layer
within the TCN.This results in an exponential increase of the dilation factor
as the depth of the TCN layers increases, which allows the receptive field to
grow rapidly while keeping the number of parameters manageable.

After the decoder there is the Regression Head. This is a 1D con-
volution layer with 64 output features. A kernel size of 2 is added to further
refine the extracted features, i.e., consolidating theminto amore informative
representation. Subsequently, two linear layers with output dimensions of
128 and 1, respectively, are utilized to transform the refined feature repre-
sentation, transitioning it into an appropriate latent space and ultimately
map it to the target value.

Dropout layers are intentionally omitted in later layers, based on
research findings that dropout may negatively impact regression tasks82,83.
Overall, the model is designed with a flexible decoder. By changing the
number of layers inside the decoder, it can be adapted to different input data
sequence lengths.

Model training procedure
In pretraining, we use the AdamW optimizer and a cosine annealing
schedule to double control the learning rate. The period of the cosine
function is set to be 50.We also use a technique known as gradient clipping
to prevent extremefluctuations andkeep gradientswithin a defined range to
avoid gradient exploding issues which are common in very deep convolu-
tional neural network training as applied to our case. The loss function is set
toMeanSquaredError (MSE).Wealsouse the early stoppingmechanism to
prevent overfitting. If the validation loss doesnotdecrease for 20 consecutive
epochs, training is terminated. We use the Xavier uniform distribution to
initialize the weights of layers outside the decoder and set bias terms to zero.
The batch size is set to 128. Finally, we pretrained themodel using two RTX
4090 GPUs. Mixed-precision training and data parallelism were used.
Mixed-precision training involves using both single-precision (float32) and
half-precision (float16) formats in a way that optimizes the model’s speed
and memory utilization without sacrificing its accuracy or stability.
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In finetuning, the process is similar but much simpler. The AdamW
optimizer is also used, with a batch size of 64 for the training and validation
sets, and 1 for the test set to best simulate the real predicting scenario. The
same learning rate scheduler andgradient clippingmethods are applied.The
loss function is set to be MSE.

The optimal hyperparameter configurations for both pretraining and
finetuning are listed in Supplement Table 3.

To verify the contribution of the frozen decoder part in the finetuning,
we conducted an ablation study.We compared it to twomodel variants, one
with a randomly initialized decoder then frozen, and the other with a fully
trainable decoder. Our pretrained then frozen decoder model achieves the
lowest loss (see Supplementary Table 4) and stable convergence. This
demonstrates that pre-trained features (1) accelerate model convergence
relative to random initialization and (2) result in more accurate final pre-
dictions than full training from scratch in data-limited scenarios.

Data availability
The DDS data can be found at: https://github.com/lauralaurenti/DNN-
earthquake-prediction-forecasting.TheBiaxial dataused in thepaper canbe
found at https://github.com/CountofGlamorgan/TCN_paper.

Code availability
The source code and models can be accessed at https://github.com/
CountofGlamorgan/TCN_paper.
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