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Deep learning forecasts the
spatiotemporal evolution of fluid-induced

microearthquakes
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Microearthquakes generated by subsurface fluid injection record the evolving stress state and
permeability of reservoirs. Forecasting their spatiotemporal evolution is therefore critical for
applications such as enhanced geothermal systems, carbon dioxide sequestration and other
geoengineering applications. Here we propose a transformer neural network model that ingests
hydraulic stimulation history and prior microearthquake observations to forecast four key quantities:
cumulative microearthquake count, cumulative logarithmic seismic moment, and the 50th- and 95th-
percentile extents of the microearthquake cloud. Applied to the EGS Collab Experiment 1 dataset, the
model achieves R? > 0.98 for the 1-s forecast horizon and R? > 0.88 for the 15-s forecast horizon across
all targets, and supplies uncertainty estimates through a learned standard deviation term. These
accurate, uncertainty-quantified forecasts enable real-time inference of fracture propagation and
permeability evolution, demonstrating the strong potential of deep-learning approaches to improve
seismic-risk assessment and guide mitigation strategies in future fluid-injection operations.

Subsurface applications for climate mitigation and sustainability are
essential to achieving the net-zero emissions target set by the Intergovern-
mental Panel on Climate Change for 2050". Key geo-engineering strategies
include the development of enhanced geothermal systems (EGS) for
renewable energy generation and the geological storage of carbon dioxide
(CO,) to reduce atmospheric greenhouse gas concentrations. The U.S.
Geological Survey (USGS) estimates that EGS could provide over 500 GWe
of electricity in the western United States alone”. In addition, carbon dioxide
sequestration has the potential to store at least 1000 GtCO, in saline aqui-
fers, with further storage capacity available in depleted oil and gas reservoirs
and coal formations™. Despite the immense potential to reduce greenhouse
gases through these subsurface applications, a key challenge is the induced
seismicity that can result from fluid injection operations™”. Fluid injection
perturbs in-situ stress fields in the subsurface, potentially leading to the
reactivation of preexisting faults or the creation of new fractures, both
potentially compromising the integrity of reservoirs®. Notable examples
include the magnitude 5.7 2015 Prague and magnitude 5.8 2016 Pawnee
earthquakes in Oklahoma after wastewater injection’*—and a magnitude
3.9 earthquake following circulation tests for the EGS project in Venden-
heim, France'’. These events underscore the critical need for accurate
forecasting of induced seismicity to ensure the safe implementation of
subsurface technologies.

Accurately forecasting fluid-induced seismicity remains a challenge
due to the complex interactions between geological, hydrological, and
mechanical factors™. Traditional approaches rely on physics-based models
to estimate induced seismicity by coupling fluid flow, mechanical defor-
mation, and seismicity rates"'*. Although these models can capture intri-
cate subsurface interactions, they face limitations in real-world applications.
Challenges include uncertainties in fracture geometries, material hetero-
geneity, and in-situ stress conditions. Moreover, assumptions such as iso-
tropic material properties or idealized fracture networks are often required,
reducing predictive accuracy. High computational costs associated
with three-dimensional modeling with complex fracture geometries
further restrict their use in practical forecasting and operational decision-
making'>". As a result, discrepancies between modeled and observed seis-
micity frequently occur.

From a statistical perspective, the Epidemic-Type Aftershock Sequence
(ETAS) model provides a forecasting approach for both natural and fluid-
induced seismicity, based on the assumption that an earthquake can trigger
clusters of aftershocks'**’. In particular, nonstationary ETAS models have
effectively demonstrated their capability in detecting the impacts of fluid-
induced seismicity by employing a nonstationary background rate'**' .
This capability positions ETAS as a valuable tool for generating probabilistic
earthquake forecasts. However, determining key parameters, including the
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Fig. 1| Architecture of the transformer-based MEQ forecasting model. Given input history from time steps f, through t,, the model predicts MEQ features at future time
steps t,,1 through t, + I .e» Where [ is the forecast range (see section “Method: Transformer neural network architecture”).

timing of peak activity, solely based on statistical analysis has been
challenging™. Thus, successful applications of ETAS models to spatio-
temporal forecasting of microearthquakes (MEQs) due to fluid injection
may be limited.

Data-driven  approaches—particularly machine learning—have
emerged as powerful complements or alternatives to traditional frameworks
including both physics-based and statistical approaches, in a range of
geoscientific applications™ . These methods do not require detailed prior
knowledge of uncertain subsurface properties but instead leverage large
datasets from monitoring systems to identify patterns and correlations that
can be used for forecasting. For instance, deep learning—with and without
physical constraints—was used to forecast the seismicity rate, which was
then used to estimate the maximum magnitude of fluid-induced
microseismicity”’. A bidirectional long short-term memory neural net-
work predicted fluid-induced permeability evolution based on MEQ fea-
tures, including seismic rate and cumulative logarithmic seismic moment”.
In addition, an LSTM model was employed to predict average permeability
changes inferred from the seismicity data. Another LSTM model was used to
predict pore pressure and associated fault displacements given the fluid
injection cycles®. These studies demonstrate that deep learning approaches
can effectively capture the temporal evolution of permeability or micro-
seismicity based on operational parameters. However, they often focus
solely on temporal predictions without considering the spatial evolution of
MEQs, which is critical for assessing the extent of affected areas and
potential impacts. Furthermore, these models rely on simplified assump-
tions for permeability changes, such as the migration of the triggering front
of the MEQ cloud assuming proportionality to the square root of time since
the initiation of injection, which is inconsistent with observed MEQ data*.
These idealizations limit the applicability and accuracy of the models in
complex scenarios.

Our study advances the forecasting of the spatiotemporal evolution of
MEQs induced by hydraulic stimulation using a deep learning approach
that tackles these challenges. Specifically, we employ transformer networks,
a type of neural network architecture that uses self-attention mechanisms to
capture complex dependencies within data sequences**’. Compared with
recurrent neural networks such as LSTMs, transformer networks can model
long-range temporal dependencies more efficiently and are less susceptible
to issues like vanishing gradients*. Their ability to focus on different parts of
the input data through attention mechanisms makes them particularly well-
suited for capturing both spatial and temporal patterns in MEQ data. Based
on hydraulic stimulation history, our model predicts key MEQ features,
including the cumulative number of MEQs, cumulative seismic moment,
and the spatial extent of induced micro-seismicity. By incorporating both
spatial and temporal information, the model provides more comprehensive
forecasts that can inform real-time monitoring and risk mitigation strategies
in subsurface activities.

Results
We use hydraulic stimulation data and MEQ history from the EGS
Collab**. Figure 1 shows the architecture of our transformer model for

forecasting the spatiotemporal evolution of MEQs based on hydraulic sti-
mulation and MEQ histories (see Section “ Method: Transformer neural
network architecture ”).

EGS Collab hydraulic stimulation datasets

We utilize hydraulic stimulation and MEQ data from the EGS Collab
project, intermediate-scale (10-20m) field tests at the Sanford Under-
ground Research Facility in Lead, South Dakota. This study focuses on
Experiment 1 data, aimed at producing a fracture network connecting an
injection well to a production well via hydraulic fracturing”. A series of
stimulations and flow tests were conducted at a depth of 1.5 km to re-open
and generate hydraulic fractures in crystalline rock under reservoir-like
stress conditions, with passive seismic data cataloged"'8 and Continuous
Active-Source Seismic Monitoring™>***".

Figure 2 shows the stimulation-induced MEQs for each stimulation
event along with the injection and production wells. Two 60 m boreholes
were used for injection (E1-I) and production (E1-P), respectively. A
total of five stimulation episodes were carried out in May 2018. During
the first two stimulations, injections at flow rates less than 1L/min
produced few MEQs. In addition, water leakage was observed between
the production well and one monitoring well. Thus, the injection point
was moved to a notch at a depth of 50 m in the injection hole (red triangle
in Fig. 2) starting from Stimulation 3 and used through Stimulation 5.
From Stimulations 3-5, three continuous hydraulic stimulations were
performed using controlled step-rate injections to re-open or create
fractures around the injection well, with the maximum injection rate
reaching up to 5 L/min, resulting in rich MEQ signals***'. Thus, this
study uses data from Stimulations 3 to 5, generated from the same
injection point with a rich MEQ history, to train neural networks. The
data were recorded at 1-s intervals. Stimulations 3 and 4 each lasted
approximately 1h (3600 time steps), and the first 1 h and 10 min of
Stimulation 5 were used (4100 time steps). These continuous records
were segmented into overlapping input-output windows for supervised
training, validation, and testing, as described in section “Data pre-
processing: crop and normalization”.

Figure 3 presents the series of stimulations along with the spatio-
temporal MEQ data and corresponding magnitudes. Detailed informa-
tion about the MEQs—including location, time, and magnitudes—was
continuously monitored during the hydraulic stimulations**. In addi-
tion, to quantify the spatial extent of MEQs in response to fluid injection,
we extracted the 95th and 50th percentiles (median) distances of the
MEQ clouds from the injection points as a function of time. Although the
monitoring array is extensive, the catalog still carries intrinsic uncer-
tainties: hypocenter locations are accurate to about 1 m and there is no
reported uncertainty range for magnitude®. These uncertainties limit the
fidelity of the training data and establish a floor on achievable forecast
accuracy. Additionally, including all raw events—without excluding
those below the magnitude of completeness—could constrain the neural
network’s capability to learn underlying MEQ patterns (Supplemen-
tary Fig. 1).
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Fig. 2 | Spatial distribution of fluid-induced
microearthquakes during hydraulic stimulations.
The figure shows the three-dimensional spatial
distribution of microearthquakes (MEQs) generated
during three hydraulic stimulation episodes. The
solid black line represents the injection well, and the
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Fig. 3 | Microearthquake and injection history for EGS Collab Stimulation 3-5.
Columns correspond to: Stimulation 3 (training data), Stimulation 4 (validation
data), and Stimulation 5 (test data). The first row presents the hydraulic stimulation
history, showing injection rate (blue) and injection pressure (red). The second row
displays the locations of microearthquakes (MEQs) relative to the injection point,

May 25

with distances calculated as the Euclidean distance between the injection point and
observed microseismic events. Pos and Ps, represent the 95th and 50th percentile
distances over time. The third row shows the cumulative number of MEQ events and
the magnitude of each discrete event.

Forecasting performance

We evaluate three forecast intervals—1s, 155, and 30 s—using a sliding-
window strategy. At each forecasting instant t,, the model ingests the
entire monitoring history [fo, t,] and predicts subsequent interval
[tn+1> tn + luturel, Where Igyre is the forecast range (e.g., 1 s, 15 s, or 30 s). For

instance, when using a 15 s range, the model forecasts the next 15s (e.g.,
ti01-t115) based on the history data t; — 9. Once actual monitoring for these
15 s is recorded, these new data (t,9;—t;;5) are appended to the monitoring
history. The model then uses the extended history ¢;—#;5 to forecast the
following segment t;;6—t130, and this procedure repeats until the
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Fig. 4 | Schematic of the forecasting procedure. X* denotes the cumulative monitoring input and Y* the corresponding forecast window; k is the segment index. The
forecasting range is I,pure (See section “Method: Transformer neural network architecture”).
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Fig. 5 | Cumulative MEQ counts: observed data (black dotted) versus forecasts for
the 1-s (blue), 15-s (red), and 30-s (green) models. Each forecast curve is con-
structed by predicting successive, non-overlapping segments whose length equals
the forecast interval and concatenating them to cover the full record. Panels show the

training (left), validation (middle), and test (right) sets. Shaded bands denote *o
(one predicted standard deviation, corresponding to = 68% coverage under a
Gaussian assumption).

monitoring concludes. Since the model consistently utilizes actual mea-
surements without recycling previously predicted outputs, forecasting
errors do not accumulate over successive forecasts (Fig. 4).

Figure 5 compares the forecasted and observed cumulative MEQ
counts. For the 1-second forecast model the predicted curves are virtually
indistinguishable from the ground truth, even on unseen data (validation
R*=0.999, test R*=0.980). The 15-second forecast model maintains high
fidelity (validation R*=0.929, test R*=0.972), with a slight tendency to
overestimate MEQ growth during the most intense injection phases. The
30-s forecast model still captures the overall trend but systematically
underpredicts the MEQ count late in each episode (validation R* = 0.649,
test R* = 0.809). These results show that the transformer delivers excellent
short-term forecasts, with accuracy declining gradually as the forecast
window lengthens.

Second, we forecast the cumulative logarithmic seismic moment, a
proxy for the activated reservoir volume and thus a key metric for planning
new production wells™*. The cumulative moment M is defined as™

£
M(t;) = / log M, dt, (1)
Ji,
with
logM, = 1.5M,, 4 13.5, (2)

where M is the seismic moment, M,, the moment magnitude, t, the start of
injection, and ¢; the current injection time.

Figure 6 compares the predicted and observed cumulative moments
for the 1-, 15-, and 30-s forecast models across the three data splits. The 1-s
forecast model reproduces the observations almost exactly (validation
R*=0.999, test R* = 0.978). Performance remains high at 15-s forecast model
(validation R* = 0.878, test R* = 0.935), although the predictive bands widen
compared with the 1-s case. At 30-s forecast the model still captures the
overall trend but underestimates the released seismic energy (validation
R*=0.546, test R* =0.765). These results confirm that our neural network
effectively links hydraulic-energy input to seismic-energy release, providing
reliable short-term estimates of cumulative moment while showing a gra-
dual and interpretable loss of accuracy as the forecast range increases.

Accurately forecasting the spatial evolution of MEQ clouds is critical
for delineating the affected area, guiding mitigation, and optimizing future
well placement”. Figure 7 compares the spatial extent of the MEQ clouds
across the training, validation, and test sets, quantified by the 50th and 95th
percentiles of the Euclidean distance from the injection point. The 1-s and
15-s forecast models reproduce the ground truth trajectories of both the
median distance (Pso) and the far distance (Ps), achieving R* > 0.97 for the
1-s forecast model and R* > 0.94 for the 15-s forecast model.

Figure 8 illustrates the final stabilized extents predicted by these
models: absolute errors are below 0.4 m for the 1-s model and below 2 m for
the 15-s model (Table 1). For the 1-second case, the observed-predicted
differences lie within the model’s +oband, indicating that the discrepancies
are consistent with the reported uncertainty. In contrast, the 15-s differences
exceed o, revealing the limitations of the mid-range model. The 30-s model
underestimates both Ps, and Pys in all data splits, highlighting its reduced
reliability for long-range spatial forecasts.
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Fig. 6 | Cumulative logarithmic seismic moment: observed data (black dotted) versus forecasts from the 1-, 15-, and 30-s models (blue, red, green) for the training
(left), validation (middle), and test (right) sets. Shaded bands denote +o.
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Fig. 7 | Temporal evolution of the MEQ cloud’s spatial extent. The three rows

correspond to the training (top), validation (middle), and test (bottom) datasets. In
each row, the solid curve shows the observed 50th-percentile distance (Ps,) and the

dashed curve the observed 95th-percentile distance (Pys). Forecasts from the 1-, 15-,
and 30-s models are plotted in blue, red, and green, respectively. Shaded regions
denote *o (standard deviation).

Discussion and conclusion

Our transformer model accurately forecasts fluid-induced MEQs, capturing
both their temporal evolution and spatial growth (Table 2). This dual cap-
ability is, to the best of our knowledge, novel; earlier studies focused mainly
on temporal predictions™*. Reliable spatiotemporal forecasts are essential

for estimating permeability changes and mitigating the risks associated with
induced seismicity. In the following, we discuss how permeability enhance-
ment can be inferred from monitoring data and model outputs, how fracture
characteristics can be estimated, and the potentials and limitations of deep-
learning-based forecasting for field-scale, fluid-induced earthquakes.
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Fig. 8 | Spatial evolution of microearthquake (MEQ) clouds and forecast per-
formance. The figure shows the spatial distribution of MEQs and forecast results for
different datasets and time horizons. Each row represents a dataset: training (top),
validation (middle), and test (bottom). Each column shows projections on the XY,
YZ, and ZX planes. Solid circles indicate the observed 50th-percentile radius (Pso),
while dashed circles represent the 95th-percentile radius (Pys). Blue and red lines

show forecasts from the 1-s and 15-s models, respectively, with shaded regions
denoting +o (one predicted standard deviation). Colored dots represent MEQs from
different stimulation phases: yellow for Stim 3, green for Stim 4, and purple for Stim
5. Solid black lines indicate the injection well, dashed black lines the production well,
and red triangles mark the injection point. All spatial dimensions are in meters.
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Table 1 | Final MEQ spatial extent

1 s model 15 s model 30 s model
Dataset Pct Obs [m] Pred [m] Diff [m] o[m] Pred [m] Diff [m] o [m] Pred [m] Diff [m] o [m]
Train Pso 5.92 6.29 0.38 0.67 6.59 0.68 0.20 2.56 3.35 0.79
Pgs 10.23 10.74 0.51 1.46 11.36 1.13 0.51 5.32 4.91 1.43
Val Pso 5.71 6.16 0.46 0.65 6.50 0.79 0.20 2.45 3.25 0.77
Pgys 14.08 15.01 0.93 2.04 16.02 1.94 0.71 7.61 6.47 1.99
Test Pso 9.92 10.25 0.34 1.11 10.79 0.87 0.34 4.29 5.62 1.32
Pgs 15.23 15.95 0.72 2.18 16.82 1.58 0.76 7.60 7.63 2.16

For each split and percentile, the observed radius is followed by the neural-network (NN) prediction (Pred), absolute difference |Obs — Pred| (Diff), and model uncertainty (o) for the 1-, 15-, and 30-s

forecasting ranges.

Table 2| R? scores for all metrics and forecast models

Cum. MEQ count Cum. moment (M)

50th-percentile distance (Pso) 95th-percentile distance (Pgs)

Dataset 1s 15s 30s 1s 15s 30s 1s 15s 30s 1s 15s 30s

Train 0.994 0.963 0.807 0.996 0.933 0.748 0.969 0.974 0.444 0.967 0.974 0.556
Val 0.984 0.929 0.649 0.993 0.878 0.546 0.972 0.941 —-0.373 0.989 0.947 0.208
Test 0.993 0.972 0.809 0.993 0.935 0.765 0.995 0.988 0.401 0.973 0.973 0.543

The 1s, 15, and 30 s columns correspond to models with forecast ranges of 1, 15, and 30 s, respectively.

Estimation of permeability enhancement

Estimating permeability enhancement is a critical task in EGS, yet direct
measurements are challenging in the subsurface. This limitation also applies
to our study—we aim to understand how permeability evolves during
hydraulic stimulation, but no direct measurements were available from the
field experiment. Although the correlation between MEQs and permeability
remains elusive”, we derive a physically grounded rationale to indirectly
estimate permeability using model outputs. Specifically, we apply the cubic
law for permeability, which relates changes in fracture aperture to perme-
ability change™”:

(b +Ab)° B 3)

Ak = - —
12s 12s

where Ak is the permeability change, by is the initial fracture aperture, Ab is
the aperture change, and s is the spacing between parallel fractures. Assuming
that the initial aperture by is negligible compared to the aperture change (ie.,
by < Ab), we approximate the permeability evolution as Ak ~ Al—é’z. Given that
the EGS Collab Experiment 1 aimed to establish fracture networks via
hydraulic fracturing (i.e., tensile fractures) ™", we assume the seismic moment
is linked to normal displacement by tensile opening. The equivalent moment
M, for a tensile opening can be expressed as™:

M, = 2GAAu, (4)

where G is the shear modulus, A is the area of the fracture, and Au,, is the
normal displacement across the fracture. Assuming the area A of the frac-
ture is proportional to the aperture (A o« Ab)*, we establish a direct pro-

portionality between seismic moment M, and permeability change as*:

2
log M, glog Ak (5)

With these scaling relationships, we infer that the overall logarithmic
permeability increment is linearly proportional to the logarithmic seismic
moment, though this assumption primarily holds during early stimulation,
where the initial aperture is substantially smaller than the aperture incre-
ment (ie., by < Ab).

During the first stimulation, the observed cumulative logarithmic
seismic moment reaches =3 (Fig. 6 left), implying a permeability
increase of roughly two orders of magnitude. The 1-s forecast reproduces
this estimate, whereas the 15-s forecast model overpredicts the moment
by about one order of magnitude, and the 30-s forecast model under-
predicts it by a similar amount. Because the cumulative seismic moment
predicted by our network can be mapped directly to permeability
changes, the model provides a practical, indirect means of tracking
permeability evolution during hydraulic stimulation—though this
mapping is valid only for the initial seismic—moment range where the
derivation’s assumptions hold.

Inference of the fracture characteristics

In fluid injection operations, we need to control the spatial extent of frac-
turing. As an example, in EGS fields, it is crucial to prevent MEQs from
extending beyond the region between injection and production wells while
enhancing permeability within this region through fracturing. Our model
provides estimates of two spatial extents of MEQs: the 95th percentile dis-
tance (Pos) and the 50th percentile distance (Psp). Pos represents the far
extent of MEQs, while Ps, indicates the most active MEQ regions, which
likely correspond to areas of greatest permeability increase due to fracture
generation and re-opening.

The importance of tracking Pgs and Ps, becomes clear when the
spatial extents from each stimulation are compared (Table 1). From sti-
mulation 3 (training) to stimulation 4 (validation), the observed Pys grows
by 3.85 m (from 10.23 to 14.08 m), while Ps retreats by 0.21 m (from 5.92
to 5.71 m), indicating a slight shrinkage of the seismically active zone. Our
1-s forecast model reproduces these shifts almost exactly, predicting a
4.27 m increase in Pys (from 10.74 to 15.01 m) and 0.13 m retreat in Ps,
(from 6.29 to 6.16 m); all absolute errors fall within the 1-s forecast
model’s *o0 band. Between stimulation 4 (validation) and stimulation 5
(test), the observed Pys increases by 1.15m (from 14.08 to 15.23 m),
whereas Ps, advanced by 4.21 m (from 5.71 to 9.92 m). The 1-s forecast
model again captures these trends, predicting a 0.94 m rise in Pys (from
15.01 to 15.95 m) and 4.09 m increase in Ps; (from 6.16 to 10.25 m). By
accurately forecasting Psy and Pos in real time, the network enables
practitioners to infer fracture propagation and activation, making it a
practical tool for managing stimulation where direct measurements are
not feasible.
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Potential and challenges of deep learning forecasting

Among the various deep learning approaches, we chose the transformer
model as our core architecture. The success of the transformer model is
driven by several key factors. First, the self-attention mechanism allows the
model to capture long-term dependencies**"*, which are crucial in fluid-
induced seismicity, where MEQs are influenced by cumulative fluid injec-
tion, pore pressure changes, and perturbed in-situ stress conditions’. In
particular, fluid-induced seismicity often exhibits long time intervals
between injection and seismicity. For instance, the largest earthquake (local
magnitude 3.9) at the deep geothermal site GEOVEN in Vendenheim
occurred more than six months after shut-in”. The self-attention
mechanism enables the model to weigh the importance of different input
features over time, making it highly suited for sequential data*™.

Second, transformers excel at processing spatiotemporal data®, which
is vital for accurately predicting the spatial distribution of MEQs. This ability
provides critical insights into fracture propagation® and fluid migration®,
both of which are key factors in assessing the effectiveness of hydraulic
stimulation. The model’s performance in predicting the spatial extent of
seismic events reflects its capacity to capture both the temporal and spatial
dynamics of fluid injection-induced microseismicity. Third, the transfor-
mer’s non-recurrent architecture allows it to handle irregular time series
data”, a common occurrence in microseismic monitoring due to variable
injection schedules and operational pauses. This flexibility enhances the
model’s robustness across different stimulation phases and geological set-
tings, making it adaptable to varying conditions and data availability—a
common challenge in real-world geophysical applications.

While the model shows promising results, extending it to large-scale
field operations introduces additional uncertainties due to unknown geo-
logical heterogeneity and the extended temporal dependencies inherent to
fluid-induced seismicity. The data used in this study were collected from an
intermediate-scale (10-20 m) experiment with comprehensive monitoring
tools from the EGS Collab project”””’. Such dense instrumentation may not
be feasible in reservoir-scale engineering applications, raising questions
about the model’s generalizability to less controlled, large-scale environ-
ments. One promising strategy for adapting deep learning forecasting
techniques to larger-scale fluid-induced seismicity applications involves
transfer learning with fine-tuning. For example, successful transferability
between datasets from Utah FORGE and EGS Collab was recently
demonstrated using appropriate fine-tuning methods™. Although further
fine-tuning will likely be required to adjust the model to larger operational
scales, the fundamental assumption remains that the neural network model
learns generalizable signal patterns associated with fluid-induced MEQs.
Additionally, integrating uncertainty quantification into predictions
becomes increasingly important given the higher uncertainty inherent in
real-field-scale operations. By incorporating these strategies, along with
judicious monitoring, transformer networks could be systematically vali-
dated and effectively implemented at larger scales. Future work could
involve training and validating the model’s performance with field-scale
fluid-induced seismic data and hydraulic stimulation histories, thus
ensuring robustness in more complex geological settings.

In summary, despite limitations related to monitoring systems and
scale, this study presents a deep learning based approach for forecasting
MEQs in response to fluid injection. The transformer model’s ability to
predict both temporal and spatial evolution highlights its potential as a
valuable tool in subsurface operations, offering substantial improvements in
safety and efficiency.

Method: transformer neural network architecture

We employ a transformer neural network to forecast the spatiotemporal
evolution of fluid-induced microearthquakes (MEQs). The attention
mechanism captures dependencies in the monitoring time series, allowing the
model to learn patterns across multiple temporal scales. Figure 1 illustrates the
overall architecture. Given a sequence of past monitoring data, the model
predicts the future MEQ features. The following subsections describe data
processing, network architecture, loss function, and hyperparameter tuning.

Data preprocessing: crop and normalization

We first construct training segments by sliding a growing stimulation his-
tory across the cumulative time series and advancing the forecast horizon in
non-overlapping blocks. The monitoring data at discrete time index ¢ are
defined as:

x(t) = [x,(), %,(8), ..., xs(0)] " € RM, (6)

where the monitoring dimension M = 6 includes hydraulic stimulation
features —(1) flow rate (x;) and (2) well head pressure (x,)— and spatio-
temporal MEQ features —(3) cumulative MEQ numbers (x3), (4) log M,
(x4), (5) 95th percentile distance (xs), (6) 50th percentile distance)(x;).

The cropping procedure is controlled by two hyperparameters. The
minimum history length [_; specifies the number of monitoring samples
always available, and the forecast horizon g, specifies how many future
steps are predicted at once. For a monitoring ending at f.,,4, the number of
segments is

tond — Do
N = end ‘min (7)
lfuture

For each segment index k € {0, ..., N — 1} the split time is set as

tks pht = lmin + klfuture (8)

Thus, the cumulative monitoring input (X*) and the subsequent forecast
window (Y®) are defined as:

X® = [x(t) 1< tsrkspht} e R M )
Y® = {x(1) | t,fpht <<t ) e RETOF (10)

where F = 4 corresponds to the forecasting MEQ features: (1) cumulative
MEQ count, (2) log M, (3) Pss, and (4) Ps,. Each successive segment index
k advances the split by lg,ure> ensuring that the predicted time blocks Y* are
non-overlap and contiguous, while the input window grows monotonically.
This approach yields continuous, leakage-free forecasting segments that can
be applied in real time once at least [ ; monitoring have been
acquired (Fig. 4).

To fairly normalize the data without information leakage from future
steps, normalization is applied individually to each input window X®. For
each monitoring dimension m € {1, .. ., M} and each segment k, we define
the normalization using only the known input window as follows:

*® — min x,,(¢)
1<t

b =

Lit
1<t<tr 11
max x,(t) — k (1)
1<t 1<rsf]

The normalization parameters obtained from each input window X®
are then consistently applied to scale the corresponding forecast window
Y®. This ensures that normalization relies exclusively on information
available at the prediction time, thus avoiding any data leakage from future
observations.

Neural network architecture

Our transformer neural network architecture employs a multi-head atten-
tion mechanism designed to effectively capture temporal dependencies
from variable-length sequences. Given an input monitoring sequence X,
the multi-head attention layer processes the input as follows":
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where Q =X®W, K=X®Wy, and V = XYWy, are the query, key, and value
matrices, respectively; Wq, Wx, and Wy are learnable weight matrices; dj is
the dimension of key vectors.

Following the attention layer, a feed-forward network (FFN)® is
applied independently to each time step. The FFN consists of two linear
transformations with a Rectified Linear Unit (ReLU) activation function:

FEN (z) = ReLU (zW, + b,;)W, + b, , (13)
where z denotes the input from the attention output, and Wy, W,, by, and b,
are learnable parameters.

To enhance training stability, layer normalization and residual con-
nections are applied after both attention and feed-forward layers. These
ensure effective gradient propagation and prevent training instabilities.

After attention and feed-forward layers, global average pooling and
dense layers reduce the sequence to a single vector, producing predictions
for the forecasting window Y. In particular, the model predicts both the
mean (u) and log-variance (log6?) of these forecasting MEQ features to
quantify prediction uncertainty:

Yored € R Hoaure ¥ 2F Yored® = [, (1), .., (1), 10g 03(8), ..., log o3 (1)]
(14)

The model is trained using the Adam optimizer” with a hetero-
scedastic Gaussian negative log-likelihood (NLL) loss function™”, aug-

mented by a monotonicity penalty weighted by the hyperparameter (A):

£ = NLL (Ytrue7 yPred) +A PenaltYmono (15)

The NLL explicitly measures the discrepancy between predictions and
true values, accounting for predictive uncertainty. Given the predicted mean
(Uprea and log-variance (log sz red ), the NLL is defined as:

red, 2
O — ) :
T + oclog(aif) ,

1 X
= f

)

1 f=1

NLL (Ytrue7yPred) = ﬁ %

(16)

where N is the number of time steps in the forecast window, F is the number
of MEQ target features, and « is the hyperparameter to discourage the model
from inflating variance. This formulation captures both prediction accuracy
and model confidence, penalizing over- or under-confident forecasts.

To enforce non-decrease for the cumulative term forecastings, a
monotonicity penalty is applied to cumulative MEQ count and cumulative
logarithmic seismic moment. The penalty is defined as:

T
Penalty, = ;‘min (0, predty — Yt};rled> ’ , (17)
where only the selected cumulative features are included in the penalty term.
Finally, all predictions are rescaled using the inverse of the normal-
ization applied during preprocessing. The model performance is evaluated
using the coefficient of determination (R*):

Z?:l (Yi B ?i)z (18)
Z?:1 (Yi - ?)2

RP=1-

where Y includes the four spatiotemporal MEQ features.

Neural-network hyper-parameter tuning

The transformer model is trained to forecast spatiotemporal MEQs from
hydraulic-stimulation history and past MEQ responses. While network
weights are learned automatically, several settings—loss-function coeffi-
cients, architectural widths, batch size, dropout rate, and penalty weights—

must be chosen by the user’>””. Supplementary Table 1 lists the values that
remain fixed in every experiment.

Two coefficients are tuned by grid search: f (the variance-
regularization weight inside the heteroscedastic Gaussian NLL term) and
A (the weight on the monotonic-increase penalty applied to cumulative
MEQ count and cumulative seismic moment). For each forecast horizon
Iature € {1, 15, 30} models are trained with 5, A € {0.1, 1.0, 10.0}. Validation
R scores identify the optimal pair (8*, 1*); the corresponding results appear
in Supplementary Table 2.

Short-horizon models—forecast windows of up to fifteen seconds—
achieve excellent accuracy; for example, the lgre = 15 model reaches
szal =0.924. As the horizon lengthens, performance degrades: at

Hggrure = 30 the best model attains R?> , = 0.046. The horizon-specific
val P

models reported in Supplementary Table 2 are used for all subsequent
experiments.

Data availability

The EGS Collab experiment’s stimulation data and seismic catalog are
available at https://doi.org/10.15121/1651116 and https://doi.org/10.15121/
1557417.

Code availability
The code used in this study is available on GitHub at https://github.com/jh-
chungl/Transformer_ MEQ_Forecasting.
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