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Deep learning forecasts the
spatiotemporal evolution of fluid-induced
microearthquakes
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Microearthquakes generated by subsurface fluid injection record the evolving stress state and
permeability of reservoirs. Forecasting their spatiotemporal evolution is therefore critical for
applications such as enhanced geothermal systems, carbon dioxide sequestration and other
geoengineering applications. Here we propose a transformer neural network model that ingests
hydraulic stimulation history and prior microearthquake observations to forecast four key quantities:
cumulative microearthquake count, cumulative logarithmic seismic moment, and the 50th- and 95th-
percentile extents of themicroearthquake cloud. Applied to the EGSCollab Experiment 1 dataset, the
model achievesR2 > 0.98 for the1-s forecast horizonandR2 > 0.88 for the15-s forecast horizonacross
all targets, and supplies uncertainty estimates through a learned standard deviation term. These
accurate, uncertainty-quantified forecasts enable real-time inference of fracture propagation and
permeability evolution, demonstrating the strong potential of deep-learning approaches to improve
seismic-risk assessment and guide mitigation strategies in future fluid-injection operations.

Subsurface applications for climate mitigation and sustainability are
essential to achieving the net-zero emissions target set by the Intergovern-
mental Panel on Climate Change for 20501. Key geo-engineering strategies
include the development of enhanced geothermal systems (EGS) for
renewable energy generation and the geological storage of carbon dioxide
(CO2) to reduce atmospheric greenhouse gas concentrations. The U.S.
Geological Survey (USGS) estimates that EGS could provide over 500 GWe
of electricity in thewesternUnited States alone2. In addition, carbon dioxide
sequestration has the potential to store at least 1000 GtCO2 in saline aqui-
fers, with further storage capacity available in depleted oil and gas reservoirs
and coal formations3,4. Despite the immense potential to reduce greenhouse
gases through these subsurface applications, a key challenge is the induced
seismicity that can result from fluid injection operations5–7. Fluid injection
perturbs in-situ stress fields in the subsurface, potentially leading to the
reactivation of preexisting faults or the creation of new fractures, both
potentially compromising the integrity of reservoirs8. Notable examples
include the magnitude 5.7 2015 Prague and magnitude 5.8 2016 Pawnee
earthquakes in Oklahoma after wastewater injection9–12—and a magnitude
3.9 earthquake following circulation tests for the EGS project in Venden-
heim, France13. These events underscore the critical need for accurate
forecasting of induced seismicity to ensure the safe implementation of
subsurface technologies.

Accurately forecasting fluid-induced seismicity remains a challenge
due to the complex interactions between geological, hydrological, and
mechanical factors5,14. Traditional approaches rely on physics-basedmodels
to estimate induced seismicity by coupling fluid flow, mechanical defor-
mation, and seismicity rates15–18. Although these models can capture intri-
cate subsurface interactions, they face limitations in real-world applications.
Challenges include uncertainties in fracture geometries, material hetero-
geneity, and in-situ stress conditions. Moreover, assumptions such as iso-
tropic material properties or idealized fracture networks are often required,
reducing predictive accuracy. High computational costs associated
with three-dimensional modeling with complex fracture geometries
further restrict their use in practical forecasting and operational decision-
making15,17. As a result, discrepancies between modeled and observed seis-
micity frequently occur.

Froma statistical perspective, theEpidemic-TypeAftershock Sequence
(ETAS) model provides a forecasting approach for both natural and fluid-
induced seismicity, based on the assumption that an earthquake can trigger
clusters of aftershocks19,20. In particular, nonstationary ETAS models have
effectively demonstrated their capability in detecting the impacts of fluid-
induced seismicity by employing a nonstationary background rate19,21–23.
This capability positions ETAS as a valuable tool for generating probabilistic
earthquake forecasts. However, determining key parameters, including the
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timing of peak activity, solely based on statistical analysis has been
challenging24. Thus, successful applications of ETAS models to spatio-
temporal forecasting of microearthquakes (MEQs) due to fluid injection
may be limited.

Data-driven approaches—particularly machine learning—have
emerged as powerful complements or alternatives to traditional frameworks
including both physics-based and statistical approaches, in a range of
geoscientific applications25–37. These methods do not require detailed prior
knowledge of uncertain subsurface properties but instead leverage large
datasets frommonitoring systems to identify patterns and correlations that
can be used for forecasting. For instance, deep learning—with and without
physical constraints—was used to forecast the seismicity rate, which was
then used to estimate the maximum magnitude of fluid-induced
microseismicity38. A bidirectional long short-term memory neural net-
work predicted fluid-induced permeability evolution based on MEQ fea-
tures, including seismic rate and cumulative logarithmic seismic moment39.
In addition, an LSTMmodel was employed to predict average permeability
changes inferred fromthe seismicitydata.AnotherLSTMmodelwasused to
predict pore pressure and associated fault displacements given the fluid
injection cycles40. These studies demonstrate that deep learning approaches
can effectively capture the temporal evolution of permeability or micro-
seismicity based on operational parameters. However, they often focus
solely on temporal predictions without considering the spatial evolution of
MEQs, which is critical for assessing the extent of affected areas and
potential impacts. Furthermore, these models rely on simplified assump-
tions for permeability changes, such as the migration of the triggering front
of theMEQ cloud assuming proportionality to the square root of time since
the initiation of injection, which is inconsistent with observed MEQ data41.
These idealizations limit the applicability and accuracy of the models in
complex scenarios.

Our study advances the forecasting of the spatiotemporal evolution of
MEQs induced by hydraulic stimulation using a deep learning approach
that tackles these challenges. Specifically, we employ transformer networks,
a type of neural network architecture that uses self-attentionmechanisms to
capture complex dependencies within data sequences42,43. Compared with
recurrent neural networks such as LSTMs, transformer networks canmodel
long-range temporal dependencies more efficiently and are less susceptible
to issues like vanishing gradients44. Their ability to focus on different parts of
the input data through attentionmechanismsmakes themparticularlywell-
suited for capturing both spatial and temporal patterns inMEQ data. Based
on hydraulic stimulation history, our model predicts key MEQ features,
including the cumulative number of MEQs, cumulative seismic moment,
and the spatial extent of induced micro-seismicity. By incorporating both
spatial and temporal information, themodel providesmore comprehensive
forecasts that can informreal-timemonitoring and riskmitigation strategies
in subsurface activities.

Results
We use hydraulic stimulation data and MEQ history from the EGS
Collab45,46. Figure 1 shows the architecture of our transformer model for

forecasting the spatiotemporal evolution of MEQs based on hydraulic sti-
mulation and MEQ histories (see Section “ Method: Transformer neural
network architecture ”).

EGS Collab hydraulic stimulation datasets
We utilize hydraulic stimulation and MEQ data from the EGS Collab
project, intermediate-scale (10–20m) field tests at the Sanford Under-
ground Research Facility in Lead, South Dakota. This study focuses on
Experiment 1 data, aimed at producing a fracture network connecting an
injection well to a production well via hydraulic fracturing47. A series of
stimulations and flow tests were conducted at a depth of 1.5 km to re-open
and generate hydraulic fractures in crystalline rock under reservoir-like
stress conditions, with passive seismic data cataloged48 and Continuous
Active-Source Seismic Monitoring45,49,50.

Figure 2 shows the stimulation-inducedMEQs for each stimulation
event alongwith the injection and productionwells. Two 60 mboreholes
were used for injection (E1-I) and production (E1-P), respectively. A
total of five stimulation episodes were carried out in May 2018. During
the first two stimulations, injections at flow rates less than 1L/min
produced few MEQs. In addition, water leakage was observed between
the production well and one monitoring well. Thus, the injection point
wasmoved to a notch at a depth of 50m in the injection hole (red triangle
in Fig. 2) starting from Stimulation 3 and used through Stimulation 5.
From Stimulations 3–5, three continuous hydraulic stimulations were
performed using controlled step-rate injections to re-open or create
fractures around the injection well, with the maximum injection rate
reaching up to 5 L/min, resulting in rich MEQ signals46,51. Thus, this
study uses data from Stimulations 3 to 5, generated from the same
injection point with a rich MEQ history, to train neural networks. The
data were recorded at 1-s intervals. Stimulations 3 and 4 each lasted
approximately 1 h (3600 time steps), and the first 1 h and 10 min of
Stimulation 5 were used (4100 time steps). These continuous records
were segmented into overlapping input-output windows for supervised
training, validation, and testing, as described in section “Data pre-
processing: crop and normalization”.

Figure 3 presents the series of stimulations along with the spatio-
temporal MEQ data and corresponding magnitudes. Detailed informa-
tion about the MEQs—including location, time, and magnitudes—was
continuously monitored during the hydraulic stimulations45,46. In addi-
tion, to quantify the spatial extent of MEQs in response to fluid injection,
we extracted the 95th and 50th percentiles (median) distances of the
MEQ clouds from the injection points as a function of time. Although the
monitoring array is extensive, the catalog still carries intrinsic uncer-
tainties: hypocenter locations are accurate to about 1 m and there is no
reported uncertainty range for magnitude45. These uncertainties limit the
fidelity of the training data and establish a floor on achievable forecast
accuracy. Additionally, including all raw events—without excluding
those below the magnitude of completeness—could constrain the neural
network’s capability to learn underlying MEQ patterns (Supplemen-
tary Fig. 1).

Fig. 1 | Architecture of the transformer-basedMEQ forecastingmodel.Given input history from time steps t0 through tn, the model predicts MEQ features at future time
steps tn+1 through tn þ lfuture, where lfuture is the forecast range (see section “Method: Transformer neural network architecture”).
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Forecasting performance
We evaluate three forecast intervals—1 s, 15 s, and 30 s—using a sliding-
window strategy. At each forecasting instant tn, the model ingests the
entire monitoring history [t0, tn] and predicts subsequent interval
[tn+1, tn+ lfuture], where lfuture is the forecast range (e.g., 1 s, 15 s, or 30 s). For

instance, when using a 15 s range, the model forecasts the next 15 s (e.g.,
t101–t115) basedon thehistory data t1−t100.Once actualmonitoring for these
15 s is recorded, these new data (t101−t115) are appended to the monitoring
history. The model then uses the extended history t1−t115 to forecast the
following segment t116−t130, and this procedure repeats until the

Fig. 2 | Spatial distribution of fluid-induced
microearthquakes during hydraulic stimulations.
The figure shows the three-dimensional spatial
distribution ofmicroearthquakes (MEQs) generated
during three hydraulic stimulation episodes. The
solid black line represents the injection well, and the
dashed black line represents the production well. A
red triangle marks the injection point located at the
50 m notch in the injection well. Colored scatter
points indicate MEQ locations: yellow for stimula-
tion 3, green for stimulation 4, and purple for sti-
mulation 5.

Fig. 3 | Microearthquake and injection history for EGS Collab Stimulation 3-5.
Columns correspond to: Stimulation 3 (training data), Stimulation 4 (validation
data), and Stimulation 5 (test data). The first row presents the hydraulic stimulation
history, showing injection rate (blue) and injection pressure (red). The second row
displays the locations of microearthquakes (MEQs) relative to the injection point,

with distances calculated as the Euclidean distance between the injection point and
observed microseismic events. P95 and P50 represent the 95th and 50th percentile
distances over time. The third row shows the cumulative number ofMEQ events and
the magnitude of each discrete event.

https://doi.org/10.1038/s43247-025-02644-z Article

Communications Earth & Environment |           (2025) 6:643 3

www.nature.com/commsenv


monitoring concludes. Since the model consistently utilizes actual mea-
surements without recycling previously predicted outputs, forecasting
errors do not accumulate over successive forecasts (Fig. 4).

Figure 5 compares the forecasted and observed cumulative MEQ
counts. For the 1-second forecast model the predicted curves are virtually
indistinguishable from the ground truth, even on unseen data (validation
R2 = 0.999, test R2 = 0.980). The 15-second forecast model maintains high
fidelity (validation R2 = 0.929, test R2 = 0.972), with a slight tendency to
overestimate MEQ growth during the most intense injection phases. The
30-s forecast model still captures the overall trend but systematically
underpredicts the MEQ count late in each episode (validation R2 = 0.649,
test R2 = 0.809). These results show that the transformer delivers excellent
short-term forecasts, with accuracy declining gradually as the forecast
window lengthens.

Second, we forecast the cumulative logarithmic seismic moment, a
proxy for the activated reservoir volume and thus a keymetric for planning
new production wells52,53. The cumulative momentM is defined as39

MðtiÞ ¼
Z ti

t0

logM0 dt; ð1Þ

with

logM0 ¼ 1:5Mw þ 13:5; ð2Þ

whereM0 is the seismicmoment,Mw themomentmagnitude, t0 the start of
injection, and ti the current injection time.

Figure 6 compares the predicted and observed cumulative moments
for the 1-, 15-, and 30-s forecast models across the three data splits. The 1-s
forecast model reproduces the observations almost exactly (validation
R2 = 0.999, testR2 = 0.978). Performance remainshigh at 15-s forecastmodel
(validation R2 = 0.878, test R2 = 0.935), although the predictive bands widen
compared with the 1-s case. At 30-s forecast the model still captures the
overall trend but underestimates the released seismic energy (validation
R2 = 0.546, test R2 = 0.765). These results confirm that our neural network
effectively links hydraulic-energy input to seismic-energy release, providing
reliable short-term estimates of cumulative moment while showing a gra-
dual and interpretable loss of accuracy as the forecast range increases.

Accurately forecasting the spatial evolution of MEQ clouds is critical
for delineating the affected area, guiding mitigation, and optimizing future
well placement15. Figure 7 compares the spatial extent of the MEQ clouds
across the training, validation, and test sets, quantified by the 50th and 95th
percentiles of the Euclidean distance from the injection point. The 1-s and
15-s forecast models reproduce the ground truth trajectories of both the
median distance (P50) and the far distance (P95), achieving R

2 > 0.97 for the
1-s forecast model and R2 > 0.94 for the 15-s forecast model.

Figure 8 illustrates the final stabilized extents predicted by these
models: absolute errors are below 0.4m for the 1-smodel and below 2m for
the 15-s model (Table 1). For the 1-second case, the observed-predicted
differences lie within themodel’s ±σ band, indicating that the discrepancies
are consistentwith the reporteduncertainty. In contrast, the 15-s differences
exceed σ, revealing the limitations of the mid-range model. The 30-s model
underestimates both P50 and P95 in all data splits, highlighting its reduced
reliability for long-range spatial forecasts.

Fig. 4 | Schematic of the forecasting procedure. X(k) denotes the cumulative monitoring input and Y(k) the corresponding forecast window; k is the segment index. The
forecasting range is lfuture (see section “Method: Transformer neural network architecture”).

Fig. 5 | CumulativeMEQcounts: observed data (black dotted) versus forecasts for
the 1-s (blue), 15-s (red), and 30-s (green) models. Each forecast curve is con-
structed by predicting successive, non-overlapping segments whose length equals
the forecast interval and concatenating them to cover the full record. Panels show the

training (left), validation (middle), and test (right) sets. Shaded bands denote ±σ
(one predicted standard deviation, corresponding to ≈ 68% coverage under a
Gaussian assumption).
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Discussion and conclusion
Our transformer model accurately forecasts fluid-inducedMEQs, capturing
both their temporal evolution and spatial growth (Table 2). This dual cap-
ability is, to the best of our knowledge, novel; earlier studies focused mainly
on temporal predictions39,54. Reliable spatiotemporal forecasts are essential

for estimating permeability changes and mitigating the risks associated with
induced seismicity. In the following, we discuss how permeability enhance-
ment can be inferred frommonitoring data andmodel outputs, how fracture
characteristics can be estimated, and the potentials and limitations of deep-
learning-based forecasting for field-scale, fluid-induced earthquakes.

Fig. 6 | Cumulative logarithmic seismic moment: observed data (black dotted) versus forecasts from the 1-, 15-, and 30-s models (blue, red, green) for the training
(left), validation (middle), and test (right) sets. Shaded bands denote ±σ.

Fig. 7 | Temporal evolution of the MEQ cloud’s spatial extent. The three rows
correspond to the training (top), validation (middle), and test (bottom) datasets. In
each row, the solid curve shows the observed 50th-percentile distance (P50) and the

dashed curve the observed 95th-percentile distance (P95). Forecasts from the 1-, 15-,
and 30-s models are plotted in blue, red, and green, respectively. Shaded regions
denote ±σ (standard deviation).
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Fig. 8 | Spatial evolution of microearthquake (MEQ) clouds and forecast per-
formance. The figure shows the spatial distribution ofMEQs and forecast results for
different datasets and time horizons. Each row represents a dataset: training (top),
validation (middle), and test (bottom). Each column shows projections on the XY,
YZ, and ZX planes. Solid circles indicate the observed 50th-percentile radius (P50),
while dashed circles represent the 95th-percentile radius (P95). Blue and red lines

show forecasts from the 1-s and 15-s models, respectively, with shaded regions
denoting ±σ (one predicted standard deviation). Colored dots representMEQs from
different stimulation phases: yellow for Stim 3, green for Stim 4, and purple for Stim
5. Solid black lines indicate the injection well, dashed black lines the productionwell,
and red triangles mark the injection point. All spatial dimensions are in meters.
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Estimation of permeability enhancement
Estimating permeability enhancement is a critical task in EGS, yet direct
measurements are challenging in the subsurface. This limitation also applies
to our study—we aim to understand how permeability evolves during
hydraulic stimulation, but no direct measurements were available from the
field experiment.Although the correlation betweenMEQsandpermeability
remains elusive55, we derive a physically grounded rationale to indirectly
estimate permeability using model outputs. Specifically, we apply the cubic
law for permeability, which relates changes in fracture aperture to perme-
ability change56,57:

Δk ¼ b0 þ Δb
� �3

12s
� b30

12s
ð3Þ

where Δk is the permeability change, b0 is the initial fracture aperture, Δb is
the aperture change, and s is the spacing betweenparallel fractures.Assuming
that the initial aperture b0 is negligible compared to the aperture change (i.e.,
b0≪Δb),weapproximate thepermeability evolutionasΔk � Δb3

12s .Given that
the EGS Collab Experiment 1 aimed to establish fracture networks via
hydraulic fracturing (i.e., tensile fractures)55,58,weassume the seismicmoment
is linked to normal displacement by tensile opening. The equivalentmoment
M0 for a tensile opening can be expressed as39:

M0 ¼ 2GAΔun ð4Þ

where G is the shear modulus, A is the area of the fracture, and Δun is the
normal displacement across the fracture. Assuming the area A of the frac-
ture is proportional to the aperture (A ∝ Δb)59, we establish a direct pro-
portionality between seismic momentM0 and permeability change as60:

logM0 /
2
3
logΔk ð5Þ

With these scaling relationships, we infer that the overall logarithmic
permeability increment is linearly proportional to the logarithmic seismic
moment, though this assumption primarily holds during early stimulation,
where the initial aperture is substantially smaller than the aperture incre-
ment (i.e., b0≪Δb).

During the first stimulation, the observed cumulative logarithmic
seismic moment reaches ≈3 (Fig. 6 left), implying a permeability
increase of roughly two orders ofmagnitude. The 1-s forecast reproduces
this estimate, whereas the 15-s forecast model overpredicts the moment
by about one order of magnitude, and the 30-s forecast model under-
predicts it by a similar amount. Because the cumulative seismic moment
predicted by our network can be mapped directly to permeability
changes, the model provides a practical, indirect means of tracking
permeability evolution during hydraulic stimulation—though this
mapping is valid only for the initial seismic—moment range where the
derivation’s assumptions hold.

Inference of the fracture characteristics
In fluid injection operations, we need to control the spatial extent of frac-
turing. As an example, in EGS fields, it is crucial to prevent MEQs from
extending beyond the region between injection and production wells while
enhancing permeability within this region through fracturing. Our model
provides estimates of two spatial extents of MEQs: the 95th percentile dis-
tance (P95) and the 50th percentile distance (P50). P95 represents the far
extent of MEQs, while P50 indicates the most active MEQ regions, which
likely correspond to areas of greatest permeability increase due to fracture
generation and re-opening.

The importance of tracking P95 and P50 becomes clear when the
spatial extents from each stimulation are compared (Table 1). From sti-
mulation 3 (training) to stimulation 4 (validation), the observedP95 grows
by 3.85 m (from 10.23 to 14.08m), while P50 retreats by 0.21m (from 5.92
to 5.71 m), indicating a slight shrinkage of the seismically active zone. Our
1-s forecast model reproduces these shifts almost exactly, predicting a
4.27 m increase in P95 (from 10.74 to 15.01m) and 0.13 m retreat in P50
(from 6.29 to 6.16 m); all absolute errors fall within the 1-s forecast
model’s ±σ band. Between stimulation 4 (validation) and stimulation 5
(test), the observed P95 increases by 1.15 m (from 14.08 to 15.23m),
whereas P50 advanced by 4.21 m (from 5.71 to 9.92 m). The 1-s forecast
model again captures these trends, predicting a 0.94 m rise in P95 (from
15.01 to 15.95 m) and 4.09 m increase in P50 (from 6.16 to 10.25m). By
accurately forecasting P50 and P95 in real time, the network enables
practitioners to infer fracture propagation and activation, making it a
practical tool for managing stimulation where direct measurements are
not feasible.

Table 1 | Final MEQ spatial extent

1 s model 15 s model 30 s model

Dataset Pct Obs [m] Pred [m] Diff [m] σ [m] Pred [m] Diff [m] σ [m] Pred [m] Diff [m] σ [m]

Train P50 5.92 6.29 0.38 0.67 6.59 0.68 0.20 2.56 3.35 0.79

P95 10.23 10.74 0.51 1.46 11.36 1.13 0.51 5.32 4.91 1.43

Val P50 5.71 6.16 0.46 0.65 6.50 0.79 0.20 2.45 3.25 0.77

P95 14.08 15.01 0.93 2.04 16.02 1.94 0.71 7.61 6.47 1.99

Test P50 9.92 10.25 0.34 1.11 10.79 0.87 0.34 4.29 5.62 1.32

P95 15.23 15.95 0.72 2.18 16.82 1.58 0.76 7.60 7.63 2.16

For each split and percentile, the observed radius is followed by the neural-network (NN) prediction (Pred), absolute difference ∣Obs − Pred∣ (Diff), and model uncertainty (σ) for the 1-, 15-, and 30-s
forecasting ranges.

Table 2 | R2 scores for all metrics and forecast models

Cum. MEQ count Cum. moment (M) 50th-percentile distance (P50) 95th-percentile distance (P95)

Dataset 1 s 15 s 30 s 1 s 15 s 30 s 1 s 15 s 30 s 1 s 15 s 30 s

Train 0.994 0.963 0.807 0.996 0.933 0.748 0.969 0.974 0.444 0.967 0.974 0.556

Val 0.984 0.929 0.649 0.993 0.878 0.546 0.972 0.941 −0.373 0.989 0.947 0.208

Test 0.993 0.972 0.809 0.993 0.935 0.765 0.995 0.988 0.401 0.973 0.973 0.543

The 1 s, 15 s, and 30 s columns correspond to models with forecast ranges of 1, 15, and 30 s, respectively.
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Potential and challenges of deep learning forecasting
Among the various deep learning approaches, we chose the transformer
model as our core architecture. The success of the transformer model is
driven by several key factors. First, the self-attention mechanism allows the
model to capture long-term dependencies42,61,62, which are crucial in fluid-
induced seismicity, where MEQs are influenced by cumulative fluid injec-
tion, pore pressure changes, and perturbed in-situ stress conditions2. In
particular, fluid-induced seismicity often exhibits long time intervals
between injection and seismicity. For instance, the largest earthquake (local
magnitude 3.9) at the deep geothermal site GEOVEN in Vendenheim
occurred more than six months after shut-in63. The self-attention
mechanism enables the model to weigh the importance of different input
features over time, making it highly suited for sequential data44.

Second, transformers excel at processing spatiotemporal data64, which
is vital for accurately predicting the spatial distributionofMEQs.This ability
provides critical insights into fracture propagation65 and fluid migration66,
both of which are key factors in assessing the effectiveness of hydraulic
stimulation. The model’s performance in predicting the spatial extent of
seismic events reflects its capacity to capture both the temporal and spatial
dynamics of fluid injection-induced microseismicity. Third, the transfor-
mer’s non-recurrent architecture allows it to handle irregular time series
data67, a common occurrence in microseismic monitoring due to variable
injection schedules and operational pauses. This flexibility enhances the
model’s robustness across different stimulation phases and geological set-
tings, making it adaptable to varying conditions and data availability—a
common challenge in real-world geophysical applications.

While the model shows promising results, extending it to large-scale
field operations introduces additional uncertainties due to unknown geo-
logical heterogeneity and the extended temporal dependencies inherent to
fluid-induced seismicity. The data used in this study were collected from an
intermediate-scale (10–20m) experiment with comprehensive monitoring
tools from the EGS Collab project47,50. Such dense instrumentationmay not
be feasible in reservoir-scale engineering applications, raising questions
about the model’s generalizability to less controlled, large-scale environ-
ments. One promising strategy for adapting deep learning forecasting
techniques to larger-scale fluid-induced seismicity applications involves
transfer learning with fine-tuning. For example, successful transferability
between datasets from Utah FORGE and EGS Collab was recently
demonstrated using appropriate fine-tuning methods39. Although further
fine-tuning will likely be required to adjust the model to larger operational
scales, the fundamental assumption remains that the neural networkmodel
learns generalizable signal patterns associated with fluid-induced MEQs.
Additionally, integrating uncertainty quantification into predictions
becomes increasingly important given the higher uncertainty inherent in
real-field-scale operations. By incorporating these strategies, along with
judicious monitoring, transformer networks could be systematically vali-
dated and effectively implemented at larger scales. Future work could
involve training and validating the model’s performance with field-scale
fluid-induced seismic data and hydraulic stimulation histories, thus
ensuring robustness in more complex geological settings.

In summary, despite limitations related to monitoring systems and
scale, this study presents a deep learning based approach for forecasting
MEQs in response to fluid injection. The transformer model’s ability to
predict both temporal and spatial evolution highlights its potential as a
valuable tool in subsurface operations, offering substantial improvements in
safety and efficiency.

Method: transformer neural network architecture
We employ a transformer neural network to forecast the spatiotemporal
evolution of fluid-induced microearthquakes (MEQs). The attention
mechanismcapturesdependencies in themonitoring timeseries, allowing the
model to learnpatternsacrossmultiple temporal scales. Figure1 illustrates the
overall architecture. Given a sequence of past monitoring data, the model
predicts the future MEQ features. The following subsections describe data
processing, network architecture, loss function, and hyperparameter tuning.

Data preprocessing: crop and normalization
We first construct training segments by sliding a growing stimulation his-
tory across the cumulative time series and advancing the forecast horizon in
non-overlapping blocks. The monitoring data at discrete time index t are
defined as:

xðtÞ ¼ x1ðtÞ; x2ðtÞ; :::; x6ðtÞ
� �T 2 RM ; ð6Þ

where the monitoring dimension M = 6 includes hydraulic stimulation
features —(1) flow rate (x1) and (2) well head pressure (x2)— and spatio-
temporal MEQ features —(3) cumulative MEQ numbers (x3), (4) logM0
(x4), (5) 95th percentile distance (x5), (6) 50th percentile distance)(x6).

The cropping procedure is controlled by two hyperparameters. The
minimum history length lmin specifies the number of monitoring samples
always available, and the forecast horizon lfuture specifies how many future
steps are predicted at once. For a monitoring ending at tend, the number of
segments is

N ¼ tend � lmin

lfuture
ð7Þ

For each segment index k ∈ {0, . . . , N − 1} the split time is set as

t
split
k ¼ lmin þ klfuture ð8Þ

Thus, the cumulative monitoring input (X(k)) and the subsequent forecast
window (Y(k)) are defined as:

XðkÞ ¼ fxðtÞ j 1≤ t ≤ t splitk g 2 Rtsplitk ×M ð9Þ

Y ðkÞ ¼ fxðtÞ j t splitk < t ≤ tsplitk þ lfutureg 2 Rtfuturek × F ð10Þ

where F = 4 corresponds to the forecasting MEQ features: (1) cumulative
MEQ count, (2) logM0, (3) P95, and (4) P50. Each successive segment index
k advances the split by lfuture, ensuring that the predicted time blocksY(k) are
non-overlap and contiguous, while the input window growsmonotonically.
This approach yields continuous, leakage-free forecasting segments that can
be applied in real time once at least lmin monitoring have been
acquired (Fig. 4).

To fairly normalize the data without information leakage from future
steps, normalization is applied individually to each input window X(k). For
each monitoring dimensionm∈ {1, . . . ,M} and each segment k, we define
the normalization using only the known input window as follows:

~xðkÞm ¼
xðkÞm � min

1≤ t ≤ t splitk

xmðtÞ

max
1≤ t ≤ tsplitk

xmðtÞ � min
1≤ t ≤ tsplitk

xmðtÞ
; 1≤ t ≤ t splitk ð11Þ

The normalization parameters obtained from each input window X(k)

are then consistently applied to scale the corresponding forecast window
Y(k). This ensures that normalization relies exclusively on information
available at the prediction time, thus avoiding any data leakage from future
observations.

Neural network architecture
Our transformer neural network architecture employs a multi-head atten-
tion mechanism designed to effectively capture temporal dependencies
from variable-length sequences. Given an input monitoring sequence X(k),
the multi-head attention layer processes the input as follows42:

Attention ðQ;K;VÞ ¼ softmax
QK>ffiffiffiffiffi

dk
p

 !
V ; ð12Þ
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whereQ=X(k)WQ,K=X(k)WK, andV=X(k)WV are thequery, key, andvalue
matrices, respectively;WQ,WK, andWV are learnable weightmatrices; dk is
the dimension of key vectors.

Following the attention layer, a feed-forward network (FFN)68 is
applied independently to each time step. The FFN consists of two linear
transformations with a Rectified Linear Unit (ReLU) activation function:

FFN ðzÞ ¼ ReLU ðzW1 þ b1ÞW2 þ b2 ; ð13Þ

where z denotes the input from the attention output, andW1,W2, b1, and b2
are learnable parameters.

To enhance training stability, layer normalization and residual con-
nections are applied after both attention and feed-forward layers. These
ensure effective gradient propagation and prevent training instabilities.

After attention and feed-forward layers, global average pooling and
dense layers reduce the sequence to a single vector, producing predictions
for the forecasting window Y(k). In particular, the model predicts both the
mean (μ) and log-variance (log σ2) of these forecasting MEQ features to
quantify prediction uncertainty:

ypred 2 Rlfuture × 2F ; ypredðtÞ ¼ ½μ1ðtÞ; :::; μFðtÞ; log σ21ðtÞ; :::; log σ2FðtÞ�
ð14Þ

The model is trained using the Adam optimizer69 with a hetero-
scedastic Gaussian negative log-likelihood (NLL) loss function70,71, aug-
mented by a monotonicity penalty weighted by the hyperparameter (λ):

L ¼ NLL ðytrue; ypredÞ þ λPenaltymono ð15Þ

The NLL explicitly measures the discrepancy between predictions and
true values, accounting for predictive uncertainty.Given the predictedmean
(μpred and log-variance (log σ2pred ), the NLL is defined as:

NLL ðytrue; ypredÞ ¼
1

2NF

XN
i¼1

XF
f¼1

ðytruei;f � μpredi;f Þ2

σ2i;f
þ α log σ2i;f

� �2
4

3
5;
ð16Þ

whereN is the number of time steps in the forecast window,F is the number
ofMEQtarget features, andα is thehyperparameter todiscourage themodel
from inflating variance. This formulation captures both prediction accuracy
and model confidence, penalizing over- or under-confident forecasts.

To enforce non-decrease for the cumulative term forecastings, a
monotonicity penalty is applied to cumulative MEQ count and cumulative
logarithmic seismic moment. The penalty is defined as:

Penaltymono ¼
XT
t¼2

min 0; pred ty � yt�1
pred

� �			 			 ; ð17Þ

where only the selected cumulative features are included in the penalty term.
Finally, all predictions are rescaled using the inverse of the normal-

ization applied during preprocessing. The model performance is evaluated
using the coefficient of determination (R2):

R2 ¼ 1�
Pn

i¼1 Yi � Ŷ i

� �2
Pn

i¼1 Yi � �Y
� �2 ð18Þ

where Y includes the four spatiotemporal MEQ features.

Neural-network hyper-parameter tuning
The transformer model is trained to forecast spatiotemporal MEQs from
hydraulic-stimulation history and past MEQ responses. While network
weights are learned automatically, several settings—loss-function coeffi-
cients, architectural widths, batch size, dropout rate, and penalty weights—

must be chosen by the user72,73. Supplementary Table 1 lists the values that
remain fixed in every experiment.

Two coefficients are tuned by grid search: β (the variance-
regularization weight inside the heteroscedastic Gaussian NLL term) and
λ (the weight on the monotonic-increase penalty applied to cumulative
MEQ count and cumulative seismic moment). For each forecast horizon
lfuture∈ {1, 15, 30} models are trained with β, λ∈ {0.1, 1.0, 10.0}. Validation
R2 scores identify the optimal pair (β⋆, λ⋆); the corresponding results appear
in Supplementary Table 2.

Short-horizon models—forecast windows of up to fifteen seconds—
achieve excellent accuracy; for example, the lfuture = 15 model reaches
R2
val ¼ 0:924. As the horizon lengthens, performance degrades: at

nfuture = 30 the best model attains R2
val ¼ 0:046. The horizon-specific

models reported in Supplementary Table 2 are used for all subsequent
experiments.

Data availability
The EGS Collab experiment’s stimulation data and seismic catalog are
available at https://doi.org/10.15121/1651116 and https://doi.org/10.15121/
1557417.

Code availability
The code used in this study is available onGitHub at https://github.com/jh-
chung1/Transformer_MEQ_Forecasting.
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