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Humanmobility amplifies compound flood
risks in coastal urban areas under
climate change
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Zhi-Yong Long 1 & Huan-Feng Duan 1,2,3

Coastal cities face increasing compound flood risks from human mobility patterns under climate
change. In this study, we integrated dynamic population distribution models with numerical
hydrodynamic modelling to examine mobility effects on flood risk in Hong Kong’s Kowloon area. We
simulated flooding across 75 scenarios withmatching rainfall and storm surge return periods (50, 100,
200 years) under current conditions and climate projections for 2060 and 2100 under intermediate and
very high emission pathways. We found human mobility causes notable temporal shifts in risk
distribution, with commercial areas experiencing higher daytime risk while residential areas face
increased nighttime risk. Flood risk decreases with distance from coastlines, showing distinct
variations between weekdays and weekends. The Night-Day Risk Ratio reveals weekday differentials
ranging from 18.7% to 20.6% with minimal weekend variations, intensifying under future climate
projections. These insights inform urban planning and flood management in coastal cities.

Global environmental risk patterns are undergoing profound changes,
primarily driven by climate change and rapid urbanization. This transfor-
mation is particularly evident in coastal cities, as these areas are at the
forefront of these challenges. The Intergovernmental Panel on Climate
Change (IPCC) projects that under a high-emission scenario (RCP8.5),
global mean sea levels could rise by 0.43-0.84 meters by 21001. Meanwhile,
the United Nations (UN) predicts that 68% of the world population will
reside inurban areas by 2050,up from55% in2018,withmost of this growth
concentrated in coastal regions2. As sea levels continue to rise and coastal
populations steadily grow, these areas face an increasingly complex chal-
lenge in the formof compoundflooding. This phenomenon,wheremultiple
flood drivers occur simultaneously or in close succession, has emerged as a
critical issue3,4. Recent studies indicate that the probability of compound
flooding events is increasing globally5,6. For instance, Emanuele Bevacqua
et al. 7 found that under a high-emission scenario, compound flooding from
storm surges and rainfall will increase bymore than 25%globally by the end
of this century7,8. Furthermore, the impact of compound flooding will be
amplified by rising sea levels9,10, with ~1 in 50 people in 32 major coastal
cities in the United States affected by flooding11.

Given these escalating flood risks in coastal urban areas, it is crucial to
accurately assess and manage these risks through appropriate methodolo-
gical frameworks. Traditionally, flood risk assessment has relied on the
frameworkofRisk = Exposure × Vulnerability ×Hazard12–14. This approach

has played a crucial role in identifying high-risk areas and developing flood
management strategies. However, it fails to account for the dynamic nature
of exposure. While exposure typically depends on population distribution
scenarios15, urban population distribution is not static, particularly in terms
of its diurnal movement patterns. Population mobility within urban areas
creates a fluid risk landscape that varies both spatially and temporally.
Recent studies using various data sources have revealed substantial daily
fluctuations in urban population distribution. For example, in Tokyo, the
central district’s daytime population increases more than sixfold compared
to nighttime16. Similarly, in New York City, Manhattan’s daytime popula-
tion increases by nearly 60% due to commuters17. Residential areas may
becomemore vulnerable at nightwhenpeople returnhome.These temporal
variations in population density, driven by humanmobility, have profound
implications for flood risk assessment. The concentration of people in dif-
ferent areas at different times of day considerably alters the exposure
component of the risk equation, ultimately affecting risk assessment. Given
these notable temporal variations in population distribution, researchers
have increasingly sought more sophisticated methods to capture dynamic
exposure patterns. In recent years, there has been growing recognition of the
importance of incorporating population dynamics into disaster risk
assessments. Most studies have utilized mobile phone signalling data to
analyse the impact of human mobility on flood risk assessment, effectively
capturing dynamic population distribution18,19. However, while mobile
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phone data provides new research perspectives for population dynamics
analysis, its limitations in nighttime data collection make it difficult to
achieve round-the-clock dynamic risk assessment. This is particularly
problematic when evaluating nighttime population exposure, potentially
leading to major biases in risk assessment results20,21.

To overcome these methodological limitations and address the growing
challenges of climate change, a more integrated approach to population
dynamics and flood risk assessment is needed. On the other hand, in the
context of climate change, coastal cities face escalating risks, particularly from
compound flooding caused by the combination of sea-level rise and extreme
weather events22–24. Especially in densely populated coastal cities, there exists a
complex spatiotemporal relationship between populationmobility (driven by
daily commuting and commercial activities) and flood risk25,26, which makes
accurate understanding of dynamic population distribution increasingly cri-
tical.However, these interactionmechanisms remain insufficiently studied.To
address this critical research gap and better understand these complex inter-
actions, it is essential to develop high-resolution spatiotemporal population
modelling methods based on multi-source data fusion. To this end, by inte-
grating travel surveys, census data, landuse data, andBaiduheatmaps,we can
construct more accurate round-the-clock dynamic population distribution
models. This methodological innovation will overcome the limitations of
single data sources while providing more reliable decision support for asses-
sing compound flood risks under climate change. Furthermore, this approach
will fill the theoretical gap in understanding the interaction mechanisms
between population dynamics and compound flood risks in coastal cities.
These improvements will ultimately provide important scientific basis for
urban disaster prevention and mitigation planning in the context of climate
change, with practical applications in emergency response, urban planning,
and risk management.

In this study, we investigate the complex relationship between human
mobility and compound flood risks under sea-level rise scenarios, using the
Kowloon area of Hong Kong as a case study. By integrating dynamic
population distribution models with coupled hydrodynamic modelling
(LISFLOOD-SWMM), we simulate compound flooding events across
various return periods and sea-level rise scenarios. Our research develops a
comprehensive framework to analyse how population mobility patterns
interact withflood risks across different temporal scales (weekday/weekend,
day/night) and spatial dimensions. Through systematic assessment of land
use patterns and dynamic population distribution, we aim to provide more
nuanced insights into the spatiotemporal variations of flood risks in coastal
urban areas. The findings from this study not only contribute to the theo-
retical understanding of human mobility-flood risk interactions but also
offer practical guidance for adaptive urban planning andfloodmanagement

strategies. This research aligns with the United Nations Sustainable
Development Goals 11 (Sustainable Cities and Communities) and 13
(Climate Action)27, addressing the urgent need for climate-resilient urban
development in coastal regions facing the dual challenges of sea-level rise
and increasing urbanization.

Results
Dynamic flood risk assessment
To address the limitation in integrating human mobility in assessing
compound flood risks under climate change, our study develops a com-
prehensive dynamic risk assessment framework that utilizes three key
components: exposure, vulnerability, and hazard. We conducted the
assessment across 75 scenarios combining different flood drivers (Supple-
mentary Table 3), focusing on theKowloon area ofHongKong as our study
site.This comprehensive framework enables us to quantify compoundflood
risk by integrating spatial and temporal dimensions across multiple sce-
narios. Beginning with exposure assessment, we analysed population dis-
tribution patterns to capture the dynamic nature of human mobility across
different time periods. The exposure assessment results are visualized in
Fig. 1, which shows distinct patterns between weekday nighttime (a),
weekday daytime (b), weekend nighttime (c), and weekend daytime (d)
population distributions. These maps demonstrate how population expo-
sure varies markedly across different temporal periods, reflecting the
dynamic nature of urban activities.

Vulnerability is assessed through multiple socioeconomic factors, as
shown inFig. 2a–h, including age distribution, education levels, income status,
and other demographic characteristics that influence the susceptibility of a
population to flood impacts. The comprehensive vulnerability index (Fig. 2i)
helps identify particularly sensitive areaswithin the study area.Vulnerability is
assessed through multiple socioeconomic factors, as shown in Fig. 2a–h,
including age distribution, education levels, income status, and other demo-
graphic characteristics that influence the susceptibility of populations to flood
impacts. Each factor contributes differently to the overall sensitivity of
populations to flooding effects. The comprehensive vulnerability index
(Fig. 2i), created through standardization of all variables, synthesizes these
socioeconomic factors to reveal substantial spatial heterogeneity across the
study area. From the perspective of distance from the coastline, coastal areas
near the ocean exhibit medium vulnerability levels (0.5–0.7), while some
coastal communities show lower vulnerability indices (0.3–0.5). In contrast,
inland core urban districts display the highest vulnerability (0.8–1.0). This
distribution pattern emphasizes the need to develop differentiated flood risk
management strategies for different regions, highlighting the necessity of
targeted approaches to flood risk management.

Fig. 1 | Spatial distribution of flood exposure
index across different temporal periods. aweekday
nighttime. bweekday daytime. cweekend nighttime.
d weekend daytime. Color scale ranges from 0 (low)
to 1 (high exposure).
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Results of the compound flood hazard assessment revealed distinct
spatial patterns across the study area (Fig. 3). The LISFLOOD-SWMM cou-
pled model simulations produced maximum flood depths across the entire
study domain (Fig. 3a), with values ranging from 0.05m to over 1.0m.
Detailed analysis of flood depths around buildings (Fig. 3b) indicated that
structures could be at risk even without direct inundation, as flooding of
surrounding streets was considered in the vulnerability assessment. The
standardized hazard index, derived through normalization of flood depths
using Eq. (6), exhibited values between 0 and 1, with higher values (shown in
red) concentrated in the eastern portion of the study area (Fig. 3e). This spatial
distributionofhazard indices incorporatesbothdirect inundation impacts and
the vulnerability of buildings due to flooded surrounding streets.

Our analysis of flood risk distribution under extreme conditions (200-
year returnperiod for rainfall and storm surge under theVery high SSP5-8.5
climate scenario for 2100) reveals substantial temporal and land use-specific
variations in risk patterns across the study area. Figure 4 illustrates the
spatial distribution of flood risk during different time periods for both

weekends (a–c) and weekdays (d–f). A clear temporal variation in risk is
evident, with distinct patterns emerging between daytime and nighttime
periods, as well as between weekends and weekdays. Onweekends (Fig. 4c),
we observe that daytime risk generally exceeds nighttime risk acrossmost of
the study area, as indicated by the predominantly positive risk index dif-
ferences. This pattern suggests a higher concentration of people in flood-
prone areas during weekend days, possibly due to increased recreational
activities or different leisure patterns. In contrast, weekdays exhibit a more
complex pattern (Fig. 4f). While some areas still show higher daytime risk,
there is a notable increase in regionswhere nighttime risk surpasses daytime
risk, particularly in residential areas. This shift likely reflects the movement
of people from commercial and industrial areas to residential areas during
nighttime hours on workdays.

Land use-specific variations in flood risk
To characterise the spatiotemporal distribution of flood risk indices across
specific category of land, we analyse the interaction between land use and

Fig. 2 | Spatial distribution of social vulnerability indicators and composite
vulnerability index across the study region. a–h are the proportions of different
populations. a Age below 15. b Low education. c female. d High mortgage,

with household with mortgage greater than HK $10,000. e Age above 65. f ethnic
minorities. g Low-income family (income less than HK $10,000). h Low-income
population (income below HK $10,000). i Vulnerability index.

Fig. 3 | Flood hazard maps based on the historical flood event of September 7–8,
2023 in Hong Kong. a Simulated maximum flood depth, b Enlarged view of
maximum flood depth in red box area from (a). c Maximum flood depth around

building. d Enlarged view of maximum flood depth around building in red box area
from (c). e Hazard index map with scale from 0 to 1.
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flood risk by using the chord diagram, the result reveals distinctive temporal
patterns in urban flood risk distribution across different land use types,
characterized by three key findings (Fig. 5). First, we observe dynamic shifts
in risk patterns between residential and commercial areas, driven by daily
population movements. This transfer manifests most prominently in the
20% swing in residential risk (ranging from 15% to 35%) that is inversely
matched by commercial area risk patterns (11% to 29%). This finding
suggests that flood vulnerability follows populationmovements rather than
being fixed to specific land use types. Second, our analysis reveals distinct
temporal signatures in flood risk distribution that correspond to societal
rhythms. Weekend-weekday variations demonstrate how urban flood
vulnerability is fundamentally linked to weekly social patterns, with resi-
dential areas showing peak risk during weekend early mornings (35%) and
commercial areas during weekday afternoons (29%). This pattern

underscores howflood risk is inherently tied to humanbehavioural patterns
rather than just physical infrastructure characteristics. Third, we find that
while some land use types (particularly residential and commercial) show
high temporal variability inflood risk, others, such as infrastructure (roads),
maintain relatively stable risk levels (24–28%). This stability-variability
contrast suggests that certain urban elements serve as consistent risk factors
while others act as dynamic risk receptors that vary with human presence.
These findings, based on modelling under a 200-year return period for
rainfall and storm surge under the very high SSP5-8.5 climate scenario for
2100, demonstrate that effective urban flood risk management must con-
sider not just the spatial distribution of vulnerability but also its temporal
dynamics. The results challenge conventional static flood risk assessments
and suggest theneed for time-sensitive adaptation strategies that account for
the dynamic nature of urban vulnerability.

Fig. 4 | Flood risk distribution and differences across time periods (200-year
return period for rainfall and storm surge, very high SSP5-8.5 scenario, 2100).
aWeekend daytime risk index. b Weekend nighttime risk index. cWeekend risk

index difference. d Weekday daytime risk index. e Weekday nighttime risk index.
f Weekday risk index difference.

Fig. 5 | A chord diagram illustrating the spatiotemporal distribution of risk indices across different land use categories (200-year return period for rainfall and storm
surge, very high SSP5-8.5 scenario, 2100). The visualization demonstrates the temporal variations in risk contribution rates among distinct land use classifications.
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Spatial and temporal variations in flood risk
To determinewhether flood risk varies over time at different distances from
coastlines, we analyse cumulative risk index for both weekdays and week-
ends across all scenarios (Fig. 6a). The risk index demonstrates an overall
declining trend as distance from the coastline increases, approaching zero at
~3000m inland. By calculating the difference between weekend and
weekday average risk indices at various distances (inset in Fig. 6a), we
identified a critical threshold at 680m. Within 0–680m, the difference
fluctuates between positive and negative values, indicating inconsistent
temporal patterns. Beyond 680m, weekend risk consistently exceeds
weekday risk, suggesting distinct population dynamics influence flood risk
differently basedondistance fromcoastline. Figure 6b illustrates risk indices
for different flooding scenarios (rainfall only, storm surge only, and com-
pound flooding) versus distance from coastline. For storm surge only sce-
narios, risk indices decrease rapidly with distance, becoming minimal
beyond 1000m. Notably, compound flooding risk substantially exceeds
rainfall-only risk between~500–1200m from the coastline. This heightened
risk in the compound scenario can be attributed to storm surge reducing
drainage system efficiency, thereby exacerbating inland flooding during
heavy rainfall events.

The violin plot in Fig. 6c provides a quantitative analysis of how dif-
ferent land use types are distributed in relation to coastline proximity.
Commercial and industrial areas demonstrate a concentrated distribution
with a lower median distance from the coastline, while residential and hotel
areas show amore dispersed pattern extending further inland. Recreational
areas occupy an intermediate position, and roads display the most uniform
distribution across all distances. Examining the spatial distribution of these
land use types across the study area (Fig. 6d) provides contextual under-
standing of this pattern. The map reveals that commercial and industrial
zones are predominantly clustered near the harbor and coastal areas, while
residential areas are more widely distributed throughout the region, often

behind the commercial buffer. This spatial arrangement likely contributes to
the observed temporal risk patterns, as population distribution shifts
between these areas on weekdays versus weekends. The proximity of
commercial and industrial infrastructure to coastlines has important
implications for flood risk management, suggesting that critical economic
assetsmay face greater exposure to coastal flooding events, while residential
risk patterns are more influenced by inland compound flooding
mechanisms.

Night-day risk ratio
Toquantify howflood risk varies dependingon the timeafloodevent occurs
and to assess the impact of SLR on these variations, we introduced ametric:
theNight-DayRiskRatio (NDRR). TheNDRR, calculated as Eq. 1, provides
a standardizedmeasure of this day-night risk differential. A positive NDRR
indicates higher risk for nighttime flood events, while a negative value
suggests higher risk for daytime flood events. This ratio provides a measure
of the relative difference betweennighttime anddaytimeflood risks, offering
insights into how population distribution at different times influences the
potential impact of flood events.

NDRR ¼ ð�Rn � �RdÞ=�Rd ð1Þ

where:NDRR is theNight-DayRiskRatio, �Rn is the average of the risk index
during the nighttime, �Rd is the average of the risk index during the daytime.

Figure 7a illustrates the dynamic nature of flood risk under the 200-
year return period for rainfall and storm surge (very high SSP5-8.5 scenario,
2100). The graph reveals distinctly different patterns between weekday and
weekend flood events. For weekday flooding (gray line), we observe sig-
nificantly higher riskwhen events occur at night. The average nighttime risk
index (�Rn = 5554) exceeds the average daytime risk index (�Rd = 4649) by
19.5%, as calculated by the NDRR. This pattern likely reflects the

Fig. 6 | Coastal distance-based flood risk assessment and land use distribution
analysis in the study area. a Relationship between risk index and distance from the
coastline for weekdays and weekends, with inset showing the average risk index

difference. bRisk indices for rainfall only, storm surge only, and compound flooding
scenarios versus distance from coastline. c Violin plot showing the distribution of
distances from the coastline for different land use types. d Land use in the study area.
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concentration of population in residential areas during weekday nights. In
contrast, weekend flooding events (purple line) show much smaller varia-
tions, with nighttime typically presenting only about 1.4% higher risk than
daytime, which can be attributed to different population mobility patterns
during weekends.

Our analysis across multiple scenarios, as shown in Fig. 7b, reveals the
complex relationship between climate change, flood timing, and societal
impacts. These scenarios encompass various combinations of rainfall (R)
and storm surge (S) return periods under different climate change projec-
tions. The results demonstrate notable differences in NDRR for compound
flooding events across scenarios.Under scenarioswith the same storm surge
return period, NDRR tends to decrease as rainfall return period increases,
suggesting nighttime flood events may become relatively more severe than
daytime events. Under climate change scenarios, NDRR significantly
increases for 2100 projections. Weekend NDRRs remain consistently low
across all scenarios (all below2%),whileweekdayNDRRs range from18.7%
to 20.6%. These observed trends highlight the complex interplay between
population dynamics and compound flooding events, indicating that future
flood risk assessments and adaptation strategies should carefully consider
these temporal variations, particularly the potentially increased vulner-
ability during weekday nights under climate change scenarios.

Discussion
Our study on the impact of human mobility on flood risk in coastal urban
areas under climate change scenarios reveals several key insights that have
important implications forflood riskmanagement andurbanplanning.The
integration of dynamic population data with hydrodynamic modelling
provides a more nuanced understanding of flood risk that challenges

traditional static risk assessment approaches. The observed spatial varia-
tions show that flood risk gradually decreases with distance from the
coastline (Fig. 6a), highlighting the high vulnerability of coastal areas to
compound flooding events. This finding is consistent with previous studies
that emphasize increased flood risk in coastal areas due to climate change
and storm surges28,29. This spatial patternmaybe considerably influenced by
historical land reclamation practices. As shown in Fig. 8, we identified the
study areas within reclaimed areas and coastal areas (within 680 meters of
the coastline). This 680-meter threshold closely aligns with the average
distance of the reclaimed areas along the coastline in this studied case (i.e.,
~650m), with the slight difference attributable to the unique characteristics
of the reclaimed zones, including their irregular boundaries, varied devel-
opment histories, and non-uniform distributions along the coastline. Land
use analysis reveals similar patterns in both comparisons: reclaimed areas
have higher proportions of commercial/industrial land (12%) and road
infrastructure (31%) than non-reclaimed areas (3% and 16%), paralleling
the distribution between coastal areas (14% and 29%) and inland areas (4%
and 17%). These land use patterns help explain the observed temporal
variations inflood risk betweenweekdays andweekends, particularlywithin
680 meters of the coastline, where weekday and weekend risk distributions
remain similar. This temporal consistency likely reflects the concentrated
distribution of commercial and transportation infrastructure in reclaimed
areas, leading to persistent exposure patterns. Beyond the 680m threshold,
weekend risk consistently exceeds weekday risk, indicating that leisure and
recreational patterns are increasingly influential in shaping flood risk
characteristics in inland areas. The analysis of risk distribution across dif-
ferent land use types, combined with our understanding of reclamation
patterns, provides crucial insights for urban planning and zoning policies.

Fig. 7 | Temporal flood risk dynamics comparing weekday and weekend patterns
under various climate scenarios. a Temporal dynamics of flood risk during a 24-h
period for weekdays (gray) and weekends (purple) under the 200-year return period
for rainfall and storm surge (Very high SSP5-8.5 scenario, 2100), showingNight-Day

Risk Ratio (NDRR) calculations. b NDRR comparison across different scenarios
combining various return periods for rainfall (T50, T100, T200) and storm surge
(T50, T100, T200) under current and future climate projections.
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The persistent risk contribution in residential areas during nighttime
highlights the need for emergency protectionmeasures in these areas, while
the contrasting risk pattern observed in commercial and industrial areas
suggests that emergency response plans should be tailored to the specific
temporal characteristics of different urban areas. These findings highlight
the complex relationship between historical development decisions, current
land use patterns, and dynamic flood risk characteristics, emphasizing the
importance of adopting integrated approaches to coastal urban planning
and flood risk management in the context of climate change.

The introduction of the NDRR provides a metric for quantifying the
impact of population dynamics on compound flooding events under var-
ious climate change scenarios. The observed trend of decreasing NDRR as
rainfall return period increases (with constant storm surge) suggests that
more extreme rainfall events may disproportionately affect nighttime
population distributions. This finding highlights a previously under-
explored vulnerability dimension in flood risk assessment. The substantial
increase inNDRRprojected for 2100 scenarios indicates that climate change
will likely exacerbate the discrepancy between nighttime and daytime risk,
particularly on weekdays, where NDRRs range from 18.7% to 20.6%. This
has profound implications for long-term urban planning and adaptation
strategies. Interestingly, the consistently low weekend NDRRs (below 2%)
across all scenarios suggest more uniform exposure patterns during non-
working days, regardless of climate change intensity. This contrast between
weekday and weekend risk profiles emphasizes the critical role of routine
population mobility patterns in determining flood vulnerability. Our find-
ings underscore the need for a paradigm shift in flood risk assessment and
management strategies. Traditional approaches based on static population
distributions may considerably underestimate or mischaracterize risk in
urban areas with high population mobility. The development of dynamic
flood risk maps that account for temporal variations in population dis-
tribution could greatly enhance the effectiveness of early warning systems
and evacuationplans.Moreover, the observed landuse-specific risk patterns
suggest that urban planning policies should consider not only the spatial
distribution of different land uses but also their temporal usage patterns. For
instance, the high nighttime risk in residential areas might necessitate the
implementation of flood-resistant building codes or the strategic placement
of flood-defining infrastructure to protect these areas.

In conclusion, our study demonstrates the critical importance of
incorporating population dynamics into compound flood risk assessments
in coastal urban environments. The complex interactions between rainfall-
surge compound flooding and human activity patterns create distinct risk
distributions that traditional static assessments fail to capture. This dynamic
relationship becomes increasingly critical as sea levels rise, highlighting the
need for time-sensitive adaptation strategies that consider both the physical
processes of compound flooding and urban rhythms. As coastal cities

worldwide face mounting challenges from climate change and rapid urba-
nization, such integrated approaches to flood risk assessment will be crucial
for developing more effective protection measures for vulnerable popula-
tions and infrastructure.

Methods
Urban flood dynamic risk framework
To better understand the impact of flood occurrence at different moments
on flood risk, we have developed an innovative dynamic risk assessment
framework. Traditional flood risk assessments typically employ a static
approach, using the risk equation: Risk = Exposure ×Hazard ×
Vulnerability. However, this method overlooks the dynamic characteristics
of risk factors that change over time.To address this limitation,wepropose a
dynamic risk assessment framework, as illustrated in Fig. 9. This framework
pays particular attention to the dynamic nature of exposure, which refers to
the population, infrastructure, and natural or artificial resources thatmay be
affected byflooding.Our study primarily focuses on the dynamic changes in
population distribution. Recognizing that urban population distribution
undergoes substantial changes throughout the day, we introduced a
dynamic population distribution model to accurately capture these time-
dependent exposure variations. Our dynamic risk assessment model can be
represented as Eq. 2:

RðtÞ ¼ EðtÞ×H ×V ð2Þ

where: RðtÞ is the dynamic risk at time t, EðtÞ is the dynamic exposure at
time t, H is the hazard, V is the vulnerability.

In this framework,DynamicExposure: Basedonadynamicpopulation
density model, we considered census data and passenger flow data, com-
bined with building classification information, to generate population dis-
tribution maps for different time periods. Vulnerability: The vulnerability
index incorporates multiple influencing factors, such as the proportion of
elderly and child populations, reflecting the community’s sensitivity to
flooding. Hazard: Flood hazard was simulated by coupling LISFLOOD and
SWMM models, considering the interaction between drainage networks
and surface runoff. This generatedmaximumwaterdepthdistributionmaps
for different scenarios, from which hazard indices were determined.

Dynamic population distribution model and exposure
This study developed a comprehensive dynamic population density esti-
mation method, as shown in Fig. 10. The method integrates three key data
sources: the 2021 Hong Kong Population Census (covering 1622 census
districts with detailed demographic information), the 2011 Hong Kong
Transport Department’s Household Travel Survey (encompassing 121,204
single-day travel records from35,401households across 4863 traffic analysis

Fig. 8 | Spatial analysis of land use distribution in coastal and reclaimed areas of
the study area. aMap of reclaimed land and coastal areas (<680 m from coastline).
b Comparison of land use distribution between coastal and inland areas (top) and

between reclaimed and non-reclaimed areas (bottom), showing percentage alloca-
tion across different usage categories.
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areas), and real-time location-based services (LBS) data from the Baidu
Huiyan platform (https://huiyan.baidu.com/). Although the travel survey
data is relatively dated, comparative analysis with 2020 metro data30 indi-
cates that it still accurately reflects Hong Kong’s overall travel patterns. Our
method consists of three main components: generation of baseline popu-
lation distribution maps, delineation of urban functional areas and their
corresponding human activity patterns, and hourly population distribution
estimation based on these foundational data.

First, we constructed baseline population distribution maps as the
foundation for our dynamic populationmodel.We constructed two critical
baseline population distribution maps: a nighttime baseline map at 4:00
A.M. and a daytime baselinemap at 12:00A.M.The nighttime baselinemap
comprises local residents and overnight visitors. The distribution of local
residents is based on census data, where we allocated census district data to
10m× 10m standard grids according to area proportions, with density
adjustments made using building height data. Overnight visitors were dis-
tributed according to hotel occupancy rate data providedby theHongKong
Tourism Board, proportionally allocated based on the bed capacity of
each hotel.

The daytime baseline map includes two components: the remaining
population in residential areas and the influx population in non-residential
areas. The remaining population in residential areas is calculated based on
the stay-at-home rates of different population types. Through analysis of
travel survey data, we determined the stay-at-home rates for various
population groups during the 12:00–13:00 period on weekdays: 7% for
employed population, 53% for unemployed population, 38% for retired
population, 12% for students (lunch time), 64% for housewives/house-
husbands, and 83% for disabled persons. The influx population in non-
residential areas is derived from the total outflow population (nighttime
total populationminus the remaining population in residential areas during
daytime, plus day visitors to Hong Kong) and allocated based on building
area, height, and functional weights. Through analysis of travel survey and
LBS data, we identified 11:00 A.M. as the peak activity time across various
functional areas and used this as a benchmark to calculate the maximum
potential population in non-residential areas. The functional weight para-
meters were determined based on field surveys and relevant literature: 1.0
for office areas, 0.8 for commercial areas, 0.7 for schools, 0.5 for industrial
areas, and 0.3 for open spaces.

Fig. 9 | Conceptual framework for assessing dynamic urban flood risk. The workflow shows data processing from input sources through dynamic exposure, vulnerability,
and hazard assessment to final risk evaluation across different time periods.

Fig. 10 | Methodological framework for dynamic population estimation. The diagram illustrates population flow patterns across daily time periods with demographic
classifications and movement between residential and activity locations.
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Urban functional area division and activity pattern recognition were
crucial steps for accurate estimation of dynamic population distribution.
Thedivision of urban functional areas employed amulti-sourcedata fusion
method, integrating the HongKong Planning Department’s 2021 land use
data and OpenStreetMap’s points of interest (POI) data. We adopted a
hierarchical classification approach, first dividing major categories
based on land use data, then further subdividing based on building types
and POI density, and finally fine-tuning based on population activity
patterns. As shown inFig. 10, wedivided urban space into residential areas,
office areas, school areas, industrial areas, commercial areas, open spaces
and recreational areas, and other areas. Each functional area has unique
characteristics that determine its temporal population distribution
patterns.

Basedon thebaselinepopulationdistributionmaps and functional area
activitypatterns,wedeveloped anhourly populationdistribution estimation
methodology.We employed an improved gravity model to estimate hourly
population distribution. The model expression is as follows:

Fij tð Þ ¼ Pi ×Aj tð Þ × e�βdij ×T tð Þ ð3Þ

where Fij tð Þ represents the population flow from area i to area j at time t,
Pi is the population base of area i, Aj tð Þ is the attractiveness of area j at
time t, e�βdij is the distance between areas i and j, β is the distance
damping parameter (calibrated to 0.15), and T tð Þ is the time adjustment
factor.

We constructed 24 h origin-destination matrices, with grid-level
population calculations divided into two categories:

Population of residential grid i at time t:

Pres
i tð Þ ¼ Pres

i 0ð Þ �
X

j

Oij tð Þ þ
X

j

Iji tð Þ ð4Þ

Population of non-residential grid i at time t:

Pnon
i tð Þ ¼ Pbase

i ×Ci tð Þ þ
X

j

Iji tð Þ �
X

j

Oij tð Þ ð5Þ

where Pres
i tð Þ is the population of residential grid i at time t, Pnon

i tð Þ is the
population of non-residential grid i at time t, Pres

i 0ð Þ is the initial population
of residential grid i, Pbase

i is the baseline population of non-residential grid i,
Ci tð Þ is the activity factor of grid i at time t,Oij tð Þ is the outflow fromgrid i to
grid j at time t, and Iji tð Þ is the inflow from grid j to grid i at time t.

To generate continuous 24-h population distribution, we used cubic
spline interpolation for temporal interpolation and applied a 10 × 10 grid
Gaussian smoothing filter to eliminate spatial noise, while maintaining the
total population conservation constraint. We also considered weekday/
weekend differences and special patterns for holidays by constructing dif-
ferent activity coefficient matrices for various temporal scenarios.

Dynamic exposure reflects how population distribution changes over
time, leading to varying levels of vulnerability at different times of day and
days of the week. For instance, commercial areasmay have higher exposure
duringweekdaydaytimehoursdue to the influxofworkers,while residential
areas may have higher exposure at night. To ensure comparability between
different variables, we employed standardization, using Eq. (6) to scale the
variables of each driving factor between 0 and 1. The dynamic population
distribution model provides critical exposure data for subsequent risk
assessments, enabling us to more accurately evaluate flood risks at different
times and locations. This, in turn, offers more targeted decision support for
urban planning and emergency management.

X ¼ ðx �min xð ÞÞ=ðmax xð Þ �min xð ÞÞ ð6Þ

where: X is the normalized value, x is the original value, min xð Þ is the
minimum value in the dataset, and max xð Þ is the maximum value in the
dataset.

Vulnerability
Hong Kong’s census data provided a rich set of socioeconomic indicators,
covering multiple aspects at both individual and household levels. These
panel data offered unique values for each Traffic Planning Unit (TPU),
enabling an in-depth analysis of vulnerability characteristics across different
urban areas. In constructing the vulnerability index, we focused particularly
on groups thatmight bemore susceptible toflood events, such as the elderly,
children, and women. To comprehensively assess vulnerability, we selected
eight key socioeconomic indicators, visually represented in Fig. 2a–h. Spe-
cifically, these indicators include: (a) Proportion of population under 15
years old, reflecting the vulnerability of children (b) Proportion of popu-
lation with low education levels, indicating potentially lower disaster
response capabilities (c) Female population ratio, considering potential
gender-related impacts in disaster response (d) Proportion of households
with high mortgage payments (over HKD 10,000 monthly), reflecting
economic pressure (e) Proportion of population over 65 years old, repre-
senting the vulnerability of the elderly (f) Proportion of ethnic minorities,
considering additional challenges due to cultural and language barriers (g)
Proportion of low-income households (monthly income below HKD
10,000) (h) Proportion of low-income population, both (g) and (h)
reflecting economic vulnerability.

To eliminate potential biases introduced by differences in numerical
magnitudes between indicators, we standardized all variables. The stan-
dardization approach allows for meaningful comparisons across hetero-
geneous indicators by transforming them to a common scale. In our
vulnerability assessment methodology, we adopted an equal weighting
structure for all standardized indicators, a practice widely employed in
contemporary vulnerability research for its methodological transparency
and analytical robustness31–33. This equal weighting strategy enhances
methodological clarity, reduces potential subjective bias in weight assign-
ment, and produces assessments that are less sensitive to parameter
uncertainty when empirical evidence for differential weighting is limited.
Wecalculated the vulnerability indexby summingall standardized indicator
values and dividing by the number of indicators, as shown in Eq. (7):

D 0; 1ð Þ ¼
X

XD;i 0; 1ð Þ=n ð7Þ

where D represents the vulnerability index, XD;i is the i-th standardized
variable, and n is the total number of variables. This method not only
simplifies the calculation process but also makes the interpretation of the
vulnerability index more intuitive, with the final index values ranging
between 0 and 1.

Flood hazard assessment method and validation
To effectively simulate urban flood processes and serve as a tool for hazard
analysis, we employed a coupled system of drainage network and surface
runoff models. This system combines two widely recognized models:
SWMM and LISFLOOD. SWMM is a rainfall-runoff model based on one-
dimensional Saint-Venant equations, specifically designed to simulate
hydrodynamic processes in urban drainage networks. LISFLOOD, on the
other hand, is a surface runoff model based on two-dimensional shallow
water equations, capable of effectively simulating urban surface flood pro-
cesses. By exchanging information at connection nodes (manholes), we
organically integrated these two models to achieve more precise flood
simulation. The effectiveness of this coupled model has been validated in
previous studies34–36.

Themodel parameters in SupplementaryTable 1.were calibratedusing
a systematic two-step approach. Initially, we established appropriate para-
meter ranges by conducting a comprehensive literature review of similar
urban flooding studies37–39. This provided theoretically sound boundaries
for each parameter. Subsequently, we refined these parameters through an
iterative calibration process using observational data from the severe
flooding event that affected Hong Kong on September 7–8, 2023. This
calibration focused primarily on matching the simulated maximum flood
depths with observed flood depths at key monitoring locations throughout
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the study area. The calibrationprocess involved adjustingparameterswithin
their literature-established ranges until the model achieved optimal per-
formance, quantified by minimizing the root mean square error (RMSE)
and Nash efficiency coefficient (NSE) between simulated and observed
maximum flood depths. This calibration approach ensured that our model
could accurately reproduce historical flooding patterns while maintaining
physically realistic parameter values, thus enhancing the reliability of future
flood simulations.

We selected the extreme rainfall event that occurred in Hong Kong
from September 7 to 8, 2023, to validate the model’s accuracy. This event
set a record for the highest hourly rainfall (158mm) since records began in
1884, more than doubling the black rainstormwarning standard (70 mm).
Following the flood, we conducted a field survey of inundation points in
Hong Kong on September 9, obtaining observational data of maximum
water depths through interviews and measurements of flood traces. Sup-
plementary Fig. 1 presents a comparison betweenmodel simulation results
and observational data. In Supplementary Fig. 1a, the correlation coeffi-
cient (R²) between simulated andobservedmaximumwaterdepths reaches
0.86, with a RootMean Square Error (RMSE) of 0.18m andNash-Sutcliffe
Efficiency (NSE) of 0.77. These statistical metrics indicate high model
accuracy, as R² values close to 1, low RMSE values, and NSE values above
0.75 all suggest excellent performance (Detailed comparative data can be
found at. https://doi.org/10.5281/zenodo.15128479). Supplementary
Fig. 1b, c visually compares the spatial distribution of simulated and
observed water depths, further confirming the model’s reliability. These
results collectively suggest that our coupledmodel has good applicability in
the study area, laying a solid foundation for subsequent simulation
analyses.

Design scenarios
According toSklar’sTheorem40, anybivariate joint distribution function can
be connected through a Copula function that links its marginal distribution
functions. In this study, we fitted the marginal distributions of daily max-
imum water level and 24-h cumulative rainfall using gamma distributions,
and after comparative analysis, selected the Joe Copula function to model
the dependence structure between these two variables. The data spans from
1 January 1960 to 30 September 2023, with maximum water level records
from Hong Kong’s tide observation station (Quarry Bay) and daily cumu-
lative rainfall records from the Hong Kong Observatory station.

Supplementary Fig. 2(a) shows a scatter plot of maximumwater level
and 24-h cumulative rainfall, dividing the data into four zones based on
their respective 95% quantile values: Zone 1 (red points) represents
compound flooding events (with both extreme sea levels and extreme
rainfall), Zone 2 (yellow points) represents events with extreme rainfall
without extreme sea levels, Zone 3 (blue points) represents events with
extreme sea levels without extreme rainfall, and Zone 4 (gray points)
represents non-extreme events. Our joint return period analysis focuses
primarily on the compound extreme events, which are characterized by
both high water levels and extreme rainfall and are most likely to cause
severe compound flooding.

Supplementary Fig. 2b displays the combinations of maximum water
level and 24-h cumulative rainfall under different joint return period sce-
narios. Each curve represents water level-rainfall combinations with the
same joint return period (ranging from 3 to 500 years). The points marked
on the graph (such as Ellen, Brenda, Hope, etc.) represent specific historical
extreme events. Through these joint return period curves, we determined
the critical parameter combinations for the 50-year, 100-year, and 200-year
returnperiod scenarios, which reflect themost likely structure of compound
flood events. Supplementary Table 2 lists the peak storm surge water levels
and 24-h cumulative rainfall values for different joint return periods. As the
return period increases from 50 to 200 years, the event intensity gradually
increases, providing a progressive design that enables us to evaluate the
impact of compound events of varying intensities on urban flood risk.

Our study employs a comprehensive approach to assess flooding
hazards by considering compound events of stormsurge and rainfall, aswell

as their individual contributions. Based on joint return periods, we designed
scenarios that include compound flooding (storm surge plus rainfall),
rainfall-only flooding, and storm surge-only flooding. The return periods
examined include 50-year, 100-year, and 200-year events to capture a range
of hazard intensities. To account for future climate change impacts, we
incorporated scenarios for the years 2060 and 2100 under both medium
emission pathway (SSP2-4.5) and very high emission pathway (SSP5-8.5).
This approach resulted in a total of 75 distinct cases that provide a robust
basis forflooding risk assessment under varying conditions (Supplementary
Table 3).

For the medium emission scenario (SSP2-4.5), we referenced the
World Climate Research Programme (WCRP) CMIP6 projections (https://
aims2.llnl.gov/search/cmip6/), which estimate daily rainfall increases of
10.7% by 2060 and 15.7% by 2100. Under the very high emission scenario
(SSP5-8.5), daily rainfall is projected to increase more dramatically—by
10.0% by 2060 and 28.8% by 2100. Sea level rise projections were based on
IPCC AR6 estimates, with medium emissions (SSP2-4.5) scenarios indi-
cating rises of 0.26m by 2060 and 0.56m by 2100. For very high emissions
(SSP5-8.5), more severe sea level rises of 0.30mby 2060 and 0.78mby 2100
are anticipated1. It’s worth noting that climate change impacts on storm
surge levels remain controversial, with some studies suggesting increases41–43

andothers indicating decreases44,45, with substantial regional variability.Due
to these inconsistencies, our study does not consider potential changes in
storm surge intensity due to climate change, focusing instead on the more
established projections of sea level rise and rainfall intensification.

To transform these static values into dynamic simulations, we adopted
a composite timeline model. As illustrated in Supplementary Fig. 3a, we
combined astronomical tide and design storm surge curves to create a time
series of water levels. For rainfall, we assumed a spatially uniform dis-
tribution following a symmetrical triangular distribution over time. This
approach simplifies model inputs while retaining key event characteristics.
Supplementary Fig. 3b showcases the complex drainage system in the study
area. These detailed drainage system data, provided by the Hong Kong
Drainage Services Department, include key information such as pipe dia-
meters, lengths, and invert levels, offering precise infrastructure parameters
for the model.

Data availability
The data used in this study were obtained from various sources, including
government databases, meteorological records, and field investigations.
Supplementary Table 4 presents an overview of the data types, their record
periods, and sources. The datasets of the main results in this article are
available at: https://doi.org/10.6084/m9.figshare.29087948.

Code availability
Code used in the analysis is available on request from the corresponding
author.
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