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Limited global intensification of weak
tropical cyclones over the past 30 years
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Tropical cyclones can cause severe damage to coastal communities and the marine industry.
However, trends in their intensity remain uncertain due to observational challenges, especially for the
more frequent weak tropical cyclones, defined as tropical storms to category-1 tropical cyclones on
the Saffir–Simpson scale. Here we develop an inversion model using surface drifter observations to
estimate sea-surface wind speed, aiming to reassess the long-term global trend in the intensity of
weak tropical cyclones from 1993 to 2022. Our results indicate that the global intensification of weak
tropical cyclones has been insignificant, with only a modest upward trend of about 3.4 cm s−1

decade−1. Furthermore, we found that weak tropical cyclones have intensified only in the Southern
Hemisphere, rather than across all ocean basins. The present work suggests that global warming is
probably having only a limited impact on the evolution of weak tropical cyclones.

Tropical cyclones (TCs) are among the most destructive of natural
disasters and are of great interest to the broad oceanic and atmospheric
scientific community1–6. Over the past few decades, climate change has
been linked to an increase in both the frequency7,8 and intensity9–11 of
TCs. However, the challenges associated with observing these extreme
weather phenomena have fueled continued debates on this trend12–15.
Weak TCs, characterized by maximum sustained wind speeds of 17 to
42 m s−1 at the time of measurement, are the most common16,17. They
play a crucial role in TC landfall forecasting and the prevention of
socioeconomic damage18,19. Unfortunately, accurately determining the
intensity of TCs remains a challenge. Conventionally, the Dvorak
technique20,21, which estimates TC intensity based on cloud patterns and
infrared cloud-top temperatures derived from satellite imagery, is con-
sidered the most effective method. In operational settings, the Dvorak
technique involves estimating a final T number (FT) from cloud features,
converting it to a current intensity number (CI) using empirical rules,
and then mapping the CI to maximum sustained wind speed based on
agency-specific conversion tables. Due to the subjectiveness of the FT
estimates, CI assignment and differences in the conversion table in use,
the resulting intensity estimates can differ significantly, evenwhen based
on identical satellite inputs. Moreover, the accuracy of the Dvorak
technique is inevitably affected by various factors, including rainfall,
clouds, breaking waves, and sea spray. These factors can lead to non-
negligible errors in TC intensity estimates22, highlighting the need for
continued research and improvement in this area.

Ocean observations with high temporal and spatial accuracy from a
large volume of surface drifter are less affected by complex atmospheric
conditions, which allows for a more objective and consistent estimation of

TC intensity changes over time. Recently, Wang et al.23 have proposed an
intriguing approach to estimatingTC intensity based on ocean current data.
They derived sea-surface wind speeds (SSWSs) from drifter-measured
ocean currents using a simplified formula based on Ekman theory24

U10 ¼
ffiffiffiffiffiffiffiffiffi
sin φj jp

0:0127 V0 ð φ
�� ��≥ 10Þ, where U10 represents the wind speed at a

height of 10m (i.e., the SSWS), φ denotes latitude, and V0 is the Ekman
current speed at the ocean surface derived from the drifter current mea-
surements. Their study found a robust global upward trend of 1.8m s−1

decade−1 in the intensity of weak TCs between 1991 and 2020. However,
because themajority of the drifters (97.72%)measured the ocean currents at
drogue depths of 10–15m, Wang et al.23 neglected the potential impact of
the exponential term in the original Ekman theory formula, that could have
led to significant errors in their calculationsof the SSWS(seeSupplementary
Discussion 1). Additionally, the Ekman theory is not applicable to regions
between 10°S and 10°N, which hinders a comprehensive analysis of the
intensity trends of weak TCs at the GLOBAL scale.

Results and discussion
Here, we apply a data-drivenmodel (see “Methods”) to estimate weak-TC
intensity over the global ocean. The model derives SSWSs directly from
the near-surface currents measured by drifters under weak TCs (Fig. 1a).
The main steps in the process are as follows. First, the model was trained
using a large amount of wind-current data pairs observed by 37 tropical
moored buoys. Following the Eulerian observation principle, the buoys
are fixed in position and capable of collecting comprehensive measure-
ments at a single location, including wind speed (measured at 4 m above
the sea surface), ocean currents, sea surface temperature (SST), rainfall,
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heat fluxes, and so on. The observed 4m wind speeds were converted to
standard 10m wind speeds (i.e., the SSWS) using the COARE 3.5
algorithm25,26. Additionally, given the significant thermal response of the
ocean to TCs27,28, we incorporated the sea surface temperature (SST) as an
another input parameter to enhance effectiveness of the model inversion
(Supplementary Fig. 2 and Supplementary Table 1). Secondly, to evaluate
the performance of the model, we compared the SSWSs inverted by the
model with those derived using the Ekman theory, employing randomly
selected buoy-observed currents and referencing the corresponding buoy-
observed 10m wind speeds. The root mean square error (RMSE) of the
inverted SSWSs was 1.56 m s−¹ on average, obtaining a 71.68% decrease
compared to the RMSE of 5.51 m s−¹ derived using the Ekman-theory-
based approach as Wang et al.23. Comparisons of the RMSE in three
typical basins are shown in Fig. 1b–d. Therefore, we expected ourmodel to
be more effective with respect to analysing the trends in weak-TC
intensity. We then applied our fully-trained model to the globally

distributed drifter data collected underweak TCs, and inverted the SSWSs
from the drifter current and SST measurements. Drifters follow the
Lagrangian observation principle, drifting with ocean currents and
recording environmental variables along their paths. Due to the wide-
spread deployment of global drifters, a certain number of drifters are
always located within the proximity of each weak TC. Consequently, we
were able to obtain inverted SSWSs for all of the weak TCs that developed
during the study period. Finally, these inverted SSWSs were spatially
averaged to represent the intensity of weak TCs.

WeakTCs account for a substantial proportionof total TCoccurrences
(Supplementary Table 3), particularly in the Indian Ocean (62.23%) and
Northeast Pacific (57.71%). They are also associated with a significantly
larger number of available drifter observations compared to strong TCs
(categories 3–5). This higher data availability enhances the statistical
robustness of long-term trend analysis. Figure 2 shows the global dis-
tributions of weak TC occurrences, and the corresponding drifter

Fig. 1 | Framework and performance of the data-driven SSWS inversion model.
a Process for estimating the intensity of weak TCs using the SSWS inversion model.
Step 1: Convert 4-m height wind speed (U4) to 10-m height wind speed (i.e.,
U10 = SSWS) using the COARE 3.5 algorithm. All input data for the COARE 3.5
were obtained from 37 tropical moored buoy observations. Step 2: Train the SSWS
inversion model. The training process involves feeding the near-surface current
speed (V0), sea surface temperature (SST), and U10 data from the buoy observations
into the model. The model is expected to develop a robust understanding of how V0

and SST influence U10. Step 3: Apply the fully-trained SSWS inversion model to
drifter observations. A substantial volume of drifter-observed V0 and SST data from
the region near each weak TC are fed into the model to estimate the corresponding
U10 under these weak TCs. Step 4: Obtain spatially averaged inverted SSWSs to

represent the intensity of weak TCs. This is achieved by calculating the average of n
U10 values, where n represents the number of data points input into the model.
b–d Comparison of the SSWS inversion model and the Ekman method. The blue
lines and dots represent the inversion results from our model, and the red lines and
dots are from the Ekman method. Lines show linear regression based on buoy-
observed U10 and inverted U10 from the corresponding buoy-observed currents
(dots) under weak TCs, with the RMSE indicated in the upper right. Data in (b)
includes 114 observations from the Research Moored Array for African-Asian-
AustralianMonsoon Analysis and Prediction (RAMA), c 217 observations from the
Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRI-
TON), and d 115 observations from the Prediction and Research Moored Array in
the Tropical Atlantic (PIRATA).
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observations thatwere locatedwithin seven radii of themaximumsustained
wind speed (Rmax) of these weak TCs, spanning the period from 1993 to
2022. The weak TCs and drifter observations have a similar spatial dis-
tribution, thereby ensuring a sufficient amount of drifter data to accurately
reconstruct the intensity of the weak TCs. As shown in Supplementary
Table 4, the total number of drifter records under weak TCs in each ocean
basinwas as follows: 50,834 in theNorthAtlanticOcean (NA), 23,089 in the
Northeast Pacific Ocean (NEP), 29,240 in the Northwest Pacific Ocean
(NWP), 2594 in the North Indian Ocean (NI), 14,256 in the South Indian
Ocean (SI), and 8947 in the South Pacific Ocean (SP). Evidently, all ocean
basins have been adequately sampled under weak-TC conditions. More-
over, we incorporated 5538 weak-TC records (12.23% of the total) and
13,373 drifter observations (10.37%of the total) that were locatedwithin the
latitude range of 10°S to 10°N. These data are essential if wewish to conduct
a global analysis. These data are essential if we wish to conduct a global
analysis.

Figure 3 illustrates the derived trends in weak-TC intensity at the
global andbasin scales, covering theperiod from1993 to 2022.Overall, the
global trend in weak-TC intensity is not statistically significant, as the
Mann-Kendall test (see “Methods”) yields a P value exceeding 0.05.
Despite this, a slight upward trend of 0.34 cm s−1 year−1 is observed. In
fact, the trends in weak-TC intensity appear to be insignificant across all
ocean basins, with the exception of the NI, as indicated in Table 1. This
upward trend is much smaller than the 0.11 m s−¹ year−¹ increase esti-
mated using the Ekman-theory-based method (see Supplementary Dis-
cussion 2). We also obtained consistently similar results when calculating
the trends in weak-TC intensity using the SSWS model and drifter mea-
surements from within one to six Rmax of the TC centres. However, none
of the model-inverted trends in weak-TC intensity were statistically sig-
nificant (Table 2). In addition, despite a negligible global-averagedupward
trend in the intensity of weak TCs, the weak TCs in the Northern
Hemisphere (i.e., NA, NEP, NWP, and NI) weakened, implying that the
global upward trend is driven primarily by weak TCs in the Southern
Hemisphere (i.e., SP and SI).

In contrast to Wang et al.23, we have demonstrated that regions
within the low-latitude range of 10°S to 10°N should be included when
analysing trends in weak-TC intensity (Fig. 4). When drifter data from
these low-latitude regions are excluded from the analysis, the estimated
global trend in weak TC intensity, inverted from ocean current

measurements, decreases from 0.34 cm s−1 to 0.22 cm s−1 year−1. This
finding underscores the necessity of including data from these low-
latitude regions when assessing the global trend in weak-TC intensity.
Moreover, the statistically significant downward trend in the intensity of
weak TCs in the NI, as inverted from the ocean current speed, is reduced
whendrifter data from the low-latitude regions between10°S and10°Nare
excluded; i.e., it decreases from –4.02 to –2.75 cm s–1 year–1. This further
emphasizes the critical role of including data from these low-latitude
regions if we wish to accurately capture the trends in weak-TC intensity,
particularly in specific regions such as NI.

On the other hand, an upward trend of approximately 0.17 cm s−1

year−1 has been observed in global near-surface current speeds underweak
TCs over the period 1993–2022, as illustrated in Fig. 3g. However, this
trend is muchweaker than that reported byWang et al.23, who indicated a
trend of about 0.40 cm s−1 year−1 for the period 1991–2020. This dis-
crepancy in the upward trends in global near-surface current speeds under
weak TCs can be attributed to the additional drifter observations used in
this study. Compared to the dataset used by Wang et al.23 (1991–2020),
which included 104,284 drifter observations, our study utilizes 128,960
observations from 1993 to 2022, reflecting a 23.66% increase in data
volume. This increase primarily stems from the inclusion of low-latitude
observations within the 10°S to 10°N band, which were previously
omitted, and from the additional observations recorded during
2021–2022. Specifically, drifters within the 10°S to 10°N band contributed
11,191 observations between 1993 and 2020, with a further 2182 obser-
vations added from 2021–2022. Moreover, the number of observations
during 2021–2022 (17,870) greatly exceeds the 4998 recorded in
1991–1992 (Fig. 5). These additions provide a more comprehensive
dataset, offering improved spatial and temporal coverage, especially in
previously underrepresented regions. Overall, the incorporation of addi-
tional 13,373 drifter records from the 10°S to 10°N latitude band (Sup-
plementaryTable 5) significantly enhances the global assessment of trends
related to weak TCs, allowing for a more refined understanding of the
dynamics and predictions of weak TCs.

Conclusion
In this study, we have demonstrated that the intensification of weak TCs
across the global oceans over recent decades, especially in the Northern
Hemisphere, has been insignificant. This conclusion contrastswith previous

Fig. 2 | Data distribution. Global distributions of
a weak TC occurrences and b drifter observations
that located within the vicinity of these weak TCs,
both on 2° × 2° (latitude × longitude) grids for the
period 1993–2022. The total number of weak TCs
recorded was 45,299, and 5538 (12.23% of the total)
were observed between 10°S and 10°N (indicated by
the regions between red lines). The total number of
drifter records was 128,960, with 13,373 (10.37% of
the total) under weak TCs.
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theoretical predictions29,30 and numerical modelings31, which suggest that
TCs intensify as the ocean warms. However, our analysis indicates that
global warming over the past three decades may not have had a noticeable
impact on the evolution of weakTCs. It is important to note that the drifter-
based approach inherently carries certain limitations, including potential
effects from wave-induced motions, variable distances between drifter
observations and TC centers, and the influence of background geostrophic
currents.While these uncertainties are partially addressed through rigorous
data preprocessing and robust model validation, the absence of com-
plementary measurements, such as wave parameters or sea surface height,
inevitably constrains the precision of SSWS inversion. Sustained endeavors
to broaden observational datasets and refine inversion models are of
paramount importance. These efforts will enable us to attain a more pro-
found comprehension of tropical cyclone dynamics and conduct more
accurate assessments of how climate changemay potentially influence their
development and progression.
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Fig. 3 | Temporal evolution of spatially averaged drifter-observed near-surface
current speeds (blue lines and dots) and inverted SSWSs (red lines and dots)
under weak TCs. Trends in both current and wind speeds are characterized by the
slopes of the fitted lines (denoted as “s”), along with their 95% confidence intervals.
The statistical significance of these trends was assessed using the P value (denoted as

“p”) obtained from an F-test. The number ofweakTCs considered in this analysis for
each ocean basin were as follows: 4874 for the NA (a), 5682 for the NEP (b), 6623 for
the NWP (c), 1032 for the NI (d), 4654 for the SI (e), and 2579 for the SP (f). The
global ocean analysis integrates data from all of these basins (g).

Table 1 | Mann-Kendall test applied to spatially averaged sea
surface wind speeds and drifter-observed near-surface
ocean current speeds under weak TCs

Basin Wind Current

Trend(cm s−1) P value Trend(cm s−1) P value

NA −0.14 0.8305 0.1593 0.0417

NEP −0.49 0.1989 0.1865 0.0125

NWP −0.02 0.6947 0.1788 0.0744

NI −4.02 0.0037 0.1480 0.1386

SI 1.49 0.4118 0.1055 0.3008

SP 1.94 0.0935 0.3310 0.0092

Global 0.34 0.9715 0.1727 0.0060

The wind speeds were derived from the current speeds using the SSWS model.
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Methods
SSWS inversion model
A total of 832,435 simultaneous oceanic and atmospheric observations
were collected from 37 tropical moored buoys to develop our SSWS
inversion model. These buoys were deployed across three ocean basins:
12 from the RAMA in the Indian Ocean, 12 from the TAO/TRITON in
the Pacific Ocean, and 13 from the PIRATA (Fig. 6). Each observation
includes the buoy location (longitude and latitude), 4-m height wind
speed (denoted as Windbuoy4m), near-surface current speed, and various
additional environmental parameters. The 10-m height wind
speed (denoted as Windbuoy10m) was derived from the Windbuoy4m data
using the COARE 3.5 algorithm, which requires various environmental
inputs to calculate the wind speed at different heights. As these inputs
are not uniformly available across all buoy deployments, only
the aforementioned 37 moorings with sufficiently complete records
were included to ensure reliable COARE-based conversion. The com-
parison between the Windbuoy10m and Windbuoy4m values is illustrated
in Fig. 7.

Subsequently, we developed an inversion model to determine the
relationship betweenWindbuoy10m andnear-surface current speed, using the
extensive dataset obtained from these tropical moored buoys. The model
was formulated as follows:

Windbuoy10m ¼ f buoy Lonbuoy; Latbuoy;Ubuoy;Vbuoy; SSTbuoy

� �
ð1Þ

Here, Lonbuoy and Latbuoy represent the longitude and latitude of the
buoy, respectively. The f buoy function can indeed be implemented using
any data-driven regression approach. In the present study, we have
employed seven distinct regression techniques to implement the f buoy
function, namely: linear regression32, decision tree (DT)33, random forest
(RF)34, extreme gradient boosting35 (XGBoost), light gradient boosting
machine36 (lightGBM), support vector regression37 (SVR), and multilayer
perceptron38 (MLP).

The parameter configurations for all the regression methods
employed in the SSWS model, as well as for the Ekman method, are
detailed in Table 3. As for the data used in the model, 80% of the
observations at each buoy were randomly selected as the training set and
the remaining 20% were used as the test set. The training results obtained

from the various regression approaches are shown in Table 4 and indi-
cate that the data-driven model with each regression approach outper-
forms the Ekman method. The model with the RF regression approach
stands out as the optimal choice, achieving a significant reduction in both
the RMSE (by up to 53.90%, from 4.49 to 2.07m s−1) and the mean
absolute error (MAE; by up to 55.03%, from 3.58 to 1.61m s−1). The
inversion errors will increase when the SST information is excluded. This
underscores the pivotal role of incorporating thermal effects in the
accurate modelling of the complex relationship between near-surface
currents and sea surface winds.

Consequently, we selected the best-trainedRFmodel, denoted as f �buoy,
as our definitive SSWS inversion model. The weighting factors of input
variables, namely, the longitude, latitude, zonal andmeridional components
of current, and SST, were 0.0417, 0.0448, 0.2290, 0.2241, and 0.4604,
respectively.

Ultimately, the SSWSs inverted from the near-surface current speeds
observed by drifters within the vicinity of a weak TCwere spatially averaged
to serve as an alternative measure to assess the intensity of the weak TCs, I.
This was formulated as follows:

I ¼ 1
n

Xn
1

Winddrifter10m

¼ 1
n

Xn
1

f �buoy Londrifter; Latdrifter;Udrifter;Vdrifter; SSTdrifter

� �
:

ð2Þ

Here, n represents the number of drifters located within seven Rmax of each
weakTC, andWinddrifter10m is the SSWSs inverted from the drifter-observed
near-surface current speeds.

Mann-Kendall test
The Mann-Kendall test39,40 is a non-parametric statistical method
designed to detect trends in time series data. To determine the trends
in the weak-TC intensity, we carried out the Mann-Kendall test as
follows.

Step 1: Given the input sequence X ¼ fx1; x2; . . . ; xng, we compare
each pair of data points of the sequence and calculate an S statistic, which
represents the cumulative count of increases or decreases within the

Table 2 | P values from the Mann-Kendall test of near-surface current speeds measured by drifters (regular font) and for sea
surface wind speeds inferred from these current speeds using the data-driven SSWS inversion model (in bold), within varying
Rmax of weak TCs between 1993 and 2022

Basin Rmax

1 2 3 4 5 6 7

NA 0.0497 (↓) 0.0688 0.5207 0.7753 0.9431 0.5925 0.8305

0.2844 0.1868 0.0224 (↑) 0.0060 (↑) 0.0102 (↑) 0.0185 (↑) 0.0420 (↑)

NEP 0.5865 0.2390 0.4325 0.4325 0.3724 0.3353 0.1989

0.5609 0.1435 0.0323 (↑) 0.0153 (↑) 0.0024 (↑) 0.0067 (↑) 0.0125 (↑)

NWP 0.5207 0.9431 0.8028 0.8028 0.6427 0.6427 0.6947

0.2251 0.0935 0.0246 (↑) 0.0224 (↑) 0.0353 (↑) 0.0269 (↑) 0.0744

NI 0.9671 0.4298 0.3334 0.0721 0.0343 (↓) 0.0060 (↓) 0.0037 (↓)

0.0189 (↑) 0.1759 0.9802 0.6238 0.5968 0.6495 0.5937

SI 0.5441 0.5925 0.3353 0.1640 0.3918 0.3177 0.4118

1.0000 0.4325 0.3724 0.8305 0.5441 0.2844 0.3008

SP 0.6277 0.1709 0.0586 0.2535 0.1868 0.1535 0.0935

0.5085 0.0032 (↑) 0.0067 (↑) 0.0060 (↑) 0.0038 (↑) 0.0043 (↑) 0.0092 (↑)

Global 0.6685 0.7481 0.6685 0.8584 0.8584 0.9715 0.9715

0.0804 0.0804 0.0153 (↑) 0.0027 (↑) 0.0031 (↑) 0.0048 (↑) 0.0060 (↑)

↓ and ↑ symbolize the downward and upward trends during 1993–2022, respectively. Sea-surface wind speeds inferred from current speeds using the data-driven SSWS inversion model are highlighted
in bold.
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sequence. The process can be described as follows:

S ¼
Xn�1

j¼1

Xn
i¼jþ1

�1; xi � xj < 0

0; xi � xj ¼ 0

1; xi � xj > 0

8><
>:

: ð3Þ

Step 2:We then standardize the S statistic to obtain the Z statistic, which is
used to ascertain the significance of the trend.The standardizationprocess is
as follows:

VARðSÞ ¼ 1
18

nðn� 1Þð2nþ 5Þ ð4Þ

Z ¼

S�1ffiffiffiffiffiffiffiffiffiffiffi
VARðSÞ

p ; S > 0

0 ; S ¼ 0
Sþ1ffiffiffiffiffiffiffiffiffiffiffi
VARðSÞ

p ; S < 0

8>><
>>:

ð5Þ

Step 3: To assess the significance of the trend, we compare the Z statistic
against critical values derived from the standard normal distribution. The
comparison process is as follows:

Trend ¼
decrease;Z < 0and Zj j > ppf 1� a

2

� �

no trend; Zj j < ppf 1� a
2

� �

increase;Z > 0and Zj j > ppf 1� a
2

� �

8><
>:

ð6Þ

Here, a is set to 0.05, indicating a confidence level of 0.95. The percent point
function (ppf) is used to determine the critical values.

Step 4: The P value is calculated as follows:

P ¼ 2ð1� cdf ðZÞÞ ð7Þ

where cdf denotes the cumulative distribution function. The P value
represents the probability obtained from the test, reflecting the likelihood
of observing the trend in the data under the null hypothesis (i.e., no
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Fig. 4 | Temporal evolution of spatially averaged drifter-observed near-surface
current speeds (blue lines and dots) and inverted SSWSs (red lines and dots) in
regions with |φ| ≥ 10° under weak TCs.Trends in both current and wind speeds are
characterized by the slopes of the fitted lines (denoted as “s”), along with their 95%
confidence intervals. The statistical significance of these trends was assessed using

the P value (denoted as “p”) obtained from an F-test. The proportion of drifter
records located in regions with φ

�� ��≥ 10� to the total number of global drifter records
under weak TCs is also presented for each ocean basin, as shown in a NA, b NEP,
cNWP, dNI, e SI, and f SP. A global ocean analysis that integrates data from all these
basins is shown in (g).
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Fig. 5 | Interannual variations in the number of
drifter observations between 1991 and 2022. The
number of drifter observations per year is indicated
directly on the plot.
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Fig. 6 | Key details of the 37 tropical moored buoys. a Geographic distribution of the 37 buoys (star symbols). b Count of effective observation records for each buoy.
c Distribution of buoys with both current and wind observations in the TC-coordinate system (red dots). d Percentages of data falling within various Rmax ranges.
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underlying trend). If the P value exceeds 0.05, we conclude that the
sequence fails the Mann-Kendall test, indicating that it does not exhibit a
significant trend.

Data availability
The hourly current and wind data from the TAO/TRITON, RAMA and
PIRATA buoy arrays were downloaded from https://www.pmel.noaa.gov/
tao/drupal/disdel/. The 6-hourly positions and upper-ocean current velo-
cities from the drifters were obtained from https://www.aoml.noaa.gov/
phod/gdp/interpolated/data/all.php. TC occurrence, with a 6-h temporal
resolution, was acquired from the best track data of the Joint Typhoon
Warning Center (https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks)
for the Western Pacific Ocean, the Indian Ocean and the Southern Hemi-
sphere, and from the National Hurricane Center and Central Pacific Hur-
ricane Center (https://www.nhc.noaa.gov/data/) for the Atlantic and
Northeast and Central Pacific Oceans. The source data used to generate the
figures in this study are available at Zenodo: https://zenodo.org/records/
1457638441.

Code availability
The code and scripts used to analyse the data and to produce the plots
presented in this paper are accessible via Zenodo at https://zenodo.org/
records/1457638441. The original versions of the NOAA COARE 3.5
algorithm are available at https://github.com/NOAA-PSL/COARE-
algorithm.
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