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thermobarometers
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To understand magmatic processes within the silicate planets, accurate pressure and temperature
estimates are essential. These conditions are often measured using thermobarometers based on
mineral equilibria, but their precision is limited, particularly for barometers, with standard error
estimates often exceeding 200 megapascals. Here we present an approach combining
thermodynamics and statistics to rigorously investigate these uncertainties. Uncertainty propagation
and Sobol analysis reveal that thermometer uncertainties are primarily driven by compositional
analytical uncertainty, while barometer uncertainties are dominated by model parameters. Given the
quality of current calibration data, even a perfect thermodynamic model has a built-in minimum
uncertainty of 120–240 megapascals for barometer and 22–41 °C for thermometer. Furthermore, we
demonstrate that pressure and temperature estimates are interdependent; an error in one inevitably
compromises the other. Our work provides a pathway for building more reliable thermobarometric
models and underscores the need for new, high-quality experimental data.

The architecture of magmatic systems within the crust and their corre-
sponding thermal state serves as the bedrock for building a comprehensive
understanding of magmatism, which is perhaps the most critical factor in
understanding planetary evolution. Temperature (T) and pressure (P) are
twopivotal parameters that determine phase equilibriumassemblages1,2, the
solubility of volatiles in magma3,4, magma density, and rheology5,6, thereby
influencing the state and evolution ofmagma, the formation, and growth of
magma reservoirs, volcanic eruption styles, and the formation of mineral
deposits7–12. Consequently, accurately constraining P–T has long been a
focal issue in Earth science research13.

Magma physiochemical meters (MPMs) based on mineral phase
equilibria, including thermometers (T), barometers (P), hygrometers
(H2O), and oxybarometers (fO2), have offered unparalleled information
on the physiochemical parameters of magmatic reservoirs14,15, which are
hard to replace by other techniques. All MPMs, in essence, can be con-
sidered algorithms involving mapping functions that relate compositional
inputs to specific physiochemical parameters. This mapping relies on the
underlying assumption that minerals crystallize in equilibrium at phase
boundaries, with all components adhering to thermodynamic equilibrium
condition:

ΔGT;P
m ¼ �A ¼ 0 ð1Þ

where ΔGT;P
m is the molar Gibbs Free Energy change at P–T and A is the

chemical affinity. In general, the ΔGT;P
m can be expressed as:

ΔGT;P
m ¼ ΔHPr;Tr � TΔSPr;Tr þ
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ΔCp
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Pr

ΔVdP þ RTlnK
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where ΔHPr ;Tr and ΔSPr;Tr represent the change of standard enthalpy of
formation and entropy at the reference pressure (Pr) and temperature (Tr),
ΔCp is the molar isobaric heat capacity and,ΔV the molar volume between
products and reactants. K denotes the equilibrium constant. ΔCp, ΔV and
activity coefficientswithinK arenonlinear functions ofP–T–X.MostMPMs
simplify these dependencies by treating ΔCp and ΔV as constants and
considering only the contributions of key component interactions to activity
coefficients, thereby enabling the isolation of target parameters (P, T, fO2)
for calibration. Hence, all MPMs are essentially variations of the thermo-
dynamic equilibrium equations between mineral-melt or mineral-mineral,
sharing one consistent theoretical framework13,16. Over the last decades,
considerable numbers of phase-equilibrium-based thermobarometers have
been proposed, based on mineral-liquid17–19, mineral-mineral20–23, mineral-
only24–26 and liquid-only27,28, and have become widely adopted within the
magma and volcanology research communities. More recently, the use of
machine learning in geosciences has also led to novel approaches for
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thermobarometers, enabling the use of much larger experimental datasets
than traditional models to train high-precision, broadly applicable
models29–31. Although machine learning algorithms may extract more
detailed information from data compared to traditional calibration
methods32,33, independent testing of these models on experimental datasets
not used for calibration shows that while both traditional and machine
learning models provide reasonable results for temperature, they
consistently fail to yield pressure estimates with uncertainties <200
MPa34–36. The poor performance of barometers has been explained by
several factors, including 1) volume changes in the silicate liquid partially
absorbing pressure variations13, 2) enthalpy changes (ΔS ¼ �∂ΔG=∂T)
being more prominent than molar volume changes (ΔV ¼ ∂ΔG=∂P)37 or
other thermodynamic limitations of phase-equilibrium-based equilibrium
barometers35 and 3) the insufficient precision of experimental data used for
calibration, and a shortage of experiments to fully cover P–T–X space.
Among these, the substantial differences in ΔS and ΔV of mineral-forming
reactions undoubtedly play a dominant role, and unlike point 3), are
fundamental limitations that cannot be overcome.Generally, reactionswith
large ΔS are T-sensitive and suitable as thermometers, whereas those with
large ΔV are P-sensitive and appropriate as barometers13. Here, the jadeite
equilibrium between clinopyroxene (Cpx) and liquid (Liq) is used as an
illustrative example, which is commonly used for barometer calibration due
to its large molar volume change19:

NaAlSi2O6ðCpxÞ ¼ 0:5Na2SiO3ðLiqÞ þ 0:5Al2O3ðLiqÞþ
1:5SiO2ðLiqÞ

Our representation of liquid species is consistent with the thermo-
dynamic components employed in the MELTS model. We employed
Rhyolite-MELTS 1.2.038,39, implemented within the framework of the
Enabling Knowledge Integration Project (https://gitlab.com/ENKI-portal/
ThermoEngine), to calculate the entropy (ΔS) and volume (ΔV) changes
associated with this reaction, using the composition and P–T conditions of
experiment FM15740, yielding 139.7 J ∙ [mol·°C]−1 and 26.7 J ∙ [mol·MPa]−1

respectively. That is, for a given uncertainty in the ΔGT;P
m , uncertainty (in

MPa)when this reaction is used as a barometer is approximately 5.2 times of
the uncertainty (in °C) when used as a thermometer. If a calibrated Cpx-
liquid thermometer has an root mean square error (RMSE) of 40 °C, the
corresponding barometer might exhibit an RMSE of around 200MPa. For
reactionswith a largerΔS, this disparitywould be evengreater. Additionally,
in natural magmatic systems, the complex evolution history means it is
difficult to determine the relationship between phases that may have grown
in equilibrium, or possibly in completely different environments7,40,41.
Moreover, within a single hand sample of volcanic rock, crystals of a single
mineral phasemay be phenocrysts, antecrysts, and/or xenocrysts, according
to the environment in which they formed. Individual crystals may also
exhibit zoning and/or complex textures, indicating that different portions of
a crystalmay have grown in distinct environments14. This complexity in the
mineral genesis, coupled with changes in water content and matrix glass
chemistry due to degassing and microlite formation during magma ascent
collectively contributes to a further deterioration in the reliability ofmineral
±liquid thermobarometers. Owing to these limitations, single-phase ther-
mobarometers have been widely established and applied25–33. Pressure
miscalibration also impacts temperature and vice versa since both para-
meters together dictate chemical equilibrium, and neither parameter is
known in most natural systems. Overall, the temperature and pressure
information extracted from themineral and/or glass (melt) compositions of
igneous rocks contains several sources of inaccuracy.

We believe that the challenges encountered by phase-equilibrium
thermobarometers highlight the incomplete nature of our understanding of
their thermodynamic intrinsic nature. Thus, here we provide a thermo-
dynamic perspective that can unambiguously address the following crucial
questions and pave theway for the next generation of thermobarometers: 1)
How do uncertainties in composition and model parameters contribute to
the overall uncertainty in P–T estimates, and which variables are the most
influential for thermobarometry? 2) Given known in situ analytical
uncertainties in experimental datasets and assuming no additional sources

of error, what is the theoretical upper limit of calibration precision? How
much additional uncertainty is theoretically introduced when using single-
phase thermobarometric models compared to those based on two-phase
equilibria? 3) As thermobarometry often requires the simultaneous infer-
ence of both P and T from compositional data, to what extent are P and T
estimates inherently correlated, regardless of whether a thermobarometric
model is primarilyP-dependent orT-dependent? If one parameter becomes
unconstrained, is the other still robust?

Results and discussion
Integrated approach to P-T uncertainty and sensitivity analysis
We establish a statistically robust framework for evaluating thermo-
barometers that explicitly quantifies and propagates uncertainties. We
develop a simplified thermodynamical model ensuring consistency with
fundamental physical principles rather than relying solely on empirical
correlations. We exemplify this framework using the jadeite (NaAlSi2O6)
equilibrium in the clinopyroxene-liquid system. This equilibrium is
expressed thermodynamically as the change in molar Gibbs free energy
(ΔGm) or chemical affinity (A):

ΔGm ¼ �A ¼ μLiqJd � μCpxJd ð3Þ

Where μCpxJd is the chemical potential of the jadeite component in the clin-
opyroxene, andμLiqJd is the chemical potential of the jadeite component in the
liquid:

μLiqJd ¼ 0:5μLiqNa2SiO3
þ 0:5μLiqAl2O3

þ 1:5μLiqSiO2
ð4Þ

For any thermodynamic component i in a phase p, its general molar
Gibbs free energy (i.e., chemical potential) can be expressed as:

Gi
m P;Tð Þ ¼ μi P;Tð Þ ¼ Δf H

Pr ;Tr � TSPr ;Tr þ
Z T
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þ
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Z P
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∂V
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� �
P

dP þ RTlnγiXi

ð5Þ

Δf H
Pr ;Tr , SPr;Tr , VPr ;Tr represent the standard enthalpy of formation,

entropy, and molar volume of component i at the reference pressure (Pr,
0.1MPa) and temperature (Tr, 298.15 K). Cp is the isobaric heat capacity,
and γi is the activity coefficient of component i in themelt or solid solution.
The expressions for Cp, V

P;T and lnγi of clinopyroxene are detailed in the
Methods section. Melt chemical potentials are calculated using Rhyolite-
MELTS 1.2.03,38,39.

Thermodynamic parameters of the clinopyroxene solid solution
model, including the Δf H

Pr;Tr , SPr;Tr , VPr ;Tr and macroscopic interaction
energies (Wi,j), were determined through Bayesian inversion using a Mar-
kov ChainMonte Carlo (MCMC) algorithm. This calibration provided full
posterior probability distributions for allmodel parameters, alongwith their
covariance matrix, serving as essential inputs for robust statistical uncer-
tainty propagation analysis. Convergence of the MCMC sampling after the
initial “burn-in” phase was assessed through visual inspection of trace plots,
confirming that the chains effectively converged to the target posterior
distribution (Fig. 1).

To thoroughly evaluate the impact of model parameter uncertainties
and analytical uncertainties within clinopyroxene and liquid compositions
on the calculated P–T conditions, our framework employs amulti-pronged
strategy (see Methods for details): (1) individual parameter uncertainty
propagation to understand the isolated impact of each parameter, (2) joint
uncertainty propagation that simultaneously samples all model parameters
and compositions from their full distributions to quantify the total P–T
uncertainty, and (3) uncertainty contribution decomposition via Sobol
analysis42,43, which treats clinopyroxene-liquid compositions and model
parameters as twomacro-parameters to quantify their relative contributions
to the overall P–T uncertainty.
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Our results reveal distinct contributions to temperature and pressure
uncertainties. We consider analytical uncertainties of 10% for Na₂O, TiO₂,
K₂O, Cr2O3 and MnO, and 5% for SiO2–Al2O3–FeO–MgO–CaO for both
Cpx and Liq analyses, based on reported precisions and expected offsets
between laboratories35,44. The analytical uncertainty for H₂O in the liquid is
also considered, using precision values reported in experiments or, if not
available, set at 10%. For temperature calculations, these defined analytical
uncertainties in clinopyroxene and liquid compositions contribute the
majority of the uncertainty. The first order Sobol indices (S1, 0.65) indicate
that 65% of the total uncertainty comes from error in Cpx and Liq com-
positions, rising to 85% (ST = 0.85) once interactions with other input
parameters is considered. In contrast, the contribution from uncertainty in
the model parameters (Δf H

Pr ;Tr , SPr ;Tr , VPr;Tr and W) to the overall tem-
perature uncertainty is secondary, with S1 and ST values of 0.22 and 0.23
respectively (Fig. 2b). Conversely, pressure calculation uncertainties are
almost exclusively attributed to model parameters (S1: 0.79, ST: 0.81), with
analytical uncertainties in compositions contributing only a minor fraction
(Fig. 2a; S1: 0.04, ST: 0.04). Specifically, uncertainties stemming fromW and
Δf H

Pr ;Tr are major sources of model uncertainty in both temperature and
pressure calculations. In contrast, the impacts of uncertainties in SPr;Tr and
VPr;Tr are found to be minimal and negligible, respectively.

The striking divergence in uncertainty attribution can be understood
by examining the thermodynamic expressions for chemical potential.
Temperature influences the Gibbs free energy primarily through the
RTlnγiXi and TSPr;Tr terms. Minor analytical deviations in mineral and
liquid compositions directly affect theXi and lnγiXi, thereby influencing the
determined temperature. Conversely, pressure influences the Gibbs free
energy change of the reaction predominantly through the

R P
Pr
ΔVdP term.

BecauseΔV is small, even small uncertainties in the calculatedGibbs energy
arising frommodel uncertainties result in large changes in inferred P. For a
given temperature, variations in Δf H

Pr;Tr and Wi,j can cause noticeable
variations in ΔGm which in turn lead to variations in the determined P.
Overall, Δf H

Pr ;Tr and Wi,j account for the largest share of model-related
uncertainty through their influence on the calculated ΔGm, while analytical
errors in compositional data also substantially increase the total uncertainty
in T estimates in practical applications.

Theoretical precision limit defined by analytical uncertainty
We established a thermobarometric algorithm using a Bayesian approach
based on Rhyolite-MELTS (v1.2.03,38,39, see “Methods”) and conducted
inversion tests on a test dataset. The overarching conclusion from our
inversion testswas the elusivenature ofP estimates (SupplementaryNote 1).
Irrespective of phase information utilized, the predictive capability for P is
consistently inferior to that of T and H2O. Here, H₂O refers to the water

content dissolved in the liquid. Given that P–T–H2O–fO2 and composition
(X) are all essential parameters for defining the state of a system, if a para-
meter exerts a substantial impact on the free energy of a system, its role in
regulating equilibrium and phase transitions is expected to be pronounced.
From a thermodynamic perspective, all thermobarometers aim to find the
P-T solution corresponding to A (P, T, X) = 0. Under this framework, the
influence of compositional uncertainty, and changes in pressure and tem-
perature on the calculated affinity (in joule) can be assessed and directly
compared to each other45–47. This provides a compelling conceptual fra-
mework; the pressure or temperature change required to produce a change
in the total chemical affinity equivalent to that caused by compositional
uncertainty defines the achievable limit of thermobarometric performance.

Total chemical affinity variations from different parameters
(P–T–H₂O–fO₂) were investigated using the solid and liquid compositions
from an experiment FM15748, run at T = 1050 °C and P = 600MPa with a
liquid composition of 49.4 wt% SiO2 and 6.1 wt%MgO in equilibriumwith
plagioclase (Pl, An94), and clinopyroxene (Cpx,Mg# = 81.1). The variability
in affinity caused by analytical uncertainties in composition data was cal-
culated underfixed experimentalP–T–H₂O–fO₂ conditions for comparison
(Fig. 3, green bar).T andH₂Oexhibit a strong control over the affinity, with
an average variation of 71 J ∙ °C-1 (Fig. 3a) and 1.8 kJ ∙ [wt.%]−1 for plagio-
clase (Supplementary Fig. S5a), and 64.3 J ∙ °C-1 (Fig. 3b) and 1.4
kJ ∙ [wt.%]−1 for clinopyroxene (Supplementary Fig. S5c). Considering that
the range of temperature and H2O values typically span >300 °C and
0–10 wt.%, respectively, for magmatic systems13,32, we believe the impact of
T and H₂O variations can surpass 20 kJ and 14 kJ, respectively. In com-
parison, the effect of P is markedly diminished, especially on plagioclase
(Fig. 3a, c). Considering a variation of 1 GPa (i.e. a ~ 30 km thick crust), the
affinity changes by less than1 kJ. This is comparable to the variation seen for
only 10 °C temperature change. The impact of Pon clinopyroxene is notably
stronger; 1 GPa of variation leads to an affinity change of approximately
10.26 kJ (Fig. 3b), corresponding to an average change of 10.26 J∙MPa-1.
Even though clinopyroxene shows a marked molar volume response to
pressure variations19,37,49, pressure still exerts a secondary influence on phase
equilibria compared with temperature (Fig. 3b, d). Very similar results were
observed in completely different systems, with a more chemically evolved
liquid from experiment AB6250 containing 66.59 wt.% SiO2 and 1.98wt.%
MgO (Supplementary Fig. S6). This points to the general fact that chemical
equilibrium in magmatic systems is primarily controlled by temperature
and H2O. This effectively explains why calibrating barometers is often
fraught with difficulty, as pressure, in comparison to temperature andH2O,
plays a secondary role in controlling Gibbs energy of reaction and, conse-
quently, chemical equilibrium within magmatic systems, making its influ-
ence on chemical composition more susceptible to being obscured by

Fig. 1 | MCMC trace plot of the log-likelihood as a
function of sampling iterations. The plot demon-
strates convergence to a stable posterior distribution
following an initial 1000-iteration burn-in phase,
with the shaded region indicating the sampled
iterations used for parameter estimation. The max-
ium log likelihood is shown in blue dased line.
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Fig. 2 | Uncertainty propagation and decomposition results for the calibrated
model using jadeite-equilibrium. a Violin plots illustrate the distribution of cal-
culated pressure results arising from individual and joint parameter uncertainty
propagation. ΔH, ΔS, ΔV represent outcomes from individual uncertainty propa-
gation of 4f H

Pr ;Tr , SPr ;Tr , VPr ;Tr repectively. ΔW, ΔX demonstrate uncertainty
propagation when specific groups of parameters are treated as single macro-para-
meters: ΔW for all macroscopic interaction energies within the clinopyroxene
thermodynamic model, and ΔX for the clinopyroxene and liquid compositions. The

Total category corresponds to the result of joint parameter uncertainty propagation
across all parameters and compositions. b uncertainty propagation results for
temperature calculations. In each violin plot, the white circle represents the mean of
the distribution, and the upper and lower dashed lines indicate the quartiles. S1 and
ST denote first-order Sobol indices and total-effect Sobol indices, respectively. Pre-
cisions of each oxide are set as follows: 10% for Na2O, TiO2, K2O, MnO, Cr2O3 and
5% for the others. The experiment selected is FM15748.
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Fig. 3 | Chemical affinity of plagioclase and clinopyroxene formation reaction
variations respond to P–T changes. a, b Chemical affinity responds to P–T for
plagioclase and clinopyroxene formation. The green shaded area represents the ±2σ
range of affinity variations obtained by 2000 random synthetic solid and liquid
composition sampling drawn from Gaussian distribution with synthetic analytical
precisions (1σ/mean; wt.%) under the experimental condition. The water content of

the liquid used in the calculations is the reported value of the experiment. Precisions
of each oxide are set as follows: 10% for Na2O, TiO2, K2O, MnO, Cr2O3 and 5% for
the others. Lines in different colors signify affinity contour lines for different tem-
peratures. c, d 3D representation of the chemical affinity as a function of pressure
and temperature. The experiment selected is FM15748.
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analytical uncertainty, defined as the uncertainty in experimental data. For
example, plagioclase has its pressure information completely overridden by
analytical uncertainty (Fig. 3a), making it perilous to use as a barometer.

For each experiment in the test dataset, we conduct simulations cal-
culating the range of total chemical affinity variations (±2σ) induced by the
synthetic analytical uncertainty. This value, when divided by the change in
affinity per °C and per MPa, defines the theoretical precision limit of the
thermobarometer under the specified data uncertainty.Calculatedprecision
limits of theCpx-liquid thermobarometer range from22 to 41 °C and120 to
240MPa, respectively (Fig. 4), with an average of 28 °C and 165MPa.Many
calibration studies for specific systems report SEE within this range17,19,26,
while SEE or RMSE values from global datasets are typically larger29,31. An
interesting result is that the precision limits of the Cpx-based thermo-
barometer are dependent on liquid composition; theoretical precision limits
are positively correlated with the Al₂O₃/CaO ratio in the liquid, particularly
for barometers (Fig. 4). Thus, for the same assumed% error in oxides, some
systems could consistently yield better calibrations than others. This sug-
gests that for global models with broad compositional coverage, standard
metrics such as SEE or RMSE do not rigorously reflect the uncertainty for
model outputs. Instead, uncertainty propagation must be performed using
the posterior means and covariance matrices of model parameters, as
demonstrated above. We also observe that 1=Δ�VJd and 1=Δ�S calculated
using the P–T obtained via inversion of Rhyolite-MELTS, are positively
correlated with the precision limits of thermobarometers (Fig. 4). Here,
Δ�VJd represents the molar volume change of the jadeite-forming reaction,
and Δ�S denotes the average molar entropy change of the clinopyroxene-
liquid reaction, defined as Δ�S ¼ ∂Atot=∂T , where Atot is the total chemical
affinity (see “Methods” section). This correlation arises from their rela-
tionshipswithP–Twithin the thermodynamic expression. Smaller values of
Δ�VJd and Δ�S require greater variations in P and T to offset changes in the
chemical potential from compositional uncertainty, thereby preserving
A = 0. Consequently, when evaluating the results of thermobarometric
calculations, 1=Δ�VJd and 1=Δ�S can serve as reliability indicators. Larger
values of these ratios indicate greater uncertainty in P–T estimates. Addi-
tionally, although the chemical equilibrium of plagioclase is primarily
controlled by temperature, its performance as a thermometer is not superior
to that of clinopyroxene. It tends to exhibit higher uncertainties, as its total
chemical affinity variation is higher for identical compositional uncertainty
(Fig. 3). It is noteworthy that our adopted analytical uncertainties—10% for
Na₂O, TiO₂, K₂O, Cr2O3 and MnO, and 5% for others—represent a highly
conservative assumption. This stems from the pervasive phase variability
observed in experimental products, expressed through sector zoning,

compositional zoning, and disequilibrium crystallization51, which reflect
inherent chemical heterogeneity within individual mineral phases. These
factors, combined with systematic interlaboratory biases in electron
microprobe analyses35,44, indicate that the actual analytical uncertainties in
datasets currently utilized for thermobarometer calibration are likely to
substantially exceed our assumed values. Our simulations demonstrate that
precision limits of Cpx-Liq models will exceeds 300MPa and 60 °C when
assigning 20% uncertainty to low-concentration elements (Na₂O, K₂O,
TiO₂, MnO, Cr2O3) and 10% to other elements. Thus, regardless of the
algorithms or theoretical models employed, without rigorous data filtering
and correction for systematic interlaboratory biases in analytical data, the
SEE or RMSE for Cpx-Liq thermobarometer will remain at levels com-
parable to 120–300MPa and 20–60 °C. To achieve a SEE/RMSE for the
thermobarometer that matches the uncertainty of the experimental appa-
ratus, with the piston-cylinder apparatus commonly exhibiting a lower
bound of ±50MPa and thermocouple a precision of ±10 °C, analytical
precision should be at 2%.With this level of precision, the theoretical limits
for the Cpx-based thermobarometer are about 8–16 °C and 45–90MPa,
respectively, according to our simulations.

Precision limits of insufficiently constrained
thermobarometric models
All MPMs are built upon a fundamental assumption: sufficient constraints
are required to uniquely pinpoint an optimal solution. To constrain both T
and P, a minimum of two effective constraints are necessary, which trans-
lates into at least two thermodynamic equilibrium equations (μαi ¼ μβi ).
Partial absence of information would lead to incomplete constraints,
exposing the model to the risk of non-uniqueness. Intersections on a P–T
diagram where mineral phase boundaries with different slopes meet27,28 or
where equilibrium boundaries between two or more thermodynamic
components in a mineral solid solution intersect18,19, can offer complete
constraints. It should be noted that the reliability does not seem to improve
withmore constraints. InvertingPl-Cpx-liquid is notmore accurate thanPl-
liquid and Cpx-liquid models (Supplementary Note 1).

The uncertainty associated with non-uniqueness is defined by the
span of equivalent solutions. Previous work has suggested that temperature
and plagioclase compositions can be extracted using only liquid
compositions32,52 and single-phase compositions of clinopyroxene can also
effectively constrain P–T and liquid compositions30. At equilibrium, the
chemical affinity of each thermodynamic component in themineralmust be
zero. Hence, the number of thermodynamic components in a mineral is
equal to the number of equations required to describe its equilibrium. For
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models based on the plagioclase phase boundary, five unknowns exist, three
endmember components (anorthite, albite, orthoclase) and P–T. The
effective constraints are four in total: three equations and the normalization
condition that the sumof three endmember components equals 1. For Cpx-
onlymodels, there are 11unknowns, including nine oxide concentrations in
the liquid (we exclude MnO and K2O because they do not constitute pri-
mary components of the pyroxene) and P–T. The effective constraints
consist of nine equations for the nine thermodynamic components (i.e.,
enstatite, ferrosilite, diopside, hedenbergite, jadeite, Ca-Tschermak, CaCr-
Tschermak, CaTi-Tschermak, CaFe-Tschermak/acmite). To minimize the
total deviation during calibration, unknown parameters with the least
impact on equilibrium should be set to appropriate fixed values, ensuring
the number of effective constraints equals the number of remaining
unknowns. This principle also applies to other mineral solid solutions,
where the number of thermodynamic components in the solid solution
equals to the number of constraints it can provide. The uncertainty imposed
on the calibratedmodel is characterized by the range of solutionmultiplicity
caused by the fluctuations in the unknowns constrained to fixed values.

The effect of each component/oxide in solid and liquid phases on
equilibrium was investigated by using total chemical affinity as a metric,

with comparisons made to P–T (Fig. 5). A 5 wt.% or less variation in CaO,
Al₂O₃, MgO, andNa₂O in the liquid can produce a comparable variation in
total chemical affinity to a 10 °C temperature change.When only the liquid
composition (including H₂O) is known, estimating the equilibrium P–T
conditions for plagioclase requires implicitly solving for its anorthite (An),
albite (Ab), and orthoclase (Or) components. Given that there are five
unknown variables (An, Ab, Or, P, T) but only four effective constraints, a
unique solution cannot be obtained directly. Therefore, to achieve a unique
solution, one of these five variables must be fixed or assumed, which then
allows for the determination of the other four. The variable chosen to be
assumed should be the one with the least influence on the overall equili-
brium, thereby minimizing the total error. If An is chosen as the variable to
be fixed, an error of 10 units in the assumed An content will induce a
temperature error of approximately 10 °C, or a pressure error exceeding
600MPa (Fig. 5b).Whenperformingparameter calibration,minimizing the
sum of squared residuals over the entire calibration dataset will necessarily
position the assumed An value near the center of the An range of the
calibration dataset. For instance, if the An range is 10–90 and the assumed
An is 50 (assuming P is correctly calculated), this can lead to an uncertainty
of up to ±40 °C for the calibrated thermometer. In comparison, if P is held
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constant at 500MPa and the plagioclase composition is perfectly calculated,
fluctuations within the 0–1 GPa range induce uncertainty in calculated
temperature of just ±15 °C (Fig. 5a). Hence, for plagioclase-saturated liquid-
only thermometers, it is necessary to fix P at a constant value to ensure that
the number of thermodynamic constraints equals the number of unknown
parameters, thereby minimizing the uncertainty in the derived T. Con-
sidering a pressure range of 0–1 GPa and assuming no additional sources of
uncertainty, themaximumuncertainty for plagioclase-saturated liquid-only
thermometers is limited to ±15 °C. Furthermore, because variations in An
and T both strongly affect P, plagioclase-saturated liquid-only barometers
are inherently unstable. This makes them particularly unsuitable for use as
barometers, especiallywithin relatively small pressure ranges (0–1 GPa). For
the clinopyroxene-liquid equilibrium, our results indicate that the liquid
oxides that most strongly control total affinity are TiO2, Al2O3, Na2O, and
CaO. Variation in each of these 4 oxides causes a change in calculated
temperature of up to ±20 °C and ±200MPa. In contrast, SiO2, Cr2O3, and
FeOexert theweakest influence,with the concentrationof the latter showing
minimal variation in magma systems, causing changes no greater than
±10 °C and ±50MPa, respectively (Fig. 5c). However, we acknowledge that
this sensitivity testing relies on the accuracy of theMELTSmodel to affinity
changes caused by minor components; MELTS does not have a Cr end
member in its Cpx, which may explain the lack of sensitivity to Cr despite
experimental work showing the opposite53. Considering SiO₂ and FeO
within a specific interval of the system (e.g., basic or intermediate, with a
range of about 10 wt.%), and specifying both SiO2 and FeO in the liquid, the
composition of clinopyroxene can uniquely constrain P–T and the other
seven liquid oxide compositions theoretically. In this case, assuming that the
liquid SiO2 and FeO composition is accurately specified, the solution
multiplicity range for P–T is approximately ±10 °C and ±50MPa, which
represents the theoretical precision limit of Cpx-only thermobarometers.
Any attempts to expand the applicability of such insufficiently constrained
thermobarometerswill increase solutionmultiplicity and adduncertainty to
the model, rendering them inappropriate for calibration using global
datasets.

In both liquid-only and mineral-only models, when solving for P–T,
the unknown compositional variables can also be determined, such asAn in
plagioclase or the Al2O3, Na2O, and CaO concentrations in the liquid. The
accuracy of the compositional variables is strongly linked to P–T. If com-
positional variables are accurately calculated, P–T should also be accurate.
Otherwise, both will deviate from true values. This indicates, from a ther-
modynamic perspective, that liquid-only and mineral-only thermo-
barometers can be equivalent to liquid-mineral ones. Conversely, relying
solely on plagioclase composition to constrain the liquid and P–T is not
reliable, as four key variables in the liquid strongly affect the equilibrium,
andany sacrifice in theirprecision results in substantial uncertainty (Fig. 5a).
Given the negligible influence of the diopside, enstatite, and Ca-Tschermak
components on affinity (Fig. 5d), predicting clinopyroxene equilibriumP–T
from the liquid composition remains viable, reducing the number of
unknowns to align with the number of constraints. However, most liquid
compositions in magmatic processes are transient, and the magmatic evo-
lution is primarily preserved in the zoning of compositional complex
minerals such as clinopyroxene rather than as diversity in erupted liquid
compositions. Therefore, mineral-only models are more widely applicable
than liquid-only or liquid-mineral models.

Deviations arising from composition to P–T inference
The end member equilibrium curve is defined by the P–T solutions where
the chemical affinity of a specific thermodynamic end member in a solid
solution equals zero on the P–T diagram. All thermobarometers can be
considered equivalent to finding intersections between a phase boundary
(e.g. Cpx-in) and an endmember equilibrium curve on the P–T diagram
(Fig. 6). In this manner, the inference from composition to P–T is entirely
controlled by these twocurves,with any change or inaccuracy causing a shift
in the intersection. We choose an experimental Pl-Cpx-liquid assemblage,
considering the endmember equilibrium curves and phase boundaries

calculated from their compositions as “correct” solutions. Variations in the
mineral and liquid components/oxides are used to simulate the deviations
induced by model uncertainty. Phase boundaries are approximated by
curves where total chemical affinities equal zero on the P–T diagram since
these curves remain almost fixed when mineral composition undergoes
minimal changes (Fig. 6a, c).

Thermobarometricmodels can be classified into two categories; liquid-
dependent which relies on liquid compositional terms and liquid-
independent which does not use liquid composition. Since liquid compo-
sition is considered, we assume that the phase boundary (Pl-in or Cpx-in)
implied by the liquid-dependent models is reliable, then variations in the
P–T solution alignwith thephase boundary.ThePl-inphase boundaryhas a
relatively steep slope (≈18.6MPa ∙ °C-1). Changing the composition of the
plagioclase by 3 wt.%Ab causes a large shift in theAb equilibrium curve and
aminimal shift in the Pl-in phase boundary (red vs. blue curves, Fig.6a). The
calculated pressure shifts by 130MPa, while temperature by only 7 °C
(Fig. 6a). For the Cpx-liquid barometer, the moderate slope of the Cpx-in
phase boundary (≈6.5MPa ∙ °C−1) means both pressure and temperature
calculations are influenced; a shift in the Jd equilibrium curve by 1 wt.%
yields a pressure error of 280MPa, and a temperature error of 43 °C
(Fig. 6c). For liquid-independent models or mineral-liquid models that
yields incorrect phase boundaries, the intersections will shift along the
directionbetween thephaseboundary and the equilibriumcurveof themost
pressure-sensitive component (Fig. 6b, d). The calculated temperature for
plagioclase demonstrates a variation of 19 °C when the liquid MgO is
increased by 3 wt.%, while the pressure shifts by only 70MPa (Fig. 6b). For
Cpx, both pressure and temperature undergo a notable shift after adding
3 wt.% CaO to the liquid, with more pronounced temperature fluctuations
compared to adding 1 wt% Jd (Fig. 6d vs. 6c). Clearly, errors in phase
boundary calculations will substantially influence temperature results.
Furthermore, as the entirety of phase boundary information is encapsulated
within the liquid composition, liquid-independent thermobarometers, such
as Cpx-only models, are consequently highly susceptible to errors when
constraining temperature. Mineral composition, however, mainly affects
the pressure results, as phase boundaries generally have steep slopes in
magma systems. This explains the observation made using the machine
learning method, where temperature information is predominantly stored
in the liquid phase, while pressure information is primarily contained in the
mineral phase29.

If the focus is on accurately determining temperature, a plagioclase-
based thermometer is quite reliable, with only minimal influence from the
pressure. However, if the objective is to accurately calculate both tempera-
ture and pressure, pressure-sensitive minerals like clinopyroxene are more
reliable. Thermobarometers based on P-sensitive minerals are mutually
dependent on the P–T accuracy, making it unlikely for the temperature
calculation to be unreliable while the pressure remains accurate, or vice
versa. As a result, with the typical SEE/RMSE range of modern thermo-
barometric models (200–500MPa and 20–50 °C)35,36, it is difficult to derive
both reliable temperature and pressure from natural samples where both
parameters are uncertain.

Conclusions
Our results highlight a critical issue inherent to all current mineral-based
thermobarometers: the uncertainties in model outputs are not adequately
evaluated, and the generally large uncertainties, coupled with the inherent
interdependence of P–T calculations, render the results unreliable formany
applications in the crustal range. We propose the following principles to
guide the development of next-generation mineral-based thermo-
barometers: 1) Develop thermodynamically robust models rather than
empirical ones. This approach ensures reliable extrapolation and allows the
use of metrics such as 1=Δ�V Jd, 1=Δ�S to assess the reliability of calculated
results. 2) Employ rigorous statistical methods to incorporate all sources of
uncertainty into the standard deviations and covariance matrices of model
parameters,which should be used inpractice for error propagation toobtain
robust uncertainty estimates. 3) Construct a high-quality experimental
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dataset to serve as the foundation for model calibration and validation. 4)
The parameters Δf H

Pr ;Tr andWi,j for mineral solid solutions are of critical
importance. More precise measurements of Δf H

Pr ;Tr should be incorpo-
rated into models to derive more accurate Wi,j thereby improving overall
model precision. For solid solutions such as clinopyroxene and plagioclase,
calibration should encompass the equilibria of all thermodynamic com-
ponents, producing parameters and covariance matrices applicable to both
mineral-liquid and single-phase thermobarometers. 5) Ensure high analy-
tical data quality when analyzing natural samples tominimize uncertainties
stemming from compositional data. For clinopyroxene-based thermo-
barometers, if either the calculated pressure or temperature is deemed
unreliable, both P–T estimates should be considered unreliable.

Methods
Chemical affinity calculations using rhyolite-MELTS
Chemical affinity is a measure of the extent of approaching equilibrium,
where a value of zero denotes complete equilibrium. Deviations from zero
indicate an increasing degree of disequilibrium. The chemical affinity of a

specific endmember in a mineral-liquid pair with a given composition may
be written as46:

�A ¼
XP
i¼1

νi;lμ
liq
i � μsoll ð6Þ

where νi;l are stoichiometric reaction coefficients, μji refers to the chemical
potential of the ith component in the jth phase, and P is the number of
components in liquid. At equilibrium, the left-hand expression for each
endmember equals zero. The total chemical affinity is defined as the sum of
the chemical affinities of each endmember at a specific pressure and
temperature, weighted by their respective mole fractions:

Atot ¼
Xn
l¼1

XlAl ð7Þ

where Xl is the mole fraction of the lth endmember, and n is the number of
endmembers in the mineral solid solution. It represents the overall
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equilibrium state of the mineral solid solution, reaching a value of zero at
equilibrium. The MELTS model includes internally consistent thermo-
dynamic properties of silicate melt and minerals suitable for a wide com-
positional range38,39, enabling us to calculate chemical affinity under specific
P–T–X conditions47. Thus, we utilize Rhyolite-MELTS version 1.2.03,38,39

built within the framework of the Enabling Knowledge Integration Project
(https://gitlab.com/ENKI-portal/ThermoEngine) to implement thermody-
namic calculations.

Thermodynamic model for clinopyroxene
Accurate thermobarometry necessitates a robust thermodynamic descrip-
tion of mineral-melt equilibria across relevant P–T–X ranges. The general
expression for the molar Gibbs free energy (i.e., chemical potential) of any
thermodynamic component i in a phase p is presented in the main text.
Isobaricheat capacityCp is typically representedbyapolynomial functionof
temperature, if lambda transition is ignored54:

Cp ¼ k0 þ k1T
�0:5 þ k2T

�2 þ k3T
�3 ð8Þ

The constants k0 to k3 are empirical parameters. VP;T is the molar
volume at P andT conditions. Its pressure and temperature dependence are
approximated by55:

VP;T

VPr ;Tr
¼ 1þ ν1 P � Pr

� �þ ν2ðP � PrÞ2 þ ν3 T � Tr

� �þ ν4ðT � TrÞ2

ð9Þ

The constants ν1 to ν4 describe the volumetric response. lnγiXi
accounts for the non-ideal mixing behavior, where R is the ideal gas con-
stant, Xi is the mole fraction of i, and γi is the activity coefficient of com-
ponent i. For the clinopyroxene solid solution, we employ a symmetric
formalism to describe activity coefficients56:

RTlnγl ¼ �
Xn�1

i

Xn
j > i

ðp0i � piÞðp0j � pjÞWi;j ð10Þ

In which p0i ¼ 1 when i = l and p0i ¼ 0 when i ≠ l, pi is the molar
fraction of component i in the solid solution. Wi;j is the macroscopic
interaction energy between component i and j. In this study,Wi;j are treated
as constant parameters.Whilemore complexmodels allowWi;j to be P and
T-dependent57, this simplification is adopted given the constraints of our
dataset and the primary focus on the uncertainty quantification framework.
The prior and posterior distributions for each parameter, along with their
covariance matrix of the posterior distribution, are presented in Supple-
mentary Table S3.

Bayesian inversion theoretical framework
Bayesian inversion has been employed to estimate the magma physio-
chemical parameters and corresponding uncertainties. This approach
represents parameters using a particular probability distribution and infers
the joint posterior probability distribution of the parameters of interest
through prior information and observational data. Bayesian theory can be
outlined as follows58:

P Θ; j;D;Hð Þ ¼ PðDjΘ;HÞ � PðΘ;HÞ
PðDjHÞ ð11Þ

where D refers to the observational data, Θ is the parameter vector, and H
represents the model assumptions. Specifically, D includes the measured
mineral compositions and the equilibrium liquid compositions. Θ encom-
passes theparameters to be inferred todetermine the equilibriumstateof the
system, including T, P, H2O, fO2, and liquid composition (X).H comprises
the thermodynamic models for minerals andmelts that have been selected,
along with a basic assumption that the system is in equilibrium between

minerals and melts. P Θ;Hð Þ � πðΘÞ denotes the prior distributions forΘ,
representing the information about the parameters obtained through other
means or empirical assumptions before the posterior distribution is derived.
P Θ; j;D;Hð Þ is the posterior distribution, representing the conditional
probability of the parameters Θ given the observational data D and model
assumptions H. P D; j;Θ;Hð Þ � LðΘÞ is the likelihood function, which
measures the degree to which the model results match the observed data
given the parameters Θ and assumptions H. A higher likelihood function
value indicates a better match between the model predictions and the
observed data. Theoretically, all parameters can be inverted provided that
the likelihood function offers enough constraints and contains valid infor-
mation regarding the parameter. Here, we define the likelihood function L
as:

lnL ¼ �+

N
ð12Þ

Φ differs across inversion modes: for single-parameter inversion, it is the
square of the total chemical affinity,whereas fordual inversions, it is the sum
of the squares of the chemical affinities of the two endmembers (anorthite
and albite for plagioclase, diopside and jadeite for clinopyroxene).
Corrections of 100 °C and 30 °Cwere conducted respectively for plagioclase
and clinopyroxene, to eliminate the systematic deviations present in the test,
given our observation of systematic biases in the MELTS model when
inverting P-T.

P D; j;Hð Þ ¼ R LðΘÞ � πðΘÞdΘ � Z represents the normalization
constant, also known as Bayesian evidence, used for comparing different
model assumptions. This integral is often analytically and computationally
intractable in high-dimensional and nonlinear cases59. Nonetheless, this
study does not focus on the differences in predictive performance between
various thermodynamic models. Our interest lies in the posterior dis-
tribution of the parameters, and since there is only one model assumption,
the exact value of Z is not required. In such cases, Bayesian inversion can be
efficiently approximated using sampling-based algorithms.

Bayesian inversion for calibration of model parameters
Here, we define the likelihood function LðΘÞ based on the calculated che-
mical affinity for each experimental product:

L ¼
YN
k¼1

1ffiffiffiffiffi
2π

p
σ
exp � A2

k

2σ2

� �
ð13Þ

whereAk is the chemical affinity calculated for the k-th experiment given the
parameter vector Θ. N is the total number of experiments used for cali-
bration. σ is set to 4000 to ensure sampling efficiency. The prior and pos-
terior distributions of each parameter are shown in Supplementary
Tables S1 and S2.

Implement Bayesian inversion via Gibbs sampling
We employed the Gibbs sampling algorithm to approximate the posterior
distribution of inversion. This method provides a powerful general
approach to exploring complicated high-dimensional shapes of distribu-
tions where analytic techniques are infeasible. Gibbs sampling is an iterative
procedure used to generate a sequence of samples from the joint posterior
distribution of a set of parameters. It decomposes the joint distribution into
conditional distributions, allowing each parameter to be sampled sequen-
tially while conditioning on other parameters60. The steps for Gibbs sam-
pling are as follows:

Initialization. Randomly generate the initial state of parameters from
their prior distributions:

Θ0 ¼ ðθ01; θ02; � � � ; θ0nÞ
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Iterative Sampling. For iteration t = 1, 2,…, n, make random drawings
from the full conditional distributions successively as follows:

θt1 � p θ1; j; θt�1
2 ; θt�1

3 ; � � � ; θt�1
n

� �

θt2 � p θ2; j; θt1; θt�1
3 ; � � � ; θt�1

n

� �

..

.

θtn � p θn; j; θt�n

� �
By this manner, the state transition from Θt�1 to Θt is completed.

Running this cycle for sufficiently long can generate a Markov chain that
converges to the target distribution.

Within the conditional distribution for each step, direct sampling is
always impractical if it is analytically intractable. Consequently, the
Metropolis-Hastings (M-H) algorithm is frequently embedded within the
Gibbs sampling framework to implement the sampling process. For each
Metropolis step, the algorithm proceeds as follows:

Parameter proposal. Proposing a new state for the current dimension
through a random walk originating from the present state, while holding
the parameter values of other dimensions constant.

Calculating acceptance probability. Evaluating the corresponding
likelihood of the current and proposed parameter states. To determine
whether the proposed state could be accepted into the Markov chain, the
M-H algorithm constructs the transition probability by calculating an
“acceptance ratio”, α, which is defined as the ratio of the posterior
probabilities of proposed and current states:

α ¼ L θti ; θ�i

� �
πðθti jθ�iÞ

Lðθt�1
i ; θ�iÞπðθt�1

i jθ�iÞ
ð14Þ

Accepting or rejecting the proposed state. If α > 1, the proposal is
accepted and added to the Markov chain. If α < 1, the new state is
accepted with a probability of α. This is achieved by drawing a random
number r from a uniform distribution between 0 and 1, and accepting the
new state if r < α. However, if r > α, the proposed state should be rejected,
and the current state should be appended to the chain again.

Repeating the above steps. Take turns sampling each dimension of
parameters in the abovemanner until all dimensions have been traversed.
To ensure the Markov chain converges to the posterior distribution, we
ran the Gibbs sampler for 10000 iterations, discarding an initial burn-in
period of 1000 iterations to eliminate the influence of the starting values.
Upon completion of the sampling process, the inverted expected para-
meter estimates are derived from themedian of the posterior distribution.

Experimental dataset for clinopyroxene model calibration
and test
The experimental dataset we compiled encompasses a wide range of condi-
tions, spanning temperatures from 800–1300 °C, pressures from 0–1300MPa
and liquid compositions from basalt to rhyolite48,50,61–64 (Supplementary
Fig. S1). These experiments were conducted after the development of Rhyolite-
MELTS and form a subset of the ArcPL35. The quality of this compiled
experimental data is ensured by the following criteria: 1) All compiled
experimental studies reported products consistent with near-thermodynamic
equilibrium. This was assessed through various methods, including textural
evidence,mass balance calculations,mineral-melt partitioning coefficients (e.g.,
Fe-Mg, Ca-Na), and reversal experiments. 2) These experiments collectively
cover a broad spectrum of water contents, ranging fromwater-poor (<0.1wt%
H2O) to highly water-rich (up to 9wt% H2O). Water content in melt glasses

was either measured or quantitatively determined in all compiled studies,
employing techniques such as Fourier transform infrared spectroscopy (FTIR),
secondary ion mass spectrometry (SIMS), or the “by-difference” method. 3)
All compiled studies reported comprehensive electron probe microanalysis
(EPMA) instrument settings, including beam current and counting times for
major elements. 4) Clinopyroxene structural formulae, normalized to 6 oxygen
atoms, consistently yielded total cation sums within the narrow range of
3.9–4.1, confirming their high analytical quality.

Uncertainty propagation and decomposition strategy
To provide a comprehensive understanding of how uncertainties in model
parameters and compositions propagate to the final P–T estimates, we
employ a three-step uncertainty analysis:

1) Individual Parameter Sensitivity Analysis. This step quantifies the
isolated impact of variations in each parameter. We perform Gaussian
sampling for clinopyroxene and liquid compositions, as well as for each
model parameter (treating clinopyroxene and liquid compositions as one
macro-variable and allW as another macro-variable) based on their mean
values and standard deviations obtained from their posterior distributions.
For each sampled value,TorP is calculated by given the experimentalPorT
via inverse modeling, and the resulting distribution of P–T estimates indi-
cates the sensitivity to that specific input.

2) Joint Uncertainty Propagation. Thismore comprehensive approach
accounts for the correlations among parameters. We simultaneously draw
samples for clinopyroxene composition, liquid composition, and all model
parameters from their respective distributions. Crucially, the model para-
meters are sampled from a multivariate Gaussian distribution that incor-
porates the full covariance matrix obtained from the Bayesian inversion.
This ensures that the interdependencies identified during the calibration are
accurately reflected in the propagated uncertainties, yielding amore realistic
total uncertainty in calculated P–T conditions.

3) Uncertainty contribution decomposition. To quantify the relative
importance of different uncertainty sources, we apply Sobol analysis, a
variance-based global sensitivity analysis method43. Let Y ¼
f X1;X2; . . . ;XM

� �
be the model output (P or T), where Xi are the inde-

pendent input factors. In this study, we group our parameters into M= 2
macro-variables: X1 (clinopyroxene and liquid compositions) and X2 (model
parameters, including Δf H

Pr ;Tr , Spr ;Tr , VPr ;Tr and macroscopic interaction
energies). The total variance of the output V(Y) can be decomposed as:

V Yð Þ ¼
XM
i¼1

Vi þ
XM
i < j

Vi;j þ
XM
i < j < l

Vi;j;l þ . . .þ V1;2;...;M ð15Þ

where Vi ¼ VðEðY jXiÞÞ represents the variance contributed by the factor

Xi alone, Vi;j ¼ V E Y ; j;Xi;Xj

	 
	 

� Vi � Vj represents the variance

due to the interaction between Xi and Xj, and so on. The first-order Sobol
index (S1) for an input factorXi quantifies its individual contribution to the
output variance43,47:

S1 ¼
VðEðY jXiÞÞ

V Yð Þ ð16Þ

The total-order Sobol index (ST) for an input factor Xi quantifies its
total contribution to the output variance, including both its first-order effect
and all its interactions with other factors:

ST ¼ 1� VðEðY jX�iÞÞ
V Yð Þ ð17Þ

Where X�i denotes all input factors except Xi. Sobol indices are calculated
usingMonteCarlo simulations. Specifically, the Saltelli method is employed
for this purpose. The Saltelli method is a widely adopted and computa-
tionally efficient sampling strategy for global sensitivity analysis, designed to
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accurately estimate both first-order and total-order Sobol indices from a
single set of model evaluations42,65. The strategy is described as follows.

ForD input factors (hereD=M= 2macro-variables) and a chosen base
sample size N, sampling scheme involves constructing specific input
matrices: i) Matrix A. AnN×Dmatrix where each column corresponds to a
factor Xi and each row is an independent sample drawn from the input
factor’s distribution. ii) Matrix B. Another N×D matrix similar to A but
composed of independent samples from the same distributions. iii) Matrices
ABi, D additional N ×D matrices. For each i from 1 to D, the matrix Ai

B is
constructed by taking all columns fromMatrix A, except for the i-th column,
which is taken from Matrix B. This specific construction allows for efficient
estimation of partial variances. The model is then evaluated for each row of
matrices A, B, and all Ai

B. The total variance V(Y) can be estimated as:

V YA

� � � 1
N

XN
j¼1

Y2
A;j �

1
N

XN
j¼1

YA;j

 !2

ð18Þ

YA;j ¼ f ðAjÞ denotes the output of j-th rowofmatrixA.Thefirst-order
Sobol index S1 for Xi is estimated as:

S1 �
1
N

PN
j¼1YA;j � YAðiÞ

B;j
� 1

N

PN
j¼1YA;j

	 
2
V YA

� � ð19Þ

The total-order Sobol index ST for Xi is estimated as:

ST � 1�
1
N

PN
j¼1YB;j � YAðiÞ

B;j
� 1

N

PN
j¼1YB;j

	 
2
V YB

� � ð20Þ

Where YAðiÞ
B;j
¼ f ðAðiÞ

B;jÞ denotes the output of j-th row ofmatrixAi
B. For this

study, 10000 model evaluations were performed for sample size N.
Clinopyroxene and liquid oxide compositions were sampled from
independent Gaussian distributions, with means equal to reported values
and standard deviations set at 10% for low-concentration oxides (Na₂O,
K₂O, TiO₂, MnO) and 5% for others. Model parameters were drawn from a
multivariate Gaussian distribution, defined by the mean and covariance
matrix of their posterior distributions.

Data availability
Experimental dataset and Supplementary Table S3 are available at https://
zenodo.org/records/17078877.

Code availability
All codes of results in this work are available from https://zenodo.org/
records/17078877.

Received: 6 March 2025; Accepted: 24 September 2025;

References
1. Ulmer, P., Kägi, R. & Müntener, O. Experimentally derived

intermediate to silica-rich arc magmas by fractional and equilibrium
crystallization at 1.0 GPa: an evaluation of phase relationships,
compositions, liquid lines of descent and oxygen fugacity. J. Petrol.
59, 11–58 (2018).

2. Waters, L. E., Cottrell, E., Coombs, M. L., Kelley, K. A. Generation of
calc-alkaline magmas during crystallization at high oxygen fugacity:
an experimental and petrologic study of tephras from Buldir Volcano,
Western Aleutian Arc, Alaska, USA. J. Petrol. 62, (2020).

3. Ghiorso, M. S. & Gualda, G. A. R. An H2O–CO2 mixed fluid saturation
model compatible with rhyolite-MELTS.Contrib. Mineral. Petrol. 169,
53 (2015).

4. Dayton, K. et al. Deep magma storage during the 2021 La Palma
eruption. Sci. Adv. 9, eade7641 (2023).

5. Giordano, D., Russell, J. K. & Dingwell, D. B. Viscosity of
magmatic liquids: a model. Earth. Planet. Sci. Lett. 271, 123–134
(2008).

6. Pirajno, F. Halogens in Hydrothermal Fluids and Their Role in the
Formation and Evolution of Hydrothermal Mineral Systems. In: Harlov
D. E., Aranovich L. (eds). The Role of Halogens in Terrestrial and
Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle.
(Springer International Publishing, 2018) pp 759-804.

7. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive
andunstablemagmatic systems: a unified viewof igneousprocesses.
Science 355, eaag3055 (2017).

8. LaSpina,G., Polacci,M., Burton,M.&deMichieli Vitturi,M.Numerical
investigation of permeability models for low viscosity magmas:
application to the 2007 Stromboli effusive eruption. Earth. Planet. Sci.
Lett. 473, 279–290 (2017).

9. Mutch, E. J. F., Maclennan, J., Shorttle, O., Edmonds, M. & Rudge, J.
F. Rapid transcrustal magma movement under Iceland. Nat. Geosci.
12, 569–574 (2019).

10. Pritchard,M.E.,Mather, T. A.,McNutt, S. R., Delgado, F. J. &Reath, K.
Thoughts on the criteria to determine the origin of volcanic unrest as
magmatic or non-magmatic.Philos. Trans. R. Soc. AMath. Phys. Eng.
Sci. 377, 20180008 (2019).

11. Edmonds, M. RESEARCH FOCUS: flotation of magmatic minerals.
Geology 43, 655–656 (2015).

12. Hou, T. et al. Immiscible hydrous Fe–Ca–P melt and the origin of iron
oxide-apatite ore deposits. Nat. Commun. 9, 1415 (2018).

13. Putirka, K. D. Thermometers and barometers for volcanic systems.
Rev. Mineral. Geochem. 69, 61–120 (2008).

14. Pan, R., Hou, T., Wang, X., Encarnación, J., Botcharnikov, R. Multiple
magma storage regions and open system processes revealed by
chemistry and textures of the Datong tholeiitic lavas, North China
Craton. J. Petrol. 63, (2022).

15. Matthews,S.W. et al. Adynamicmid-crustalmagmadomain revealed
by the 2023 to 2024 Sundhnúksgígar eruptions in Iceland. Science
386, 309–314 (2024).

16. Putirka K. D. Geothermometry and Geobarometry. In: White W. M.
(ed). Encyclopedia of Geochemistry: A Comprehensive Reference
Source on the Chemistry of the Earth. (Springer International
Publishing, 2018) pp 597-614.

17. Lange, R. A., Frey, H. M. & Hector, J. A thermodynamic model for the
plagioclase-liquid hygrometer/thermometer. Am. Mineral. 94,
494–506 (2009).

18. Masotta, M., Mollo, S., Freda, C., Gaeta, M. & Moore, G.
Clinopyroxene–liquid thermometers and barometers specific to
alkaline differentiated magmas. Contrib. Mineral. Petrol. 166,
1545–1561 (2013).

19. Neave, D. A. & Putirka, K. D. A new clinopyroxene-liquid barometer,
and implications for magma storage pressures under Icelandic rift
zones. Am. Mineral. 102, 777–794 (2017).

20. Lindsley, D. H. & Andersen, D. J. A two-pyroxene thermometer. J.
Geophys. Res-Sol. Ea. 88, A887–A906 (1983).

21. Ghiorso, M. S. & Evans, B. W. Thermodynamics of rhombohedral
oxide solid solutions and a revision of the Fe-Ti two-oxide
geothermometer and oxygen-barometer. Am. J. Sci. 308, 957–1039
(2008).

22. Wan, Z., Coogan, L. A. & Canil, D. Experimental calibration of
aluminum partitioning between olivine and spinel as a
geothermometer. Am. Mineral. 93, 1142–1147 (2008).

23. Molina, J. F. et al. A reassessment of the amphibole-plagioclaseNaSi-
CaAl exchange thermometer with applications to igneous and high-
grade metamorphic rocks. Am. Mineral. 106, 782–800 (2021).

24. Nimis, P. &Ulmer, P. Clinopyroxene geobarometry ofmagmatic rocks
Part 1: an expanded structural geobarometer for anhydrous and

https://doi.org/10.1038/s43247-025-02831-y Article

Communications Earth & Environment |           (2025) 6:913 11

https://zenodo.org/records/17078877
https://zenodo.org/records/17078877
https://zenodo.org/records/17078877
https://zenodo.org/records/17078877
www.nature.com/commsenv


hydrous, basic and ultrabasic systems. Contrib. Mineral. Petrol. 133,
122–135 (1998).

25. Ridolfi, F. &Renzulli, A. Calcic amphiboles in calc-alkaline andalkaline
magmas: thermobarometric and chemometric empirical equations
valid up to 1130 °C and 2.2 GPa. Contrib. Mineral. Petrol. 163,
877–895 (2012).

26. Wang, X. D. et al. A new clinopyroxene thermobarometer for mafic
to intermediate magmatic systems. Eur. J. Mineral. 33, 621–637
(2021).

27. Gualda, G. A. R. & Ghiorso, M. S. Phase-equilibrium geobarometers
for silicic rocks based on rhyolite-MELTS. Part 1: principles,
procedures, and evaluation of the method. Contrib. Mineral. Petrol.
168, 1033 (2014).

28. Higgins, O., Stock, M. J. A new calibration of the OPAM
thermobarometer for anhydrous and hydrous mafic systems. J.
Petrol. 65, (2024).

29. Petrelli, M., Caricchi, L. & Perugini, D. Machine learning thermo-
barometry: application to clinopyroxene-bearing magmas. J.
Geophys. Res-Sol. Ea. 125, e2020JB020130 (2020).

30. Higgins, O., Sheldrake, T. & Caricchi, L. Machine learning
thermobarometry and chemometry using amphibole and
clinopyroxene: a window into the roots of an arc volcano (Mount
Liamuiga, Saint Kitts). Contrib. Mineral. Petrol. 177, 10 (2021).

31. Jorgenson, C., Higgins, O., Petrelli, M., Bégué, F. & Caricchi, L. A
machine learning-based approach to clinopyroxene
thermobarometry:Model optimization anddistribution for use in Earth
Sciences. J. Geophys. Res-Sol. Ea. 127, e2021JB022904 (2022).

32. Cutler, K. S., Cassidy, M. & Blundy, J. D. Plagioclase-saturated melt
hygrothermobarometry and plagioclase-melt equilibria using
machine learning. Geochem. Geophys. Geosyst. 25,
e2023GC011357 (2024).

33. Weber, G., Blundy, J. Amachine learning-based thermobarometer for
magmatic liquids. J. Petrol. 65, (2024).

34. Erdmann, S., Martel, C., Pichavant, M. & Kushnir, A. Amphibole as an
archivist of magmatic crystallization conditions: problems, potential,
and implications for inferring magma storage prior to the paroxysmal
2010 eruption of Mount Merapi, Indonesia. Contrib. Mineral. Petrol.
167, 1016 (2014).

35. Wieser, P. E. et al. Barometers behaving badly I: assessing the
influence of analytical and experimental uncertainty on clinopyroxene
thermobarometry calculations at crustal conditions. J. Petrol. 64,
egac126 (2022).

36. Wieser, P. E., Gleeson, M. L. M., Matthews, S., DeVitre, C., Gazel, E.
Determining the pressure-temperature-composition (P-T-X)
conditions of magma storage. In: Anbar A., Weis D. (eds). Treatise on
Geochemistry (Third edition). (Elsevier, 2025) pp 83−151.

37. Putirka, K. Amphibole thermometers and barometers for igneous
systems and some implications for eruption mechanisms of felsic
magmas at arc volcanoes. Am. Mineral. 101, 841–858 (2016).

38. Gualda,G. A.R.,Ghiorso,M.S., Lemons,R. V. &Carley, T. L. Rhyolite-
MELTS: a modified calibration of MELTS optimized for silica-rich,
fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).

39. Ghiorso, M. S. & Sack, R. O. Chemical mass transfer in magmatic
processes IV. A revised and internally consistent thermodynamic
model for the interpolation and extrapolation of liquid-solid equilibria
in magmatic systems at elevated temperatures and pressures.
Contrib. Mineral. Petrol. 119, 197–212 (1995).

40. Humphreys,M.C. S., Blundy, J. D. &Sparks, R. S. J.Magmaevolution
and open-system processes at Shiveluch volcano: Insights from
phenocryst zoning. J. Petrol. 47, 2303–2334 (2006).

41. Jackson, M. D., Blundy, J. & Sparks, R. S. J. Chemical differentiation,
cold storage and remobilization of magma in the Earth’s crust.Nature
564, 405–409 (2018).

42. Saltelli, A. Making best use of model evaluations to compute
sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002).

43. Sobol, I. M. Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates.Math. Comput. Simul. 55,
271–280 (2001).

44. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.-G. The
mean composition of ocean ridge basalts. Geochem. Geophys.
Geosyst. 14, 489–518 (2013).

45. Ghiorso, M. S., Carmichael, I. S. E., Rivers, M. L. & Sack, R. O. The
Gibbs free energy of mixing of natural silicate liquids: an expanded
regular solution approximation for the calculation of magmatic
intensive variables. Contrib. Mineral. Petrol. 84, 107–145 (1983).

46. Ghiorso, M. S. Algorithms for the estimation of phase stability in
heterogeneous thermodynamic systems. Geochim. Cosmochim.
Acta 58, 5489–5501 (1994).

47. Huggins, E. G., Ruprecht, P. &Ghiorso,M. S. Using chemical affinities
to understand disequilibrium textures of plagioclase preserved in
magmatic systems. Geophys. Res. Lett. 48, e2021GL092884 (2021).

48. Marxer, F., Ulmer, P. & Müntener, O. Polybaric fractional
crystallisationof arcmagmas: anexperimental studysimulating trans-
crustal magmatic systems. Contrib. Mineral. Petrol. 177, 3 (2021).

49. Putirka, K. D., Johnson, M., Kinzler, R., Longhi, J. & Walker, D.
Thermobarometry of mafic igneous rocks based on clinopyroxene-
liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 123, 92–108
(1996).

50. Almeev, R. R., Holtz, F., Ariskin, A. A. & Kimura, J.-I. Storage
conditions of BezymiannyVolcanoparentalmagmas: results of phase
equilibria experiments at 100 and 700 MPa. Contrib. Miner. Pet. 166,
1389–1414 (2013).

51. Neave, D. A. et al. Clinopyroxene–liquid equilibria and
geothermobarometry in natural and experimental tholeiites: the
2014–2015HoluhraunEruption, Iceland.J.Pet.60, 1653–1680 (2019).

52. Neave,D. A. &Namur,O. Plagioclase archives of depletedmelts in the
oceanic crust. Geology 50, 848–852 (2022).

53. Voigt, M., Coogan, L. A. & von der Handt, A. Experimental
investigation of the stability of clinopyroxene in mid-ocean ridge
basalts: the role of Cr and Ca/Al. Lithos 274-275, 240–253 (2017).

54. Berman, R. G. & Brown, T. H. Heat capacity of minerals in the system
Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2:
representation, estimation, and high temperature extrapolation.
Contrib. Miner. Pet. 89, 168–183 (1985).

55. Berman, R. G. Internally-Consistent Thermodynamic Data for
Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-
SiO2-TiO2-H2O-CO2. J. Pet. 29, 445–522 (1988).

56. Powell, R. &Holland, T.On the formulationof simplemixingmodels for
complex phases. Am. Miner. 78, 1174–1180 (1993).

57. Holland, T. & Powell, R. Activity–composition relations for phases in
petrological calculations: an asymmetric multicomponent
formulation. Contrib. Miner. Pet. 145, 492–501 (2003).

58. van de Schoot, R. et al. Bayesian statistics and modelling. Nat. Rev.
Methods Prim. 1, 1 (2021).

59. Casella, G. &George, E. I. Explaining theGibbs sampler.Am. Stat. 46,
167–174 (1992).

60. Hara,R.B.O.&Sillanpää,M. J.A reviewofBayesianvariable selection
methods: What, how and which. Bayesian Anal. 4, 85–117 (2009).

61. Blatter,D. L., Sisson, T.W.&Hankins,W.B.Voluminousarcdacitesas
amphibole reaction-boundary liquids. Contrib. Miner. Pet. 172, 27
(2017).

62. Melekhova, E., Blundy, J., Robertson, R. & Humphreys, M. C. S.
Experimental evidence for polybaric differentiation of primitive arc
Basalt beneathSt. Vincent, LesserAntilles. J. Pet. 56, 161–192 (2015).

63. Parat, F., Streck, M. J., Holtz, F. & Almeev, R. Experimental study into
the petrogenesis of crystal-rich basaltic to andesitic magmas at
Arenal volcano. Contrib. Miner. Pet. 168, 1040 (2014).

64. Husen, A., Almeev, R. R. & Holtz, F. The effect of H2O and pressure on
multiple saturation and liquid lines of descent in Basalt from the
Shatsky Rise. J. Pet. 57, 309–344 (2016).

https://doi.org/10.1038/s43247-025-02831-y Article

Communications Earth & Environment |           (2025) 6:913 12

www.nature.com/commsenv


65. Saltelli, A. et al. Variance based sensitivity analysis of model output.
Design and estimator for the total sensitivity index. Comput. Phys.
Commun. 181, 259–270 (2010).

Acknowledgements
T.H., X.W., and Z.Z. acknowledge the support from the National Natural
Science Foundation of China (No. 42372058).

Author contributions
T.H. and X.W. conceived the idea. X.W. developed the idea and wrote the
code. X.W., T.H., and P.W. performed the data analysis. X.W., T.H., P.W.,
Z.Z. co-wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-025-02831-y.

Correspondence and requests for materials should be addressed to
Tong Hou.

Peer review information Communications Earth & Environment thanks
Oliver Higgin, Frank Spera and Wendy Bohrson for their contribution to the

peer review of this work. Primary Handling Editors: Joe Aslin and Carolina
Ortiz Guerrero. [A peer review file is available].

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s43247-025-02831-y Article

Communications Earth & Environment |           (2025) 6:913 13

https://doi.org/10.1038/s43247-025-02831-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsenv

	Thermodynamic insights into the reliability of mineral-based thermobarometers
	Results and discussion
	Integrated approach to P-T uncertainty and sensitivity analysis
	Theoretical precision limit defined by analytical uncertainty
	Precision limits of insufficiently constrained thermobarometric models
	Deviations arising from composition to P–T inference

	Conclusions
	Methods
	Chemical affinity calculations using rhyolite-MELTS
	Thermodynamic model for clinopyroxene
	Bayesian inversion theoretical framework
	Bayesian inversion for calibration of model parameters
	Implement Bayesian inversion via Gibbs sampling
	Initialization
	Iterative Sampling
	Parameter proposal
	Calculating acceptance probability
	Accepting or rejecting the proposed state
	Repeating the above steps

	Experimental dataset for clinopyroxene model calibration and test
	Uncertainty propagation and decomposition strategy

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




