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Size estimates of Earth’s largest
terrestrial landslides informed by
topographic setting
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Landslides regulate the height of mountains by releasing potential energy and reducing topographic
relief. Yet, relief also limits the dimensions of small, frequent landslides in turn. But how local
topography, lithology, and climate influence the size distribution and hazard of Earth’s largest
terrestrial landslides remains unclear. Here we use Bayesian regression to estimate these effects on
landslide volume, drawing on a worldwide sample of 411 cases, each involving > 1 km3. Nearly two
third of their total volume is volcanic and sedimentary rocks within 50 km of active fault zones,
clustered in actively upliftingmountain belts and on volcanic plateaus. Volumetric estimates varymost
distinctly with dominant topographic setting, regardless of local relief, general rock type, or
contemporary climate. These largely negligible effects indicate that volume scaling statistics fail to
capture differing bulk lithological properties, let alone a detection bias due to climatic controls on land
cover, weathering, or erosion.

The idea that topographic relief cannot grow indefinitely and must be
limitedbymaterial strength anderosionhaspositedmasswasting, especially
landsliding, as a natural and ubiquitous constraint on mountain growth1.
However, tectonic activity and local topography alter crustal stress fields,
fracture patterns, and the arrangement ofmajor rock-mass defects, which in
turnmay constrain the size of slope failure2. Both these concepts are intuitive
and rooted in physics-based models of slope stability, but empirical tests
have considered small landslides (usually involving less than 1million m3)
only, supporting the notion that fracture spacing in dissected bedrock
determines the size of frequent slope failures3,4. How such structural or
topographic controls play out for larger, and commensurately rarer, land-
slides remains unexplored, especially with variations in rock type and cli-
mate that affectweathering, erosion rates, and thus the longevity of landslide
evidence. In general, the size scalingof landslides ismodelled statistically as a
power-law tail of a probability distribution fitted to mapped footprint areas
of thousands to hundreds of thousand landslides that were triggered during
a single earthquake or rainstorm in recent times5–9. The modes, or “roll-
overs” of these fitted distributions—beyond which power-law scaling
approximately sets in—might mark size-dependent changes in cohesive
strength, soilmoisture, topographic constraints on runout, detectionbias, or
a combination thereof 4,10. Whether similar mechanistic interpretations are
valid for very large landslideswith volumes >>106m3 is unknownbecause of
fewer samples and more statistical noise. Nonetheless, models of how

landslide volume scales with footprint area, for example, remain a foun-
dation of estimating hillslope erosion, mass fluxes, geomorphic work, and
hazard.While this scalingmay differ between soil and bedrock landslides11,
other possible influences beyond material types have been hardly explored.
Overall, the large body of statistical landslide studies hasmostly ignored the
very large landslides that affect several square kilometres or involve at least
hundreds of millions of cubic metres. Hence, we know very little about
whether and how key controls on slope stability, such as topography, rock
type, or climate affect the size of the largest terrestrial slope failures, each
involving >1 km3. This size distribution is essential for estimating hazard
and risk levels, and hence, our knowledge base about exceptionally large
landslides remains curtailed.

Yet, large landslides leave distinct footprints on the surface of theEarth,
several planets, and moons12,13. Unlike smaller, shallow landslides with
short-lived geomorphic impacts, scars and deposits of large landslides can
remain recognisable in the landscape for up to several million years14. Large
landslides are effective processes of shallow lithospheric fragmentation15,16,
reshape entire hillslopes by releasingpotential energy in response to tectonic
uplift, river and glacier erosion, and topography-induced stresses17, and
form major point sources of sediment and biogeochemical fluxes18. Large
slope failures can lower mountain peaks, shift drainage divides19, dam
rivers20, and disturb the hydrological balance, sediment calibre, and trans-
port capacity of streams21,22. The collapse of volcanic flanks can decompress
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magma chambers and promote eruptions23, while major coastal landslides
can cause tsunamis with local run-up of hundreds of metres24. Catastrophic
landslides can disturb ecosystems by driving biodiversity25, alter the species
composition and genetic base of aquatic organisms through interruption of
valley networks26, and foster the colonisation of islands by new species27.
Gauging the magnitude and recurrence of all these impacts requires a solid
knowledge of the size distribution of large landslides, as single catastrophic
failuresmay involve volumes exceeding those of tensof thousands of smaller
landslides triggered by individual rainstorms or earthquakes.

Widely reported preconditions for giant slope failure include high
topographic relief 17, mechanically weak rocks28, though mostly combined
withhard-on-soft rock contacts29–33; low-strength layers34–36; weathered fault
zones33,37; and unfavourably oriented rock-mass defects16,38,39. Still, more
systematic appraisals of how thesemostly topographic and lithological traits
affect the size of Earth’s largest terrestrial landslides have been elusive. This
knowledge gap has persisted because local topographic relief is tied to both
geomorphic history and geological structure, while data collated from dif-
ferent inventories are few andoften lump landslides of varying age, degree of
preservation, and mapping protocol. The preservation, detection, and
mappingof large landslidesmight dependon the contemporary climate that
governs the amount and dynamics of ice, snow, and vegetation cover, and
thus the types and rates of weathering and erosion that landslide evidence is
exposed to. Hence, it is plausible, though untested, that topography, rock
type, and climate influence the size distribution of the largest of slope fail-
ures. If so, we should be able to detect these influences in statistical model
parameters similarly to what has been proposed for much smaller
landslides4,10. Here, we use a Bayesian extreme-value model with a multi-
level setup to overcome the limitations of small sample size, while
acknowledging the often overlooked volumetric measurement uncertain-
ties, as well as a possible climate-dependent mapping bias. We compare the
derived median landslide volumes with those of a multi-level quantile
regression that considers landslide footprint area and mean local relief as
additional predictors. Both models estimate jointly and consistently the
relative effects of local topographic setting, rock type, and climate on
landslide volume, and incorporate the wealth of prior knowledge about
landslide size scaling4.

Results
Global distribution
We learnourmodels on an inventory of 411 landslideswith volumes>1 km3

that we simply term “landslides” here; these have been detected on all
continents except for Australia and Antarctica (Supplementary Data 1).
About half these landslides have been published in international peer-
reviewed journals and monographs since a first global review of large ter-
restrial landslides17, whereas a fifth have been identified since, including
those fromarandomised searchcovering10%of all land-surface area (Fig. 1,
Supplementary Fig. 1, Supplementary Data 1). More than 95% of this total
known landslide volume resides in Cenozoic mountain belts, or only 1% of
Earth’s surface with a local relief >300m (Fig. 1; see Methods). The
remainder is in tectonically rejuvenated orogens such as the Tien Shan of
CentralAsia39 or reactivated continental riftflankswith youngvolcanoes40,41.
In terms of volume moved, rock slides and rock avalanches were the
dominant (62%) landslide type42, followed by volcanic debris avalanches
(30%), rockfalls and rock slide-earth flows (6%), and debris flows (1%;
Supplementary Fig. 1). The largest reported terrestrial landslide with a
recognisable deposit is the Las Cumbres debris avalanche in the Trans-
Mexican Volcanic Belt43, with an estimated volume of 60 km3 (Fig. 1).
Reported volumes of older deposits especially can be vague, and range
between 37 and 50 km3 for one of theworld’s largest Pleistocene earth-block
slides at Baga Bogd, Mongolia44; similarly, the Seymareh rock avalanche in
Iran has published34,45 volume estimates between 20 and 44 km3.

Earth’s largest landslides form clusters, and more than 60% of all
mapped deposits (and total volume) are within 50 km of at least one
another, especially in the Karakoram37, Himalayas46, Northern Chile29,
Trans-MexicanVolcanicBelt47, CentralAndes33, andKamchatka48.Manyof

these clusters include numerous smaller landslides, though each of these
covers several km2 still. About a quarter of the total non-volcanic landslide
volume is in deposits residing in the same valley (sometimes forming pairs),
such as the Flims and Tamins landslides in the Rhine valley, Switzerland49;
the Bonneville andRedBluff landslides in theColumbiaRiver valley,USA50;
and the Karakudjur River landslides, Kyrgyzstan39. Many of these locations
are sparsely populated such that we can exclude a reporting bias in this
clustering. Instead, conditions favouring large-scale slope failure are not
limited to single hillslopes, but can instead involve several nearby locations.
Many landslides dot theRañileuvúValley, CentralAndes ofArgentina33; the
Yeso Valley, Central Andes of Chile33; the Azapa Canyon, Atacama Desert
of Chile29; and the upper Indus River, Karakoram, Pakistan20. Overlapping
deposits of multiple debris avalanches from single volcanoes show that
conditions leading to flank collapse may be regained even after prior large-
scale failure51. Such reactivated or repeated instabilities are also common
away from volcanoes39, though rarely with volumes >1 km3. One exception
is the 15 km3 Caquilluco rock-avalanche complex in Peru52, which contains
deposits of several landslides that happened between ~600 and 110 ka.

Topographic setting
We chose a multi-level Generalised Pareto distribution (GPD) to model
landslide volumes above a fixed threshold of 1 km3, while taking into
account often ignored measurement uncertainties (see Methods). We
obtained a heavy-tailed fit (shape parameter k > 0 being >95% probable),
with the 10% largest deposits holding more than half of the total volume.
Hence, we use median volume to characterise this and all other distribu-
tions. To capture the landscape context of each landslide, we distinguished
between five dominant topographic settings: (1) large, mostly free-standing
volcanic edifices with subdued surrounding topography; (2) active fault-
bounded mountain range fronts with low-order drainage basins; (3) river
valleys with mostly rectilinear hillslopes; (4) trough-shaped glacial valleys
with distinct ice-shaped landforms; and (5) low-relief escarpments without
anymajor faults or substantial seismic activity.We find that including these
topographic settings in our GPD model alters the size scaling of landslides
credibly (meaning here that non-zero differences between topographic
settings have a > 95% posterior probability), and well beyond both data and
model uncertainties (Fig. 2). This multi-level model also outperforms a
simple GPD fit to all landslide data without acknowledging their topo-
graphic setting. The posterior estimates of scale parameter σ mark the
landslide sizes beyond which inverse power-law scaling sets in, and vary
credibly across the topographic groups. The shape parameter k, which is the
inverse of the power-law exponent in landslide scaling studies4, remains
indistinguishable between the different topographic settings instead
(Fig. 2c). Volcanoes and low-relief escarpments had the highest and lowest
median landslide volumes (Supplementary Fig. 2, Supplementary Tables 1-
3), and also the largest and lowest fractions of the total volume, respec-
tively (Fig. 1b).

Topographic setting also credibly alters the relationship between
landslide volume and area. For a given area, median volumes are highest in
deeply incised river valleys, and lowest at volcanoes rising above plains
withoutmajor obstacles to runout (Fig. 3). From the corresponding ratios of
volume to area, we infer that landslide deposits were more than five times
thicker on average in river valleys than on volcanoes; narrow valleys are
more likely to confine the runout and footprint areas of landslides. We also
observe that volumetric estimates relying on landslide area become more
uncertain for larger failures (Fig. 3). This loss of predictive accuracyhas gone
unrecognised in geometric scaling studies on smaller landslides. Again, the
multi-level model that acknowledges different topographic settings out-
performs the simpler volume-area model that does not (Supplementary
Table 4). Hence, landslide volume-area relationships that rely on lumped
data from different study areas11 likely underestimate volumes in river
valleys and overestimate volumes at volcanoes, especially.

We emphasise that this discriminatory effect of dominant topographic
setting cannot be captured bymean local relief alone, which hardly predicts
median landslide volume: regression slopes across all topographic settings
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are indistinguishable from zero with 95% posterior probability (Supple-
mentary Fig. 3).

Dominant rock type
Steep topographyandhigh erosion rates often expose anarrowrangeof rock
types. Landslides in deeply incised valleys mainly involved metamorphic
and plutonic rocks20,33,39, whereas in low relief (<500m) failures originated
almost exclusively from volcanoes51, or in sedimentary rocks featuringweak
mudstones38, clays31, marls53 or tuffs30 capped by more competent, often
volcanic, rocks. Such landslides abound on the basaltic plateaus of Oregon30

and Patagonia32, and the Caspian Sea coast, Kazakhstan31, where local relief
is only 100–200m (see Methods). Sedimentary and volcanic rocks have
been the source of nearly three quarters of the total landslide
volume (Fig. 1c).

Regardless, we observe that dominant rock type hardly affects the size
distribution or volume-area scaling of Earth’s largest landslides, at least
much less thandoes topographic setting (Fig. 4a–c, SupplementaryTable 2).
Only landslides involving volcanic rocks stand out credibly such that their
deposits are thinnest on average (Supplementary Fig. 4), and largest for a

fixed mean local relief (Supplementary Fig. 5). Nearly half of the volume of
all landslides derived from volcanic edifices or basaltic tablelands, and
volcanic debris avalanches alone have moved about a third (Fig. 1c). These
are some of the largest terrestrial landslides, likely because of deeper, bowl-
shaped scars and longer hillslopes compared to slope failures elsewhere54.
However, the local relief of landslide sites in volcanics is lowest compared to
other rock types, and thus discloses little about failure volume directly
(Fig. 1b). Similarly, landslides from volcanoes and active fault-bounded
range fronts have the highest posterior median volumes (2.8 +0.7/– 0.7 km

3

and 2.3 +1.0/– 0.7 km
3, respectively), despite a lower local relief compared to

fluvial and glacial valleys (Fig. 1b, Supplementary Fig. 2). One mechanistic
property that volcanoes and fault-bounded range fronts might share is the
spacing of major rock-mass defects such as first-order faults or basal
décollements. Besides generating large earthquakes with sufficient transient
stresses, fault zones are prone to mechanical and geochemical rock-mass
weakening, thus preparing likely shear surfaces for giant slope failure.
Nearly two third of the total landslide volume is within 50 km of major
active fault zones such as the Raikot Fault in the Karakoram20,55; the Alpine
Fault, New Zealand56; or the North Anatolian Fault zone, Turkey57

Fig. 1 | Global distribution of the largest terrestrial landslides with estimated
volumes of > 1 km3. aMap of binned abundance with respect to local relief.
bDistribution of mean local relief (within 15 km of landslides; blue) and fraction of
total volume by topographic setting (orange); ESC – escarpment or anticline,
FAULT – fault-boundedmountain front, GLAC – glacial valley, FLUV – river valley,
VOLC – volcanic edifice. cMean local relief by dominant rock type: PLUT –

plutonic, META – metamorphic, VOLC – volcanic, VOLC+ SED – volcanic and
sedimentary, SED – sedimentary. dMean local relief by climate zone of Köppen-
Geiger classification87: A – tropical, B – dry, C – temperate, D – continental, E –

polar/mountain. Boxes span interquartile ranges; whiskers are maximum and
minimum values; thick blue lines are medians; numbers show sample size.

https://doi.org/10.1038/s43247-025-02614-5 Article

Communications Earth & Environment |           (2025) 6:629 3

www.nature.com/commsenv


(SupplementaryData 1). In contrast, escarpmentswithoutmajor faults have
had the smallest landslides (Supplementary Fig. 2).

Contemporary climate and mapping bias
The distribution of our global landslide sample is likely biased by studies
focused on mountainous and volcanic terrain (Fig. 1a). The Tropics, for
example, cover 35%of the global landmass, but host only 5%of the reported
total landslide volume. In contrast, one fourth of this volume is in arid areas,
where sparse vegetation cover reveals more geomorphic evidence. A per-
sistent arid climatemay aid to conserve such evidence, and the oldest dated,
topographically distinct landslide dates to ~8Ma at Miñimiñi in the
extremely dry parts of northern Chile14. However, we do recognise deposits
older than 100 ka in both arid and humid climate zones (Supplementary
Data 1). We find that grouping our data by contemporary climate zone
hardly affects landslide size distribution and volume-area scaling, as the
posterior parameter estimates are largely indistinguishable between climate
zones (Fig. 4d, e, Supplementary Figs. 6, 7). Simpler, pooled models that
disregard any groups perform equally well thanmulti-level models grouped
by contemporary climate zones (Supplementary Table 4). We infer negli-
gible effects of mean precipitation rates; temperature; snow, ice, or vegeta-
tion cover; or commensurate erosion and reworking, at least where these are
attributable to contemporary climate. We stress that this negligible role of
climate concerns only the size distribution and volume-area scaling.We do
not expect that contemporary climatehas anymechanistic effect (as cause or
trigger), as most landslides occurred well before 1900, and likely during
different climates.

Discussion
The abundance of terrestrial landslides in Cenozoic mountain belts17,38,58

supports the notion that high topographic relief and surface uplift20,33 are
conducive to large slope failure (Fig. 1a, b). Landslides are prolific in tec-
tonically young or rejuvenated areas, where they might be an effective

erosional tool for adapting topography to geology59 (Fig. 5), and rapidly
growing volcanic edifices and fault-bounded mountain fronts. In contrast,
valleys in older, seismically less activemountain beltsmay offer only limited
volumes of potentially unstable rockmasses and rarer triggers60. While pre-
Cenozoic mountain belts do have slope failures involving many millions of
cubic metres61, only areas with Neogene and younger tectonic rejuvenation
feature landslides39. Regardless, the effect of topographic setting on their size
distribution and volume-area scaling is unrivalled, whereas dominant rock
type and contemporary climate have few, if any, discernible effects. In terms
of landslide size, the surrounding topographic setting is more informative
than local relief (Figs. 2, 3, Supplementary Fig. 2). Mean local relief alone, if
expressedas a local elevationdifference17, is a poor predictor of landslide size
(Supplementary Figs. 3, 5, 7, Supplementary Table 3). In this regard, our
GPD multi-level models also outperform simpler models that make no
distinction between topographic settings (Supplementary Table 4).

The largest landslides occurred on volcanoes or along range-bounding
fault zones adjacent to forelands with little topographic obstacles to runout
(Fig. 2c). In contrast, more confined mountain valleys may limit the size of
slope failure through divide spacing and reaming of major rock-mass dis-
continuities before theymight form extensive failure planes (Fig. 5). Further
dissection leads to competing valley incision, narrower divide spacing, and
increasingly organised and efficient drainage, which all might reduce the
potential for landslides if relief remains moderate. Exceptions confirm this
rule, especially where somemoving masses overcamemajor obstacles, such
as ridges or interfluves, in their flow path. For example, part of the 1.9 km3

Haldi rock avalanche, Karakoram, swashed over a ~ 500m high bedrock
spur into an adjacent valley55. Other landslides, such as the 27 km3 Green
Lake rockslide in Fiordland, New Zealand56, instead undermined and dis-
placed several kilometres of drainage divide. Future work may wish to test
whether there is a general relationship between the age of the mountain
range and landslide size limits as proposed in Fig. 5, for example byusing the
relationship between landslide size distribution and proxies of topographic
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youth, such as exhumation62 or surface uplift rates63. In any case, the con-
spicuous clusteringofmany landslides shows that causes and triggers extend
beyond the scale of individual unstable hillslopes.

One caveat is that landslide volumes offer lumped estimates of land-
slide size only. Morphological evidence alone may not warrant that all
landslides in our database detached rapidly. Some failures, and especially
those in low-relief settings, might have resulted from prolonged, gradual or
repeated failure instead; their volume could have accumulated from mul-
tiple, but separate smaller failures or failure phases. Starting with minor
displacements, incipient cracks in mechanically strong, brittle cap rocks
would raise infiltration, groundwater percolation, undrained loading of
shear zones, and pore water pressures alongmore weak and less competent
underlying sedimentary rocks that act as aquifers64,65. The rare landslide
deposit outcrops that indicate shallow basal décollements and low-angle
listric failure planes, however, could equally well support the notion of rapid
movement during lateral spreads. Clearer evidence involves breccias and
pervasive fragmentation that are diagnostic of rock and debris avalanches15,
especially in volcanic settings and along fault-bounded range fronts. There,
recurring seismic and volcanic triggers pair up with topographically
unconfined runout paths to allow for Earth’s largest terrestrial landslides.

Yet, even these landslides are small compared to their submarine and
extraterrestrial cousins. The total volume of the largest hitherto detected
terrestrial landslides (1860 km3) is several times smaller than that of indi-
vidual submarine landslides66,67; some of these offHawaii68 may havemoved
more than 5000 km3. Large submarine and extraterrestrial landslides gen-
erally have larger source areas than topographically confined terrestrial
landslides. Large landslides on Mars, for example, detached from hillslopes
that are several kilometres higher and at least an order of magnitude longer
thanonEarth, as higher topography is necessary to attain critical shear stress
under lower gravity13. Yet Earth’s volcanic debris avalanches are more
similar to submarine and extraterrestrial avalanches in terms of size and
mobility, as their runout is rarely limited by major topographic obstacles.
Compared to submarine landslides, terrestrial ones occur in more geolo-
gically diverse materials with less extensive discontinuities that limit their
size. Submarine landslides detach mainly from gently inclined continental
margin slopes (~1°–5°) capped by weak sedimentary and methane hydrate
layers that form potential sliding planes66,69,70, whereas steeper submarine
canyons give rise to smaller failures. While our database focuses on land-
slides with a recognisable topographic footprint, geological evidence of

failures involving 2000–3000 km3 dated to >20Ma, such as the Heart
Mountain detachment71,72 or the Markagunt gravity slide73 in the western
United States, show that Earth has terrestrial landslides of sizes similar to
those on oceanfloors or onMars13. The apparent difference in the size range
of the largest landslides between Earth and Mars may also reflect different
preserving conditions on Mars that allow the topographic footprint to
remain detectable for several billion years; thus, longer time series should
also capture more landslides of larger magnitude13.

In summary, we find that grouping landslides by their topographic
setting brings out the strongest contrast in their size distributions and
median volumes, at least if compared to the effects of dominant rock type or
contemporary climate as alternative categories, and regardless of volumetric
uncertainties that are rarely reported. We conclude that knowledge about
the specific placement of large-scale slope failure with respect to landforms
such as volcanoes, mountain fronts, or valleys is more informative for
estimating (and distinguishing) landslide size than a single quantitative
measure such as mean local relief 1. Although varying rock-mass strength is
widely regarded as important formaking hillslopes susceptible to large-scale
failures, the dominant rock-type group involved hardly affects their size
distribution and volume-area scaling, except for volcanic settings. This
finding challenges the notion that parameters of power-law fits to landslide
size data reveal information about material properties such as cohesive
strength or internal fiction4. Similarly, contemporary climatic setting has a
negligible effect on landslide size statistics despite any commensurable
differences in the rates of vegetation cover, snow and ice cover, weathering,
or erosion that may have altered geomorphic evidence and thus detect-
ability. Hence, we can rule out any major detection or mapping bias arising
from contemporary climatic conditions. We conclude that future bulk
volumetric and area estimates of Earth’s largest terrestrial slope failures
might benefit most from a closer consideration of topographic setting and
material properties that go beyond nominal rock types and include instead
lithological contrasts, defects, and discontinuities.

Methods
Mapping
We compiled a global inventory of the largest terrestrial landslides, focusing
onlyon rapid to extremely rapid42 slope failures involving>1 km3ofmaterial
or affecting >10 km2 of terrain. Our choice of this arbitrary size threshold
reflects a compromise between a large enough sample size and a justified use
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at different stages. Tectonically active mountain ranges (Time 1) have landslides in
high relief (H), where differing stability thresholds of sedimentary and crystalline
rock masses (blue dashed lines) are exceeded (Time 2). Ongoing erosion at balanced
uplift reduces H and removes softer sedimentary and volcanic rocks, thus limiting
the volumes of landslides. For as long as soft rocks surround the crystalline cores of
themountains, landslides can form in lower topographic relief (Time 3). Lowering of

mountain topography below the slope stability threshold of sedimentary rocks and
dissection of tablelands into remnant topography limits the size of landslides by
reducing the volume of potentially unstable rocks above base level, and trimming
major sliding planes (Time 4). Landslides in pre-Cenozoic mountains mostly
respond to tectonic rejuvenation and volcanic activity.
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of an extreme-value model for estimating size scaling properties. We con-
sidered landslide volumes towithin 25% of our size threshold to account for
uncertain estimates, and assumed volumetric errors in all data (see below),
although these errors are rarely reported. We focus on landslides with evi-
dence of catastrophic motion and a detectable topographic imprint.
Determining from geomorphic evidence whether a landslide involved a
distinct catastrophic failure relies on a suite of diagnostic evidence30,37,42,
including hummocky and sharp-lipped flow lobes of coarse rock fragments;
run-up or swash against topographic obstacles or hillslopes; traces of
extensive movement upstream; toreva blocks; molards; or lateral levees. In
case of stacked or overlapping landslide deposits of likely differing ages, we
only mapped the one that was the uppermost in the stratigraphy, the geo-
morphicallymost distinct, and had the highest surface roughness, given that
the failure dimensions exceeded our size threshold. We only considered
landslides for which we could associate the source area with a commensu-
rately large deposit, and ignored surrounding or superimposed failures
affecting smaller portions of the main headscarp or those that reworked
parts of the deposit. We also excluded slow-moving hillslope-scale failures
with landforms such as ridge-top depressions and counter-slope scarps
diagnostic of deep-seated gravitational slope deformation62,74–76, or land-
slides with vague outlines or those indicating prolonged phases of slow
failure. We collected information from some 140 publications, including
landslide catalogues and case studies (SupplementaryData 1). Few previous
global compilations of large landslides focused on volcanoes51,77 or the ocean
floor66, while regional catalogues covered parts of the Andes29,33,78,79; the
EuropeanAlps75,80; Anatolia57; Central Asia39,81; theMexicanVolcanic Belt47;
andKamchatka48. Some inventories included coastal areas, plateaus, or hilly
areas30–32. We complemented these published data with landslides from our
ownmapping. We used a worldwide search grid to obtain a systematic and
geographically unbiased sample, including also regions with few or no
reported landslides. We used ESRI ArcGIS Pro to place 2000 randomly
distributed search points on the land surface except for Antarctica and
glaciated regions, and grouped these points by four bins of local topographic
relief (0–200m; 201–1000m; 1001–2500m; and 2500–5080m; defined as
the maximum elevation range in 5 km radius, see below), and weighted the
number of points per bin by the number of published landslides in this bin.
Thus, we allocated more search points to areas with more reported land-
slides. About 75% of the land surface is in the 0–200m relief bin, such that
we doubled the number of search points in this bin to reduce a bias towards
low-relief areas. Each of us searched independently for evidence of land-
slides in a 50 km radius around each point, thus covering about 10% of the
global land surface. We used satellite imagery from Maxar (mostly Quick-
Bird-2, GeoEye-1, and WorldView2-4 satellites) with a maximum resolu-
tion of 0.6 m, and shaded relief based on 24-m WorldDEM4Ortho data,
both provided by the ESRITM World Imagery service (https://services.
arcgisonline.com/arcgis/rest/services).Wemapped landslides from oblique
views in Google Earth ProTM, recording location, total affected area, vertical
dropH, runout L, and apparent mobility82H/L of each landslide using a set
of commoncriteria (SupplementaryData 1).Wediscerned rock avalanches,
rockslides, rock slides-earthflows, volcanic debris avalanches, and debris
flows on the assumption that all deposits indicated catastrophic emplace-
ment (Supplementary Fig. 1). Few landslide deposits in our inventory have a
vague or curiously stacked deposit morphology that may indicate multiple
slope failures.We excluded any landslideswithout distinct lateral scarps, but
part of larger complexes of multiple adjacent or superimposed failures that
are hard to distinguish from each other. Examples of such complexes
include valley-flank collapses that line hundreds of kilometres of the
quebradas of coastal Peru and Chile83 or basaltic plateaus in eastern
Patagonia84. About half of the 411 landslides in our database were published
since a first global review of large terrestrial landslides17, while a fifth was
identified since or previously unpublished (Fig. 1, Supplementary Fig. 1).

Landslide characteristics
We obtained several major topographic and geological, and climatic char-
acteristics (Supplementary Data 1), taking parameters such as volume, area,

headscarp elevation, drop height, runout, and mobility mostly from the
original sources, and computed these metrics for all landslides. Where
possible, we estimated volumes by reconstructing the pre-failure topo-
graphy. We note that 25, or about one third, of the landslides that we
detected during the random search have well-defined, bowl-shaped source
areas. For these cases, we estimated the failure volumes by joining as straight
lines the contours across the source area, based on 30m SRTM global
elevation data global digital elevation data (https://topex.ucsd.edu/WWW_
html/srtm30_plus.html). We multiplied these volume estimates by a factor
of 1.25 to allow for volumetric bulking17,20,37. For 49 other cases, we were
unable to delineate scarp areas sufficiently well, but the landslide deposits
largely overlapped the sliding planes, such that we estimated landslide
thickness from a series of topographic profiles, and a half-ellipsoid
approximation42. For rock avalanches fully evacuating material from the
scarp we used a cut-and-fill method for calculations source areas and
deposits, whereas for rockslides obscuring the sliding plane we also esti-
mated the depth from the cross-section and used the half-ellipsoid
approximation42. For deposits on floodplains, valley fills, or volcanic ring
plains, we estimated the deposit volume rising above the valley floor. To this
end, we joined contours that remained undisturbed by slope failure to
reconstruct the pre-failure topography. This method likely returns a mini-
mum volume estimate as post-failure sedimentationmay have buried parts
of the deposit. For river-blocking landslides, we estimated the deposit
thickness by interpolating the river longitudinal profile between unaffected
upstream and downstream locations: a dammed profile has a distinct
knickpoint that scales in size with the average thickness of the dam.Where
available, we recorded both source and deposit volume for each landslide. In
all scenarios we assumed relative volumetric errors to be of the order of
±25% per unit standard deviation. We estimated mean local relief as the
maximum elevation gain over a 5 km distance (to be consistent with pre-
vious work17) within 15 km of each landslide centroid from the SRTM30
data in World Equidistant Cylindrical projection. We also assigned to each
landslide one of five topographic settings surrounding the site, i.e., volcanic
edifices, fault-bounded mountain fronts, escarpments, river valleys, and
glacial valleys. The dominant lithology concerns the main rock group rocks
forming the source area of each landslide, and taken from the original
literature (i.e., for 80% of our inventory data). For cases that we identified
through our own mapping, we assigned the dominant lithology using the
Global Lithological Map database (GLiM85), and cross-checked this infor-
mation with national geological maps, such as theNational GeologicalMap
Database of the United States (https://ngmdb.usgs.gov/ngmdb/ngmdb_
home.html). While published studies mostly resolve the main material
involved in landslides at the level of individual rock types, we can establish
consistent data for our mapped landslides only by lumping information
about the dominant lithology (in terms of its area intersecting with the
source area) into five groups, i.e., plutonic, metamorphic, sedimentary,
volcanic, and volcanic-sedimentary. Given that the landslides considered
here each cover >10 km2, our approach avoids local inaccuracies in regional-
scale geological data. We further recorded the distance from active faults,
defined as being capable of producing moderate to large earthquakes and
having geologic evidence of recent deformation, historic earthquake activity,
or measurable geodetic strain accumulation, from the Global Active Faults
database86. Finally, we assigned one of five contemporary climate zones to
each landslide according to theKöppen-Geiger classification87.Weuse these
climate zones as a proxy of average vegetation, cloud, snow, and ice cover.
We assume that, to first order, more vegetation hides more geomorphic
evidence of landslides, while also altering the potential for reworking this
evidence by erosion or deposition. Snow and ice might similarly conceal
evidence, but are likely more effective in also in removing it.

Landslide size and scaling models
We used Bayesian inference to learn the volumetric distribution of land-
slides, drawing on extreme-value theory for peak-over-threshold observa-
tions.Using an arbitrary thresholdfixed atu = 0.75 km3 (that allows for 25%
uncertainty in reported volumetric estimates within our nominal lower size
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limit of 1 km3), wefit to i = 1,…,n reported landslide volumes aGPD,which
in its heavy-tailed case has probability density88:

p yju; k; σ� � ¼ 1
σ

1þ k
y � u
σ

� �� ��1
k�1 ð1Þ

Here y > u is landslide volume above threshold u; and σ > 0 is the scale,
and k > 0 is the shape parameter. In extreme-value theory, the GPD
approximates the expected distribution of sample observations truncated at
a sufficiently high u. The scale σ marks the sample sizes beyond which
inverse power-law scaling sets in, while shape k is the inverse of the power-
law scaling exponent used in numerous landslide statistical studies4. Both
parameters express a statistical expectation of how extreme landslides sizes
are distributed, regardless of any underlying physics. Given the largely
unreported uncertainties regarding landslide volumes (as high as ±50% for
individual cases),we included inourGPDmodel ameasurementmodel that
assumes that the real, but unobserved, landslide volumes yu are lognormal
distributedwith locationmu and scale su > 0, and that both reported and our
own estimated volumes yobs are prone to some fixed measurement noise
τ > 0:

yu � lognormal mu; su
� � ð2aÞ

yobs � N yu; τ
� �� ð2bÞ

The lognormal model reflects our theoretical expectation of encoun-
teringmultiplicative errors in landslide volumes, as they are often practically
obtained bymultiplying areas withmean thicknesses.We estimatedmu and
su directly from the data, and found that values of τ < 5 km3 in a properly re-
normalised Gaussian distribution hardly changed our overall results. Such
fixed measurement noise adds higher volumetric uncertainty to the more
numerous smaller landslides that dominate our parameter estimates. To
simulate also independently the effect of volumetric error estimates in our
data, we replicated model runs numerous times, each time with randomly
generated point-wise relative Gaussian errors of up to+/− 25%. Again, this
randomisation hardly altered the main outcomes of our models. We use a
multi-level model, which lets both k and σ vary with j = 1,…, J group labels
in the data, while also providing a pooled estimate across all data, and thus
obviating the problem of low sample size and potential overfitting (i.e., too
confident parameter estimates) for each group. We choose physically
plausible groups that characterise different (a) topographic settings sur-
rounding the landslide sites, (b) dominant lithologies, and (c) contemporary
climate zones, and set up a multi-level model for each of these three cate-
gorical variables. The GPD can be cast as an exponential-gamma mixture
model88, hencewemodel the spread of kj (and σj) between these groupswith
a Gamma distribution of shape αk > 0 and rate βk > 0 (of shape αs > 0 and
rate βs > 0); all these hyper-parameters are learned independently from the
data, and specified by half-Gaussian priors89 to ensure positive parameter
values:

yj i½ � � GPDðu; kj; σ jÞ ð3aÞ

kj � Gamma αk; βk
� �

ð3bÞ

σ j � Gamma αs; βs
� �

ð3cÞ

αk � N 0; 5ð Þ ð3dÞ

βk � N 0; 2ð Þ ð3eÞ

αs � N 0; 5ð Þ ð3f Þ

βs � N 0; 5ð Þ ð3gÞ

These hyper-prior distributions capture the range of reported12 scaling
exponents for landslide volumes, i.e., 1/3 <k < 1; yj[i] means the ith landslide
belonging to group j. The median of the GPD is defined as

ey ¼ uþ σ 2k � 1
� �

k
ð4Þ

such that we can obtain the group-wise median landslide volumes directly
from the posterior parameter estimates of kj and σj. To estimate the median
volume also conditional on its total affected (footprint) area yi, or instead the
local mean relief Hi, we ran a separate set of Bayesian multi-level models
using amedian regression.This specific formof (fixed) quantile regression is
based on a symmetric Laplace (or double-exponential) distribution90 that is
invariant to log-transformed data:

p yjey; κ� � ¼ 1
2κ

exp � jy � eyj
κ

� �
ð5Þ

where κ is a scale parameter. We model the conditional median landslide
volume as a linear combination of intercepta, and predictor x (either area yi,
or localmean reliefHi)weightedby slopeb.Weuse the same Jgroup levels of
topographic setting, dominant rock type, and climate zone, and let inter-
cepts aj and slopes bj vary per group j. We also let the rate parameter of the
double-exponential likelihood κj scale with x, thus acknowledging that the
spread of reported volumetric estimates may vary commensurately for a
given landslide size or mean local relief:

yj i½ � � Laplace eyj i½ �; κj
� �

ð6aÞ

eyj ¼ aj þ bjx ð6bÞ

κj ¼ cj þ djx ð6cÞ

aj � Student � t 3; 0; 1ð Þ ð6dÞ

bj � Student � t 3; 0; 1ð Þ ð6eÞ

cj � Student � t 3; 0; 1ð Þ ð6f Þ

dj � Student � t 3; 0; 1ð Þ ð6gÞ

Weused weakly informative, zero-centred Student-t distributed priors
with three degrees of freedom on hyper-parameters aj, bj, cj, and dj. We
standardise the input data such that the group-level regression intercepts aj
are the estimated median volumes for mean inputs, i.e., the average (log-
transformed) landslide area, or the average local relief, per group. Analytical
solutions of both the Bayesian GPD and median regression models are
intractable. Hence, we numerically approximated the posterior joint dis-
tributions using the R package brms89, which calls the probabilistic pro-
gramming language STAN91 and offers median regression. We
implemented the GPDmodels in STAN directly and ran the simulations in
the free statistical programming environment R (https://cran.r-project.
org/). All models ran a no-U-turn sampling scheme in four separate
chains of 2000 samples each (including 500 warmup iterations) that we
checked for convergence before running posterior predictive checks with
the data.

One main advantage of both GPD and quantile models is that they
offer predictive posterior distributions of volume for each individual land-
slide, while drawing on its topographic, lithological or climatic group con-
text as well as the entire sample size. We estimated the difference between
expected log predictive densities92 of each group-level model to identify the
most suitable, and also compared these models with simpler (“pooled”)
variants fitted to all data without any group levels. We used 95% highest
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density intervals (HDIs) of the posterior estimates of the group-level pre-
dictors to check for credibly non-zero deviations from a pooled model
conditioned on all data. A 95% HDI expresses the numerical range of a
model estimate (i.e., any parameter, or any given landslide volume) with a
95% posterior credibility. Given the data and the prior knowledge specified,
we believe that the desired model estimate is within that range with 0.95
probability.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All landslidedata (SupplementaryData 1)needed to reproduce the results of
this study are contained in a comma-separated (CSV) file that is publicly
available at Zenodo (https://doi.org/10.5281/zenodo.15908067). The 30-m
SRTM global digital elevation data form the basis of all our topographic
measurements, and are also freely available (https://topex.ucsd.edu/
WWW_html/srtm30_plus.html). The GLIM data on major lithological
groups are publicly available in gridded format in the PANGEA database
(https://doi.org/10.1594/PANGAEA.788537), while data on active fault
zones are listed in an open repository (https://github.com/
GEMScienceTools/gem-global-active-faults). An updated version of the
current climatological data according to the Köppen-Geiger classification is
also available in gridded format (https://koeppen-geiger.vu-wien.ac.at/). All
other landslide-case specific information is contained in the references listed
in our landslide catalogue.

Code availability
We provide an R HTML Notebook in the Supplementary Material to
document the entire workflow and code needed to reproduce the results of
this study. This document was generated using the freely available software
environmentR (https://cran.r-project.org/) version 4.4.3 (2025-02-28), and
the free desktop version of the RStudio/Posit IDE (https://posit.co/
downloads/) version 2025.05.1+ 513.
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