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Size estimates of Earth’s largest
terrestrial landslides informed by

topographic setting
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Landslides regulate the height of mountains by releasing potential energy and reducing topographic
relief. Yet, relief also limits the dimensions of small, frequent landslides in turn. But how local
topography, lithology, and climate influence the size distribution and hazard of Earth’s largest
terrestrial landslides remains unclear. Here we use Bayesian regression to estimate these effects on
landslide volume, drawing on a worldwide sample of 411 cases, each involving > 1 km®. Nearly two
third of their total volume is volcanic and sedimentary rocks within 50 km of active fault zones,
clustered in actively uplifting mountain belts and on volcanic plateaus. Volumetric estimates vary most
distinctly with dominant topographic setting, regardless of local relief, general rock type, or
contemporary climate. These largely negligible effects indicate that volume scaling statistics fail to
capture differing bulk lithological properties, let alone a detection bias due to climatic controls on land

cover, weathering, or erosion.

The idea that topographic relief cannot grow indefinitely and must be
limited by material strength and erosion has posited mass wasting, especially
landsliding, as a natural and ubiquitous constraint on mountain growth'.
However, tectonic activity and local topography alter crustal stress fields,
fracture patterns, and the arrangement of major rock-mass defects, which in
turn may constrain the size of slope failure’. Both these concepts are intuitive
and rooted in physics-based models of slope stability, but empirical tests
have considered small landslides (usually involving less than 1 million m?)
only, supporting the notion that fracture spacing in dissected bedrock
determines the size of frequent slope failures™. How such structural or
topographic controls play out for larger, and commensurately rarer, land-
slides remains unexplored, especially with variations in rock type and cli-
mate that affect weathering, erosion rates, and thus the longevity of landslide
evidence. In general, the size scaling of landslides is modelled statistically as a
power-law tail of a probability distribution fitted to mapped footprint areas
of thousands to hundreds of thousand landslides that were triggered during
a single earthquake or rainstorm in recent times’”. The modes, or “roll-
overs” of these fitted distributions—beyond which power-law scaling
approximately sets in—might mark size-dependent changes in cohesive
strength, soil moisture, topographic constraints on runout, detection bias, or
a combination thereof *'°. Whether similar mechanistic interpretations are
valid for very large landslides with volumes >>10° m® is unknown because of
fewer samples and more statistical noise. Nonetheless, models of how

landslide volume scales with footprint area, for example, remain a foun-
dation of estimating hillslope erosion, mass fluxes, geomorphic work, and
hazard. While this scaling may differ between soil and bedrock landslides',
other possible influences beyond material types have been hardly explored.
Overall, the large body of statistical landslide studies has mostly ignored the
very large landslides that affect several square kilometres or involve at least
hundreds of millions of cubic metres. Hence, we know very little about
whether and how key controls on slope stability, such as topography, rock
type, or climate affect the size of the largest terrestrial slope failures, each
involving >1 km’. This size distribution is essential for estimating hazard
and risk levels, and hence, our knowledge base about exceptionally large
landslides remains curtailed.

Yet, large landslides leave distinct footprints on the surface of the Earth,
several planets, and moons'>"”. Unlike smaller, shallow landslides with
short-lived geomorphic impacts, scars and deposits of large landslides can
remain recognisable in the landscape for up to several million years'. Large
landslides are effective processes of shallow lithospheric fragmentation'>'*,
reshape entire hillslopes by releasing potential energy in response to tectonic
uplift, river and glacier erosion, and topography-induced stresses”’, and
form major point sources of sediment and biogeochemical fluxes'. Large
slope failures can lower mountain peaks, shift drainage divides"’, dam
rivers”’, and disturb the hydrological balance, sediment calibre, and trans-
port capacity of streams*"”*. The collapse of volcanic flanks can decompress
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magma chambers and promote eruptions™, while major coastal landslides
can cause tsunamis with local run-up of hundreds of metres™. Catastrophic
landslides can disturb ecosystems by driving biodiversity”, alter the species
composition and genetic base of aquatic organisms through interruption of
valley networks™, and foster the colonisation of islands by new species”.
Gauging the magnitude and recurrence of all these impacts requires a solid
knowledge of the size distribution of large landslides, as single catastrophic
failures may involve volumes exceeding those of tens of thousands of smaller
landslides triggered by individual rainstorms or earthquakes.

Widely reported preconditions for giant slope failure include high
topographic relief'/, mechanically weak rocks™, though mostly combined
with hard-on-soft rock contacts™**; low-strength layers™; weathered fault
zones™”’; and unfavourably oriented rock-mass defects'®***. Still, more
systematic appraisals of how these mostly topographic and lithological traits
affect the size of Earth’s largest terrestrial landslides have been elusive. This
knowledge gap has persisted because local topographic relief is tied to both
geomorphic history and geological structure, while data collated from dif-
ferent inventories are few and often lump landslides of varying age, degree of
preservation, and mapping protocol. The preservation, detection, and
mapping of large landslides might depend on the contemporary climate that
governs the amount and dynamics of ice, snow, and vegetation cover, and
thus the types and rates of weathering and erosion that landslide evidence is
exposed to. Hence, it is plausible, though untested, that topography, rock
type, and climate influence the size distribution of the largest of slope fail-
ures. If so, we should be able to detect these influences in statistical model
parameters similarly to what has been proposed for much smaller
landslides""’. Here, we use a Bayesian extreme-value model with a multi-
level setup to overcome the limitations of small sample size, while
acknowledging the often overlooked volumetric measurement uncertain-
ties, as well as a possible climate-dependent mapping bias. We compare the
derived median landslide volumes with those of a multi-level quantile
regression that considers landslide footprint area and mean local relief as
additional predictors. Both models estimate jointly and consistently the
relative effects of local topographic setting, rock type, and climate on
landslide volume, and incorporate the wealth of prior knowledge about
landslide size scaling’.

Results

Global distribution

Welearn our models on an inventory of 411 landslides with volumes >1 km’®
that we simply term “landslides” here; these have been detected on all
continents except for Australia and Antarctica (Supplementary Data 1).
About half these landslides have been published in international peer-
reviewed journals and monographs since a first global review of large ter-
restrial landslides', whereas a fifth have been identified since, including
those from a randomised search covering 10% of all land-surface area (Fig. 1,
Supplementary Fig. 1, Supplementary Data 1). More than 95% of this total
known landslide volume resides in Cenozoic mountain belts, or only 1% of
Earth’s surface with a local relief >300m (Fig. 1; see Methods). The
remainder is in tectonically rejuvenated orogens such as the Tien Shan of
Central Asia™ or reactivated continental rift flanks with young volcanoes***".
In terms of volume moved, rock slides and rock avalanches were the
dominant (62%) landslide type*’, followed by volcanic debris avalanches
(30%), rockfalls and rock slide-earth flows (6%), and debris flows (1%;
Supplementary Fig. 1). The largest reported terrestrial landslide with a
recognisable deposit is the Las Cumbres debris avalanche in the Trans-
Mexican Volcanic Belt”, with an estimated volume of 60 km® (Fig. 1).
Reported volumes of older deposits especially can be vague, and range
between 37 and 50 km’ for one of the world’s largest Pleistocene earth-block
slides at Baga Bogd, Mongolia*’; similarly, the Seymareh rock avalanche in
Iran has published’** volume estimates between 20 and 44 km’.

Earth’s largest landslides form clusters, and more than 60% of all
mapped deposits (and total volume) are within 50 km of at least one
another, especially in the Karakoram”, Himalayas®, Northern Chile”,
Trans-Mexican Volcanic Belt"’, Central Andes™, and Kamchatka®. Many of

these clusters include numerous smaller landslides, though each of these
covers several km” still. About a quarter of the total non-volcanic landslide
volume is in deposits residing in the same valley (sometimes forming pairs),
such as the Flims and Tamins landslides in the Rhine valley, Switzerland*’
the Bonneville and Red Blufflandslides in the Columbia River valley, USA™
and the Karakudjur River landslides, Kyrgyzstan®. Many of these locations
are sparsely populated such that we can exclude a reporting bias in this
clustering. Instead, conditions favouring large-scale slope failure are not
limited to single hillslopes, but can instead involve several nearby locations.
Many landslides dot the Rafiileuvti Valley, Central Andes of Argentina®; the
Yeso Valley, Central Andes of Chile®; the Azapa Canyon, Atacama Desert
of Chile”’; and the upper Indus River, Karakoram, Pakistan®’. Overlapping
deposits of multiple debris avalanches from single volcanoes show that
conditions leading to flank collapse may be regained even after prior large-
scale failure™’. Such reactivated or repeated instabilities are also common
away from volcanoes™, though rarely with volumes >1 km®. One exception
is the 15 km® Caquilluco rock-avalanche complex in Peru™, which contains
deposits of several landslides that happened between ~600 and 110 ka.

Topographic setting

We chose a multi-level Generalised Pareto distribution (GPD) to model
landslide volumes above a fixed threshold of 1km’, while taking into
account often ignored measurement uncertainties (see Methods). We
obtained a heavy-tailed fit (shape parameter k >0 being >95% probable),
with the 10% largest deposits holding more than half of the total volume.
Hence, we use median volume to characterise this and all other distribu-
tions. To capture the landscape context of each landslide, we distinguished
between five dominant topographic settings: (1) large, mostly free-standing
volcanic edifices with subdued surrounding topography; (2) active fault-
bounded mountain range fronts with low-order drainage basins; (3) river
valleys with mostly rectilinear hillslopes; (4) trough-shaped glacial valleys
with distinct ice-shaped landforms; and (5) low-relief escarpments without
any major faults or substantial seismic activity. We find that including these
topographic settings in our GPD model alters the size scaling of landslides
credibly (meaning here that non-zero differences between topographic
settings have a > 95% posterior probability), and well beyond both data and
model uncertainties (Fig. 2). This multi-level model also outperforms a
simple GPD fit to all landslide data without acknowledging their topo-
graphic setting. The posterior estimates of scale parameter ¢ mark the
landslide sizes beyond which inverse power-law scaling sets in, and vary
credibly across the topographic groups. The shape parameter k, which is the
inverse of the power-law exponent in landslide scaling studies’, remains
indistinguishable between the different topographic settings instead
(Fig. 2¢). Volcanoes and low-relief escarpments had the highest and lowest
median landslide volumes (Supplementary Fig. 2, Supplementary Tables 1-
3), and also the largest and lowest fractions of the total volume, respec-
tively (Fig. 1b).

Topographic setting also credibly alters the relationship between
landslide volume and area. For a given area, median volumes are highest in
deeply incised river valleys, and lowest at volcanoes rising above plains
without major obstacles to runout (Fig. 3). From the corresponding ratios of
volume to area, we infer that landslide deposits were more than five times
thicker on average in river valleys than on volcanoes; narrow valleys are
more likely to confine the runout and footprint areas of landslides. We also
observe that volumetric estimates relying on landslide area become more
uncertain for larger failures (Fig. 3). This loss of predictive accuracy has gone
unrecognised in geometric scaling studies on smaller landslides. Again, the
multi-level model that acknowledges different topographic settings out-
performs the simpler volume-area model that does not (Supplementary
Table 4). Hence, landslide volume-area relationships that rely on lumped
data from different study areas'' likely underestimate volumes in river
valleys and overestimate volumes at volcanoes, especially.

We emphasise that this discriminatory effect of dominant topographic
setting cannot be captured by mean local relief alone, which hardly predicts
median landslide volume: regression slopes across all topographic settings
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Fig. 1 | Global distribution of the largest terrestrial landslides with estimated
volumes of > 1 km®. a Map of binned abundance with respect to local relief.

b Distribution of mean local relief (within 15 km of landslides; blue) and fraction of
total volume by topographic setting (orange); ESC — escarpment or anticline,
FAULT - fault-bounded mountain front, GLAC - glacial valley, FLUV - river valley,
VOLC - volcanic edifice. ¢ Mean local relief by dominant rock type: PLUT -

plutonic, META - metamorphic, VOLC - volcanic, VOLC + SED - volcanic and
sedimentary, SED - sedimentary. d Mean local relief by climate zone of Képpen-
Geiger classification”: A - tropical, B - dry, C - temperate, D - continental, E -
polar/mountain. Boxes span interquartile ranges; whiskers are maximum and
minimum values; thick blue lines are medians; numbers show sample size.

are indistinguishable from zero with 95% posterior probability (Supple-
mentary Fig. 3).

Dominant rock type

Steep topography and high erosion rates often expose a narrow range of rock
types. Landslides in deeply incised valleys mainly involved metamorphic
and plutonic rocks™***’, whereas in low relief (<500 m) failures originated
almost exclusively from volcanoes™, or in sedimentary rocks featuring weak
mudstones™, clays’, marls™ or tuffs*” capped by more competent, often
volcanic, rocks. Such landslides abound on the basaltic plateaus of Oregon™
and Patagonia™, and the Caspian Sea coast, Kazakhstan®', where local relief
is only 100-200 m (see Methods). Sedimentary and volcanic rocks have
been the source of nearly three quarters of the total landslide
volume (Fig. 1c).

Regardless, we observe that dominant rock type hardly affects the size
distribution or volume-area scaling of Earth’s largest landslides, at least
much less than does topographic setting (Fig. 4a-c, Supplementary Table 2).
Only landslides involving volcanic rocks stand out credibly such that their
deposits are thinnest on average (Supplementary Fig. 4), and largest for a

fixed mean local relief (Supplementary Fig. 5). Nearly half of the volume of
all landslides derived from volcanic edifices or basaltic tablelands, and
volcanic debris avalanches alone have moved about a third (Fig. 1c). These
are some of the largest terrestrial landslides, likely because of deeper, bowl-
shaped scars and longer hillslopes compared to slope failures elsewhere™.
However, the local relief of landslide sites in volcanics is lowest compared to
other rock types, and thus discloses little about failure volume directly
(Fig. 1b). Similarly, landslides from volcanoes and active fault-bounded
range fronts have the highest posterior median volumes (2.8 **7/_ ., km’
and 2.3 *1%/_ ,, km’, respectively), despite a lower local relief compared to
fluvial and glacial valleys (Fig. 1b, Supplementary Fig. 2). One mechanistic
property that volcanoes and fault-bounded range fronts might share is the
spacing of major rock-mass defects such as first-order faults or basal
décollements. Besides generating large earthquakes with sufficient transient
stresses, fault zones are prone to mechanical and geochemical rock-mass
weakening, thus preparing likely shear surfaces for giant slope failure.
Nearly two third of the total landslide volume is within 50 km of major
active fault zones such as the Raikot Fault in the Karakoram®***; the Alpine
Fault, New Zealand™; or the North Anatolian Fault zone, Turkey”
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Fig. 2 | Size distributions of landslides grouped by topographic setting. a Bayesian
multi-level fit of generalised Pareto distribution (GPD); lines are posterior medians
and shades are 95% highest density intervals (HDIs), in which predictions occur with
0.95 probability; p is the exceedance probability. b Samples from the joint posterior
distributions of shape parameter k; and scale parameter g; of the GPD colour-coded

by topographic setting j. ¢ Posterior estimates of kj; white circles are group-level
medians and horizontal black bars are group-level 95% HDIs; pooled median (95%
HDI) indicated by vertical (dashed) line(s) refers to estimate across all topographic
settings. d Posterior estimates of ;.

(Supplementary Data 1). In contrast, escarpments without major faults have
had the smallest landslides (Supplementary Fig. 2).

Contemporary climate and mapping bias

The distribution of our global landslide sample is likely biased by studies
focused on mountainous and volcanic terrain (Fig. 1a). The Tropics, for
example, cover 35% of the global landmass, but host only 5% of the reported
total landslide volume. In contrast, one fourth of this volume is in arid areas,
where sparse vegetation cover reveals more geomorphic evidence. A per-
sistent arid climate may aid to conserve such evidence, and the oldest dated,
topographically distinct landslide dates to ~8 Ma at Minimifii in the
extremely dry parts of northern Chile"*. However, we do recognise deposits
older than 100 ka in both arid and humid climate zones (Supplementary
Data 1). We find that grouping our data by contemporary climate zone
hardly affects landslide size distribution and volume-area scaling, as the
posterior parameter estimates are largely indistinguishable between climate
zones (Fig. 4d, e, Supplementary Figs. 6, 7). Simpler, pooled models that
disregard any groups perform equally well than multi-level models grouped
by contemporary climate zones (Supplementary Table 4). We infer negli-
gible effects of mean precipitation rates; temperature; snow, ice, or vegeta-
tion cover; or commensurate erosion and reworking, at least where these are
attributable to contemporary climate. We stress that this negligible role of
climate concerns only the size distribution and volume-area scaling. We do
not expect that contemporary climate has any mechanistic effect (as cause or
trigger), as most landslides occurred well before 1900, and likely during
different climates.

Discussion

The abundance of terrestrial landslides in Cenozoic mountain belts
supports the notion that high topographic relief and surface uplift’*” are
conducive to large slope failure (Fig. 1a, b). Landslides are prolific in tec-
tonically young or rejuvenated areas, where they might be an effective

17,38,58

erosional tool for adapting topography to geology™ (Fig. 5), and rapidly
growing volcanic edifices and fault-bounded mountain fronts. In contrast,
valleys in older, seismically less active mountain belts may offer only limited
volumes of potentially unstable rock masses and rarer triggers®. While pre-
Cenozoic mountain belts do have slope failures involving many millions of
cubic metres®', only areas with Neogene and younger tectonic rejuvenation
feature landslides™. Regardless, the effect of topographic setting on their size
distribution and volume-area scaling is unrivalled, whereas dominant rock
type and contemporary climate have few, if any, discernible effects. In terms
of landslide size, the surrounding topographic setting is more informative
than local relief (Figs. 2, 3, Supplementary Fig. 2). Mean local relief alone, if
expressed as a local elevation difference'’, is a poor predictor of landslide size
(Supplementary Figs. 3, 5, 7, Supplementary Table 3). In this regard, our
GPD multi-level models also outperform simpler models that make no
distinction between topographic settings (Supplementary Table 4).

The largest landslides occurred on volcanoes or along range-bounding
fault zones adjacent to forelands with little topographic obstacles to runout
(Fig. 2¢). In contrast, more confined mountain valleys may limit the size of
slope failure through divide spacing and reaming of major rock-mass dis-
continuities before they might form extensive failure planes (Fig. 5). Further
dissection leads to competing valley incision, narrower divide spacing, and
increasingly organised and efficient drainage, which all might reduce the
potential for landslides if relief remains moderate. Exceptions confirm this
rule, especially where some moving masses overcame major obstacles, such
as ridges or interfluves, in their flow path. For example, part of the 1.9 km’
Haldi rock avalanche, Karakoram, swashed over a ~ 500 m high bedrock
spur into an adjacent valley”. Other landslides, such as the 27 km’ Green
Lake rockslide in Fiordland, New Zealand®, instead undermined and dis-
placed several kilometres of drainage divide. Future work may wish to test
whether there is a general relationship between the age of the mountain
range and landslide size limits as proposed in Fig. 5, for example by using the
relationship between landslide size distribution and proxies of topographic
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Fig. 3 | Median landslide volume conditional on affected area grouped by
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median landslide volume conditional on landslide area with intercept &, slope f;,
and Laplace-distributed noise varying per topographic setting j; shades are 95%
credible intervals of the posterior predictive distributions that broaden with
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landslide area. Asterisks refer to standardised data with zero means and unit stan-
dard deviations. b Posterior intercepts a; refer to standardised data, and are thus
median volumes for mean (log-transformed) landslide areas in each setting; red
vertical line is zero (all other symbols and colour codes as in Fig. 2). ¢ Posterior
estimates of slope f3;.
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youth, such as exhumation® or surface uplift rates”. In any case, the con-
spicuous clustering of many landslides shows that causes and triggers extend
beyond the scale of individual unstable hillslopes.

One caveat is that landslide volumes offer lumped estimates of land-
slide size only. Morphological evidence alone may not warrant that all
landslides in our database detached rapidly. Some failures, and especially
those in low-relief settings, might have resulted from prolonged, gradual or
repeated failure instead; their volume could have accumulated from mul-
tiple, but separate smaller failures or failure phases. Starting with minor
displacements, incipient cracks in mechanically strong, brittle cap rocks
would raise infiltration, groundwater percolation, undrained loading of
shear zones, and pore water pressures along more weak and less competent
underlying sedimentary rocks that act as aquifers®™®. The rare landslide
deposit outcrops that indicate shallow basal décollements and low-angle
listric failure planes, however, could equally well support the notion of rapid
movement during lateral spreads. Clearer evidence involves breccias and
pervasive fragmentation that are diagnostic of rock and debris avalanches"’,
especially in volcanic settings and along fault-bounded range fronts. There,
recurring seismic and volcanic triggers pair up with topographically
unconfined runout paths to allow for Earth’s largest terrestrial landslides.

Yet, even these landslides are small compared to their submarine and
extraterrestrial cousins. The total volume of the largest hitherto detected
terrestrial landslides (1860 km?®) is several times smaller than that of indi-
vidual submarine landslides*®"’; some of these off Hawaii*® may have moved
more than 5000 km’. Large submarine and extraterrestrial landslides gen-
erally have larger source areas than topographically confined terrestrial
landslides. Large landslides on Mars, for example, detached from hillslopes
that are several kilometres higher and at least an order of magnitude longer
than on Earth, as higher topography is necessary to attain critical shear stress
under lower gravity”. Yet Earth’s volcanic debris avalanches are more
similar to submarine and extraterrestrial avalanches in terms of size and
mobility, as their runout is rarely limited by major topographic obstacles.
Compared to submarine landslides, terrestrial ones occur in more geolo-
gically diverse materials with less extensive discontinuities that limit their
size. Submarine landslides detach mainly from gently inclined continental
margin slopes (~1°-5°) capped by weak sedimentary and methane hydrate
layers that form potential sliding planes™**”°, whereas steeper submarine
canyons give rise to smaller failures. While our database focuses on land-
slides with a recognisable topographic footprint, geological evidence of

failures involving 2000-3000 km® dated to >20 Ma, such as the Heart
Mountain detachment’”” or the Markagunt gravity slide” in the western
United States, show that Earth has terrestrial landslides of sizes similar to
those on ocean floors or on Mars"”. The apparent difference in the size range
of the largest landslides between Earth and Mars may also reflect different
preserving conditions on Mars that allow the topographic footprint to
remain detectable for several billion years; thus, longer time series should
also capture more landslides of larger magnitude".

In summary, we find that grouping landslides by their topographic
setting brings out the strongest contrast in their size distributions and
median volumes, at least if compared to the effects of dominant rock type or
contemporary climate as alternative categories, and regardless of volumetric
uncertainties that are rarely reported. We conclude that knowledge about
the specific placement of large-scale slope failure with respect to landforms
such as volcanoes, mountain fronts, or valleys is more informative for
estimating (and distinguishing) landslide size than a single quantitative
measure such as mean local relief. Although varying rock-mass strength is
widely regarded as important for making hillslopes susceptible to large-scale
failures, the dominant rock-type group involved hardly affects their size
distribution and volume-area scaling, except for volcanic settings. This
finding challenges the notion that parameters of power-law fits to landslide
size data reveal information about material properties such as cohesive
strength or internal fiction”. Similarly, contemporary climatic setting has a
negligible effect on landslide size statistics despite any commensurable
differences in the rates of vegetation cover, snow and ice cover, weathering,
or erosion that may have altered geomorphic evidence and thus detect-
ability. Hence, we can rule out any major detection or mapping bias arising
from contemporary climatic conditions. We conclude that future bulk
volumetric and area estimates of Earth’s largest terrestrial slope failures
might benefit most from a closer consideration of topographic setting and
material properties that go beyond nominal rock types and include instead
lithological contrasts, defects, and discontinuities.

Methods

Mapping

We compiled a global inventory of the largest terrestrial landslides, focusing
only on rapid to extremely rapid* slope failures involving >1 km’ of material
or affecting >10 km’ of terrain. Our choice of this arbitrary size threshold
reflects a compromise between a large enough sample size and a justified use
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of an extreme-value model for estimating size scaling properties. We con-
sidered landslide volumes to within 25% of our size threshold to account for
uncertain estimates, and assumed volumetric errors in all data (see below),
although these errors are rarely reported. We focus on landslides with evi-
dence of catastrophic motion and a detectable topographic imprint.
Determining from geomorphic evidence whether a landslide involved a
distinct catastrophic failure relies on a suite of diagnostic evidence™”*,
including hummocky and sharp-lipped flow lobes of coarse rock fragments;
run-up or swash against topographic obstacles or hillslopes; traces of
extensive movement upstream; toreva blocks; molards; or lateral levees. In
case of stacked or overlapping landslide deposits of likely differing ages, we
only mapped the one that was the uppermost in the stratigraphy, the geo-
morphically most distinct, and had the highest surface roughness, given that
the failure dimensions exceeded our size threshold. We only considered
landslides for which we could associate the source area with a commensu-
rately large deposit, and ignored surrounding or superimposed failures
affecting smaller portions of the main headscarp or those that reworked
parts of the deposit. We also excluded slow-moving hillslope-scale failures
with landforms such as ridge-top depressions and counter-slope scarps
diagnostic of deep-seated gravitational slope deformation®”*”, or land-
slides with vague outlines or those indicating prolonged phases of slow
failure. We collected information from some 140 publications, including
landslide catalogues and case studies (Supplementary Data 1). Few previous
global compilations of large landslides focused on volcanoes™” or the ocean
floor*, while regional catalogues covered parts of the Andes™**”*; the
European Alps™>*; Anatolia®; Central Asia®*"; the Mexican Volcanic Belt*’;
and Kamchatka'. Some inventories included coastal areas, plateaus, or hilly
areas”””. We complemented these published data with landslides from our
own mapping. We used a worldwide search grid to obtain a systematic and
geographically unbiased sample, including also regions with few or no
reported landslides. We used ESRI ArcGIS Pro to place 2000 randomly
distributed search points on the land surface except for Antarctica and
glaciated regions, and grouped these points by four bins of local topographic
relief (0-200 m; 201-1000 m; 1001-2500 m; and 2500-5080 m; defined as
the maximum elevation range in 5 km radius, see below), and weighted the
number of points per bin by the number of published landslides in this bin.
Thus, we allocated more search points to areas with more reported land-
slides. About 75% of the land surface is in the 0-200 m relief bin, such that
we doubled the number of search points in this bin to reduce a bias towards
low-relief areas. Each of us searched independently for evidence of land-
slides in a 50 km radius around each point, thus covering about 10% of the
global land surface. We used satellite imagery from Maxar (mostly Quick-
Bird-2, GeoEye-1, and WorldView2-4 satellites) with a maximum resolu-
tion of 0.6 m, and shaded relief based on 24-m WorldDEM4Ortho data,
both provided by the ESRI™ World Imagery service (https://services.
arcgisonline.com/arcgis/rest/services). We mapped landslides from oblique
views in Google Earth Pro™, recording location, total affected area, vertical
drop H, runout L, and apparent mobility™ H/L of each landslide using a set
of common criteria (Supplementary Data 1). We discerned rock avalanches,
rockslides, rock slides-earthflows, volcanic debris avalanches, and debris
flows on the assumption that all deposits indicated catastrophic emplace-
ment (Supplementary Fig. 1). Fewlandslide deposits in our inventory have a
vague or curiously stacked deposit morphology that may indicate multiple
slope failures. We excluded any landslides without distinct lateral scarps, but
part of larger complexes of multiple adjacent or superimposed failures that
are hard to distinguish from each other. Examples of such complexes
include valley-flank collapses that line hundreds of kilometres of the
quebradas of coastal Peru and Chile” or basaltic plateaus in eastern
Patagonia®. About half of the 411 landslides in our database were published
since a first global review of large terrestrial landslides", while a fifth was
identified since or previously unpublished (Fig. 1, Supplementary Fig. 1).

Landslide characteristics
We obtained several major topographic and geological, and climatic char-
acteristics (Supplementary Data 1), taking parameters such as volume, area,

headscarp elevation, drop height, runout, and mobility mostly from the
original sources, and computed these metrics for all landslides. Where
possible, we estimated volumes by reconstructing the pre-failure topo-
graphy. We note that 25, or about one third, of the landslides that we
detected during the random search have well-defined, bowl-shaped source
areas. For these cases, we estimated the failure volumes by joining as straight
lines the contours across the source area, based on 30 m SRTM global
elevation data global digital elevation data (https://topex.ucsd.edu/WWW_
html/srtm30_plus.html). We multiplied these volume estimates by a factor
of 1.25 to allow for volumetric bulking'”**”. For 49 other cases, we were
unable to delineate scarp areas sufficiently well, but the landslide deposits
largely overlapped the sliding planes, such that we estimated landslide
thickness from a series of topographic profiles, and a half-ellipsoid
approximation®. For rock avalanches fully evacuating material from the
scarp we used a cut-and-fill method for calculations source areas and
deposits, whereas for rockslides obscuring the sliding plane we also esti-
mated the depth from the cross-section and used the half-ellipsoid
approximation®’. For deposits on floodplains, valley fills, or volcanic ring
plains, we estimated the deposit volume rising above the valley floor. To this
end, we joined contours that remained undisturbed by slope failure to
reconstruct the pre-failure topography. This method likely returns a mini-
mum volume estimate as post-failure sedimentation may have buried parts
of the deposit. For river-blocking landslides, we estimated the deposit
thickness by interpolating the river longitudinal profile between unaffected
upstream and downstream locations: a dammed profile has a distinct
knickpoint that scales in size with the average thickness of the dam. Where
available, we recorded both source and deposit volume for each landslide. In
all scenarios we assumed relative volumetric errors to be of the order of
+25% per unit standard deviation. We estimated mean local relief as the
maximum elevation gain over a 5 km distance (to be consistent with pre-
vious work'”) within 15 km of each landslide centroid from the SRTM30
data in World Equidistant Cylindrical projection. We also assigned to each
landslide one of five topographic settings surrounding the site, i.e., volcanic
edifices, fault-bounded mountain fronts, escarpments, river valleys, and
glacial valleys. The dominant lithology concerns the main rock group rocks
forming the source area of each landslide, and taken from the original
literature (i.e., for 80% of our inventory data). For cases that we identified
through our own mapping, we assigned the dominant lithology using the
Global Lithological Map database (GLiM*), and cross-checked this infor-
mation with national geological maps, such as the National Geological Map
Database of the United States (https://ngmdb.usgs.gov/ngmdb/ngmdb_
home html). While published studies mostly resolve the main material
involved in landslides at the level of individual rock types, we can establish
consistent data for our mapped landslides only by lumping information
about the dominant lithology (in terms of its area intersecting with the
source area) into five groups, ie., plutonic, metamorphic, sedimentary,
volcanic, and volcanic-sedimentary. Given that the landslides considered
here each cover >10 km’, our approach avoids local inaccuracies in regional-
scale geological data. We further recorded the distance from active faults,
defined as being capable of producing moderate to large earthquakes and
having geologic evidence of recent deformation, historic earthquake activity,
or measurable geodetic strain accumulation, from the Global Active Faults
database™. Finally, we assigned one of five contemporary climate zones to
each landslide according to the Képpen-Geiger classification””. We use these
climate zones as a proxy of average vegetation, cloud, snow, and ice cover.
We assume that, to first order, more vegetation hides more geomorphic
evidence of landslides, while also altering the potential for reworking this
evidence by erosion or deposition. Snow and ice might similarly conceal
evidence, but are likely more effective in also in removing it.

Landslide size and scaling models

We used Bayesian inference to learn the volumetric distribution of land-
slides, drawing on extreme-value theory for peak-over-threshold observa-
tions. Using an arbitrary threshold fixed at u = 0.75 km’ (that allows for 25%
uncertainty in reported volumetric estimates within our nominal lower size
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limit of 1 km®), we fitto i = 1,..., n reported landslide volumes a GPD, which
in its heavy-tailed case has probability density**:

powka =L

Here y > u is landslide volume above threshold 1; and ¢ > 0 is the scale,
and k>0 is the shape parameter. In extreme-value theory, the GPD
approximates the expected distribution of sample observations truncated at
a sufficiently high u. The scale ¢ marks the sample sizes beyond which
inverse power-law scaling sets in, while shape k is the inverse of the power-
law scaling exponent used in numerous landslide statistical studies’. Both
parameters express a statistical expectation of how extreme landslides sizes
are distributed, regardless of any underlying physics. Given the largely
unreported uncertainties regarding landslide volumes (as high as +50% for
individual cases), we included in our GPD model a measurement model that
assumes that the real, but unobserved, landslide volumes y, are lognormal
distributed with location 71, and scale s,, > 0, and that both reported and our
own estimated volumes y,ps are prone to some fixed measurement noise
7>0:

y, ~ lognormal(m,,s,)

(22)

Yoos ~ (N (r:7) (25)

The lognormal model reflects our theoretical expectation of encoun-
tering multiplicative errors in landslide volumes, as they are often practically
obtained by multiplying areas with mean thicknesses. We estimated 1, and
s, directly from the data, and found that values of 7 < 5 km” in a properly re-
normalised Gaussian distribution hardly changed our overall results. Such
fixed measurement noise adds higher volumetric uncertainty to the more
numerous smaller landslides that dominate our parameter estimates. To
simulate also independently the effect of volumetric error estimates in our
data, we replicated model runs numerous times, each time with randomly
generated point-wise relative Gaussian errors of up to 4-/— 25%. Again, this
randomisation hardly altered the main outcomes of our models. We use a
multi-level model, which lets both k and o vary with j=1, ..., ] group labels
in the data, while also providing a pooled estimate across all data, and thus
obviating the problem of low sample size and potential overfitting (i.e., too
confident parameter estimates) for each group. We choose physically
plausible groups that characterise different (a) topographic settings sur-
rounding the landslide sites, (b) dominant lithologies, and (c) contemporary
climate zones, and set up a multi-level model for each of these three cate-
gorical variables. The GPD can be cast as an exponential-gamma mixture
model®, hence we model the spread of k; (and ;) between these groups with
a Gamma distribution of shape a >0 and rate 5 > 0 (of shape ;>0 and
rate 3> 0); all these hyper-parameters are learned independently from the
data, and specified by half-Gaussian priors® to ensure positive parameter
values:

g ~ GPD(u, k;, ) (3a)
k; ~ Gamma(ay, B (3b)
0; ~ Gamma(a,, ;) (3¢)
a ~ N(0,5) (3d)
B ~ N(0,2) (3¢)
a, ~ N(0,5) (3f)
B, ~ N(0,5) (3

These hyper-prior distributions capture the range of reported'* scaling
exponents for landslide volumes, i.e., 1/3 <k < 1; Yjii) means the ith landslide
belonging to group j. The median of the GPD is defined as

k
5w ZE=D @
k

such that we can obtain the group-wise median landslide volumes directly
from the posterior parameter estimates of k; and g;. To estimate the median
volume also conditional on its total affected (footprint) area y;, or instead the
local mean relief H;, we ran a separate set of Bayesian multi-level models
using a median regression. This specific form of (fixed) quantile regression is
based on a symmetric Laplace (or double-exponential) distribution™ that is
invariant to log-transformed data:

P(J’Wv K) =iexp(_U) )

2K K

where « is a scale parameter. We model the conditional median landslide
volume as a linear combination of intercept g, and predictor x (either area y;,
orlocal mean relief H;) weighted by slope b. We use the same J group levels of
topographic setting, dominant rock type, and climate zone, and let inter-
cepts a; and slopes b; vary per group j. We also let the rate parameter of the
double-exponential likelihood ; scale with x, thus acknowledging that the
spread of reported volumetric estimates may vary commensurately for a
given landslide size or mean local relief:

Vi ™~ Laplace (}Nijm, K]-> (6a)
jvzj =a;+bx (6b)
K=¢+dx (6¢)

a;~ Student - t(3,0, 1) (6d)

bj ~ Student - t(3,0, 1) (6e)
¢~ Student - t(3,0, 1) (6f)
dj ~ Student - t(3,0, 1) (6g)

We used weakly informative, zero-centred Student- distributed priors
with three degrees of freedom on hyper-parameters aj, bj, oS and d] We
standardise the input data such that the group-level regression intercepts a;
are the estimated median volumes for mean inputs, i.e., the average (log-
transformed) landslide area, or the average local relief, per group. Analytical
solutions of both the Bayesian GPD and median regression models are
intractable. Hence, we numerically approximated the posterior joint dis-
tributions using the R package brms", which calls the probabilistic pro-
gramming language STAN’ and offers median regression. We
implemented the GPD models in STAN directly and ran the simulations in
the free statistical programming environment R (https://cran.r-project.
org/). All models ran a no-U-turn sampling scheme in four separate
chains of 2000 samples each (including 500 warmup iterations) that we
checked for convergence before running posterior predictive checks with
the data.

One main advantage of both GPD and quantile models is that they
offer predictive posterior distributions of volume for each individual land-
slide, while drawing on its topographic, lithological or climatic group con-
text as well as the entire sample size. We estimated the difference between
expected log predictive densities™ of each group-level model to identify the
most suitable, and also compared these models with simpler (“pooled”)
variants fitted to all data without any group levels. We used 95% highest
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density intervals (HDISs) of the posterior estimates of the group-level pre-
dictors to check for credibly non-zero deviations from a pooled model
conditioned on all data. A 95% HDI expresses the numerical range of a
model estimate (i.e., any parameter, or any given landslide volume) with a
95% posterior credibility. Given the data and the prior knowledge specified,
we believe that the desired model estimate is within that range with 0.95
probability.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

Alllandslide data (Supplementary Data 1) needed to reproduce the results of
this study are contained in a comma-separated (CSV) file that is publicly
available at Zenodo (https://doi.org/10.5281/zenodo.15908067). The 30-m
SRTM global digital elevation data form the basis of all our topographic
measurements, and are also freely available (https://topex.ucsd.edu/
WWW _html/srtm30_plus.html). The GLIM data on major lithological
groups are publicly available in gridded format in the PANGEA database
(https://doi.org/10.1594/PANGAEA.788537), while data on active fault
zones are listed in an open repository (https:/github.com/
GEMScienceTools/gem-global-active-faults). An updated version of the
current climatological data according to the Koppen-Geiger classification is
also available in gridded format (https://koeppen-geiger.vu-wien.ac.at/). All
other landslide-case specific information is contained in the references listed
in our landslide catalogue.

Code availability

We provide an R HTML Notebook in the Supplementary Material to
document the entire workflow and code needed to reproduce the results of
this study. This document was generated using the freely available software
environment R (https://cran.r-project.org/) version 4.4.3 (2025-02-28), and
the free desktop version of the RStudio/Posit IDE (https:/posit.co/
downloads/) version 2025.05.1 + 513.
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