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Vegetation structure and phenology
primarily shape the spatiotemporal
pattern of ecosystem respiration

Check for updates

Cenliang Zhao 1,2,3 & Wenquan Zhu 1,2,3

Accurate estimation of terrestrial ecosystem respiration (TER) is essential for refining global carbon
budgets. Current large-scale TER models rely on empirical structures derived from site-scale
observations, often driven solely by hydrothermal factors. However, incorporating ecosystem-scale
information is critical for more accurate large-scale TER modeling. Such ecosystem-scale variables
have not beenwell parameterized, since themechanisms bywhich they affect TER remain unclear. To
address this gap, here we developed a Causality constrained Interpretable Machine Learning model
for TER estimation (named “CIML-TER”) which consider the ecosystem-scale information. CIML-TER
exhibited higher estimation accuracy (reducing relative mean absolute error by approximately 15%)
and overcame the “artificial discontinuities” phenomenon of traditional models. Meanwhile, we
quantitatively revealed that although environmental factors, such as temperature and water, were still
the dominant drivers of TER (contributing ~44.15% of global TER variability), biotic factors (e.g.,
vegetation structure, ~25.91%) and spatiotemporal variation factors (e.g., land cover and phenology,
~29.94%) were also critical.

Terrestrial ecosystem respiration (TER) was the primary carbon flux from
terrestrial ecosystems to the atmosphere, including autotrophic respiration
by plants and heterotrophic respiration from decomposition by soil
organisms1,2. Fluctuations in TER can alter net carbon exchange processes,
subsequently affecting the effectiveness of carbon sequestration3. Therefore,
accurately quantifying the dynamics of global TER is crucial for under-
standing the impacts of climate change on terrestrial carbon balance4,5,
which can further inform policy development and help the implementation
of nature-based solutions6,7.

The terrestrial ecosystem respiration estimationmodels can be roughly
divided into threemain categories8,9: semi-empirical models, pure empirical
models, and machine learning models. (1) Semi-empirical models take the
relationships between respiration rates and temperature as the core, such as
theQ1010,11, Lloyd&Taylor12 andArrhenius13models. Thesemodels are the
most widely used tools for TER estimation, and can independently estimate
TERfromsite toglobal scales, or be integrated as respirationmoduleswithin
process models, like Community Land Model (CLM) and Breathing Earth
System Simulator (BESS)14–16. Although their exponential-like functions are
derived from thermodynamic theories (van’t Hoff equation), their para-
meters require recalibration to improve estimation accuracy in practical
applications, hence being semi-empirical. (2) Pure empirical models are

established on the several variables related toTER, often focusing on a single
factor like soil moisture, gross primary productivity, or vegetation
indices17–19. These models employ various functional forms (e.g., linear,
quadratic or logistic), since the relationship to TER is different across
variables. Recently, Tagesson et al.5 developed a LGS-Reco product by
applying themost suitable empirical model for each pixel to generate global
TER estimates. (3) Machine learning methods can be used to optimize
traditional models’ parameters or directly estimate TER. For instance, Lu
et al. 20 modified the traditional Lloyd & Taylor model by incorporating
vegetation indices and employed machine learning techniques to optimize
its parameters. Alternatively, machine learningmethods can also be used to
model complex, nonlinear relationships between multiple input data and
TER, directly generating global TER estimates21–24, such as the Random
Forest (RF) and Long Short-Term Memory (LSTM) methods. However,
machine learning models are often criticized for lacking physical mechan-
isms, and their long-term variability can be sensitive to variable selection
and model design5.

Ecosystem respiration involves complex interactions between physical
and biochemical factors, with the autotrophic and heterotrophic compo-
nents of TER responding distinctly to ecosystem properties and environ-
mental variables. Consequently, the mechanisms underlying TER exhibit
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significant regional variability, contributing to large uncertainties in existing
estimation methods25. The mainstream TER models, which are funda-
mentally based on temperature response functions, only incorporate tem-
perature and moisture as driving factors8,16,26. These models are essentially
upscaled applications of site- or single-component observational
experience12,27. Their parameters require recalibration with flux observa-
tions across regions (or plant functional types) tominimize errors for large-
scale applications11. However, it is increasingly evident that ecosystem-scale
TER estimation must account for additional factors beyond hydrothermal
variables, such as non-photosynthetic vegetation cover and the spatial dis-
tribution of leaves. These ecosystem-scale information are crucial, since they
are related to light transformation processes (e.g., the daytime inhibition of
TER) and detailed descriptions of vegetation components (e.g., green and
senescent leaves), which can ultimately influence the ecosystem-scale car-
bon budget28–30. However, it remains a challenge to parameterize such
ecosystem-scale information into TER models. This difficulty arises from
the limited availability of in situ observations about ecosystem properties
and the incomplete understanding of how the ecosystem-scale drivers affect
TER. While some process models, like Terrestrial Carbon Flux (TCF) and
Forest Ecosystem Carbon Budget Model for China (FORCCHN), attemp-
ted to address this issue by separately calculating each component’s
respiration rates31,32, they highly relied on some simplified assumptions to
partition carbon pools. Specifically, they roughly set the ecosystem back-
ground (e.g., allocation strategies, tree spacing) based solely on leaf area
index (LAI) and coarse discrete land classification data, which cannot fully
capture the heterogeneity and the continuous variations of natural
ecosystems.

Recently, the interpretable machine learning (IML) framework is
expected to facilitate the fusion of such ecosystem-scale information and
help to clarify the relationships between ecosystem-scale variables and
TER, thereby contributing to the development of process models. For
instance, the combination of tree-based models (e.g., eXtreme Gradient
Boosting, also called XGBoost33) and SHapley Additive exPlanations
(SHAP) tools34. XGBoost is particularly effective in capturing complex,
non-linear relationships within tabular data and has been proven to
outperform deep learning models in these contexts35. Moreover, SHAP
has a solid theoretical foundation in game theory and can ensure that the
global interpretations of model are consistent with the local explanations
of samples36. These IML frameworks have been widely used in geo-
graphical sciences, especially in attribution analyses37–39. For example,
researchers have employed XGBoost to investigate the relationships
between environmental factors and vegetation greenness, and applied
SHAP to interpret the influence and variability of contributing factors
over time and space39. Moreover, incorporating causal constraints into
training processes can enhance both the interpretability and accuracy of
machine learning models. For instance, Yuan et al.40 applied causal
information, derived from the PCMCI method41,42, as prior references to
modify the weights of model parameters during training process. Their
approach improved the estimates of wetland methane emissions43,
revealing the underestimated response of methane emission to tempera-
ture in previous research. In summary, it is expected to improve the TER
estimation accuracy by applying the Causality constrained Interpretable
Machine Learning (CIML) framework, which can not only enhance
model accuracy but also provide insights into the sensitivity and spatio-
temporal variability of ecosystem properties’ effect on TER.

Therefore, this study aims to improve global TER estimation accuracy
and deepen the understanding of its spatiotemporal variations by incor-
porating crucial ecosystem-scale information (e.g., clumping index, non-
photosynthetic vegetation cover and phenology) into model construction.
Following the causality constrained interpretable machine learning frame-
work, we established a satellite-based TER model called “CIML-TER” and
used it to elucidate the effect of various driving factors on large-scale TER
estimation, consequently revealing their regional differences. These insights
are expected to inform and support future developments of TER process
models.

Results
Model construction and estimation accuracy
The Causality constrained Interpretable Machine Learning model for
Terrestrial Ecosystem Respiration estimation (CIML-TER; all the abbre-
viation can refer to Supplementary Table 1) was established based on the
XGBoost framework which was constrained by the causal effects derived
from PCMCI+. By systematically synthesizing the previous research about
TER estimation, we divided the relevant variables into three groups (Sup-
plementary Fig. 1) formodel construction: environmental conditions, biotic
factors (e.g., vegetation structure) and spatiotemporal variations (e.g., dif-
ferences inphenologyand land cover). Specifically,wefirstly ran thePCMCI
+method on site-scale datasets (see “Site data”) and got the causal effect of
each input variable on TER. Secondly, these causal effects were used as
reference weights to guide the tree generation process of XGBoost model
(see more details in “Modelling TER” and Supplementary Fig. 2). Thirdly,
we ran the CIML-TER model globally (monthly, 2001–2020, 0.05°) and
concurrently evaluated its estimation accuracy with two other mainstream
TER products (Fluxcom and LGS-Reco, see “Other TER products” and
“Model evaluation”). Finally, we used the SHAP tool to interpret the rela-
tionships between input variables and TER inside, including variables’
feature importance and corresponding regional differences, as well as their
sensitivity.

CIML-TER performed well in the accuracy evaluation experiment, with
higher R2 and lower Mean Absolute Error (MAE) in both FLUXNET and
ABCflux datasets. Since the final estimates of CIML-TER were the mean of
all folds’ outputs, thus partial estimates were derived from the training data,
resulting in that the overall performance was obviously better than that of the
test set (Fig. 1a, b, the overall and test set MAE were 13.359 and
24.051 g C·m−2·month−1, respectively). Notably, the Fluxcom product simi-
larly relies on partial site data for model training, and the LGS-Reco product
also requires partial site data to determine empirical model coefficients.
Therefore, this can be considered as a relatively fair comparison among three
TER products (Fig. 1a, c, d). Specifically, CIML-TER outperformed Fluxcom
and LGS-Reco products in terms of accuracy andmitigated the issue of “high-
value underestimation”, showing a slope more closed to 1 (Fig. 1a, c, d).
Additionally, CIML-TER obviously improved the TER estimation accuracy
in the high latitudes of northern hemisphere. Specifically, the CIML-TER
MAE on the test set was 17.308 g C·m−2·month−1, whereas the overall MAE
of Fluxcom and LGS-Reco were 19.658 and 22.068 g C·m−2·month−1,
respectively. In other words, the model performance of Fluxcom and LGS-
Reco (red color in Fig. 1c, d) were even worse than the lower bound of
CIML-TER (red color in Fig. 1b) in high-latitude regions. Meanwhile, this
result also showed that CIML-TER can achieve acceptable accuracy when
even applied in regions with totally spatiotemporal heterogeneity (Fig. 1b),
exhibiting a relatively higher generalization ability.

CIML-TER generally achieved superior accuracy across all vegetation
types. Specifically, CIML-TER exhibited higher R2 and lower MAE, rMAE
in all vegetation types (Fig. 2), except for CSH.CIML-TER particularly
improved the estimation accuracy of TER in forest types. For example, the
rMAE of CIML-TER in EBF was approximately 10%, representing a
reduction of ~20% (~40 g·C·m−2·month−1) compared to that of Fluxcom
and LGS-Reco. Furthermore, with the inclusion of high-latitude flux
observations, CIML-TER also performed better in tundra types (TWE、
GRT、BWE、SBV、SHT inFig. 2). For instance, the rMAEofCIML-TER
in SHT was only ~15%. In addition, although all TER products showed
relatively better accuracy in CSH than in other biomes (Fig. 2), it need to be
cautious to consider such nice performances due to the limited number of
flux sites with CSH labels. Moreover, CIML-TER was better able to reflect
the real TER dynamics observed at the flux sites (Supplementary Fig. 3). For
the EBF and DBF sites, CIML-TER can capture the relatively high TER
fluxes during the peak period of a growing season, whereas such TER fluxes
of Fluxcom and LGS-Reco were underestimated or saturated. Moreover,
CIML-TER also effectively captured the TER dynamics in low-biomass
regions; for instance, it accurately replicated the relatively low TER fluxes
during the peak period of a growing season in the northern peatlands and
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sparse vegetation (e.g., Supplementary Fig. 3, BWE and SBV). In contrast,
Fluxcom and LGS-Reco tended to overestimate such TER fluxes. Addi-
tionally, CIML-TER can depict more complex dynamics of TER (e.g.,
Supplementary Fig. 3, SAV and GRA) rather than simple sinusoidal peri-
odic variations, due to the more comprehensive consideration of factors
relevant to TER.

Global patterns of TER
CIML-TERexhibited a similar global pattern of TER to that of Fluxcomand
LGS-Reco, displaying high values in low latitudes and low values in high
latitudes (Fig. 3).The total estimates of all threeTERproductswere relatively
consistent in themiddle andhigh latitudes, but displayedgreat differences in
the low latitudes. Specifically, the spatial variations betweenCIML-TER and
Fluxcom were generally similar, although the TER estimates of Fluxcom
were obviously lower than those of CIML-TER. As for LGS-Reco, its TER
estimates in the subtropical latitudes of northern hemispherewere relatively
align with those of CIML-TER, whereas such estimates became saturated
around the equator (Fig. 3d).

The spatial pattern of CIML-TER was more representative of the real
world. Based on the detailed spatial pattern comparison across several
typical regions, we evaluated their performance in characterizing the
internal differences within a single PFT, as well as the spatial variations in
transition zones (Fig. 4). In the region of interest (ROI) 1, Amazon Forest,
CIML-TER depicted detailed internal differences within the EBF type
(Supplementary Fig. 4), whereas the estimates of both Fluxcom and LGS-
Reco products were relatively homogeneous. Similarly, for the ROI 3 region,
East Asia, CIML-TER distinguished the differences between subtropical
EBF and temperate EBF (Fig. 4, ROI 3). In addition, the spatial variation of
CIML-TERwasmore realistic. It effectively described the gradual transition
of TER between different land cover types, since it did not rely on the
discrete one-hot codes of PFTs as inputs (e.g., Fluxcom) or separately set
parameters according to coarse classificationmaps with discrete labels (e.g.,
LGS-Reco). For example, in the ROI 1 and 2 regions, the results of LGS-Reco
showed clear boundaries between PFTs. Moreover, although Flxucom
performed relatively better than LGS-Reco in the transition zones, its cal-
culation modes on the both sides of boundaries were still quite different,

Fig. 1 | Comparison of TER estimation accuracies. a The overall performance of
causal XGBoost model; b the performance of causal XGBoost model on test dataset;
c the overall performance of Fluxcom product; d the overall performance of LGS-
Reco product. The gray points mean the monthly TER estimation for all site-month

samples, and the solid gray lines are corresponding regression lines. The colored
points with black outlines are averaged results of each site, in which the blue and red
parts represent FLUXNET and ABCflux, respectively. The dashed black lines show
the 1:1 relationship.
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leading to a clear boundary between SAV and EBF in the ROI 2 region
(middle Africa, Supplementary Fig. 4). On the contrary, the gradual tran-
sition of TER between EBF and SAV was well depicted in CIML-TER,
reflecting the gradually continuous variations of biomes between different
land cover types. As for the ROI 4 and 5 regions (North America and
Europe), which have the largest number of flux sites, there was no great
difference among all three TER products in terms of spatial patterns and
estimates.

The inter-annual variation trend of CIML-TER differed from those of
other TERproducts (i.e., FluxcomandLGS-Reco), whichwas reflected in the
total variation rate and the spatial pattern. For the inter-annual variation
results of all TER products, regions exhibiting increasing and decreasing
trends of TER concurrently existed, while these regions were not consistent
across all products (Fig. 5, Supplementary Figs. 5 and 6).Meanwhile, in both
CIML-TER and LGS-Reco estimates, the area of regions with significant
increasing trends of TER was larger than that of regions exhibiting sig-
nificant decreasing trends, displaying a global increasing trend of TER. In
contrast, the TER estimates of Fluxcom showed a slightly global decreasing
trend. As for the spatial pattern, regions with inter-annual increasing trends
of TER in CIML-TER were primarily distributed in the high latitudes of
northern hemisphere where the other products detected less significant
variation trendsofTER (SupplementaryFigs. 5 and6).Moreover, the results
ofCIML-TERshowed relatively strong increasing trendsofTER in southern
China, western India and parts of tropical EBF, while regions exhibiting
decreasing trendsweremainly located in theAmazonForest and the eastern
Canadian boreal forest. Additionally, CIML-TER revealed that the TER of
EBF showed a generally increasing trend, despite the existence of significant

decreasing trends in certain EBF regions. In contrast, the TER of EBF
displayed generally decreasing trends in the Fluxcom and LGS-Reco pro-
ducts (Fig. 6). Notably, we found that the inter-annual increasing rate of
TER in permafrost wasmuch higher than that in EBF (about 5 times for the
relatively value, Fig. 6), and the increasing rate of TER in the core regions of
permafrost (continuous and discontinuous permafrost) was slightly higher
than that in the edge regions (sporadic and isolated permafrost).

Key drivers for TER variations
Based on the interpretable machine learning framework, we found that
variables related to vegetation structure, component and phenology, which
are often notwell parameterized in traditional TERestimationmodels, were
also key factors influencing large-scale TER. The global pattern of relative
|SHAP| value showed that the environmental conditions were still the
dominant drivers of TER (most of the areas in Fig. 7 are in red-like colors,
especially in savanna, India and the high latitudes of northern hemisphere),
which contributed about 44.15% (standard deviation (SD) = ±11.1%, range
from3.51 ~ 82.45%) of global TERvariability.Meanwhile, the biotic factors,
which describe the ecosystem-scale information such as physical structures
and components, played a crucial role (regions with green-like colors in
Fig. 7) in the middle- or low-latitude regions with high biomass (e.g., EBF),
low biomass (e.g., desert steppe) or high elevation (e.g., the Rocky Moun-
tains). Biotic factors contributed about 25.91% (SD = ±9.8%, range from
1.34 ~ 68.52%) of global TER variability. Finally, the spatiotemporal varia-
tion factors,whichdescribe detailed differences of land cover andphenology
across pixels, were also important drivers of TER and played a dominant
role in croplands (e.g., the corn belt of USA and the croplands in middle

Fig. 2 | Comparison of TER estimation accuracies
across different biomes. a R2, bMAE, c rMAE. EBF
evergreen broad-leaf forest, ENF evergreen needle-
leaf forest, DBF deciduous broad-leaf forest, DNF
deciduous needle-leaf forest, MFmixed forest,WSA
woody savanna, SAV savanna, CSH closed shrub,
OSH open shrub, GRA grassland, CRO cropland,
WET wetland, TWE tundra wetland, GRT grami-
noid tundra, BWE boreal wetland or peatland, SBV
sparse boreal vegetation, SHT shrub tundra. These
biome types come from labels of flux sites.
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Fig. 3 | The global pattern of annualmeanTER. aTERof causal XGBoost;bTERof Fluxcom; cTERof LGS-Reco;d latitudinal distribution in annualmeanTER.All data are
temporally averaged from 2001 to 2015 for a fair comparison. In the (a–c) sub figures, the frequency histogram is located at each figure’s lower left corner.

Fig. 4 | Detailed comparisons of three TER estimation results across five ROIs. The ROIs 1 to 5 are located in Amazon, Middle Africa, East Asia, Europe and North
America, respectively. All data are temporally averaged from 2001 to 2015 for a fair comparison.
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Fig. 5 | Annual TER variation trend of CIML-TER (2001–2020). a Theil–Sen
trend, b relative Theil–Sen trend. These figures only show the region with significant
trend (Mann–Kendall trend test, p < 0.05), and the regionwith non-significant trend

or no data is plot in gray color. The frequency histogram is located at each figure’s
lower left corner. For the trend maps of Fluxcom and LGS-Reco products, see
Supplementary Figs. 5 and 6.

Fig. 6 | Comparison of inter-annual variation trend in key biomes among dif-
ferent TER products. aTheil–Sen trend, b relative Theil–Sen trend. Themean slope
value is calculated through area-weighted averaging method (only including pixels
with significant Mann–Kendall trend, see Fig. 5), and the error bar means the area-

weighted standard error (SE). The evergreen broad-leaf forest region is derived from
MCD12 v061. Specifically, we selected pixels of which the “EBF” label never changes
between 2001 and 2020 as the final region. In addition, the permafrost map we used
here is from Obu et al.98.

Fig. 7 | The global pattern of TER estimation contribution rate of three main
groups of influencing factors. The contribution rate of each group is integrated by
corresponding input variables’ relative |SHAP| values on each pixel. The red, green
and blue colors represent the influencing variables of environmental conditions

(daytime and nighttime LST, LSWI and SOC at 0, 30, 50 cm), biotic factors (LAI, CI,
PV, NPV, BS and NIRv) and temporospatial variations (SCVTG, representing the
spatial continuous differences of vegetation type and phenology), respectively.
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Europe, regionswithblue-like colors inFig. 7). The spatiotemporal variation
factors contributed about 29.94% (SD = ±7.2%, range from 2.96 ~ 78.53%)
of global TER variability. In addition, for each individual input variable
(Supplementary Fig. 7), the nighttime LST was averagely the most impor-
tant driver of TER, contributing approximately 30-40% TER variability
across the world. The SOC30 variable (i.e., the 30–50 cm SOC) contributed
themost TER variability among all three depths of SOCvariables (about 15-
30% in the high latitudes of northern hemisphere). Moreover, LAI is the
most dominant variable among all biotic factors, contributing about
20–30% TER variability inmiddle and low latitudes. The AreaNIRv variable,
representing the one-year accumulated value of NIRv, contributed the
highest TER variability among all spatiotemporal variation factors (with
contribution rates near 35% in some regions, e.g., the corn belt of USA and
the North China Plain).

The SHAP dependency plots quantified each individual input vari-
able’s effect onTER, aswell as corresponding sensitivity. As the daytime and
nighttime LST increased, TER kept stable when LST was below 0 °C and
started to increase when LST was above 0 °C (Fig. 8a, b). Meanwhile, both
SHAP dependency plots of daytime and nighttime LST showed unimodal
shapes, peaking at around 20–30 °C. As for NIRv, the proxy of Gross Pri-
mary Productivity (GPP), TER kept stable when NIRv was below 0.08 and
then turned into a sustained increase with increasing NIRv (Fig. 8c). TER
continuously increased with increasing LAI (Fig. 8d) and decreased with
increasing CI (Fig. 8f). Furthermore, TERwas relatively stable when the PV
cover was below 50%, whereas it then converted to increase with increasing
PV cover and peaked at around 75% (Fig. 8e). TER generally increased with
increasing AreaNIRv, although such relationship was non-linear (Fig. 8g).
Since the SOC input data are temporally stable, the SHAP dependency
results of SOC actually showed their spatial different effects on TER (Sup-
plementary Fig. 8 and Fig. 8h). Specifically, the TER process would get
inhibited in regionswith high SOC0 (SOCat 0–10 cm), and the regionswith
about 50 g kg−1 SOC30 (SOC at 30–50 cm) would lead to higher positive
response for TER.

In summary, the influencing variables—environmental conditions
(i.e., LST, LSWI and SOC), biotic factors (i.e., LAI, CI, PV, NPV, BS and
NIRv), and spatiotemporal variations (i.e., the shape of annual vegetation

index time line)—are all key drivers of TER. Meanwhile, our results high-
lighted the crucial role of vegetation structure and phenology on TER, since
the general contribution of environmental conditions on TER was below
50%. Additionally, each variable’s effect on TER varied differently over
space, resulting in great regional differences of TER-related estimation
mechanisms.

Discussion
Model performance
CIML-TER obviously improved the TER estimation accuracy, compared
with the similar TER products, partly due to the more adequate flux
observations. Not only the Fluxcom and LGS-Reco datasets that were
compared in this study5,22, but also the other similar TER products24 or
models11, they all rely on the FLUXNET dataset (or a subset) for model
construction and parameter calibration.However, the spatial distribution of
FLUXNET sites is uneven, particularly lacking flux observations in regions
with low biomass or in high latitudes. Therefore, theoretically, the CIML-
TER should achieve higher estimation accuracy, since it integrated addi-
tional long-term in situ observations and encompassed a broader range of
land cover types. This was proven by its superior performance in the site-
scale accuracy evaluation (Fig. 1) and the more realistic global spatio-
temporal patterns (Fig. 2 and Supplementary Fig. 3). In addition, we found
that the estimation accuracy of similar TER products got greatly decreased
when applied on the ABCflux dataset (Fig. 1), resulting in a relatively lower
overall accuracy than that of their original studies (e.g., the R2 of LGS-Reco

was 0.65 in its original study, but here is 0.40). In summary, the integration
of in situ observations from two flux networks had achieved further infor-
mation complementarity, obviously enhancing the TER estimation accu-
racy in the high latitudes of northern hemisphere.

CIML-TER also had strong generalization abilities due to the causality
constrained interpretable machine learning framework and the utilization
of SCVTG variables. This study leveraged the feature importance derived
from PCMCI+41,42 as prior references for model training, which efficiently
modulated model’s physical and causal structures (Supplementary
Figs. 9 and 10). Additionally, we followedZhu et al.’s44 advice to avoid using
discrete classificationdata inmodel construction. Instead,we employed a set

Fig. 8 | The SHAP dependency plots of TER on individual model input variables.
Notably, only the variableswith relatively greater effects onTERwere displayed here,
and the complete SHAP dependency results can refer to Supplementary Fig. 8. The
numbers along the y-axis represent the SHAP-values for TER and indication of

response in the variable. The red dashed lines indicate SHAP-values of zero, where
the response of TER is nonchanging. Solid dark blue lines denote response in TER as
the predictor variables undergo change. The background light blue color represents
low point density, and the dark red color donates high point density.
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of numerical variables derived from the dimensionality reduction of vege-
tation index time series (i.e., SCVTG) to depict the continuous variation of
vegetation types and phenology across pixels. Specifically, the traditional
PFT data provide oversimplified labels of land cover, which is primarily
designed to facilitate human understanding. However, these finite labels fail
to describe the spatial continuous variation of land cover, causing great
differences in environmental and ecosystem properties within regions
sharing the same PFT label. This limitation was especially evident in our
comparison experiment across keyROIs (Fig. 4); the products usingdiscrete
land cover data would show obvious boundaries in the TER result. More-
over, this limitation likely explained the lower accuracy of similar TER
products on theABCflux dataset. Specifically, theMCD12 land cover data45,
commonlyused in carbonfluxmodels, does not include adedicated label for
tundra types. Consequently, the low-latitude savanna and high-latitude (or
high-elevation) shrub tundra are assigned the same label (e.g., SAV or
WSA), which compromises model accuracy. Additionally, the sparse dis-
tributionofflux sites inhigh-elevation andhigh-latitude regions exacerbates
this issue. The calculationmode sharing the same land cover label would be
more weighted towards subregions with more flux sites, limiting their
generalization ability. On the other hand, the discrete land cover data (e.g.,
MCD12) was originally derived from vegetation index time series46, but it
lost too much information in order to facilitate human understanding. The
SCVTG, a set of numerical variables, used in this study was derived from a
moderate information compression process to retainmore information of a
time series44. In other words, the numerical variables were key signals
designed to offer detailed descriptions for estimation models instead of
setting several calculation modes by discrete labels to facilitate human
understanding. In addition, the spatial pattern comparison of TER inNorth
AmericaandEurope (Fig. 4, ROI4and5) further illustrated thedifference in
the generalization ability between CIML-TER and the other products (i.e.,
Fluxcom and LGS-Reco). In North America and Europe, all three products
had similar TER estimates, since the flux sites are spatially concentrated in
such places and all three products essentially used the flux data to support
model training or parameter calibration. However, for regions with sparse
site distribution, the CIML-TER model exhibited better spatiotemporal
dynamics and higher generalization ability (Fig. 4, ROI 1 to 3). As for the

estimation uncertainty of CIML-TER, the standard deviation was generally
higher in low-latitude regions (Supplementary Fig. 11a) due to the high
biomass and complex vegetation structures in such regions. However, the
estimation uncertainty of CIML-TER was more obvious in regions with
high elevation or desert in terms of the relative value of standard deviation
(Supplementary Fig. 11b).

CIML-TER can effectively capture variations in temperature response
sensitivity across vegetation types. Specifically, the temperature response
curves exhibited distinct shapes across vegetation types, according to the
SHAP values for daytime and nighttime LST (Supplementary Fig. 12).
Interestingly, samples for some types did not often cluster along a single,
well-defined curve. Instead, they showed a relatively dispersed distribution
in the TER-LST space, displaying multiple curve shapes (e.g., WET and
GRA in Supplementary Fig. 12). This indicated that even within regions or
sites accurately labeled with the same PFT, significant internal differences
can persist. Furthermore, while the temperature response curves for most
vegetation types follow traditional exponential forms, the unimodal curves
are evident in the daytime TER-LST relationships of certain vegetation
types, such as DBF, WSA, SAV, OSH, CRO, and WET (Supplemen-
tary Fig. 12).

The roles of vegetation structure and phenology on TER
Vegetation structure can regulate terrestrial ecosystem respiration (TER) by
influencing carbon allocation, energy exchange processes, and microbial
activity. The LAI enhances light interception by the canopy, thereby driving
seasonal variations in TER through autotrophic respiration47 (Fig. 9a, e).
Our results revealed the nearly linear positive relationship between LAI and
TER (Fig. 8), which also support some studies that use LAI to simulate the
“reference ecosystem respiration” (Rref) parameter within the Q10 or
Arrhenius frameworks26. TheCI, which quantifies the spatial distribution of
foliage, is well-known in modulate canopy radiation and can indirectly
promote TER through the enhancement of canopy light-use efficiency48

(which can increase GPP). However, our results also detected CI’s unique
effects on TER, although its magnitude was relatively smaller than that of
LAI. Specifically, the CI showed a general negative relationship with TER
(Fig. 8f and 9b, f).We think this phenomenonmay be related to the daytime

Fig. 9 | Mean temporal variations in ecosystem-scale factors and corresponding effects on TER (northern hemisphere). a–d LAI, CI, PV cover and NPV cover; e–h the
SHAP value of LAI, CI, PV cover and NPV cover, respectively.
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inhibition of TER29. Based on the canopy radiative transfer simulation
models, it is demonstrated that lowerCI values (indicating amore clumping
distribution of leaves) can reduce the total canopy radiation absorption and
the shoot-level irradiance at the top of the canopy49, whichmaymitigate the
daytime inhibition of ecosystem respiration in some degree. The ratio of PV
toNPVand BS cover furthermediates TERby balancing carbon inputs and
outputs. High PV coverages usually mean higher GPP50 and autotrophic
respiration, and this positive effect on TERwas relatively larger than that of
CI (Fig. 9c, g). Unlike the PV coverage, the relationships between NPV and
TER are relatively complex and remain unclear due to the uncertainty of
NPV (e.g., data source, definition). Based the NPV data derived from
spectral mixture analysis, we found out that although the NPV generally
showednoobvious effect onTER (Supplementary Fig. 8p), such effectswere
important in specific plant functional types (Fig. 9d, h). Specifically, the
relationship between NPV and TER were relatively simpler in ENF and
GRA, but were more complex in EBF, DBF, MF and OSH (Fig. 9d, h). For
instance, after the peak of growing season in ENF (northern hemisphere), as
the decrease of PV and the increase of NPV, the SHAP values ofNPVgot to
the peak which may mean the soil respiration pulse induced by the
increasing litters, and suchpositive effect ofNPVonTERwas then gradually
suppressed as the decreasing temperature. As for NIRv, the robust proxy of
GPP, it showed a stable relationship with TER when its value is above 0.08.
This result can partly support Waring’s hypothesis51, which suggested that
the Net Primary Production (NPP):GPP ratio generally tends to be
stable52,53. However, our results suggested that this proportional relationship
may not be stable in low-GPP situations (Fig. 8c), given the linear rela-
tionship between NIRv and GPP.

Besides the seasonal dynamic of variables representing vegetation
structure that mentioned above, phenology can also regulate TER through
the length of growing season.Within the variables of SCVTG, the AreaNIRv
is the one-year accumulated value of daily NIRv, which is widely used as a
proxy of GPP or biomass54,55, and our results suggested higher AreaNIRv
would lead to higher TER (the significant positive Pearson coefficients
between TER and AreaNIRv in Supplementary Fig. 13), especially in EBF.
However, such relationships were relatively less obvious in the tundra
ecosystems (relatively lower values of Pearson coefficients), partly due to the
lower contribution ratio of autotrophic respiration in those high-latitude
ecosystems56,57. Additionally, in theory, the longer growing season usually
means more autotrophic respirations, but our results revealed such effects
were different among plant functional types (Supplementary Fig. 13). For
instance, for all three LXX variables of SCVTG (i.e., L25, L50 andL75), only the
L25 showed significant positive relationships with TER in CSH and OSH,
which means the TER of shrub land was more sensitive to the whole length
of growing season. Alternatively, the longer time spans with highNIRv (i.e.,
L50 and L75), representing less disturbances during growing season (e.g.,

short-term droughts), were significantly important for higher TER in CRO
andDNF (Supplementary Fig. 13), rather than the whole length of growing
season (i.e., L25). However, it is still a challenge to analyze the effect of
vegetation phenology onTER, since the high inconsistency among different
remote sensing-based phenological metrics58 and the diverse physical
meanings between satellite-based and ground-observed phenology59. In
general, we generally quantified the effect of phenology on TER (Figs. 7, 9,
Supplementary Figs. 8 and 13) and highlighted its role in future TER
modelling.

Global TER estimates
Global annual CIM-TER budgets ranged between 117 and 125 Pg C
(Fig. 10), higher than the estimates of Fluxcom and LGS-Reco

5,22,23, but
located in the middle of the estimates of mainstream process models
(Fig. 10). Notably, the RS version of Fluxcom has a higher spatial resolution
(0.0833°) compared to the RS+METEO version (0.5°), with slightly lower
mean estimates. Specifically, for the site scale, the RS version is averagely
0.1 g C·m−2·day−1 lower than theRS+METEOversion23, leading to a global
TERbudget of only 83 PgC for the FluxcomRS version—approximately 10
Pg C less than the RS+METEO version16. Previous research has suggested
that global annual TER should be in the range of ~100–110 Pg C21. For
instance, the global TER estimate of Yuan et al.11 derived fromQ10 function
was 103 Pg C and that of Ai et al.60 was 95 Pg C. However, these previous
studies lacked information describing the ecosystem-scale properties (e.g.,
vegetation structure, component and phenology), resulting in significantly
underestimation of TER, especially in the EBF regions (Figs. 3, and 4). In
addition, Lai et al.61 used carbonyl sulfide as an indicator and estimated
global GPP at around 159 PgC,much higher than the typical 120–140 PgC
from earth system models62,63, highlighting potential underestimations of
GPP in tropical EBF regions. Therefore, given the global net ecosystem
change is relatively a small value (~0–10 Pg C), the range of ~100–110 Pg C
may largely underestimate the global TER. In summary, the global TER
budgets of CIML-TER (excluding deserts, water, ice and snow regions)
aligned well with the existing mainstream standards and suggest a global
NEP within 10 Pg C when combined with the earth system model GPP
estimates, which was also consistent with the conclusion of Global Carbon
Budget3,63. Importantly, since existing process models are highly dependent
on the discrete land cover data, our CIML-TER can further provide more
detailed and realistic spatiotemporal dynamics, which can support the
development of future process models.

CIML-TER revealed a global increasing trend of TER with a rate of
0.9%·yr−1 (approximately 1.08 Pg C·yr−1), which was higher than the rate
detected by Fluxcom and LGS-Reco products but aligned closely with the
rate observed in process models (Fig. 10). While the Fluxcom product,
often used as a benchmark for carbon flux evaluation64, failed to capture

Fig. 10 | Comparison of annual global TER esti-
mates from various models. Notably, the annual
global TER estimates of Fluxcom are often different
among publications, since users specifically apply
different versions (e.g., RS or RS+METEO;
ensemble or member results, such as RF, Support
Vector Machine (SVM) and Multivariate Adaptive
Regression Splines (MARS)).
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long-term carbon flux variability, CIML-TER successfully depicted the
inter-annual variation of TER. This is attributed to the utilization of
PCMCI+ and continuous descriptions of spatiotemporal variations44. In
addition, CIML-TER’s increasing rate was roughly twice higher than that
of LGS-Reco. This discrepancy arises fromLGS-Reco’s reliance on the single
variable-driven model structure. In other words, although LGS-Reco
integrated several single variable-driven models, each pixel’s estimate
ultimately depends on only one of these models, which limits its ability to
fully capture TER variations and leads to saturation issues. In contrast,
CIML-TER incorporated multiple variables, especially concurrently con-
sidering the limitations related to temperature and substrate availability—
key constraints parameterized in process models. This variable design also
explains the similarity in global increasing rates of TER between CIML-
TER and process models. Additionally, the temperature response sensi-
tivities of CIML-TER displayed unimodal patterns in several vegetation
types (Supplementary Fig. 12). These unimodal patterns were consistent
with the advanced Macromolecular Rate Theory (MMRT) theory8,65,
which offered a more accurate description of the enzyme-mediated bio-
chemical reactions compared to traditional models like Q10, Lloyd &
Taylor and Arrhenius. Therefore, CIML-TER results can also inform and
refine temperature response functions in process models, optimizing their
predictive capabilities.

Regions with significant inter-annual variation trends identified by
CIML-TER were consistent with the conclusions of relevant research. For
instance, CIML-TER detected a relatively high increase of TER across the
subtropical EBF regions of southern China (Fig. 5), which was not detected
in similar products. This result alignedwith the increasing trend ofGPP and
tree coverage in such regions62,66. The autotrophic respiration domain the
variability of TER in the subtropical EBF regions, given the autotrophic
respiration takes a larger part of TER in such biomes57,67. Furthermore, the
atmospheric deposition supplies large amounts of nitrogen to Asian sub-
tropical forests68, which can stimulate tree growth69 but alter soil respiration
slightly or limit soil respiration70. Additionally, although all three TER
products detected the inter-annual decreases in EBF regions, their extents
differed. Fluxcom and LGS-Reco displayed widespread decreasing TER
trends across EBF regions (Supplementary Figs. 5 and 6), whereas CIML-
TER found that these decreases were mainly distributed in the Amazon
Forest. CIML-TER also demonstrated that the overall variation trend of
TER in EBF regions was increasing. Such results matched the biomass loss
patterns in Amazon linked to deforestation and subsequent degradation71,
predominantly on the southern and eastern edges.Additionally,CIML-TER
detected decreasing TER trends in parts of the Canadian boreal forest,
consistent with themore severe forest cover loss observed in that region72,73.
Finally, CIML-TER identified widespread increasing TER trends across the
global tundra, while similar products only captured this trend sporadically
(e.g., in Siberia, Supplementary Fig. 5). These findings of CIML-TER were
supported by the in situ observations in tundra74,75, attributing the increase
of TER to the Arctic amplification effect and warming soils across the pan-
Arctic region.

Limitations and prospects
Current soil data with low temporal resolution partly limits the estimation
accuracy of existing TER models. TER includes autotrophic respiration of
plants andheterotrophic respiration fromdecomposition by soil organisms.
However, the lackof soil datawithhigh spatiotemporal resolutionmakes the
model hard to capture the variation of soil properties and corresponding
effects on TER. Additionally, the soil respiration takes a relatively larger
proportion of TER in the pan-Arctic region56,57, which means the uncer-
tainties caused by this temporally stable SOC data would lead to greater
effects on TER estimation in those high-latitude ecosystems. Meanwhile, it
was demonstrated that the dynamics of soil nitrogen and moisture are
critical predicters of TER in tundra ecosystems75. Therefore, the estimation
accuracy of CIML-TER on ABCflux (only contains sites of the pan-Arctic
region) remained lower than that on FLUXNET (mainly contains sites of
the temperate region), although CIML-TER had greatly improved the TER

estimationaccuracy in thehigh latitudes ofnorthernhemisphere. In general,
complementingmore detailed soil information intoTERestimationmodels
is expected to further improve the estimation accuracy.

In addition, the flux observation data in this study still exhibit a sparse
and uneven spatial distribution, although we had integrated the FLUXNET
and ABCflux in this study. Given the flux observations are almost the only
direct way to evaluate and validate carbon flux models, researchers need to
enhance collaboration and share more flux observations with the academic
community. This effort can further fill the observation gaps of some land
cover types (especially for low-biomass regions) and increase the repre-
sentativeness of estimation models.

As for themechanismof respiration estimation, the unimodal function
based on MMRT theory is supposed to be the future direction to optimize
existing process models. Furthermore, incorporating ecosystem-scale rele-
vant variables (e.g., vegetation structure, component and phenology) into
future estimation models is also crucial. Specifically, Niu et al.8 demon-
strated that most of the TER temperature response curves (e.g., Q10,
Arrhenius and MMRT) are special cases of the van’t Hoff equation.
Moreover, their work used the Community Atmosphere Biosphere Land
Exchange (CABLE) model76 and showed that the existing process models
with strictly monotonically increasing temperature response functions
struggled to replicate the widespread thermal optimality of TER. They
suggested replacing traditional oversimplified temperature response func-
tions with MMRT to better elucidate the thermodynamic properties of
enzymes involved in respiration. We also agreed with that opinion but
found that the temperature response sensitivity differed between day and
night (Supplementary Fig. 12), and the detected optimal temperatures of
TER (Topt) were much lower than those observed in laboratories for single
components8,77. For instance, the organization-level Topt of respiration is
about 40–60 °C8,18 (e.g., leaf level). Future work should explore the cause of
theTopt gap between ecosystem and organization levels. Understanding this
gap can clarify the influencing process between ecosystem and environment
(e.g., inhibition of daytime respiration29) and the interactions among eco-
system components, ultimately aiding in the parameterization of such
ecosystem-scale effects in TER estimationmodels. In summary, researchers
need to notice that temperature is not always the dominant influencing
factor for TER estimation across the world (Fig. 7, Supplementary Fig. 7).
Other variables that provide detailed descriptions of ecosystem-scale
information (e.g., clumping index, NPV) and spatiotemporal variations
(e.g., phenology) should also be considered in future model constructions.

Conclusions
We integrated variables that detailedly describe ecosystem-scale informa-
tion and continuous spatiotemporal variations into TER estimation. Spe-
cifically, we used a causality constrained interpretable machine learning
framework (PCMCI+ , XGBoost, SHAP)and established aTERestimation
model called “CIML-TER”. Based on the CIML-TER model, we generated
high-accuracy global monthly TER estimates at a spatial resolution of 0.05°
during 2001–2020. Meanwhile, the influence of different drivers on TER
were quantitatively depicted through the SHAP tools, subsequently
revealing their diverse spatial patterns. The main conclusions of this study
are as follows:
1) CIML-TER significantly improved the estimation accuracy of TER in

the high latitudes and EBF regions, demonstrating strong general-
ization abilities on the global scale and effectively reflecting the
naturally continuous variations of TER in the transition zones of
different land cover types.

2) The global TERbudgets estimatedwithCIML-TER (excluding deserts,
water, ice and snow regions) ranged from 117 to 125 Pg C, exhibiting a
generally increasing inter-annual variation trend (0.9%·yr−1) during
2001–2020.

3) Substantial regional variability existed in the influence of different
drivers on TER. Beyond hydrothermal factors (contributing
~44.15 ± 11.1% of global TER variability), biotic factors (25.91 ± 9.8%)
and spatiotemporal variation factors (29.94 ± 7.2%) were also critical.
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Future developments of TER modules in earth system models should
incorporate these ecosystem-scale variables alongside traditional
hydrothermal factors.

Methods
Site data
In this study, site-month data from two flux observation networks
(FLUXNET 2015 and ABCflux) were used in model construction and
accuracy assessment. FLUXNET 2015 is a standardized ensemble dataset of
regional flux networks (e.g., AmeriFlux, AsiaFlux) and provides observa-
tions of 212 flux sites at different temporal resolutions (hourly, daily,
monthly, and annually). ABCflux is also a standardized ensemble dataset of
flux observations focusing on the pan-Arctic region, which provides
monthly flux data from 244 sites. Incorporating the ABCflux dataset can
greatly address the data gap of FLUXNET in regions with sparse vegetation
or high latitudes, which would help to further reduce model estimation
errors. In this study, the monthly TER flux observations (“RECO_NT_-
VUT_REF” in FLUXNET and “reco” in ABCflux) were used to support
model construction and accuracy evaluation. We conducted quality con-
trols on these flux observations based on following principles: (1) Each site-
month sample should pair with high-quality remote sensing data; (2)
samples with low-quality labels for TER were excluded (samples with
“NEE_QC” below 0.75 or with “-9999” label). Finally, we obtained a dataset
containing 20,622 site-month samples from 304 sites (see Supplementary
Table 2 and 3 for details of flux sites) during 2001 to 2020 (samples after
2015 are all from ABCflux). In addition, we converted the unit of TER in
FLUXNET from g C·m−2·day−1 to g C·m−2·month−1 through the days of
each month, guaranteeing the unit consistency between two flux datasets.

Model input data
By systematically synthesizing the previous research about TER estimation
(see Supplementary Table 4), we found that soil and air temperature,
moisture, vegetation productivity, soil type and soil organic carbon (SOC)
have all been identified as important drivers of TER5,22,78. We divided the
relevant variables into three groups (Supplementary Fig. 1) based on prior
knowledge and previous publications: (1) The first group represents
environmental conditions, including hydrothermal factors and soil prop-
erties; (2) biotic factors, the second group, contain variables describing
ecosystem-scale information of each pixel, such as leaf area index (LAI),
clumping index (CI) and non-photosynthetic vegetation cover (NPV); (3)
the third group is related to spatiotemporal variations, which describe the
differences of vegetation types and phenology across pixels.

We selected part of traditional variables according to previous studies
(see Supplementary Table 4), which included daytime and nighttime land
surface temperature79 (LST, MOD11A1 v061, daily, 1 km), leaf area index80

(LAI, MOD15A2H v061, 8-day, 500m), NIRv index81 (calculated from
MCD43A4V061, daily, 500m), land surface water index (LSWI, calculated
fromMCD43A4 V061) and SOC82 (SOC0, SOC10, SOC30, OpenLandMap,
temporally stable, 250m).Notably, previous studies commonly used EVI as
the proxy of GPP. However, we chose to use NIRv here, becauseNIRv has a
stronger correlation with GPP83 and TER (see Supplementary Fig. 14).

Nonetheless, the traditional variablesmentioned above do not provide
a comprehensive picture of the factors affecting ecosystem-scale TER,
particularly lacking variables related to ecosystemstructures (e.g., vegetation
structures) and detailed descriptions about spatiotemporal differences. It
has been known that the ratio of photosynthetic to non-photosynthetic
vegetation (the horizontal vegetation structure) can alter the rate of carbon
and nutrient uptake, latent and sensible heat exchange and surface albedo,
subsequently influencing ecosystem respiration84. Previous studies have
tried several ways to consider the seasonal dynamics information in TER or
other carbon fluxes estimation, such as the extremes or amplitudes of
vegetation index time series4,23. However, such variables reflecting the
annually mean status of each pixel cannot provide reliable information on
long-term variability. Therefore, the machine learning models, represented
by Fluxcom, exhibited poor performance in terms of inter-annual

variability16,64. For this issue, Zhu et al.44 developed a set of continuous
numerical variables that vary annually by downscaling (so called “pooling”)
the time series of vegetation index (see Supplementary Fig. 15), which can
quantitatively describe the differences of vegetation type and phenology
across pixels. This variable set is called as “seasonal characteristics of
vegetation types and growth” (SCVTG) and contain 9 numeric variables
(Vtop, Vbottom, V75, V50, V25, L75, L50, L25 and AreaNIRv), which are derived
from the smoothed upper envelope (Savitzky-Golay filtering) of VI time
series. Specifically, the Vxx (Vtop, Vbottom, V75, V50, V25) variables are the
quantiles of daily vegetation index value with a relatively special definition
and the Lxx (L75, L50, L25) variables are the spans between two dates of key
points of which value equal the quantiles mentioned above. Additionally,
the AreaNIRv variable represents the one-year accumulated value of daily
vegetation index. Compared with traditional discrete PFT labels, SCVTG
can describe the differences within regions with the same PFT labels.
Moreover, SCVTG was proven to be a viable alternative to PFT data in
machine learning-based GPP modelling, which can concurrently ensure
estimation accuracy and inter-annual variability44. Therefore, we applied the
SCVTG to describe the continuous variations of vegetation type and phe-
nology across pixels. Furthermore, we used the GFVCP dataset (8-day,
500m) derived from spectral mixture analysis85,86 to represent horizontal
vegetation components (the relatively coverage of bare soil, non-
photosynthetic vegetation and photosynthetic vegetation). In addition,
the data describing leaf distribution (clumping index data from CAS-CI, 8-
day, 500m) derived from BRDF models87,88 were concurrently integrated
into the TER estimation framework.

Finally, all the gridded data mentioned above were temporally aggre-
gated to the monthly scale through the median value of each month and
spatially resampled to 0.05°.

Other TER products
To evaluate the performance of our new TER estimation model, we
downloaded gridded TER data from Fluxcom22,23 and LGS-Reco datasets

5.
Fluxcom is an ensemble flux product that integrates estimation results from
various machine learning methods. It contains two ensemble versions, the
RS version (0.0833°, 8-day) and the RS+METEO (0.5°, daily) version. We
used theRSversion in this study, given its relativelyhigher spatial resolution.
TheFluxcomRSdatawas resampled to 0.05° via the bilinearmethod, and its
unit (g C·m−2·day−1) was converted to monthly accumulated values (g
C·m−2·month−1) through the days of each month. LGS-Reco is an ensemble
product (0.05°, daily) that integrates several pure empirical models. This
product is highly dependent on the classification maps of vegetation types,
since it specifically selected themost suitable empirical model for each pixel
based on the land cover label. It is demonstrated that LGS-Reco can reflect
the long-term trends of TER variations. In addition, we also collected the
estimates of global total TER from several process models (e.g., TRENDY,
BESS)16 to quantitatively compare the global carbon budgets of all TER
products. Notably, all gridded data were aggregated into a monthly scale.

Modelling TER
We employed the eXtreme Gradient Boosting (XGBoost) method, a tree-
based machine learning algorithm, to construct the TER estimation model
(the hyperparameters of XGBoost can refer to Supplementary Table 5). The
tree-basedmodels have beenwidely used in carbon budget-related research,
such as the random forest andmodel tree ensemblemethods21,23, whichhave
been proven to perform well in extending the site-scale experience to the
regional or global-scale applications89. XGBoost is a decision tree-based
model, but unlike traditional decision trees, XGBoost uses gradient boosting
to iteratively train decision trees, which has strong nonlinear fitting cap-
abilities and is widely used to model complex relationships between target
and environmental variables33,90. In this study, the 10-fold cross validation
method was used to train and validate CIML-TER model, concurrently
guaranteeing that the training and test sets did not share the same flux sites.
The generalization ability was assessed through a comparison experiment
on the test dataset (the integration of 10 folds’ test sets). The final estimation
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results of the CIML-TER model were the mean of all folds’ outputs (Sup-
plementary Fig. 1).Meanwhile, the training process of each fold was carried
out for 20 times to ensure the stability of final estimates (the random seed is
different in each round).

We took the feature importance derived from causal inference tech-
niques as prior references in the model training process. The causal infer-
ence methods represented by the PCMCI family (PCMCI, PCMCI+,
LPCMCI, etc.) are highly robust and can retain high performance evenwith
high-dimensional data41,91. These methods were widely used in ecological
and geographical research, such as detecting remote correlations between
climate modes or interpreting changes in surface energy flux92–94, since they
can deal with the confounding causal links between variables. Specifically, it
regulated the generation process of each decision tree during the training
process of XGBoost and made soft constraints on model structure. The
PCMCI-derived variable importance served as references of variable
weights inmodel training, which adjust the probability of each variable to be
selected as a candidate for the nodes of each decision tree. This approach
ensured that variables with stronger causal effects on TER were more likely
to be used as nodes in each decision tree of XGBoost. It alsomaintained the
ability of capturing data patterns, since the final selection of whether a
variable can be a node still depends on the gradient boosting algorithm and
the statistical metrics of information entropy. Moreover, it can also reduce
the risk of misjudging the dominant driver, since both the causal infor-
mation and XGBoost algorithm-related statistical metrics are merged in
model structure. Finally, the Causality constrained Interpretable Machine
Learning model for TER estimation in this study is abbreviated as
“CIML-TER”.

In addition, we also analysis the how the causal effect derived from
PCMCI+ modulate the model structure of XGBoost (Supplemetary
Figs. 8 and 9). Specifically, For the physical model structure, we used the
“weight”parameterofXGBoostmodel toquantify the effect of adding causal
constraints. The “weight” parameter means the number of times that a
variablewas selected as anode inXGBoost trees.Hence, it is easy to compare
the physical structures between baseline and causal XGBoost models via
their differences on each variable’s normalized “weight” parameter. In
addition, we used the SHAP tool to derive the feature importance of each
input variable, representing the causal structure of model. We then com-
pared it with the causal effects derived from PCMCI. In theory, the causal
structure of the causality guided XGBoost model should be more similar to
the causal effect derived from PCMCI+.

Model evaluation
We evaluated the model performance in terms of estimation accuracy
and spatiotemporal variation. Specifically, we conducted several accu-
racy comparison experiments based on flux observations (FLUXNET,
ABCflux) and other TER products (Fluxcom, LGS-Reco). These eva-
luations were carried out at three scales: site-month, site (i.e., the mean
aggregation of all site-month samples at each site) and PFT (PFT labels
were from flux network records). Meanwhile, the mean absolute error
(MAE), relatively mean absolute error (rMAE) and coefficient of
determination (R2) were used as accuracymetrics to quantitatively assess
model performance. MAE is a widely used accuracy metric which can
more stably reflect the overall error level of the estimation and will not
cause large fluctuations in the evaluation results due to individual
extreme outliers.

MAE ¼ 1
N

XN

i¼1

jðyi � byiÞj ð1Þ

rMAE ¼ MAE
y

ð2Þ

Where theN represent thenumber of samples, yi means theTERestimate of
sample i, ŷi means the true observed TER of sample i, and �y donates the
mean of all observation values of TER.

In addition, the 2001–2015 (the intersected period) averages of all TER
products (CIML-TER, Fluxcom and LGS- Reco) were used to qualitatively
compare the spatial pattern. Moreover, the Mann–Kendall and Theil–Sen
trend testswere applied to quantify the inter-annual variation trends of global
TER in all products. TheMann–Kendall method can judge whether the data
shows a significant trend, and the Theil–Sen trend test can provide a specific
slope value of variation trend. This non-parametric trend detectionmethods
are widely used in geosciences, such as identifying vegetation greening or
browning95. Furthermore, since the flux sites for model training and eva-
luation inprevious studies aremostly located in temperate regions, theTERof
evergreen broadleaf forest and permafrost often showed relatively higher
uncertainties. Therefore, we also compared the spatial consistency of regions
exhibiting significant TER variation trends among all three products, and
quantified their inter-annual variation trends in such key biomes (evergreen
broadleaf forest and permafrost) through area weighted statistics.

Driver analysis
The SHAP tool was used to characterize the influence of each input variable
on TER, which is based on solid game theories96 and can enhance the
interpretability of machine learning models. SHAP can ensure that the
global interpretations of model are consistent with the local explanations of
each sample. It quantitatively explains how each input variable affects the
final output. Specifically, positive SHAP-values show that a feature increases
the response variable, while negative values show that a feature serves to
decrease the response. The absolute value reflects the magnitude of the
feature’s impact on the prediction. However, the calculation of SHAP is
extremely time-consuming. Consequently, most previous studies only used
site-scale data to run the SHAP tool39 rather than the gridded data, avoiding
the computational burden. To overcome this challenge, we employed GPU
acceleration to reduce the computation time.Onaplatformequippedwith a
single RTX 4080 graphics card, computing SHAP values for each monthly
gridded data cost approximately 30minutes. This approach enables us to
quantify the contribution rates of influencing factors on TER and subse-
quently map their global spatial patterns, since the global-scale gridded
input data were used to run the calculation of SHAP. Notably, we nor-
malized the mean |SHAP| values of each pixel to evaluate the spatial dif-
ference of each variable’s contribution on TER. For each pixel, the
calculation way was based on the following:

MeanjSHAPij ¼
1
N

XN

j¼1

jSHAPi;jj ð3Þ

Total ¼
XM

i¼1

MeanjSHAPi j ð4Þ

NormalizedMeanjSHAPij ¼
MeanjSHAPi j

Total
ð5Þ

where SHAPi,j stands for the SHAP value of feature i for the jth sample;N is
the number of samples; andM is the total number of features.

Uncertainty analysis
Weevaluated twokindsofuncertainties in this study: theuncertaintyoffinal
model estimates, and the sensitivity of each input variable. Specifically, we
used the standard deviation of 10-fold models’ estimates to quantified the
uncertainty of model outputs. Given the randomness of machine learning
models, this method can provide robust results about the fluctuations in
model estimates acrossdifferent regions, and it is alsowidelyused in thefield
of carbonfluxmodelling andquantitative remote sensing24.Additionally,we
used the dependency results derived from each variable’s SHAP values to
reveal how could the different values of an input variable influence the final
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TER estimate. This SHAP-based dependency results of model input vari-
ables are also widely used in explain variables’ sensitivity and the relation-
ship between predicters and target variable39,97.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The CIML-TER data and partial supplementary information are available
on figshare (https://doi.org/10.6084/m9.figshare.27634203). These data
were derived from the following resources available in the public domain:
The CAS-CI data used in this study are available from National Earth
System Science Data Center of China (https://www.geodata.cn/
thematicView/modisCI.html). The vegetation fractional data are available
from Global Vegetation Fractional Cover Product (https://map.geo-rapp.
org/). The flux observations are downloaded fromFLUXNET2015 (https://
fluxnet.org/) and ABCflux (https://doi.org/10.3334/ORNLDAAC/1934).
The MODIS data and SOC data are download from Google earth engine.
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