communications earth & environment

A Nature Portfolio journal

Article

https://doi.org/10.1038/s43247-025-02863-4

Feature selection for data-driven seasonal
forecasts of European heatwaves

M| Check for updates

Ronan McAdam®'

, Jorge Pérez-Aracil ® 2°, Antonello Squintu®", César Pelaez-Rodriguez?,

Felicitas Hansen*, Verénica Torralba®, Harilaos Loukos ® ¢, Eduardo Zorita®*, Matteo Giuliani® '”,
Leone Cavicchia®', Sancho Salcedo-Sanz? & Enrico Scoccimarro®'

The early warning of heatwaves using seasonal forecasting systems has the potential to mitigate
economic losses and risk to life. Because of the limited reliability and computational expense of
dynamical forecasting systems, efforts in recent years have turned to exploiting Machine Learning.
Here, an inexpensive approach to forecasting summer heatwaves over Europe is developed, using an
optimisation-based feature selection framework to detect a combination of variables, domains and
time-lags used to skilfully predict heatwaves. The purely data-driven forecasts are shown to match,
and in places outperform, the skill of the state-of-the-art dynamical multi-model products. Moreover,
low skill over Scandinavia, a long-term issue common to most dynamical systems, is improved in our
data-driven approach. This work also highlights that the greatest contribution to skill comes from
predictors at 4-7 weeks time-lag (e.g. mid-March), and identifies predictors which can form the basis

for future studies on mechanisms.

Heatwaves (HWs) are prolonged periods of extreme temperature, and lead
to a wide range of impacts, including the collapse of agricultural yields',
drastic increases in energy usage’, impacts on human health, and increased
mortality™’. Europe has experienced devastating heatwaves in the past
decades, including, but not limited to, deadly events in 2003 and 2010° and
more recently in 2022". Climate projections suggest further intensification
of HWs in the coming decades®, which will likely lead to an increase in
deaths attributed to extreme heat unless mitigation measures are
implemented’. Consequently, the ability to predict extreme summer heat
several months in advance provides an opportunity for the agricultural
industry and national health services to implement mitigation measures™".

Seasonal forecasting, the prediction of seasonal climate conditions
several months in advance, has the potential to provide society with time
and necessary information to take meaningful action prior to potentially
damaging climate events. Such information already serves as the foundation
for climate services in various sectors, such as the early warning of droughts
for agriculture'"” and snow cover for tourism". The generation and
maintenance of seasonal forecasts, however, is an enormous computational
undertaking, with many centres around the world producing dozens of
ensemble members of climate models, each of which couples several com-
ponents of the climate system, at horizontal resolutions typically less than 1
geographical degree. Moreover, predicting heatwaves beyond the

deterministic limit (roughly 10-15 days) is challenging'*"". The state-of-
the-art operational seasonal forecasting systems from the Copernicus Cli-
mate Change Service (C3S) have demonstrated reliable forecast skill over
large parts of Europe when predicting, up to 3 months in advance, seasonal
heatwave indices'®"’. However, skill gaps remain; for example, over north-
ern Europe, which is less influenced by more predictable mid-latitude
variability™.

The increasing use of Machine Learning (ML) for weather and climate
science applications provides a means of reducing the resources required to
make accurate weather forecasts without compromising on skill, as
demonstrated in the field of weather forecasting’. Dynamical forecasting
systems, named after their ability to solve dynamical and thermodynamic
equations numerically, are now matched in skill or even outperformed by
purely data-driven approaches using a range of machine or deep learning
architectures” . These data-driven approaches leverage techniques
designed to identify relationships between multiple variables from large
datasets of observations or model simulations. The current frameworks used
are being adjusted for subseasonal”” and seasonal timescales™, and any data-
driven approach to seasonal forecasting requires considerably more data
than is available in the observational records™.

Prior to the widespread use of ML, statistical seasonal forecasting
showed that the input of known predictors, such as soil moisture for

'"CMCC Foundation - Euro-Mediterranean Center on Climate Change, Bologna, Italy. 2Department of Signal Processing and Communications, Universidad de
Alcala, Madrid, Spain. *Programa de doctorado en Computacién Avanzada, Energia y Plasmas, Universidad de Cérdoba, Cordoba, Spain. *“Helmholtz-Zentrum
Hereon, Geesthacht, Germany. *Barcelona Supercomputing Center (BSC), Barcelona, Spain. *The Climate Data Factory (TCDF), Paris, France. "Department of

Electronics, Information and Bioengineering, Politecnico di Milano (POLIMI), Milan, Italy.

e-mail: ronan.mcadam@cmcc.it

Communications Earth & Environment| (2025)6:842


http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02863-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02863-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02863-4&domain=pdf
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0003-0883-9014
http://orcid.org/0000-0002-4456-9886
http://orcid.org/0000-0002-4456-9886
http://orcid.org/0000-0002-4456-9886
http://orcid.org/0000-0002-4456-9886
http://orcid.org/0000-0002-4456-9886
http://orcid.org/0000-0001-9011-4455
http://orcid.org/0000-0001-9011-4455
http://orcid.org/0000-0001-9011-4455
http://orcid.org/0000-0001-9011-4455
http://orcid.org/0000-0001-9011-4455
http://orcid.org/0000-0001-5417-5947
http://orcid.org/0000-0001-5417-5947
http://orcid.org/0000-0001-5417-5947
http://orcid.org/0000-0001-5417-5947
http://orcid.org/0000-0001-5417-5947
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0001-9857-7817
http://orcid.org/0000-0001-9857-7817
http://orcid.org/0000-0001-9857-7817
http://orcid.org/0000-0001-9857-7817
http://orcid.org/0000-0001-9857-7817
http://orcid.org/0000-0001-7987-4744
http://orcid.org/0000-0001-7987-4744
http://orcid.org/0000-0001-7987-4744
http://orcid.org/0000-0001-7987-4744
http://orcid.org/0000-0001-7987-4744
mailto:ronan.mcadam@cmcc.it
www.nature.com/commsenv

https://doi.org/10.1038/s43247-025-02863-4

Article

European heatwaves, into simple statistical models could provide skill for
the prediction of certain climate variables on seasonal timescales’"'. Pre-
viously, such methods relied on the selection of known drivers and thus were
limited by the current scientific understanding of heatwave dynamics.
Nowadays, more sophisticated ML models are used and are able to select
from a set of potential predictors, as widely demonstrated on the sub-
seasonal timescale’ ™. ML-based seasonal forecasting techniques have
shown that spatially and temporally distant predictors of seasonal climate
can be identified and used to make accurate predictions”™*'. However,
studies either do not include comparisons to operational systems or use a
restricted number of pre-selected and known predictors in their feature
selection. Moreover, there is currently no purely data-driven seasonal
forecast approach for Europe, nor one that focuses explicitly on temperature
extremes.

This study describes a data-driven seasonal forecast system that is
computationally inexpensive, provides scientifically relevant information
on HW predictors, and is shown to match, and in some instances outper-
form, the state-of-the-art of operational dynamical seasonal forecasting.
This work merges efforts in previous statistical and ML-based approaches
with training based on a multi-millennial paleo-simulation dataset. Cru-
cially, it employs a feature selection method that boasts the freedom to
identify optimal predictor variables and the time-lags over which they
contribute to skill. This framework provides an index-specific forecast and
driver detection for summer heatwave propensity at any location.

Results

Feature selection of heatwave predictors

This study begins with a feature selection framework, designed to identify
the combination of predictors that provides the optimal seasonal forecast
skill of European summer heatwave indicators (Supplementary Fig. 1). The
chosen potential predictors describe atmospheric, land and ocean condi-
tions which are known to influence the European climate or extremes. First,
a range of dimension-reduced predictors is defined using an enhanced
version of k-means clustering (which employs a weight of 5% for distances
on the geoid) applied to variables known to impact European summer
climate (e.g. soil moisture, sea ice content; Supplementary Fig. 2; Supple-
mentary Table 1; “Methods” section). The target in this study is the number
of days in which the temperature exceeds the climatological 90th percentile
between May and July (MJ] NDQ90). To identify the most influential
predictors, a multi-method ensemble optimisation algorithm* is employed
to select the variables and the corresponding range of time-lags that provide
optimal forecast skill of the target. The multi-method ensemble® tests
various combinations of predictors, and aims to reduce the forecast error;
the optimisation algorithm combines various subsets of variables and time-
lags into a Logistic Regression model to predict NDQ90 (Fig. 1). The fra-
mework benefits from a paleoclimate simulation of the years 0-1850 with a
coupled atmosphere-ocean model (hereafter “past2k”), which provides
long-term simulated data of predictors and HWs in a stationary climate.
The optimisation-based feature selection is performed using a training
period of years 0-1600, and a test period of 1601-1850. Finally, when
applied to the modern 1993-2016 period with ERA5 predictors, the optimal
predictors are used to train ML-based prediction models to provide fully
data-driven seasonal forecasts of heatwave occurrence. The optimisation is
performed individually for each grid point; see Supplementary Figs. 3 and 4
for an example of the optimal predictors selected and the corresponding
seasonal forecasts of the test period.

The European-scale view of optimised forecast skill (root-mean-
squared-error normalised by the interannual variability of the target, N-
RMSE; “Methods” section; Fig. 2) demonstrates a zone of low skill (N-
RMSE >1) stretching from northern central Europe and Scandinavia, while
the highest skill is found over central Europe, and the Mediterranean and
Black Sea basins. Two grid points representative of either relatively “poor” or
“good” regions of forecast skill (Fig. 1) show that the degree of possible
improvement, relative to the initial first guess, depends on location. In the
“poor” example, optimisation leads to an improvement of 0.18 in N-RMSE,
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Fig. 1 | Optimisation of seasonal forecast skill (N-RMSE) of seasonal European
heatwave indicators (NDQ90) using data from a paleoclimate simulation. The
training period and test period are 0-1650 and 1601-1850 respectively. Two
examples of optimisation are shown: 43.13° E, 58.76° N (poor, upper cluster of
solutions) and 24.38° E, 41.97° N (good, lower cluster). Symbols and colours
represent stages of optimisation (latest stages in red), with the “optimal” solution
(black circle) corresponding to the solution with the lowest training N-RMSE. The
diagonal (dashed grey) represents a perfect fit between training and test scores, while
the vertical and horizontal lines at N-RMSE = 1 indicate where the error is equivalent
to interannual variability (Supplementary Fig. 5).

while in the “good” example, the improvement is 0.29. Although in both
examples the optimal training N-RMSE obtained is below 1 (0.94 and 0.78),
indicating that error is within the range of interannual variability, the same is
not true for the test period in the “poor” example. The European pattern of
data-driven skill in the model world (Fig. 2) resembles the skill of dynamical
seasonal forecast systems in predicting temperature** and its extremes'*.
By applying the data-driven approach first to the model world, we isolate
where the use of reduced-dimensionality predictors provides insufficient
predictability. If the framework cannot recreate the paleoclimate model
training data, then it is highly unlikely to perform well on the test data or in
real-world forecasting.

Collecting the optimal predictors from all individual points across
Europe (see Supplementary Fig. 3 for an example) provides an overview of
the model-world HW drivers at a regional level (Fig. 3). The most com-
monly selected variables across the domain are the European soil moist-
ure, temperature and geopotential height (z500) clusters. The identified
key role of these local predictors agrees with studies of many HWs that
have occurred in Europe'*”. Commonly selected predictors that represent
more distant precursors include sea surface temperature (SST) over the
equatorial Pacific and outgoing longwave radiation (OLR) over the tro-
pical Atlantic. While the former represents the phase of the El Nifo
Southern Oscillation, which is known to play a role in European climate
extremes™, the contribution of the OLR over the tropical Atlantic is not
obvious. The feature selection also allows us to study the time-lags in
which the variables play a role. The most frequently selected time-lags
occur on average around six weeks prior to initialisation (i.e. mid-March;
Fig. 3, Supplementary Fig. 6). However, the key temporal lag depends on
the variables. Temperature and z500 clusters are selected more frequently
in the few weeks prior to initialisation and decay gradually with longer lag,
while soil moisture and sea ice selection peak between 7 and 8 weeks prior
to initialisation. The number of predictors selected before February is
negligible. The most commonly selected short-term European predictors
are unsurprisingly selected within or near to the area they represent
(Supplementary Fig. 7); TMXEur-1 at 1 1-week time-lag is selected across
central Europe, while SSTMed-3 at a 5-week time-lag is largely selected
around the Black Sea. For the geographically distant predictors, the tro-
pical Atlantic OLR (OLRTro-2 at 4-week lag) is chosen as a predictor for
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Fig. 2 | Seasonal forecasts of paleo-climate heatwaves across Europe. Optimised
seasonal forecast skill (N-RMSE) of seasonal European heatwave indicators (M]]

NDQ90) using data from a paleoclimate simulation for the training period
(a, 0-1600) and optimisation test period (b, 1601-1850). Each point represents the
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optimal forecast skill based on the point-specific optimisation of predictors (e.g.
Fig. 1). The locations corresponding to the good and poor skill examples from Fig. 1
are represented by a square and a circle, respectively.
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Fig. 3 | Feature selection of predictors for seasonal heatwave indicators across
Europe. The matrix displays the percentage of grid points with respect to the entire
European domain in which the cluster and time-lag appear in the optimal solutions.
Initialisation is on May 1st. Variable labels: mean sea level pressure (SLP),

OLR-NAt
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geopotential height at 500 hPa (z500), soil moisture (SM), daily maximum 2 m
temperature (TMX), sea surface temperature (SST), outgoing longwave radiation
(OLR), and sea ice concentration (SIC). Cluster maps are shown in Supplemen-
tary Fig. 2.

areas across the Barents Sea and Scandinavia, as well as parts of the
southern Mediterranean Sea, while the selection of the tropical Pacific SST
is more sporadic. Studying these points in a SHAP (SHapley Additive
exPlanations”; “Methods” section) analysis, used to quantify their relative
contribution to forecasts, confirms that the local predictors carry more
predictive value, while the more distant predictors contribute more weakly
(Supplementary Fig. 7). While distant teleconnection-based predictors
would be expected to have less direct impact on HW occurrence and
therefore a relatively low predictive power according to the SHAP ana-
lysis, we cannot rule out that such drivers are present only in the model
world. However, their widespread selection, in particular, that of OLR,
suggests they are not spurious results and merit further analysis in future
studies.

Data-driven seasonal forecasts of European heatwaves

Using the selected optimised predictors for each grid point, the data-driven
forecast system is adjusted to be trained on the entire past2k simulation
period (0-1850) and then tested for the period 1993-2016 using predictors

from ERA5. Whereas the optimisation-based feature selection training and
testing is performed with linear regression to avoid large computational cost,
the real-world forecasts use ML models in an attempt to boost the skill
achieved by the same predictors (e.g. Random Forest; Supplementary Fig. 8).
In the “Methods” section, skill for each ML model used is reported; here, the
skill graphs reflect the best performing model for each grid point. Data-
driven re-forecasts display significant correlation skill scores over 56% of the
European domain, including central Europe and the Mediterranean Basin.
The skill patterns in the data-driven forecasts (Fig. 4) match those of the
optimisation test period (Fig. 2), indicating the successful transfer of
learning from the paleoclimate.

Existing operational systems from the C3S represent the state-of-
the-art of dynamical seasonal forecasting and can also provide forecasts
of summer heatwaves, but the skill has previously only been tested for
ECMWF-51". Individual systems (CMCC-35, MF-8, DWD-21 and
ECMWE-51, Supplementary Table 2) display similar patterns of skill,
such as the zone of low skill extending across Scandinavia and northern
central Europe (Supplementary Fig. 9). A multi-model mean is often
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Fig. 4 | Data-driven seasonal forecast skill of European summer heatwaves.
Correlation skill score of seasonal European heatwave indicators (MJ] NDQ90) in
the data-driven (a) and C3S multi-model ensemble (b) forecasts over the forecast
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test period 1993-2016, validated against ERA5. Black stippling represents statisti-
cally significant correlation (a & b) or correlation difference (c) at the 95% con-
fidence interval.

used in dynamical forecasting to smooth out errors in individual systems
and boost forecast skill; this holds true for forecasts of NDQ90 for which
the multi-model product provides statistically significant skill over 58%
of Europe (Fig. 4). As a result, over the majority of the domain, there is no
statistically significant difference between the data-driven and dyna-
mical skills (with the exception of western Russia; Fig. 4c). Therefore,
regions that are skilfully predicted by the dynamical system are also
skilfully predicted by the data-driven system. Moreover, the skill in the
zone extending over northern central Europe and Scandinavia, a well-
known issue in dynamical systems, is also higher in the data-driven
approach. When compared to the individual systems (Fig. 5), the data-
driven approach is more skilful over certain areas, such as over Eastern
Europe when compared to CMCC-35 and ECMWE-51, the previously
mentioned Scandinavian zone in MF-8, and over France in DWD-21.
However, the skill increase is rarely statistically significant. To predict
summertime HWs over Europe, the data-driven approach is as capable
as the state-of-the-art multi-model dynamical product and, in some
places, more skilful than individual operational forecasting systems.

It is crucial for newly proposed systems to demonstrate skill in fore-
casting the most exceptional events and, crucially, the data-driven forecasts
display this capability in some cases (Fig. 6). In northern Italy, where both
data-driven and dynamical systems generally display high skill, the top-
performing models in data-driven system forecasts are remarkably close to
the observed values for the two years with the greatest number of HW days
(2003 and 2015). In this region, a simple linear regression model is as
effective as ML-based models and outperforms the dynamical systems
(Supplementary Fig. 8), while some display stronger biases in NDQ90 (e.g.
Light Gradient Boost - DD-LGB) than others. The extent of the HW in 2003
across western Europe and the Mediterranean basin is also well forecast by
the data-driven approach (Supplementary Fig. 10), although the excep-
tionally deadly event of 2010 over western Russia was not predicted by either
type of forecast™.

Discussion

Although dynamical forecasts of heat extremes display skill over much of
Europe'*”, the zone of low skill over northern central Europe and Scandi-
navia is a problem that has persisted despite continued updates to dynamical
systems*****, Recent efforts have demonstrated that hybrid dynamical-ML
approaches, in which only ensemble members that best represent the North
Atlantic Oscillation are selected, can boost dynamical forecast skill of
summer conditions in this region”. The purely data-driven approach
described here also achieves the goal of improving upon dynamical systems
(Figs. 4 & 5), with the benefit of doing so at a considerably lower cost by
identifying region-specific predictors. Although Linear Regression displays
very high skill in Central Europe and the Mediterranean basin, ML models
such as Random Forest and Light Gradient Boosting have shown greater
skill across Europe as a whole.

The computational expense of the data-driven approach is very low.
For each grid cell, the optimisation of predictors requires roughly 1 CPU-
hour (on the DKRZ Levante BullSequana XH2000 supercomputer with 3rd
generation AMD EPYC CPUs), and the forecasts require only minutes;
scaling to cover the 1° rectangular grid of C3S over Europe (1066 grid points)
requires roughly 1000 CPU-hours in total. The optimisation-based feature
selection is required only once per start date. Here, the data-driven system
was initialised in May by choosing predictors prior to May 1st, and was
applied to forecast an HW index of May-June-July. Unlike a dynamical
system designed to output many variables at many start dates, our approach
focuses on a specific task. In the future, the system can be easily re-optimised
for other start dates, target dates and even other extreme events, and can
include other potential predictors; for example, humidity for nighttime
heatwaves™.

The predictors identified in the climate simulation (Fig. 3) are not
necessarily equivalent to those in the real world, especially given that the
training dataset past2k may present biases in both predictor and target
variables. Moreover, drivers may change over time, and past2k may provide
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Fig. 5 | Differences in correlation skill score between the data-driven and individual C3S forecast systems. Positive values indicate higher skill in the data-driven
system for forecasts of seasonal heatwave indicators (MJ] NDQ90). Black stippling represents a statistically significant correlation difference (c) at the 90% confidence level.

Fig. 6 | Forecasts of summer heatwave indicators

NDQ90 over Italy

over northern Italy. NDQ90 in ERA5 (black) is —— Target (ERA5)
compared to the full ensemble (120 members) of the = DD-LR

. 50 DD-AB
dynamical systems (C3S Ensemble) and the data- DD-LGB

driven approach with three high-performing ML =1 C3S Ensemble
models (Linear Regression, DD-LR; AdaBoost, DD-
AB; Light Gradient Boost, DD-LGB). Boxplots
represent the medians, interquartile ranges and
maxima and minima for each forecast year in the
C3S Ensemble. The correlation skill scores over the
1993-2016 period are as follows: C3S ensemble
median (0.63), DD-LR (0.74), DD-AB (0.78) and
DD-LGB (0.76). The box used to define northern
Italy is shown in Supplementary Fig. 10.

“outdated” predictors. For example, there has been a shift in the role of
Arctic sea ice on European atmospheric circulation during recent
decades’”>. However, it is clear that sufficient knowledge has been gained
from the paleoclimate simulation to make accurate predictions. The feature
selection identifies the principal role of predictors (e.g. soil moisture) at 4-8
weeks prior to initialisation, i.e. around March (Supplementary Fig. 6). This
analysis provides indications for future studies on heatwave drivers, and can
assist in describing the physical mechanisms behind their influence.
Moreover, it serves as a means to study the recently highlighted differences
in predictability between day and night extremes'**.

Here, the pool of potential predictors used is wider than typically used
in feature selection studies on S2S or seasonal forecasting; the number of
cluster variables is 70, with each time-lag (up to 28 weeks prior to the target)

counting as an individual predictor, thus leading to a total of roughly 2000
potential predictors. The framework does not rely only on expected or
known predictors, but instead clusters predictor variables as a means of
reducing the dimensionality of the problem without including human bias
or relying on prior knowledge. A benefit of the optimisation algorithm used
is its capacity to filter out unnecessary predictor information and identify the
key predictors, thereby allowing the input of many potential predictors.
Across the domain studied here, between 3.2 and 10.6% (6.5% on average) of
the cluster-lag combinations are selected as predictors. Generally, including
more predictors slows down ML forecasts, ruling out the possibility of
including all 2000 in this case. To illustrate the benefits of the optimisation-
based method, we compare it to an alternative and simpler method of
feature selection based on linear correlation analysis, in which the selected
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predictors are those significantly (positively or negatively) correlated to the
target data during the period 1993-2016. Although the correlation approach
selects a similar number of predictors (7.8% on average across the domain),
the resulting forecasts are considerably poorer in skill (Supplementary
Fig. 11). This highlights the greater ability of our optimisation-based
approach to capture physically plausible predictors compared to simpler
statistical-based approaches.

By focusing on one climate simulation (past2k) for training, it is
demonstrated that there is a successful transfer of learning between the
model and the real world. Increasing the training period from 50 to 1850
years of paleo-simulation data has a noticeable impact on the forecast skill
(Supplementary Fig. 12), although there is limited growth in skill between
1000 and 1850 years of training data. This plateau implies that increasing the
data beyond what is available from a single source, for example, by extending
the paleo-simulation further back in time, would contribute little to
improving the skill. Thus, the next avenue of research should be to attempt a
multi-model training approach, for example, using the dynamical fore-
casting systems themselves as training data. Recent advances in short-term
forecasting have also demonstrated that an ML-based ensemble outper-
forms deterministic data-driven forecast models, as in dynamical systems™".
Emulating the dynamical multi-model approach with the data-driven sys-
tem has the potential to further increase skill.

Although already successful, future improvements can be made to this
prediction system. Parameter tuning for the ML models used could identify
potential improvements, but it is an enormous undertaking for several
models covering a wide geographical domain. K-means can be replaced by
clustering algorithms which provide more interpretable and physically
meaningful output™. We find that local variables are important for accurate
predictions (Fig. 3), meaning that each target region should have a diverse
range of potential predictors located close to it. The setup used in this study
is ideal for forecasting central European conditions. The edge of the domain
(e.g. Western Russia) displays lower skill (Fig. 4), likely due to the use of
fewer local variables centred around this part of the domain. A crucial
difference to the dynamical systems is that the current data-driven approach
is inherently deterministic; future efforts must either explore probabilistic
alternatives™ or how to leverage the use of a single skilful member, such as
for dynamical ensemble member selection™.

Methods
ERAS5 reanalysis
The ERA5 reanalysis™® provides the target and predictor data for the
modern period 1993-2016. Daily maximum 2m temperature (TMX) is used
to calculate the heatwaves. To allow for comparison with the dynamical
seasonal forecasts from the Copernicus Climate Change Service (C3S),
TMX is regridded from the 0.25° regular grid to a regular 1° grid. The
following variables are used as predictors: mean sea level pressure (SLP),
volumetric soil moisture content in the upper 7 cm (SM), sea ice con-
centration (SIC), sea surface temperature (SST), geopotential height at
500 hPa (z500), outgoing longwave radiation (OLR), and TMX.

Previous studies have shown that ERA5 accurately reproduces both
mean and extreme temperatures”, confirming that it is a reliable source of
climate information over Europe, in particular for heatwave indicators™.

MPI-ESM paleo-simulation “past2k”

The “past2k” simulation is a simulation of the climate system with a state-of-
the-art Earth System Model over the past two millennia. It was performed
with the MPI-ESM1.2-LR model, which couples the ECHAMSG6.3 as its
atmospheric component (1.875° horizontal resolution with 47 vertical
levels) and the MPIOMI.63 as its ocean component (1.5° horizontal reso-
lution reaching 30-40 km in the subpolar North Atlantic, with 40 vertical
levels). The spin-up time of the simulation was 1200 model years prior to the
year 0. The model is forced by reconstructions of past atmospheric green-
house gases, volcanic forcing, solar forcings (with an artificial 11-year cycle),
derived from the analysis of polar ice-core data; land-use changes derived
from historical and palynological data; and ozone concentrations resulting

from an atmospheric photochemistry model forced by past solar
irradiance™”. No de-biasing or correction was made to the predictor or
target data in past2k.

The soil moisture content in past2k is provided as the mass of water per
m” in the upper 10 cm, as opposed to the volumetric water content in the
upper 7 cm provided by ERA5. To convert from m’ m™> (ERA5) to kgm >
(past2k), we scale by density and extrapolate the value to 10 cm by assuming
even distribution of water in the top 10cm and a water density of
1000 kg m ™.

The representation of summer temperature and heatwaves in past2k is
found to agree with ERA5 (Supplementary Fig. 5). First, the patterns of
interannual variability of NDQ90 are similar across Europe, although the
magnitude is consistently higher in past2k. For example, peaks appear
across the Mediterranean basin, the Caucasus and north-western Russia. In
the two leading Empirical Orthogonal Functions (EOFs) of average summer
TMX, past2k and ERA5 resemble each other in terms of patterns and
magnitude; the leading EOF is dominated by variability over Russia, while
the second clearly separates land and ocean variability.

Dynamical seasonal forecast systems

The C3S provides several operational dynamical seasonal forecast systems,
each with a different number of ensemble members (i.e. individual rea-
lisations with perturbed initial conditions used to sample the uncertainty)
and set-ups. Four systems from the C3S (Supplementary Table 2) were
selected for this study: SPS3.5 from the Centro Euro-Mediterraneo sui
Cambiamenti Climatici (CMCC-35, 40 ensemble members), System2.1
from the Deutscher Wetterdienst (DWD-21, 30 ensemble members),
SEAS5.1 from the European Centre for Medium-Range Weather Forecasts
(ECMWE-51, 25 ensemble members), and System8 from Météo-France
(MF-8, 25 ensemble members). These systems are initialised in “burst-
mode”, meaning the full set of ensemble members is run on the first day of
the month. Other forecasting systems release ensemble members periodi-
cally throughout the month, in “lagged” mode. To remain consistent with
the data-driven approach, which is also initialised on the first of each month,
we use only burst-mode forecasts. The horizontal spatial resolution is 1°, and
6-hourly data are used to extract the daily maximum (TMX).

Definition of heatwave index

The target data used in this study is the number of days, from 1st May to 31st
July, in which TMX exceeds the climatological 90th percentile (NDQ90).
Each product uses its own respective climatology, thereby adjusting the
mean biases inherent to the dynamical seasonal prediction systems. For
ERAD5, the 90th percentile is calculated by first averaging each calendar day
over the 1993-2016 period and then applying an 11-day running mean to
smooth the climatology®". For past2k, the period used is the last 30 years of
the simulation (1821-1850), a choice which is justified by the stability of the
climate throughout the simulation®. The NDQ90 index provides a measure
of the propensity of a season to experience extreme temperatures, and
displays similar variability and predictability to other indices based on
intensity™"*.

Optimisation-based feature selection and seasonal forecasts
Here, a data-driven seasonal forecast system is designed based on an
optimisation-based feature selection framework™ (Supplementary Fig. 1).
The framework is composed of the following steps: a dimensionality
reduction of potential predictor variables; a feature selection that identifies
the optimal combination of variables, spatial domains and time-lags; the use
of selected features to train statistical or ML prediction models. Previous
work has successfully tested the ability of the framework to detect HW's
based on short-term drivers in a detection-mode context®; here, the fra-
mework is adapted to only use predictor information on seasonal timescales,
thereby providing seasonal forecasts.

First, a pool of potential predictors is defined. Here, a predictor refers to
a variable within a domain at a particular time-lag. The chosen variables
describe atmospheric, land and oceanic conditions, some of which are
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known to influence the European climate or extremes, such as atmospheric
circulation (e.g. z500”*), ocean-atmospheric interactions (e.g. SST**", soil
moisture®™®, and sea ice”*). Among these, variables such as SST and OLR
are used to capture modes of climate variability’””’. Using variables in a
global domain or from outside Europe allows for the potential identification
of teleconnections. An upgraded k-means clustering is applied to each
variable to extract five clusters per domain (Supplementary Fig. 2; Supple-
mentary Table 1). The innovation, compared to the traditional k-means, is
performed using weighted multi-dimensional distances, where the Eucli-
dean distances between the time series are given 95% weight and the
remaining 5% is assigned to spatial distances on the geoid between the grid
point and the centroid of the cluster. The clustering is performed on variable
anomalies in ERA5 with respect to the 1993-2016 climatology. The ERA5-
derived cluster shapes are then used to calculate weekly area-averages in
both ERA5 and past2k, covering the period from November 1st to April
30th. Given that our objective is to demonstrate the capability of such a
framework, we use k = 5 as a compromise between choosing a large pool of
predictors and performing a suitable reduction of the dimensionality of the
problem. The numbered week of the year is also included as a dummy
predictor variable.

In the second step, the identification of predictors of extreme summers
is treated as an optimisation problem. The optimisation algorithm employed
is the Probabilistic Coral Reef Optimization algorithm with Substrate Layers
(PCRO-SL)*, which uses a multi-model method to combine different search
procedures. In particular, it has recently been adapted to create a Spatio-
Temporal Cluster-Optimized Feature Selection (STCO-FS) for heatwaves®.
While previously the STCO-FS has been applied to the detection of HWs,
here it is adapted to seasonal forecasting. We provide a description of the
seasonal forecast setup of STCO-FS and refer readers to the aforementioned
references for more complete technical descriptions of the optimisation
algorithm PCRO-SL and the feature selection setup STCO-FS.

The aim of the second step is to select the combination of predictors
which together provide the optimal skill for the target time series. Here, the
problem to be optimised is the forecasting of NDQ90 using a multiple linear
regression model. The optimisation is performed on past2k data, with
training and test periods of 0-1600 and 1601-1850, respectively, and on
each grid point individually. The skill score used is the root-mean-squared-
error normalised by the standard deviation (interannual variability) of the
target data (N-RMSE). The training score is calculated with a 5-fold cross-
validation of the training period to reduce overfitting. Three parameters are
simultaneously adjusted during the evolution of the optimisation: the
variable cluster, the time-lag and the sequence length. The variable cluster is
treated as a binary selection process (either selected or not). The time-lag,
together with the sequence length, determines the times prior to May 1st in
which the cluster is selected. Specifically, the sequence length represents the
period during which the cluster is important. The value ranges for each
parameter are as follows: variable cluster (0-1), time-lag (0-24 weeks prior
to May 1st) and sequence length (0-8 weeks).

The optimisation aglorithm used begins with a first guess, after which
the evolution of solutions during the optimisation improves both the
training and test scores until the algorithm converges on an optimal solu-
tion, which typically occurs between 10,000-15,000 evolutions (Fig. 1). The
solution with the lowest N-RMSE of all evolutions is selected as the optimal
solution (see an example of selected variables and lags for an optimal
solution in Supplementary Fig. 3). In summary, the optimal solution is
obtained by repeating seasonal forecasts in the model world and adjusting
the input predictors. The forecast is considered seasonal because the target
data correspond to May-June-]July, whereas the predictor data are obtained
from the months prior to May.

The final step is to apply the method to real-world data. This requires
simply changing the test period to 1993-2016 and the test predictors to
those of ERA5, and extending the training period to cover the full 1850-year
period of past2k. Given that past2k and ERA5 have different grids, a nearest-
neighbour mapping function is used to associate past2k grid cells with those
of ERA5.

While the optimisation is based on a multi-linear regression forecast
for the sake of computational time, the second step of producing real-world
forecasts can be performed with ML models in order to boost skill. Several
candidates are tested (Supplementary 8), and in all cases, the default values
provided in the Python modules (see Code Availability statement) are used.
For instance, the Random Forest regressor used n_estimators=100, criter-
ion="squared_error", max_depth=None, and max_features=1.0. Random
Forests provide the greatest area of significant correlation over Europe,
corresponding to a 10% increase over Linear Regression. However, the most
skilful model depends on the grid point (Supplementary 8). In the most
skilfully predicted regions (e.g. the central Mediterranean), all models
provide significant skill, except Decision Trees. In the low skill zone
extending over northern central Europe and Scandinavia, significant skill is
rare among models, but the best performing models are Random Forest,
Light Gradient Boost and AdaBoost. Multi-Layer Perceptron is a deep
learning (DL) neural network model, ideal for larger datasets in which there
are more non-linear relationships between predictors and the target. In this
study, it is outperformed by ML-based models such as Random Forest,
which has been found to be more suited to similar tasks”. The data-driven
approach displayed in this study (e.g. Fig. 4) is derived from the most skilful
model, depending on the grid point. While all models provide similar
patterns of skill, there is no coherent pattern in which a model provides the
best skill in certain regions (Supplementary Fig. 8).

The framework allows us to quantify the relative importance of each
variable and cluster, and crucially, to identify the time-lag from short-term
to seasonal timescales. By ensuring that potential predictors are restricted to
certain time-lags, the system resembles a dynamical forecast system that
receives climate information only before the initialisation date. The cut-off
time for potential predictors determines the effective “initialisation” time;
for example, using predictor data prior to May 1st to target summer HW's is
equivalent to a May initialisation of the dynamical system.

SHapley Additive exPlanations - SHAP analysis

SHAP is a method used to interpret machine learning models by quantifying
the contribution of each feature to individual predictions”. Here, we apply
SHAP to Random Forest forecasts to explore the contribution of predictors
selected in past2k to the forecasts using ERA5 predictors from 1993-2016.
For each example predictor studied (Supplementary Fig. 7), and in each grid
cell, we calculate the average of the SHAP value magnitudes for the target
predictors.

Statistics

Statistical significance of correlations (e.g. Fig. 4a) is calculated using the
two-sided test included in the stats.pearsonr function from the Python
module scipy. Statistical significance of the difference between correlations
(e.g. Fig. 4c) is calculated using a Fisher's Z-test, suitable for correlations with
overlapping data (i.e. the ERA5 data used for validation). In both cases, a
confidence interval of 95% is used, and the sample size is 24 (the number of
available re-forecast years).

Data availability

The ERA5 data and dynamical seasonal forecast output used for this study
are openly available at the Climate Data Store of the Copernicus Climate
Change service: https://cds.climate.copernicus.eu/. Data from the paleocli-
mate simulation is available through the Earth System Grid Federation
(ESGF), using identifiers “PMIP" (Paleoclimate Modeling Intercomparison
Project) and “past2k”.

Code availability

The machine learning models used in this study are from the scikit-learn
(v1.4.1) Python programming language package and Microsoft Light GBM
(v4.3.0). The default parameter values corresponding to the specific versions
are used. The optimisation-based feature selection framework and seasonal
forecasting framework are freely available at https:/github.com/
climateintelligence/DDHWSE.git. The repository contains the scripts used
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to perform the optimisation and forecasting in this paper, and also guided
step-by-step Jupyter notebooks used for training.
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Published online: 04 November 2025
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