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Integrating human decision-making into a
hydrological model to accurately estimate
the impacts of agricultural policies
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Agriculture is amajor contributor tonutrient pollution that drives eutrophication in aquatic ecosystems.
This study integrates hydrological modeling with farmer behavioral analysis to assess the
effectiveness of two agricultural conservation practices—cover crops and reduced nitrogen fertilizer
application—in reducing nitrate loss from fields in the Tar-Pamlico River Basin of North Carolina.
Survey responses from 279 farmers revealed widespread reluctance to adopt conservation practices,
particularly strict fertilizer reductions. A hydrological model showed that applying each practice to 25
percent of agricultural land could substantially reduce nitrate export, with cover crops showing greater
effectiveness than reduced fertilizer use. However, an integrated socio-hydrological model, which
incorporated behavioral responses from farmers, predicted much smaller reductions in nitrate loss
due to limited voluntary adoption. Specifically, nitrate reductions were overestimated by a factor of 8
for cover crops and by a factor of 25 for reduced fertilizer application when behavioral responses were
excluded. This result highlights a critical limitation of traditional modeling approaches and
underscores the importanceof integrating humandecision-making into environmental policy analysis.
By linking policy incentives with both biophysical and social responses, this study offers a more
realistic framework for designing cost-effective and impactful agricultural conservation strategies.

Eutrophication has emerged as a global issue over the last century, primarily
due to agriculture, a commonmajor non-point source of nutrient pollution
worldwide. Excessive fertilizer usage has exacerbated this problem, con-
tributing significantly to nutrient runoff into water bodies1. High nutrient
loading can lead toharmful algal blooms2, hypoxia3, and loss of biodiversity4,
undermining the health of aquatic ecosystems and affecting water quality
for recreation and wildlife5–7.

Implementing agricultural Best Management Practices (BMPs), such
as the strategic use of cover crops and the reductionof chemical nitrogen (N)
fertilization rates, offers a targeted approach to mitigating the threat of
excess nutrients inwatersheds8. Cover crops, plantedduring timeswhen the
soil might otherwise be bare, play a crucial role in improving soil structure,
enhancing water infiltration, and increasing soil organic matter content9.
This leads to reduced runoff and erosion, thereby limiting the flow of
nutrients into adjacent water bodies. Moreover, some cover crop species
capture residual nitrogen from previous crop fertilization, effectively
reducing nitrate leaching into groundwater and surface waters10. Reducing

the application rate of nitrogen fertilizers directly addresses a source of
nutrient pollution11. Together, these BMPs have the potential to contribute
significantly to reducing excessive nutrients in agriculturally dominated
watersheds, thus improving water quality and supporting the health of
aquatic ecosystems as we adapt to the impacts of climate change9,11,12.

Hydrological modeling using tools like the Soil andWater Assessment
Tool Plus (SWAT+ ) allows researchers to evaluate the nutrient loading
impacts of agricultural BMPs across various scales, aiding policymakers in
mitigating nutrient pollution and potentially improving ecosystem
health1,13–15. However, traditional hydrological modeling studies often lack
nuanced, data-driven methods for incorporating individual decision-
making into policy analysis. Put simply, hydrological model simulations
are sufficient for identifying the watershed impacts of specified land use
changes but are ill-equipped to determine which specific land use changes
will result from a given policy. This is especially relevant for agricultural
BMPs, where both historical and current policies tend to encourage
voluntary adoption rather than mandating specific practices. Integrating
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people’s perspectives—through behavioral modeling—into hydrological
modeling is essential for aligningmodel outputswith real-world conditions.
Such integration enhances the accuracy of simulations, effectively bridging
the gap between biogeochemical process modeling and socio-economic
dynamics16–22.

In response to the outlined challenges, this study will undertake a
multifaceted approach that combinesnitratemodelingwith an evaluationof
the effectiveness of cover crops and reduced nitrogen application rates in
mitigating field-edge nitrate export. Recognizing the importance of socio-
economic factors in the adoptionand success ofBMPs, this researchwill also
integrate the human dimension through a farmer behavioralmodel. Finally,
by comparing the outcomes of traditional hydrologicalmodelingwith those
informed by a farmer behavioral model, this study aims to highlight the
added value of embedding social dynamics into hydrological models. We
contribute to an increasing literature that highlights the bias of performing
policy analyses that fail to account for changes in human action23,24, but this
work is novel in several ways. It is the first of its kind to integrate farmer
behavioral modeling to a SWAT+ hydrological model, but more broadly it
also differs in the depth of integration between hydrological and behavioral
models. Similar integrative approaches should enhance the accuracy of
model predictions and provide actionable insights for policymakers, ulti-
mately contributing to more effective and sustainable watershed manage-
ment strategies.

The objectives of this study are to: (1) simulate BMPs, specifically cover
crops and reduced fertilizer application, using the SWAT+ model for the
Tar-Pamlico watershed in coastal North Carolina, and (2) compare the
impacts of different policies on the reduction of nitrate leaving agricultural
fields, which is a large driver of ecosystem health, using the SWAT+
hydrologicalmodel and a socio-hydrologicalmodel that combines SWAT+
with a farmer behavioral model. We compared the outcomes of a baseline
model with two different policies related to cover crops and reduced ferti-
lizer application using both hydrological and socio-hydrological modeling
approaches (Table 1).

Results and discussion
To build a farmer behavioral model, we estimated amixed logit model on a
data set of farmer survey responses to a discrete choice experiment (more
details in Materials and Methods and Supplementary Information). Mixed
logit models allow for preference heterogeneity on unobservable factors,
allowing for a rich diversity of preferences for conservation contracts in a
farmer population25. The model highlighted significant factors influencing
farmers’ choices regarding conservation contracts (Fig. 1C and Table S1).
The payment variable indicated that higher payments on average sig-
nificantly increase the likelihood of farmers accepting conservation con-
tracts (P < 0.001), underscoring the importance of financial incentives.
Figure 1C presents standardized coefficient estimates, which are derived by
multiplying themodel coefficient by the standarddeviationof the variable in
question. A full set of coefficient estimates is presented in Supplementary
Information.

We also observed a general hesitancy of farmers to agree to con-
servation contracts through a positive value in the alternative-specific
constant (ASC) for the status-quo of no conservation contract (P = 0.003).
As expected, the inclusion of each agricultural BMP had a negative impact
on farmer desire for the contract, though only strict nitrogen application
limits were statistically significant (P = 0.014). Model results revealed

significant preference heterogeneity among farmers represented by large
and significant standard deviation estimates of preference parameters for
theASC (P = 0.005) and for cover crops (P = 0.028). Results showed that the
source of funding (state/federal agencies vs. private conservation groups)
did not affect farmer willingness to agree to the contract.

Policy Simulations
To estimate the impact of conservation policies in our study area, we ran
several SWAT+ simulations (Table 1 and Fig. 2). Our first, denoted Sce-
nario 1, represents a baseline simulation for the current land use in the
watershed. To establish this baseline, we used the annual average total
nitrate loss fromHydrological Response Units (HRUs)-scale for the period
of January 2003 to December 2019. Scenarios 2 and 3 represent the use of
our hydrological model to simulate the effects of a 30% reduction in
N-application and the use of winter wheat cover crop, respectively. Agri-
cultural land represents 212HRUsor 5,050 km2 in ourmodel. For Scenarios
2 and 3 the 25% of agricultural land in the watershed that would yield the
greatest NO3-N reductions from implementing the simulated BMP were
identified (Supplementary Information). The scenarios then assumed that
the specific BMP is applied to all land in these targeted HRUs. When
performing a benefit-cost analysis of this policy action, we assumed that
farmers are compensated for the BMP adoption at current cost share rates
from the USDA’s Environmental Quality Incentives Program (EQIP).

While both scenarios led to landmanagement changes on 1,260 km²of
agricultural land, annual average nitrate loss from all agricultural HRUs in
Scenarios 2 and 3 were 1.03 × 107 and 9.74 × 106 kg NO3- -N, respectively
(Table 2). Compared with annual average nitrate loss of 1.13 × 107 kg NO3

-

-N in the Baseline scenario, these represent significant decreases of
1.05 × 106 and 1.60 × 106 kg NO3

- -N, using the Wilcoxon signed-rank test
(Wilcoxon statistic = 0.0, p-value = 2.40e-09 for Scenario 2-Baseline com-
parison and Wilcoxon statistic = 0.0, p = 3.57e-08 for Scenario 3-Baseline
comparison)26. The superior performance of the winter wheat cover crop in
reducing nitrate loss is likely due to its ability to capture residual nitrogen27,
which SWAT+ simulates through plant uptake and other nitrogen cycle
processes. In comparison, reducing fertilizer application (Scenario 2), while
effective overall, might not be as effective as the use of winter wheat cover
crops in preventing nitrate leaching.

In contrast to the hydrological model simulations, Scenarios 4 and 5
used a socio-hydrological model. As in Scenarios 2 and 3, the socio-
hydrological models identified the same 25% of agricultural land that
resulted in the greatest nitrate export reductions from the target BMP.
Rather than assuming growers will apply BMPs to all agricultural lands, the
socio-hydrological model uses simulations based on our farmer behavioral
model to predict theproportion of farmerswhowould agree to conservation
contracts at the given compensation rate provided by EQIP in the targeted
HRUs (Materials and Methods and Supplementary Information). These
simulations revealed low enrollment (3.75% of farmers) for strict nitrogen
restrictions, indicating reluctance towards committing to reducing fertilizer
application. In contrast, cover crop adoption showed higher willingness
(26.2%of farmers inour simulation), though the actual newacreage increase
was more modest (14.5% of acreage), since about half of these farmers had
already used cover crops on the samefields in the previous year, as indicated
by their prior survey responses. Understanding these behavioral insights is
crucial for designing effective environmental policies and simulating rea-
listic agricultural management scenarios.

Table. 1 | Policy scenarios for hydrological and socio-hydrological modeling

Policy Scenario Type of model Description

Scenario 1 Hydrological Model Baseline

Scenario 2 Hydrological Model 30% reduced N fertilizer application in 25% of the total agricultural area

Scenario 3 Hydrological Model Cover crops implemented on 25% of the total agricultural land

Scenario 4 Socio-Hydrological Model 30% reduced N fertilizer application to areas based on the farmers’ behavior model.

Scenario 5 Socio-Hydrological Model Cover crops implemented in areas based on the farmers’ behavior model.
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Scenario 4 (reduced N fertilization) led to management changes on
only 50 km²of agricultural land and resulted in an annual average reduction
of 42,000 kgNO3-N relative to the Baseline scenario.While Scenarios 2 and
4 evaluated the same basic policy, the hydrological model predicts that the
policy will reduce agricultural nitrate export by 9.27% while the socio-
hydrologicalmodelfinds only a 0.37% reduction.While less extreme,model
results revealed a similar trend with cover crops. Scenario 5 results in the
conversion of 180 km² and a nitrate reduction of 187,000 kg NO3

- -N. As
with reduced N application, the socio-hydrological model predicts a much
smaller cover crop impact of 1.65%nitrate reduction compared to the 14.1%
reduction in the hydrological model.

We summarize the effectiveness and financial implications of each
policy in Fig. 1B, which illustrates the impact of various policy scenarios on
the total budget spent and the change in annual average nitrate export per
area across all HRUs where the BMPs were implemented. Scenario 2
resulted in a cost of $15.5 million and total benefits equal to $21.9 million
using an estimated benefit of $20.90 per kg of nitrate from Ribaudo et al.28,
which translates to a predicted benefit-cost ratio of 1.41. Scenario 3 was
estimated to cost $23.3 million, which was a higher price driven by the
higher EQIP compensation rate for adopting cover crops. Coincidentally,
the higher per-acre nitrate reduction from this policy resulted in a nearly
identical benefit-cost ratio, of 1.44. Likewise, the socio-hydrological model
did not substantially alter the benefit-cost ratios (ranging from 1.12 to 1.57),
suggesting that failing to account for farmer preferences is less likely to lead
to misperceptions in the efficiency of a policy and more likely to produce
erroneous expectations in the scale of the change. This is in part, however,
due to our similar targeting approach across models. Since all scenarios
target only the top 25% of agricultural HRUs based on BMP effectiveness,
they are in effect holding the efficiency of the policies relatively constant
across hydrological and socio-hydrological models. model. By contrast, a
model that held the scope of adoption constant would yield a reduced
estimate of the policy’s effectiveness in the socio-hydrological model. In
contrast to the $50 compensation per acre for reducedN application ad $75
compensation per acre for cover crops, our farmer behavioral model indi-
cates that achieving adoption rates in Scenarios 4 and 5 that match the
hydrologicalmodel adoption rates would require per acre payments of $339
and $264, respectively. Such payments would reduce the benefit-cost ratios
to 0.32 and 0.27 for reduced N application and cover crop policies,
respectively (see SI Section 8 for a discussion of survey and policy scenario
limitations).

Conclusion
This study develops a socio-hydrological model by integrating hydro-
logical modeling (engineering framework) with farmers’ behavioral
responses (econometric framework) to manage nutrient loading in
coastal watersheds, offering important policy insights. In the Tar-
Pamlico watershed, the SWAT+ model effectively simulated nitrate loss
from agricultural fields, demonstrating that a 30% reduction in fertilizer
application and the use of a winter wheat cover crop significantly reduced
nitrate export. The study developed a farmer behavioral model, revealing
a general reluctance to adopt BMPs, with financial incentives as a crucial
determinant. The socio-hydrological models, which account for farmer
preferences, highlighted the overestimation of nitrate reductions (by
factors of 8 for cover crops and 25 for reduced fertilizer applications,
respectively) with the traditional hydrological modeling approach.
Through this novel engineering-economics integrated framework, we
underscore the importance of flexible, targeted policies for optimizing
BMP adoption and cost efficiency. This study emphasizes the need for
socio-economic integration in environmental modeling to develop more
effective and sustainable watershed management strategies in the face of
ongoing climate change.

The Tar-Pamlico basin, characterized by extensive agricultural activity
and diverse land uses, provides a complex environment for implementing
nitrate reduction policies. The varying results observed across scenarios can
be attributed to the inherent differences in traditional hydrological and
socio-hydrological models. It is noteworthy that the conclusions of this
integrative work amount to a retelling of an old story in a novel way. This
result shares the same theme ofmany other integrative research, specifically
that models built on only natural or human dimensions will be biased.
However, previous work often highlights how policy simulations erro-
neously assume status-quo behavior and ignore dynamic and nonlinear
changes in behavior in response to policy changes. This current work
highlights how standard policy simulations in hydrological modeling
unrealistically ignore status quo behavior by presuming that a policy can
achieve large land use changes when, under current conditions, farmers are
not making those changes.

Fig. 1 | Socio-hydrological modeling and key results. A Elevation map of the Tar-
Pamlico watershed used in the hydrological model, B budget and nitrate reduction
comparison from the hydrological and socio-hydrological model, C adjusted coef-
ficients from the mixed logit model (ASC Alternative Specific Constant).
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Overall, these findings underscore the importance of integrating socio-
hydrological models into policy design, as they offer a more nuanced
understandingof the interactions betweenhuman andnatural systems.This
approach is especially valuable in agri-environmental policy, where his-
torical strategies have tended to avoid mandates and regulations in favor of
voluntary incentive programs—programs that farmers can choose to adopt
or reject at their owndiscretion.Understanding the preferences, constraints,
and incentives that influence farmers’ decisions to adopt conservation
practices is vital for designing effective environmental policies. These
behavioral insights serve as foundational components for simulating poli-
cies within hydrological models, ensuring that such models reflect realistic
agricultural management scenarios.

Materials and methods
Study Area
Weapplied the socio-hydrologicalmodeling framework to the Tar-Pamlico
watershed (Fig. 1A and Supplementary Information), a coastal watershed in
eastern North Carolina covering 16,576 km2 and with a population of
470,000. This watershed, characterized by its diverse land use, including
agriculture (27.9%), forests (33.9%), and wetlands (31.9%), supports a
variety of crops with soybeans (40%), corn (19%), and cotton (19%) the
predominate agricultural crops. The Tar-Pamlico watershed plays a sig-
nificant role in nutrient discharges to the Pamlico estuary, an area currently
facing challenges with algae blooms attributed to excessive nitrate levels29–34.

Hydrological model (engineering framework)
SWAT+ provides comprehensive modeling of watershed and sub-
watershed dynamics, serving as a critical tool for decision-making in
water resource management, agricultural planning, and environmental
conservation. It offers insights into the effects of landmanagement practices
on water quality and agricultural productivity by simulating complex
environmental processes. SWAT+ uses a semi-distributed hydrological
framework and enhanced spatial flexibility, allowing detailed analyses of
plant yield, denitrification rates, and nitrate loss in groundwater, surface
water, and lateral flows. This capability supports policy development and
planning, enabling evaluations of the impacts of land use changes on eco-
system health35.

In this study, we employed the SWAT+ model developed by Tapas
et al.1, whichwas specifically optimized to simulatemonthlyflowandnitrate
loads in the Tar-Pamlico River basin. The simulation period extended from
January 2001 through December 2019, including a two-year warm-up. The
model was then calibrated from January 2003 through December 2011 and
validated from January 2012 throughDecember 2019 formonthly flow and
nitrate loads atWashington,NC. In addition,we cross-validated themodel’s
performance formonthlyflowatGreenville andTarboro,NC(January 2003
through December 2019). Tapas et al.1 employed a soft calibration
procedure36 for key variables—including plant yield, denitrification, and
nitrate export—at the HRU scale, thereby establishing an ideal platform for
implementing and assessing various agricultural BMPsand their impacts on

Fig. 2 | Methodological framework for incorporating the SWAT+ model and econometric model (farmer behavioral model) in assessing agricultural nitrate loss.
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nutrient loss from agricultural fields. Further details regarding the SWAT+
model1 can be found in Supplementary Information.

BMP Simulation
We simulated two commonly used BMPs in watershed modeling (Fig. 2):
cover crops and reduced fertilizer application rates37,38. Winter wheat was
the cover crop, which is commonly used in the Tar-Pamlico Basin39. We
simulated planting of the cover crop 14 days after harvesting the main
summer cash crop. The cover crop was terminated prior to planting the
summer crop the following spring.We applied a 30% reduction in nitrogen
fertilizer use to simulate policies related to nitrogen application restrictions.

Farmers’ behavioral model (econometrics framework)
Weconducteda survey (Supplementary Information) among farmers in the
Tar-Pamlico River basin and other coastal areas in eastern North Carolina
to gauge farmers’ interest in voluntary conservation programs. By incor-
porating scenarios that reflect aspects of existing and hypothetical agri-
cultural working land support programs (i.e., Environmental Quality
Incentives Program, or EQIP), the survey sought to capture farmers’ per-
spectives on and likely response to potential policies and economic incen-
tives. The survey asked farmers about their specific farming practices,
environmental concerns, and the potential impact of policy changes on
these practices (more details in Supplementary Information). The survey
incorporated a choice experiment to gauge farmers’ preferences for various
hypothetical voluntary conservation contracts aimed at reducing nutrient
export (Supplementary Information). The response rate was 16%, and we
received in total 76 responses providing enough data to include them in the
construction of the farmer behavioral model. Our farmer behavioral model
is built on a Random Utility Maximization (RUM) framework and farmer
preferences for conservation contracts were modeled using a mixed logit
model (Supplementary Information).To counteracthypothetical bias inour
survey responses, we used a certainty recoding approach40–42.

Estimation of farmer willingness to accept (WTA)
Using the results of our mixed logit model, we simulated farmer-specific
preference parameters for the respondents (Supplementary Information).
For each set of preference parameters, we used Hanemann’s compensating
variation formula42 to estimate WTA for a specific conservation contract.
TheWTArepresents theminimumamount a farmerwould accept to adopt
the contract and is derived from estimated utility differences between the
contract, status-quo of no contract, and the estimated marginal utility of
income (Supplementary Information).

Simulation of Agri-environmental Policy (Socio-hydrological
model integration)
Integrating the SWAT+ and farmer behavioral models is a crucial step
toward achieving a comprehensive understanding of watershed dynamics
and agricultural decision-making processes43. By combining the insights
gained from the farmer behavioral model (econometric framework) with
the SWAT+hydrologicalmodel (engineering framework),wedevelopedan
integrated framework (Fig. 2) that bridges the gap between policy inter-
ventions and on-the-ground agricultural practices44. By analyzing farmers’
willingness to adopt the target practices based on the incentives offered
using current standardEQIPcost share rates,we estimated the extent of land
conversion for cover crops and reduced fertilizer application. This inte-
gration allowed us to assess the effectiveness of incentive programs in
promoting sustainable agricultural practices and inform policymaking for
environmental conservation45.

Table 1 outlines five distinct scenarios simulated in this study. Scenario
1 serves as the baseline, involvingno implementation of additional BMPs. In
addition to Scenario 1, we conducted a trial run by separately implementing
the twoBMPs on all HRUs to identify the top-performingHRUs, defined as
an HRU that experienced the largest estimated difference in nitrate loss
between Scenario 1 and our run with the target BMP applied to all HRUs.
Using the findings from these trials, we identified the HRUs where theT
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practice wasmost effective, representing the top 25% of agricultural acreage
in the watershed in terms of nitrate reduction, for each BMP. From an
engineering perspective, theseHRUs are considered themost ideal areas for
BMP implementation to minimize the watershed’s nitrate export46. Sce-
narios 2 and 3 explored the impacts of a 30% reduction in N-fertilizer
application rates and the use of cover crops, respectively, on the target 25%
of agricultural land. These scenarios provided conservation contracts at
current EQIP rates ($50 per acre for nutrient application reduction, $75 per
acre for cover crops) and simulated perfect adoption and land use change
within the targeted HRUs.

Scenarios 4 and 5 also examined the effects of reduced N-fertilizer
application and cover crops, respectively, but these were based on a socio-
hydrologicalmodel that incorporates the farmer behaviormodel. Parameter
estimates from the farmer behavioral model generated farmer-specific
WTA estimates for the target conservation contracts. In the simulation of
farmer acceptance of these contracts, we assumed that any farmer whose
estimated WTA is at or below the offered per-acre compensation of the
contract will prefer the offered contract to the status quo and accept the new
contract. Any farmerwhose estimatedWTAexceeds the offered payment in
the contract prefers the status quo andwill not accept the newcontract. This
approach allowedus topredict theproportionof farmerswhowill accept the
conservation contracts offered and, consequently, what percentage of tar-
geted HRUs will be converted. As with Scenarios 2 and 3, the policy is
targeted at only the most productive quarter of HRUs, so all HRUs that are
not targeted will not be converted to the BMP in question.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available in the Supplemen-
tary Information and through publicly accessible databases, with specific
datasets accessible via the US Geological Survey (USGS), National Land
CoverDatabase (NLCD), and Soil SurveyGeographicDatabase (SSURGO).
Links and details are provided in the Supplementary Information.
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