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Global chemical composition maps of
oxide distributions on the Lunar surface
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Denggao Qiu 1, Jianguo Yan 1 & Bin Liu2

The surface chemical composition of the Moon holds key insights into its geological evolution and
resource potential. With future missions targeting the lunar south pole, there is a pressing need for
high-resolution chemical maps of this region. Here we integrate spectral data with the latest Chang’E-
6 samples,which are the first returned from the lunar farside, to refineglobal estimates ofmajor oxides.
A classical equation was applied to produce updatedmaps of FeO, TiO2, and optical maturity, while a
deep learning model was constructed to invert more complex oxides across the lunar surface. The
addition of Chang’E-6 samples further corrected the TiO2 content of lunar surface. The machine
learning approach captures nonlinear links between reflectance and geochemistry, enabling robust
mapping of oxides. These results reveal basaltic signatures in the south polar region, suggesting
volcanic activity, andprovide a framework for investigating theMoon’s thermal evolution and resource
potential.

The surface chemical composition of the Moon provides critical insights
into its regional geological evolution and the spatial distribution of potential
resources. High-resolution chemical maps have been widely used for lunar
geological mapping and resource assessment1–5. The upcoming Chang’E-7
and Artemis missions are targeting the lunar south pole, at the periphery of
the South Pole-Aitken Basin, the largest and oldest known impact basin on
the Moon6–8. These regions are thought to expose ancient mantle-derived
materials9–11. Investigating the surface composition in the south polar and
adjacent high-latitude regionsmay thus yield valuable insights into the lunar
geological processes, lunar evolution, impact history of the Earth-Moon
system, and potential for in-situ resource utilization12,13. Moreover, global
chemical composition maps can serve as a reference for assessing the dis-
tribution of metallic resources on the Moon, which will be of practical
importance for future extraterrestrial construction and lunar base site
selection14,15.

The chemical composition of the lunar surface can be quantitatively
derived from optical remote sensing data. Certain metal cations produce
spectral absorption features at specific wavelengths16,17, and laboratory
spectroscopic investigations have demonstrated that variations in chemical
composition exert a measurable influence on reflectance spectra18–21. Lunar
samples returned by theApollo, Luna, andChang’Emissions provide direct
geochemical measurements and serve as ground truth calibrations for
determining the chemical composition of lunar surface. Of these, the
Chang’E-6 mission returned the first samples from the Moon’s farside that
canbeused as the ground truth22, offering the onlydirect compositional data
from this previously unsampled hemisphere. In addition, remote sensing

observations have provided spectral reflectance data at spatial resolutions
ranging from tens to hundreds of meters23–28. By correlating sample mea-
surements with spectral reflectance, inversion models have been developed
to estimate lunar surface composition. These high-resolution chemical
maps offer significantly improved spatial detail compared to those derived
from Lunar Prospector gamma-ray and neutron spectroscopy (GRNS),
which has a spatial resolution of ~60 km/pixel29–31. The correlation between
the abundance and spectral reflectance of Fe and Ti, as transition elements,
was the first to be discovered. Quantitative global estimation of FeO and
TiO2 were developed based onClementineUVVIS data, and represented as
mathematical equations23,24,32,33. These models were later applied to the FeO
and TiO2 inversion derived from the Kaguya Multiband Imager (MI)25.
More recently, machine learning approaches have expanded the suite of
elements that can be predicted from spectral data, enabling estimation of
SiO2, Al2O3, MgO, and CaO from Clementine, Kaguya, and Chang’E-1
Interference Imaging Spectrometer (IIM) data34–38. Among these, MgO
content can be used to indicate magma evolution, and the magnesium
number (Mol% of Mg/(Mg+Fe), Mg#) derived from MgO data has been
widelyused to investigate crustal andmantleprocesses on theMoon37,38. The
accuracy of chemical composition estimates obtained from optical remote
sensing inversions is lower than that achieved through controlled ground
truth for optical remote-sensing instruments. Nevertheless, remote sensing
data remains theprimary resource formapping the chemical compositionof
the lunar surface19, serving both regional and global studies.

The combined use of lunar sample analyses, spectral reflectance
measurements, and inversion models has advanced our understanding of
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the Moon’s chemical diversity. The 1935.3 g of samples returned by the
Chang’E-6 mission from the South Pole-Aitken (SPA) basin provide a rare
and critical ground truth dataset from the farside of the Moon22. These
samples are dominated by the younger mare eruption, with typical low-
titanium basalts emplaced by volcanism in the SPA at ~2.83Ga22,39. Geo-
chemical evidence indicates that these magmas were derived from a lunar
mantle source depleted in incompatible elements39. The Chang’E-6 collec-
tion established a new chemical calibration point for younger mare, com-
plementing the data provided by Chang’E-522,39,40. Moreover, these samples
furnish refined chemical composition and regional age calibration for both
the lunar south polar and farside regions. To date, high-resolution major
oxides andMg#maps have not extended beyond 65° latitude. ExistingMg#
maps derived from Kaguya MI data are limited to the 65°N-65°S range37,38.
In this work, we establish a reliable surface ground truth at the Chang’E-6
landing site using returned sample measurements and integrate these with
previous mission data to perform surface compositions inversion. Clem-
entine Ultraviolet/Visible (UVVIS) spectral data were utilized to derive
global maps of major oxides (FeO, TiO2, Al2O3, MgO, and CaO) andMg#.
The spectral datawere carefullymatched to the known compositions at each
sample return site (see Supplementary Table 1). A mathematical model for
FeO and TiO2 inversion was improved, and a one-dimensional convolu-
tional neural network (1D CNN) model was developed to predict the
abundance of major oxides across the lunar surface. Results from both
models were compared to evaluate the contribution of the Chang’E-
6 samples. Furthermore, thenewly generated chemicalmapswere applied to
investigate the composition and geological context of the lunar south polar
and its surrounding high-latitude regions.

Results
The Clementine mission acquired global multispectral coverage of the
Moon, and its spectral dataset remains the primary resource for mapping
lunar surface chemistry at the global scale. In this study, Clementine spectral
reflectance and the measured chemical abundances of lunar samples from
the Apollo, Luna, and Chang’E missions (Supplementary Table 1), were
employed as input for inversion modeling (Method). The measured oxide
contents of these lunar samples are used as the ground truth, corresponding
to the Clementine spectral reflectance of the sampling sites. The oxide
contents determined from these lunar samples serve as ground truth, cor-
related with the Clementine spectral reflectance from the corresponding
sampling sites.Notably,Apollo 16andLuna 20 represent non-mare regions,
whereas the remaining samples were predominantly collected from mare
regions. Previous studies have found theband ratios andoxide contents, and
these relationships canbe expressed through empirical equations2,23,32,33. The
equationmodel2,33,41 was followed andmodified to establish the relationship
between Clementine reflectance and FeO abundance, TiO2 abundance, and
optical maturity (OMAT). Furthermore, the five bands reflectance of
Clementine, OMAT, and the measured oxide abundances from lunar
samples were used to construct a training dataset for a 1D CNN inversion
model. The addition of OMAT introduced optical maturity information,
thereby constraining the effects of lunar surface maturity for the inversion
model. The prediction accuracies of the inversion models and the ver-
ification accuracies obtained through leave-one-out cross-validation
(LOOCV) for the CNN models are presented in Supplementary Fig. 1.
For the equation-based models, the determination coefficients (R2) of FeO
and TiO2 abundances are 0.923 and 0.798. Equationmodels revealed linear
relationship between reflectance and oxide abundance in several bands of
the spectrum.Moreover, theCNNmodels achievedR2 values exceeding0.96
for the prediction of all five major oxides. The LOOCV results further
demonstrate robust performance,with validationR2 values of 0.897 for FeO,
0.831 for TiO2, 0.947 for Al2O3, 0.755 for MgO, and 0.918 for CaO. These
results indicate the strong performance and high reliability of the CNN
models in estimating the abundances of the five major oxides. Moreover,
comparison between the CNN predicted oxide maps and the Lunar Pro-
spector (LP) Gamma-Ray Spectrometer (GRS)42,43 measurements (Supple-
mentary Figs. 3–7) shows that the predicted and observed values are similar

in range, exhibit strong positive correlations, and that the statistical dis-
tribution of their differences approximates a normal distribution. This
consistency underscores the reliability of the CNN based compositional
inversion. Chemical composition mapping ultimately depends on the cor-
relation models that link lunar samples with remotely sensed spectra. Both
the availability of lunar samples and the quality of spectral data directly
influence the accuracy of the inversion results. At present, a limitation is the
paucity of ground truth samples from high latitude regions, where com-
positional estimates are largely extrapolated from empirical relationships
established at mid to low latitudes. Future missions, such as Chang’E-7 and
Artemis to the lunar south pole8, are expected to address this gap by pro-
viding critical ground truth constraints for high latitude compositions.

The FeO and MgO abundance maps derived from the CNN model
were used to compute theMg#map. Thenewoxide,Mg#, andOMATmaps
are presented in Fig. 1, the value ranges presented in the maps follow the
95% confidence intervals. An equal-area sampling method (Methods) was
applied to generate histograms of these map results (Supplementary Fig. 2).
The histograms of fivemajor oxides for CNNmodels andMg# are shown in
Fig. 2. Equation FeO presents bimodal distribution with lower and higher
modes of 4.47 wt.% and 18.82 wt.%, and Equation TiO2 presents unimodal
continuous distribution. These patterns are consistent with previous studies
based on the Interference Imaging Spectrometer (IIM), KAGUYA Multi-
band Imager (MI), and Clementine data28,33,38. These three results reported
lower modes of FeO abundance of 6.37 wt.%, 4.12 wt.%, and 4.5 wt.% and
the higher modes of 15.01 wt.%, 18.23 wt.%, and 17.1 wt.%. In contrast, the
CNN FeO and TiO2 both display unimodal continuous distribution, while
CNN Al2O3, MgO, and CaO exhibit bimodal distributions (Fig. 2a). CNN
FeO presents a unimodal distribution with a mode of 5.28 wt.%, this
unimodal characteristic is consistent with the LP GRS measurement of
4.7 wt.%43. CNN TiO2 presents unimodal continuous distribution with a
mode of 0.42wt.%. CNNAl2O3,MgO, andCaOpresent the lowermodes of
11.63 wt.%, 5.11 wt.%, and10.63 wt.%, respectively, and thehighermodes of
27.76 wt.%, 10.31 wt.%, and16.38 wt.%.Mg#presents unimodal continuous
distribution with a mode of 0.634 (Fig. 2b). These modal distribution
characteristics are dominatedby differences in the distribution ofMaria and
Non-maria. Notably, CNN FeO map indicates more high FeO abundance
regions (>24 wt.%), in agreement with LP observations43, but distinct from
previous estimates based on IIM, MI, Clementine, and our Equation FeO
model28,33,38.

The average abundances of chemical compositions and OMAT in
the maria, non-maria, and global are presented (Table 1). The approx-
imate boundaries of maria are shown in Fig. 1h, and the mean values of
each unit were calculated using the equal-area sampling method
(Methods). CNN FeO has a higher valuation than Equation FeO, with
global, maria, and non-maria units being 0.25 wt.%, 0.86 wt.%, and
0.12 wt.% higher, respectively. CNN TiO2 has a higher valuation than
Equation TiO2, with global, maria, and non-maria units being 0.21 wt.%,
1.04 wt.%, and 0.03 wt.% lower, respectively. The abundance of these five
oxides differs significantly between maria and non-maria units, and this
difference is consistent with their modal distribution characteristics
(Fig. 2a). In addition, Mg# in non-maria units is significantly higher than
that in maria, with an average value of 0.632, which is close to the Mg#
modal value of 0.634 (Fig. 2b).

Discussion
Influence of Chang’E-6 samples
The newly developed equation models were evaluated by comparing the
updated Equation FeO and TiO2 maps with previous versions that did not
incorporate Chang’E-6 samples44 (Supplementary Fig. 1 and Fig. 3). The
inclusion of Chang’E-6 data allows assessment of their influence on model
outputs. The plot of theEquationFeOmodel (Supplementary Fig. 1c) shows
that the Chang’E-6 sample data point lies close to the fitted regression line,
with a deviation of ~0.47 wt.%, which is smaller than the root mean square
errors (RMSE) of 1.37 wt.%. The addition of Chang’E-6 samples has
increased the average estimated FeO abundance globally by 0.01 wt.%,
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decreased the average estimated FeO abundance inmaria by 0.01 wt.%, and
slightly increased the average estimated FeO abundance in non-maria,
though these increase is negligible (Table 1 and Fig. 3a). The difference
between the new and previous FeO maps generally falls within the range
−0.04 and 0.03 wt.%, and the scatter plot of the two maps displays a strong
linear correlation with minimal outliers (Fig. 3c–e). These findings indicate

that the inclusion of Chang’E-6 samples has little impact on the FeO
inversion model and that the FeO abundance measured at the Chang’E-
6 site aligns well with the global distribution trends derived from previous
lunar samples. Notably, the FeOmapderived fromEquationmodel shows a
decrease in the valuation ofMare Tranquillitatis, with a large concentration
of outliers, indicating a area of FeO abundance variation (Fig. 3a, e).

Fig. 1 | Maps of oxide abundances, Mg#, and optical maturity (OMAT). a, b and
i show the maps of FeO, TiO2, and OMAT calculated from equation model.
c–h show the maps of FeO, TiO2, Al2O3, MgO, CaO, and Mg# calculated from one-

dimensiona convolutional neural network model. Mg # map highlights the
approximate boundaries of maria with black lines50.
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In contrast, the EquationTiO2 shows amore substantial response from
the Chang’E-6 data. The plot of the Equation TiO2 model (Supplementary
Fig. 1d) shows that the result point of Chang’E-6 samples deviate from the
fitted line, with a deviation of ~3.00 wt.%, greater than the RMSE of
1.24 wt.%. This deviation has resulted in differences between the new
Equation TiO2map and previous map. The addition of Chang’E-6 samples
has increased the average estimated TiO2 abundance globally by 0.13 wt.%,
decreased the average estimatedTiO2 abundance inmaria by 0.05 wt.%, and
increased the average estimatedTiO2 abundance in non-maria by 0.16 wt.%
(Table 1 and Fig. 3b). The Chang’E-6 samples were sourced from themaria
on lunar farside, with TiO2 content of 2.7 wt.%. This samples from maria
were significantly lower than the fitted model results, leading to a reduction
in the estimatedTiO2 abundance ofmaria. Thedifferencebetween twoTiO2

maps is mainly between −0.4 and 0.3 wt.%. The scatter plots of the two
results show a small range of values in the positive difference and a large
range of values in the negative difference, and this is also reflected in the
boxplot of TiO2 difference (Fig. 3f–h). The positive differences are relatively
small and distributed in the non-maria, while the negative differences are
large anddistributed in themaria.These results of EquationTiO2model and
TiO2 abundance differences both indicate that the Chang’E-6 samples have
impact on previous TiO2 model, leading to a reduction in the estimated
TiO2 abundance ofmaria. Furthermore, these findings indicate that current
inversion models still suffer from limited sample constraints on the lunar
farside. Additional farside samples will be essential for further optimizing
inversion models and advancing our understanding of the compositional
dichotomy between nearside and farside maria. Similar to the FeO results,
the new Equation TiO2 map show a significant decrease in the valuation of
Mare Tranquillitatis. And the estimated TiO2 abundance in the eastern part
ofOceanusProcellarumhasdecreased (Fig. 3a).These variations inFeOand
TiO2 abundances highlight Mare Tranquillitatis as a region of particular
interest that warrants further geochemical and geological investigation.
Notably, the new results reveal that the average abundances of FeO, Al2O3,
MgO, and CaO in Mare Tranquillitatis are consistent with the measured
values of the Chang’E-6 samples (Table 1 and Supplementary Table 1), with
onlyTiO2 showing significant difference. This compositional similaritymay
imply notable reevaluations for Mare Tranquillitatis, as the new estimates
bring the chemical abundances closer to the sample measurements. The
discrepancy inTiO2 content between the two regionsmay reflect differences
in magmatic evolution history, an issue that requires further investigation.

Insights frommachine learning results
Two sets of FeO and TiO2 abundance maps were generated using the
equationmodel and CNNmodel, respectively. These maps were compared
to assess differences in prediction outcomes (Fig. 4). Compared to Equation
FeO map, the CNN FeO map estimate FeO abundance that are 0.25 wt.%
higher on average globally, 0.88 wt.% higher on average in maria, and
0.12 wt.% higher on average in non-maria (Table 1 and Fig. 4a). Difference
between these two FeOmaps is mainly between−4.03 and 3.54 wt.%, with
outliers outside this range (Fig. 4d, e). The CNN model estimated higher
FeO abundance in maria and highland regions, but lower FeO abundances
in SPA basin. This phenomenon is characteristic of machine learning
models, as demonstrated by comparisons of the results of equation models,
random forest models, and CNN models35. The difference in FeO abun-
dance is particularly pronounced in Oceanus Procellarum, which is the
region with the highest FeO abundance globally (Figs. 1a, c, and 3a). CNN
FeO reveals that the FeO abundance in this region is >24 wt.%, while
Equation FeO estimates that the FeO abundance in this region is ~21 wt.%.
For this discrepancy, we consider the map from the CNN FeOmodel to be
more reasonable. LPdata also confirm that FeOabundance>24 wt.%within
OceanusProcellarum29. Furthermore, Chang’E5 completed sampling in the
Oceanus Procellarum, and the samples revealed highly evolved basaltic
clasts (Mg#: 0.29, FeO: 24.7 wt.%, TiO2: 5.75 wt.%)

45. These measurements
are consistent with the Oceanus Procellarum characteristics inferred by the
CNN model (Fig. 1c, d, h).

Compared to Equation TiO2 map, the CNN TiO2 map estimate TiO2

abundance that are 0.21 wt.% lower on average globally, 1.04 wt.% lower on
average inmaria, and 0.04 wt.% lower on average in non-maria (Table 1 and
Fig. 4b). The difference between these two TiO2 maps is mainly between
−0.48 and 2.72 wt.%, with outliers outside this range (Fig. 4g, h). The CNN
model suggests that TiO2 abundance within maria is lower, and this dif-
ference is more pronounced in Oceanus Procellarum and Mare Tranquil-
litatis, at >3 wt.% (Fig. 4b). For this discrepancy, we consider the map from
the CNN TiO2 model to be more reasonable. Equation TiO2 map suggests
that high-TiO2 basalts are widely distributed in the eastern part of Oceanus
Procellarum and Mare Tranquillitatis, with TiO2 abundance >9 wt.%
(Fig. 1b). However, CNN TiO2 map suggests that this high-TiO2 materials
aremainly concentrated in the northern and southwestern parts of theMare
Tranquillitatis, and the TiO2 in Oceanus Procellarum is ~4 wt.% (Fig. 1d).
CNNTiO2map is consistent with LPTiO2measurement results. LP did not

Fig. 2 | Histograms of chemical compositon. a the
five major oxide abundances and bMg#. Statistics
on equal-area sampling (Methods) results.
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detect any signals with high-TiO2 abundance (>9 wt.%) globally, with only
one or two pixel areas in Mare Tranquillitatis showing TiO2 abundance of
8.0 and 7.9 wt.%46. Moreover, Apollo 11 collected samples from the
southwestern part of Mare Tranquillitatis. The TiO2 abundance of the
corresponding sampling points is 7.9 wt.%, and several high-TiO2 basalt
were found in these samples, with sample 10022 having the highest TiO2 of
12.2 wt.%47. The Apollo 16 sampling sites are located within the Descartes
Highlands, nearMareTranquillitatis, but high-TiO2 basalt was still found in
these samples, with sample 60603 having the highest TiO2 of 14.5 wt.%

48,49.
Previous studies have suggested that the high-TiO2 basalt sample 60639,

10–16 fromApollo 16 likely derived fromMareNectaris, as its TiO2 content
aligns with this region, though it has a higher FeO content48. Based on our
CNN five oxide maps, we suggested that sample 60639 (FeO of
16–19.9 wt.%, TiO2 of 6.3–7.9 wt.%, Al2O3 of 12.4–15.1 wt.%, MgO of
5.2–7.5 wt.%, and CaO of 10.6–11.5 wt.%) is more likely to have derived
from the southwestern part of Mare Tranquillitatis, as the chemical com-
position of the sample is more consistent with that region. The Apollo
17 sampling sites are located at the northern end of Mare Tranquillitatis,
southeastern edge ofMare Serenitatis. The samples contain low-TiO2 basalt
and high-TiO2 basalt. The Apollo 17 LRV12 sampling site has the highest

Table 1 | Means of chemical compositions and OMAT for the Moon

Pre. Eq. FeO (wt%) Pre. Eq. TiO2 (wt%) Eq. FeO (wt%) Eq. TiO2 (wt%) CNN FeO (wt%) CNN TiO2 (wt%)

Global 8.22 1.07 8.23 1.20 8.48 0.99

Maria 16.86 3.75 16.85 3.70 17.71 2.66

Non-maria 6.54 0.55 6.54 0.71 6.66 0.67

Mare Tranquilitatis 17.55 9.13 17.51 8.46 18.7 6.02

CNN Al2O3 (wt%) CNN MgO (wt%) CNN CaO (wt%) Mg# OMAT

Global 23.88 6.90 14.93 0.609 0.222

Maria 13.76 9.42 11.28 0.494 0.194

Non-maria 25.84 6.41 15.64 0.632 0.227

Mare Tranquilitatis 12.98 8.49 11.62 45.01 0.16

Fig. 3 | Comparison of Equation FeO andTiO2mapswith previous Equation FeO
and TiO2 maps44. Difference maps between a Equation FeO and previous FeO,
b Equation TiO2 and previous TiO2. The positive values represent higher FeO and
TiO2 abundance for Equation FeO and TiO2. c Histogram of FeO difference.

d Probability density function scatter plots of Equation FeO map and previous
Equation FeO map. e Boxplot of FeO difference. f Histogram of TiO2 difference.
g Probability density function scatter plots of Equation TiO2 map and previous
Equation TiO2 map (TiO2 > 1 wt.%). h Boxplot of TiO2 difference.
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TiO2 of 10.0 wt.%, and the TiO2 of basalt sample 70017 is as high as
13.75 wt.%. These high-TiO2 basalt samples are all associated with Mare
Tranquillitatis. From the perspective of spatial distribution characteristics,
CNNTiO2map is alsomore consistent, with high-TiO2 basalt distributed in
the northern and southwestern parts of Mare Tranquillitatis.

Comparison of remote sensing data and lunar samples indicates that
the inversion results of CNN model are reliable. The CNN FeO and TiO2

maps provide a reasonable description of local areas. Most importantly, the
CNN model can depict the nonlinear relationship between oxide content
and spectral reflectance. This allows the CNN FeO and TiO2 maps to
provide amore reasonable description of local areas. Thismethodology also
enables mapping of Al2O3, MgO, and CaO abundances, enriching our
understanding of lunar surface geochemistry. In addition, the CNN che-
mical compositionmaps show that high-TiO2 basalts aremainly distributed
in the northern and southwestern parts of Mare Tranquillitatis. This pro-
vides remote sensing data constraints for the provenance of high-TiO2

basalt samples on the Moon and may provide a reference for petrogenetic
model for the lunar basalts.

New view of south polar region
New chemical composition and Mg# maps provided essential chemical
information for investigating the lunar south polar region (>65°S). Using
CNNFeO andMg#maps, we analyzed the surface chemical composition to
identify potential exposures of mare basalt (Fig. 5). Equal-area sampling
methodextracted633949points from the southpolar region, corresponding

to a surface area of ~1426385.25 km2. Among these, 51421 points
(~115697.25 km2, ~8.1% of the lunar south polar region) show chemical
compositions broadly similar to mare basalts elsewhere on the Moon50.
Sample points (Fig. 5a) with high FeO content are more likely to have been
exposures of mare basalt in the lunar south polar region. Therefore, the
overlap samples were further screened to extract information with FeO
>15 wt.% andMg#<60.We identified 42,762 points (~96214 km², ~6.7%of
the lunar south polar region) as potential high-FeO material exposures
(Fig. 5b).Thesehigh-FeOmaterials areprimarily distributedonbasinfloors,
crater walls, and central peaks, rather than forming extensive, continuous
mare basalt plains. This observation is consistent with previous studies
suggesting the absence of large-scale mare basalt units in the lunar south
polar region50.

The origin of these high-FeO materials likely involve volcanism or
impact-related processes.Maficmagmas produced by volcanic activitymay
have eruptedoroverflowedonto the surface, forming localizedbasalticflows
or pyroclastic deposits51. Ancient cryptomaria, mare basalts later buried by
ejecta, have also been identified elsewhere on the Moon52–54. However, no
confirmed mare basalt units have been found in south polar region50, nor
have any dark-halo impact craters been found to prove the existence of
cryptomare55,56. This absence argues against widespread volcanic resurfa-
cing in south polar region. Nevertheless, several impact basins in the region
exhibit compelling evidence for volcanic contributions. In Schrödinger
basin (75°S, 132.5°E), basaltic lavaflows and a large pyroclastic vent confirm
past volcanism57,58. These high-FeO materials exposures at their floors

Fig. 4 | Comparison of Equation FeO and TiO2 maps with CNN FeO and
TiO2 maps. Difference maps between a Equation FeO and CNN FeO, b Equation
TiO2 and CNNTiO2. The positive values represent higher FeO and TiO2 abundance
for Equation FeO and TiO2. c Histogram of FeO difference. d Probability density

function scatter plots of Equation FeO map and CNN FeO map. e Boxplot of FeO
difference. f Histogram of TiO2 difference. g Probability density function scatter
plots of Equation TiO2map and CNNTiO2map (TiO2 > 1 wt.%). h Boxplot of TiO2

difference.
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(Fig. 5b). Bouguer gravity anomalies reveal a central mascon (Supplemen-
tary Fig. 8a), while gravity gradients show a linear negative anomaly (Sup-
plementary Fig. 8b), consistent with amafic dike intrusion59. Similar gravity
signatures (Supplementary Fig. 8), coupled with high-FeO exposures
(Fig. 5b), are also found on the floors of Antoniadi crater (69.3°S, 173.1°W)
and Zeeman crater (75.1°S, 135.1°W), suggesting localized volcanic activity.
In contrast, other high-FeO exposures on central peaks and crater walls
show no corresponding gravity anomalies. These materials are more plau-
sibly explained as uplifted deep-seated rocks or impact-induced ejecta flows
fromdistant sources56,60,61. In summary, the combined surface geochemistry
and gravity analyses indicate that the lunar south polar region hosts both
volcanic and impact-related high-FeOmaterials. The chemical composition
maps offer valuable insights for identifying and characterizing volcanic
features in this region. These newmaps provide opportunities to investigate
the volcanic history of the lunar south polar region and to advance our
understanding of the thermal and magmatic evolution of the lunar mantle.

Methods
Spectrum and samples
We collected Clementine UVVIS Digital Image Model (DIM) Mosaic and
chemical contents of lunar samples to estimate the chemical contents of the
lunar surface. The UVVIS DIM Mosaic has 5 spectral bands, with
ultraviolet-visible spectroscopy at 415, 750, 900, 950, and 1000 nm, and
covers the Moon’s surface from 90°N to 90°S with a spatial resolution of
100m/pixel. Moreover, the measured chemical contents of lunar samples
were sourced from the Apollo missions, Luna missions, and Chang’E
missions. There are a total of 49 sample points, and the coordinates of the
sampling points are also recorded (Supplementary Table 1). The chemical
compositions are (FeO, TiO2, Al2O3, MgO, and CaO, and these data are
derived from previously published work22,44. In this work, we have added
new information about theChang’E-6 samples, these has been analyzed and
determined to represent the ground truth of the lunar surface22. The
reflectance were extracted from the Clementine DIM Mosaic at these
ground truth sites,with the reflectance fromselected sample points averaged
across pixels to reduce noise. The locations, reflectance, pixels averaged, and
chemical compositions information of these 49 sampling points are shown
in Supplementary Table 1.

Equation models
We followed a classic mathematical equation model2,41 to reveal the rela-
tionship between Clementine spectral reflectance and the FeO abundance,
TiO2 abundance, and OMAT of lunar surface. This model reveals the
correlations between band ratios and chemical composition2,41, where the
use of band ratio parameters helps to mitigate the influence of reflectance
variations caused by illumination at different latitudes on the inversion of
chemical abundances. We used 49 sets of reflectance and FeO abundance,
TiO2 abundance, and OMAT from lunar samples to improve this equation
model (Supplementary Fig. 1 and Supplementary Table 1). The key to
Equation FeO is the selection of the location of the optimized origin, which
serves as the computation of the Fe sensitive parameter, the θFe. In thiswork,

an enumerationmethod is used to search the origin, where the search range
is 0–0.2 at 750 nm, 1–2 at the band ratio (950 nm/750 nm), and the search
pitch is (0.001, 0.001). Ultimately, the location (x0Fe = 0.018, y0Fe = 1.188)
was selected as the Fe optimized origin. The R2 of the linear fitting results of
FeO showed a maximum value of 0.923, and Equation FeO is as follows:

θFe ¼ � arctanf½ R950

R750

� �
� y0Fe�=ðR750 � x0FeÞg ð1Þ

wt:%FeO ¼ 24:770 × θFe � 8:053 ð2Þ

where R950 is the 950 nm reflectance; R750 is the 750 nm reflectance; θFe is
the Fe sensitive parameter; x0Fe = 0.018; y0Fe = 1.188.

We used the enumeration method to determine the best optimized
origin for the Ti sensitive parameters, the θTi, as (x0Ti = 0, y0Ti = 0.481),
where the search range is 0–1 at 750 nm, 0–1 at the band ratio (415 nm/
750 nm), and the search pitch is (0.001, 0.001). The R2 of the linear fitting
results of TiO2 abundance showed the maximum value of 0.798. Equation
TiO2 is as follows:

θTi ¼ arctanf½ R415

R750

� �
� y0Ti�=R750 � x0Tig ð3Þ

wt:%TiO2 ¼ 7:128 × θ4:022Ti ð4Þ

whereR415 is the415 nmreflectance;R750 is the 750 nmreflectance;θTi is the
Ti sensitive parameter; x0Ti = 0; y0Ti = 0.481.

The OMAT calculation in this study adopts a classical method41, with
anupdatedorigin point for optimization. The origin point has beenupdated
using the optimized parameters from our FeO estimation formula, as
(x0omat = 0.018, y0omat = 1.188). The equation for OMAT is as follows:

OMAT ¼ R750 � x0omat

� �2 þ R950

R750

� �
� y0omat

� �2
" #1

2

ð5Þ

where R950 is the 950 nm reflectance; R750 is the 750 nm reflectance;
x0omat = 0.018; y0omat = 1.188.

Convolutional neural network models
We developed convolutional neural network models to reveal the rela-
tionship betweenClementine spectral reflectance and the FeO, TiO2, Al2O3,
MgO, and CaO abundance of lunar surface. Progress has been made in the
inversion of iron and titanium contents, with classical equationmodels now
relatively mature2,44. However, the spectral characteristics of Al2O3, MgO,
and CaO are more complex, making it difficult to invert their abundances
using traditional equation-based models. The development of machine
learning algorithms offers new avenues for their inversion. Since different
oxides exhibit unique spectral responses in specific bands, local information
within the spectral sequences plays a crucial role in abundance inversion37.

Fig. 5 | Potentialmare basalt in south polar region.
a Comparisons on FeO abundance and Mg#. In the
main image, gray dots represent samples frommaria
units50 around the globe, blue dots represent samples
from south polar region (>65°S), and red dots
represent the overlap between the two. The upper
part of X-axis shows FeO abundance histogram, and
the right part of Y-axis shows Mg# histogram.
b Potential distribution ofmare basalt in south polar
region. The base image is the WAC global mosaic
map (WAC_GLOBAL_P900S0000_100M). The
yellowmarkers represent sampling points in areas of
exposed mare basalt. All of the above results were
obtained using equal-area sampling (Methods).
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We adopted a CNN architecture as it effectively captures inter-band cor-
relations through convolution and pooling operations, thus inheriting and
expanding upon the rationale of classic mathematical equation model2,41.

To effectively extract local features embedded in the spectral sequences,
the reflectance values from five spectral bands were combined with the
OMAT value at each sample point to form a one-dimensional input vector
of length six. Prior to model training, both input features and target oxide
abundances were standardized using the z-score normalization method.
The mean and standard deviation used for normalization were stored for
consistent application during subsequent inversion tasks.The model
architecture was constructed based on a one-dimensional convolutional
neural network (1D CNN), which offers strong local perceptive capabilities
and is particularly suitable for capturing localized spectral responsepatterns.
The network comprises two consecutive Conv1D layers. The first con-
volutional layer employs 32 filters with a kernel size of 2 and utilizes the
ReLU activation function to introduce nonlinearity in feature extraction.
The second convolutional layer maintains the same number of filters and is
designed to extractdeeper andmore abstract spectral features. Following the
convolutionalmodule, aMaxPooling1D layerwith a pool size of 2 is applied
to reduce feature dimensionality, lower the number of model parameters,
and enhance generalization performance. The pooled featuremaps are then
flattened into a one-dimensional vector through a Flatten layer and passed
into a fully connected Dense layer with 64 neurons, also activated by the
ReLU function, to improve themodel’s nonlinear representation capability.
Toprevent overfitting, L2 regularizationwith a coefficient of 0.001 is applied
to all convolutional and dense layers.The output layer consists of a single
neuron with a linear activation function, enabling continuous regression
prediction of oxide abundance. The model was trained using the Adam
optimizer with an initial learning rate of 0.01. The maximum number of
training epochs was set to 400, and the batch size was 50. An early stopping
strategywas implemented bymonitoring the training loss: if the loss did not
decrease for 30 consecutive epochs, training was halted early and the best-
performing weights were restored. After training, the predicted results were
inverse-transformed for performance evaluation against the actual values.

Evaluation and validation
We calculated the root mean square errors (RMSE) and determination
coefficients (R2) to evaluate the performance of the inversion model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
yi � ŷi
� �2r

ð6Þ

R2 ¼ 1�
Pn

i¼1 yi � ŷi
� �2

Pn
i¼1 yi � �y

� �2 ð7Þ

where n is the number of samples; yi is the oxide abundances of the i-th
sample; �y is the mean oxide abundance across all samples; and ŷi is the
predicted oxide abundances of the i-th sample obtained from the
inversion model.

To further validate the performance of the CNN model, we applied
leave-one-out cross-validation (LOOCV). The LOOCV is a model validation
technique, suitable for small datasets, that assesses whether the trainedmodel
can be generalized to independent data62. In this work, 49 samples were
available. For each iteration, one sample was set aside as the test sample,
while the remaining 48 samples were used to train the model. The trained
model then predicted the oxide abundance of the test sample. This process
was repeated 49 times, producing inversion results for all samples. RMSE and
R2 values were used to quantifymodel performance. Lower RMSE and higher
R2 values indicate better predictive accuracy and stronger generalization
capability of the inversion model, while reducing the risk of overfitting.

Equal-area sampling
To ensure uniform spatial representation of chemical composition data
across the lunar surface, we employed an equal-area sampling scheme based

on spherical geometry. Previous work has focused on counting the number
of pixels in images35,37,38. We consider that this method of counting is prone
to errors in high-latitude regions, leading to inaccuracies in global analysis.
Given the inherent curvature of theMoon, conventional latitude–longitude
gridding introduces distortions in areal representation, especially at high
latitudes. To address this, we constructed a grid of quasi-equal-area sam-
pling units by fixing the latitudinal step size and adaptively computing the
corresponding longitudinal step size for each latitudinal band. The central
parameter in the grid design was a target surface area of 2.25 km2 per
sampling unit. We adopted a latitudinal step of 0.15°. For each latitudinal
band, the central latitude was converted to radians, and the corresponding
longitudinal step was calculated using the following expression:

Δλ ¼ A

R2 � Δϕ � cos ϕ
� � ð8Þ

where A is the target area (2.25 km²), R is the mean radius of the Moon
(1737.4 km), Δϕ is the latitudinal step size in radians, and ϕ is the central
latitude of the band. The resulting longitudinal step Δλ was then converted
to degrees to generate grid cells of approximately equal area.

This formulation ensures area preservation while accounting for lati-
tudinal convergence of meridians. These equal-area sampling units were
used for spatially statistical analysis of chemical composition distributions
across the lunar surface.

Bouguer gravity and Bouguer gravity gradients
We computed the Bouguer anomaly by removing the gravity effects of
terrain in GRGM1200B model63. We filtered the gravity model between
degrees 60–600 to roughly constraint the gravity signals from the lunar
crust. We chose 2550 kg/m3 as the crustal density64. The gravity anomaly
was expanded onDH2 regular grids (Driscoll andHealy, 1994) andwe used
the stereographic projection to show better details of south pole. We
computed the Bouguer horizontal gravity gradients65 from the Bouguer
anomaly. Here we filtered the gravity gradients between degrees 50–350 to
resist the noise contained in high-order coefficients. All the datasets was
processed through SHTOOLS software66, performing spherical harmonic
expansions and gradient computations.

Data availability
The Clementine UVVIS Digital ImageModelMosaic is available at the link
(https://pdsimage2.wr.usgs.gov/Clementine/PDS4/data/). The Lunar Pro-
spector Gamma-Ray Spectrometer data is available at the link (https://pds.
nasa.gov/ds-view/pds/viewProfile.jsp?dsid=LP-L-GRS-5-ELEM-
ABUNDANCE-V1.0). The LROC WAC image mosaic is available at the
link (http://lroc.sese. asu.edu/). The GRGM1200B model is provided by
Gravity Recovery and Interior Laboratory (https://pgda.gsfc. nasa.gov/
products/75). The OMAT, Mg#, and the abundances of oxides (Equation
FeO, EquationTiO2, CNNFeO,CNNTiO2, CNNAl2O3, CNNMgO,CNN
CaO) are availablein the repository Zenodo via DOIs: https://doi.org/10.
5281/zenodo.15739446, https://doi.org/10.5281/zenodo.15743333, https://
doi.org/10.5281/zenodo.15736195, https://doi.org/10.5281/zenodo.
15739157, https://doi.org/10.5281/zenodo.15742746, https://doi.org/10.
5281/zenodo.15742802, https://doi.org/10.5281/zenodo.15742878, https://
doi.org/10.5281/zenodo.15743164, https://doi.org/10.5281/zenodo.
15746439.
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