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Deforestation reduces microclimate
buffering of African montane forests
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Montane forests are biodiversity hotspots that provide important ecosystem services, including
temperature buffering for numerous species underneath forest canopies. In recent decades, montane
forests have been under increasing pressure from small-and large-scale deforestation, yet associated
spatio-temporal changes in temperature buffering capacity remain unclear. Here, we studied the
changes in temperature buffering capacity due to forest loss from2003 to2022 in threemontane forest
ecosystems in Africa (Mount Kilimanjaro, Mount Bale, and the Taita Hills). We modeled the
temperature buffering changes based on in situ microclimate measurements inside forests and in
open areas, climate data, airborne laser scanning data, and satellite observations. We found that
during the study period montane forests were lost at a rate of 2–9% across the study areas. This loss
led to an annual average microclimate air temperature warming ranging from 2.0 ± 0.8 °C to
5.6 ± 2.1 °C across the three montane forests. The warming reduced the maximum air temperature
buffering by an average of 3 ± 1.5 °C. Locally, the temperature buffering disappeared over time and
transitioned to a mesoclimate amplification. Our findings demonstrate that microclimate buffering
capacity was markedly diminished as a result of microclimate warming driven by recent forest loss.

Tropical montane forests are biodiversity hotspots that provide crucial
ecosystem services, including temperature buffering and refugia for
numerous species1,2. Forest canopies are important drivers of microclimate
temperature buffering3 through mechanisms such as shading from direct
solar radiation as well as reduced evapotranspiration and vertical mixing of
air, leading to lower maximum temperatures and higher minimum tem-
peratures compared to open habitats1,4–6. Other drivers, such as topography,
soil, water balance, proximity towater bodies, andprevailingmeteorological
conditions, also have an important impact on temperature buffering1,4.
Thesemechanisms regulate temperature fluctuations inside forest canopies;
consequently, forest dwelling organisms experience microclimatic condi-
tions that differ substantially from the macroclimate of open habitats1,2,6–8.
The microclimate buffering capacity of forest canopies is, hence, critical for
the survival of plant and animal species in montane forests2,9. Nonetheless,
montane forests are threatened by deforestation, logging, fires, and climate

extremes, putting their buffering capacity of montane forests and biodi-
versity at risk10,11.However, so far it is unknownhowdifferent scales of forest
loss affect the microclimate buffering capacity of montane forests.

African montane forests have experienced among the highest rates of
deforestation globally (0.48% per year) in recent decades12. Deforestation
patterns across Africa are characterized by both small- and large-scale
clearings13,14, with small-scale cropland expansion being the dominant
(64%) driver of deforestation in Africa compared with large-scale com-
modity agriculture13,14. While small-scale tree loss can be expected to
decrease the buffering capacity of montane forests15, large-scale clearings
can lead to a total loss of buffering, where the temperature difference
between the microclimate air temperature and macroclimate air tempera-
ture disappears4. As deforestation intensifies and more open spaces are
created, microclimate air temperature near the ground may be amplified16

and exceed the macroclimate air temperature because of high radiation
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loads17, whichmaynot be fully compensated by transpiration as tree cover is
cleared.

In order to explore the impact of deforestation on macroclimate
warming, previous studies have primarily relied on standard weather
stations18,19, which are located in an open area outside forests and do not
represent microclimate air temperature changes. Consequently, in situ
microclimate measurements and global networks of such scarce measure-
ments are needed3,20. Recent studies, based on in situ microclimate mea-
surements, have investigated the buffering capacity of forest canopies
compared to open habitats1,21 as well as the sensitivity of tropical forest
microclimates to climate change21. Comparing the temperature difference
between inside forest and adjacent open habitat using a paired comparison of
in situ sensors in a space-for-time substitution approach (i.e., changes in
space are assumed to be equivalent to changes in time as long as the paired
sites share similar topographic and climatic conditions) can provide infor-
mation on the potential or hypothetical impact of deforestation on tem-
perature buffering in the lowlands. However, such an approach does not
show the actual impact of deforestation and is less suitable in montane
forests with high topographic and climatic gradients. Furthermore, com-
pared to more extensively studied forest systems, such as tropical lowland
forests and urban forests, there is a dearth of studies on microclimate buf-
fering in montane forests. Consequently, information on the actual impacts
of deforestation on temperature buffering is lacking, and it is unclear where
and whether the buffering capacity of montane forests was reduced, com-
pletely lost, or shifted from buffering tomacro ormeso climate amplification.

Here, we evaluated the actual impact of forest loss on the buffering
capacity (i.e., an offset of micro- and mesoclimates) of montane forests
(elevation 1200–3500m a.s.l., see “Methods” for detailed definition) in

Africa over the last two decades (2003–2022). Specifically, we estimated the
magnitude of microclimate buffering change due to human-induced forest
loss from the maximum air temperature offset between microclimate air
temperature (Tmicro) at 15 cm above the ground and theTmeso (refers in this
manuscript to the gridded mesoclimate air temperature interpolated from
weather stations at 1 km spatial resolution19) (Tmicro− Tmeso, hereafter
Toffset), andmapped areas that experiencedmicroclimate buffering decrease
(i.e.,Toffset was smaller after forest loss than before butTmicro is still less than
Tmeso by at least 1 °C), loss (Tmicro and Tmeso have similar magnitude), or
mesoclimate amplification (Tmicro is greater than Tmeso by at least 1 °C).
Moreover, we evaluated the sensitivity of Toffset to changes in canopy cover
and height induced by forest loss from 2003 to 2022. Our analyses were
conducted in three forested landscapes in the Eastern Afromontane Bio-
diversity Hotspot22,23 (Mount Bale in Ethiopia, Mount Kilimanjaro in
Tanzania, and the Taita Hills in Kenya) (Fig. 1). These study areas were
considered as they represent different scales of forest loss (Supplementary
Fig. 1 and Supplementary Table 1).

We followed a data-driven approach tomodel Toffset, induced by forest
loss, based on observations from in situ microclimate stations, mesoclimate
data, airborne laser scanning, and Landsat Analysis Ready Data (ARD)
(Methods). Deforestation from 2003 to 2022 was identified using Landsat
timeseries24–26. To model Tmicro, input forest structure variables (canopy
coverandheight)werefirst predictedbasedonamachine learning approach
using predictors from the Landsat ARD27. Reference forest structure data,
for model training and validation, were obtained from airborne laser
scanning acquisition in the study areas. The predicted forest structure data
together with Tmeso, topographic data, and in situ microclimate measure-
ments were then used to develop a generalized linear mixed Tmicro model.

Mount Kilimanjaro
(Tanzania)

Mount Bale
(Ethiopia)

Taita Hills
(Kenya)

Study  area
Forest  loss
(2003 - 2022) 
Protected area

Airborne laser 
scanning foot-
print

Canopy height
(m) 45

5

(b)

(a)

(c)

Fig. 1 | Study areas with extent of forest loss from2003 to 2022 inmontane forests
in Africa. Panel (a) Mount Bale (Ethiopia), (b) Mount Kilimanjaro (Tanzania), and
(c) the Taita Hills (Kenya). The canopy height model in the background is for 2022
and was generated using a machine learning approach (see “Methods”). The canopy

height is masked by themontane forest extent of a–c from a previous study19. Yellow
polygons indicate protected areas from the World Database on Protected Areas56.
The polygons in blue show the airborne laser scanning footprints in 2022 and 2015
for the Taita Hills and Mount Kilimanjaro, respectively.
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The change in Toffset, attributed to deforestation from 2003 to 2022, was
finally estimated by removing the effect of the background climate varia-
bility signal18,19 with the aim to clarify the impact of recent forest loss on the
buffering capacity of montane forests in Africa.

Results
Dominant reduction in microclimate buffering due to forest loss
From 2003 to 2022, forest loss evaluated at a spatial resolution of
30m× 30m was more widespread in Mount Bale than in Mount Kili-
manjaro and the Taita Hills (Fig. 1 and Supplementary Table 2). The clas-
sification accuracy of forest loss was relatively higher in Mount Bale (88%
F1 score) than in Mount Kilimanjaro (77% F1 score) and the Taita Hills
(78% F1 score). Montane forests, decreased by 9% in Mount Bale
(92831 ± 11823 ha at 95% confidence interval (CI)), 4% (742 ± 177 ha at
95% CI) in the Taita Hills, and 2% (2838 ± 1354 ha at 95% CI) in Mount
Kilimanjaro (Supplementary Table 2).

The overall impact of the forest loss on microclimate buffering was
assessed by comparing the average Toffset of the pre- and post-forest loss
condition for the three montane forests separately (Fig. 2). The average
Toffset refers to the average Toffset of all areas affected by forest loss per
montane region. The microclimate buffering capacity of areas that experi-
enced forest loss in Mount Bale decreased on average by 2.3 ± 1.0 °C (i.e.,
from−3.6 ± 1.5 °C in 2003 before forest loss to−1.3 ± 1.7 °C in 2022 after
forest loss) (Fig. 2a). In Mount Kilimanjaro and the Taita Hills, in areas
affected by tree loss, microclimate buffering declined by 4.5 ± 2.3 °C (i.e.,
from −4.4 ± 2.6 °C in 2003 to 0.1 ± 1.9 °C in 2022) and 2.8 ± 1.3 °C (i.e.,
from −5.5 ± 1.9 °C in 2003 to−2.7 ± 1.6 °C in 2022), respectively (Fig. 2b,
c). An example of a closer view of amap showing the spatial pattern ofToffset
for the pre- and post-forest loss condition is provided in Supplementary
Fig. 2a, and its location is indicated in a black box in Fig. 3.

Depending on the intensity of forest loss across a 30m × 30m spatial
grid and the comparison of Tmicro and Tmeso after forest loss, a detailed
investigation of the shift in microclimate buffering caused by forest loss
revealed three spatial patterns of Toffset change across the three montane
forests, i.e., reduction, Tmicro is still <Tmeso by at least 1 °C; loss, Tmicro≈Tmeso;
and amplification, Tmicro >Tmeso by at least 1 °C after forest loss.

In all threemontane forests, reduction inmicroclimate bufferingdue to
forest loss was more dominant than microclimate buffering loss and
mesoclimate amplification (Fig. 3a–c). InMount Bale, 55%of the total areas
affected by forest loss experienced microclimate buffering reduction (Tmicro

increased by 2.0 ± 0.8 °C), 36%microclimate buffering loss (Tmicro increased
by 2.5 ± 1.0 °C), and the remaining 9% exhibited amplification (Tmicro

increased by 3.9 ± 1.1 °C) (Fig. 3a). In the Taita Hills, 86% experienced a
reduction inmicroclimate buffering (Tmicro increasedby 2.7 ± 1.3 °C), 13%a
loss (Tmicro increased by 3.1 ± 1.6 °C), and 1% an amplification (Tmicro

increased by 3.8 ± 0.7 °C) (Fig. 3c). Mount Kilimanjaro showed relatively
proportional changes inmicroclimate buffering,with areas that experienced
microclimate buffering reduction accounting for 40% (Tmicro increased by

4.3 ± 1.9 °C), loss 28% (Tmicro increased by 4.3 ± 2.5 °C), and amplification
32% (Tmicro increased by 5.6 ± 2.1 °C) (Fig. 3b).

Differential sensitivity of microclimate buffering change to
canopy cover loss among montane forests
The impact of changes in forest structure, induced by forest loss, on the
magnitude of microclimate buffering shifts is presented in Fig. 4a–c. The
impacts of canopy cover loss on microclimate buffering change varied
across the three montane forests. Based on generalized additive modeling,
canopy cover change explained 21% (P < 0.001) of the microclimate buf-
fering change in Mount Bale, 45% (P < 0.001) in Mount Kilimanjaro, and
41% (P < 0.001) in the Taita Hills, respectively.

Discussion
This study provides evidence on the impact of forest loss on microclimate
buffering from 2003 to 2022 in three montane forests (Mount Kilimanjaro,
Mount Bale, and the Taita Hills) in the Eastern Afromontane Biodiversity
Hotspot. Our results show that, in areas affected by forest loss,microclimate
buffering declined across the study area. Our study suggests that controlling
small-scale forest loss, especially in areas affected by deforestation, is
important not only because of its impact on reducing the microclimate
buffering capacity of forests but also because of its potential to grow into
large-scale forest loss through cropland and grazing land expansion (Sup-
plementary Fig. 2a, b). In particular, large-scale forest loss should be avoided
as it causes the total loss of microclimate buffering and can lead to further
microclimate warming that exceeds the mesoclimate temperature through
amplification, which is detrimental to biodiversity9,28 both in the source area
of forest loss and in nearby stable forests through the edge effect29.

Our study showed an average microclimate buffering capacity reduc-
tion of 2.3–4.5 °C across three montane forests due to actual forest loss.
These values arewithin the range of previousmaximum temperature offsets
based on in situmeasurements in tropical forests, which aremostly inferred
from paired comparisons of stable forest and adjacent open habitat or
disturbed forest in a space-for-time substitution approach1,15. Evidence
shows that smaller changes in forest structure from selective logging can
reduce the buffering capacity of tropical forests by up to 1.5 °C15. Another
study has contested this notion by reporting a thermally buffered tropical
forest despite logging30. Compared to selective logging, where the dominant
land use remains the same, deforestation, which induces land use trans-
formation from forest to cropland or open grassland, is expected to have a
greater impact on microclimate buffering due to considerable changes in
forest structure. Particularly in areas of intense forest loss, higher micro-
climatewarming is expected aswe have demonstrated in areas that have lost
their buffering capacity (i.e., up to ~4 °Cwarming) and have transformed to
mesoclimate amplification (i.e., up to ~6 °C warming on average).

Our mesoclimate amplification result in open habitats following
intense forest loss (i.e., higher Tmicro than Tmeso) is supported by in situ
measurements of microclimate and standardized weather stations in our
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Fig. 2 | Temperature offset change due to forest loss inmontane forests in Africa.
Panels (a–c) show the probability density graphs of the temperature offset (Toffset)
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in Mount Bale (Ethiopia), Mount Kilimanjaro (Tanzania), and the Taita Hills
(Kenya) respectively.
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study area (SupplementaryFigs. 3 and4), aswell as inprevious studies17,21. In
open habitats, Tmicro is often higher than Tmeso during the daytime and vice
versa at nighttime (Supplementary Fig. 4). Such an amplification effect is
likely related to the high radiation load and less air mixing from reduced
windspeed caused by friction near the ground, which is not compensated by
evaporative cooling because of loss of tree cover from forest loss17. Asso-
ciatedwith the amplification, the temperature increase and dryness together
result in an increasing risk of fire even inside the wet montane forests of
Mount Kilimanjaro31. In addition, our results showed a differential sensi-
tivity ofmicroclimatebuffering change to canopy cover loss among the three
study areas. Such differences can be related to variations in geographic
location, topography (e.g., elevation, slope, and aspect), and forest
structure32,33. For example, after partial loss of forest cover, the vertical crown
density of the remaining forest patches can vary among montane forests.
This, in turn, affects howmuch light reaches theunderstory, thereby causing
variations in microclimate buffering change15,33,34.

In summary, compared with previous studies, our results offer addi-
tional insights intomicroclimate buffering changes induced by forest loss in
three ways. First, we provide the buffering change based on actual forest loss
rather than hypothetical forest disturbance inferred by comparing stable
forest with adjacent open habitat or disturbed forest. Second, we provide
details on how different intensities of forest loss affect microclimate buf-
fering through identifying areas that: (1) are still buffering but with reduced
capacity because of small-scale forest loss, (2) have completely lost their

buffering capacity, and (3) have transformed into mesoclimate amplifica-
tion because of intense forest loss. Finally, unlike previous studies, which
have either mostly focused on lowland forests or have mixed results for
montane forestswith those for lowlands,weprovide results onmicroclimate
buffering reductions exclusively for montane forests that are part of the
Eastern Afromontane Biodiversity Hotspot.

Implications
The response ofmicroclimate buffering to different forest loss intensitieshas
important implications for the survival and distribution of species. Fol-
lowing a reduction in microclimate buffering capacity, animal and plant
species could respond differently depending on their thermal tolerance and
adaptive capacity. Some could shift their distribution vertically along the
elevation gradient or horizontally toward colder areas in the nearby stable
forests. For example, some understory plant species can shift their dis-
tributions toward more thermophilic species35. Other species may adapt to
the increased microclimate temperature and remain there without shifting
their range of occurrence28. In the worst case, (endemic) species may be
unable to shift their distributions or adapt to changing environmental
conditions, ultimately placing them on a trajectory toward extinction36.

When microclimate buffering is completely lost and transformed into
amplification because of intense forest loss, the anomalous microclimate
warming may even reach a critical thermal maximum and some animal
species can lose their locomotory ability (e.g., some Pristimantis frogs) to
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Fig. 3 | Impacts of forest loss on microclimate buffering in montane forests in
Africa. Panel (a)Mount Bale (Ethiopia), (b)Mount Kilimanjaro (Tanzania), and (c)
the Taita Hills (Kenya). The background map with blue gradients shows the max-
imum air temperature offset betweenmicroclimate (Tmicro) andmesoclimate (Tmeso)
for the montane forest extent in 2022 (Toffset = Tmicro – Tmeso). The purple, yellow,
and black colors indicate three classes of microclimate buffering change: a decrease
inmicroclimate buffering due to forest loss (stillTmicro < Tmeso by at least 1 °C), a loss

of microclimate buffering (Tmicro ≈ Tmeso), and an amplification of mesoclimate
(Tmicro > Tmeso by at least 1 °C), respectively. The magnitude of the change in Toffset
from 2003 to 2022 (ΔToffset = Toffset (2022) – Toffset (2003)) for the three classes is pro-
vided in a probability density graph in each plot. The pie charts show the percentage
ofmicroclimate buffering change for the three classes. The black box in (a) shows the
location for the close-up view in Supplementary Fig. 2a.
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escape the novel thermal conditions, leading to their death and gradual
extinction9. In particular, as the microclimate warming (~2–6 °C on aver-
age) induced by forest loss surpasses the critical thermal maximum
threshold (~2 °C) reported in previous studies for some tropical forest
amphibian and reptile species9,28, its impact on biodiversity loss can be
critical10,37.

Previous studies in tropical forests reported that the effects of forest loss
are not limited to the actual site of forest loss but also extend 20m into
adjacent stable forests through edge effects29. Hence, the impact from the
reduction in microclimate buffering likely extends into the forest interior29.
As climate change has been shown to induce further warming in intact
tropical forests38, the microclimate buffering capacity of stable forests may
be further reduced by the combined impacts of climate change and edge
effects induced by forest loss.

In areas where microclimate buffering capacity is threatened, con-
servation and restoration efforts are urgently needed. Variousmicroclimate
management strategies can be implemented to restore the lostmicroclimate
and maintain biodiversity and ecosystem services. In areas where the
microclimate buffering capacity has been reduced by small-scale forest loss,
the implementation of forest conservation strategies, for example through
preventing further loss of forest and allowing the forest to regenerate
naturally, can rapidly restore the microclimate30,39. In contrast, in areas that
have lost microclimate buffering capacity due to intense forest loss, a
reforestation strategy may be important to restore the lost microclimate. In
addition, as a proactive measure, it is very important to identify and protect
intact forests that serve as micro-refuge from deforestation, as well as
conserving taller trees with multi-layered crowns because of their greater
impact onmicroclimate15,32,33. This requires the implementation of a robust
conservation strategy that includes: (1) legal protection of forests; (2) the
empowerment of indigenous groups through, for example, awareness
raising on the impacts of forest loss on microclimate and biodiversity; and
(3) implementing a continuous cover forestry to preserve a continuous
canopy and forest floor, thereby reducing extreme temperature and
moisture fluctuations to decrease impacts on forest microclimate.

Limitations and uncertainty
Our analysis has limitations and uncertainties related to data, methodology,
and scale of the study. The number of microclimate stations is too small to
implementmachine learning approaches, which can have better power and
flexibility in terms of scaling themicroclimatemodeling over a larger region
in the tropics than employing generalized additive mixed models. Fur-
thermore, the lack of longer in situ microclimate timeseries that spans the
study period (2003 to 2022) limits further improvement of the Tmicromodel
as well as accurate evaluation of the temporal transferability of the Tmicro

model. In this regard, it is very important to extend the global network of
microclimate monitoring stations in montane biodiversity hotspots.
Initiatives, such as the Kili-project with networks of climate stations in

remote forest areas of Mount Kilimanjaro40, and the Microclimate Ecology
& Biogeography network (MEB), formerly known as SoilTemp20, which
provides a platform for storing and sharing microclimate timeseries and
biodiversity data, holds great potential to fill this gap in the future.

Based on an independent test conducted on a new site in Kenya
(Supplementary Fig. 8), the accuracy limitations of ourmicroclimatemodel
(root-mean-square error of 1.5 °C) do not allow reliable detection of Toffset
changes below 1.5 °C. Hence, caution should be made in applying this
method tomonitor smallerToffset changes induced, for example, by selective
logging15. Nevertheless, in our study, the average Toffset changes (i.e.,
2.0–4.5 °C)are larger than the errormargin. In order to robustly evaluate the
uncertainty of the microclimate model, data from multiple sites, including
Mount Bale and Mount Kilimanjaro, is needed in the future.

When interpreting the results, the spatial resolution of our study
(30m× 30m) should be taken in to account. At smaller scales (<30m),
higher microclimate warming and buffering offset can be expected, but at
larger scales where the microclimate can be studied (~100m)17, the effects
can be smaller than reported in our study, except in areas with extensive
clearings. Furthermore, our study captures the local impacts of forest loss on
microclimate buffering but the non-local impacts through changes in pre-
cipitation and cloud cover,which canhavedifferentmagnitudeonopposing
sides of a mountain, were not captured in our analysis. However, previous
studies in tropicshave shown that forest loss reduces precipitation and cloud
cover41,42. Hence, the non-local effect is likely to amplify the impacts of forest
loss on microclimate buffering but with differences in the magnitude of its
impact on the windward and leeward side of a mountain.

Methods
Study areas
This study was conducted in three biodiverse montane forests in Africa:
MountBale inEthiopia,MountKilimanjaro inTanzania, and theTaitaHills
in Kenya (Fig. 1). The extent of the montane forests was extracted from the
Africanmontane forest distributionmap, whichwas prepared based on tree
cover (≥ 30%), elevation (1200–3500m a.s.l.), and local elevation range
(>300m)19. The three montane forests were selected for two reasons. First,
they all belong to the Eastern Afromontane Biodiversity Hotspot22,23, which
is characterized by high species diversity and endemism. Mount Bale con-
tains themost extensive remaining natural forest in Ethiopia and the largest
contiguous montane Erica (e.g., Erica trimera and Erica arborea) belts in
Africa43. Mount Kilimanjaro, the highest mountain in Africa, comprises
around 3000 species of vascular plants, including the tallest trees in
Africa44–46. The Taita Hills contain 1530 vascular plant species46,47 and the
last remaining primary montane forest47. Second, these three montane
forests together represent different: (a) intensities of tree loss (i.e., ranging
from small- to large-scale clearings) (Supplementary Table 1), (b) causes of
tree loss (i.e., deforestation47,48 for small-scale agriculture or grazing, forest
loss due to fire, logging for timber and fuelwood extraction in Mount Bale)
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Fig. 4 | Sensitivity of temperature offset to canopy cover loss inmontane forests in
Africa. Panel (a–c) show the sensitivity of the change in maximum air temperature
offset between microclimate air temperature (Tmicro) and mesoclimate air
temperature (Tmeso) (Toffset= Tmicro– Tmeso; ΔToffset = Toffset(2022) – Toffset(2003)) to

canopy cover loss from 2003 to 2022 in Mount Bale (Ethiopia), Mount Kilimanjaro
(Tanzania), and the Taita Hills (Kenya) respectively. A cubic spline regression is
fitted (red lines) with a 95% confidence interval (blue shading) based on generalized
additive modeling.
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(Supplementary Fig. 2b) and theTaitaHills, and regulated tree harvesting in
plantation forestry in Mount Kilimanjaro), and (c) elevation gradient
(1200–3500m a.s.l.) (i.e., lower to upper montane forest) (Supplemen-
tary Fig. 1).

Forest loss detection in the three montane forests in Africa
Forest loss locations from 2003 to 2022 for the three montane forests were
identified using a combined approach based on the Global Forest Change
(GFC) product and a spectral mixture model applied to the Normalized
Difference Fraction Index (NDFI) from the Landsat Collection 2 time series
surface reflectance product as in our previous study19,26. Because the GFC
product records forest cover gains only until 2012, the combined approach
that uses NDFI trend from 2003 to 2022 was applied to filter and remove
pixels that underwent forest cover gains during this period19. This approach
helps to identify forest loss pixels that have not recovered their tree covers
from 2003 to 2022. Sample-based accuracy and area uncertainty at 95% CI
were assessed against reference high- resolution imagery from Google,
following recommended practice in the literature49, for the three montane
forests separately. Accuracy was evaluated using omission error, commis-
sion error, and F1 score (Supplementary Table 2).

Canopy height and cover modeling and validation
We modeled canopy height (CH) for the years 2003 and 2022 using a
machine learning approach that combinedpredictor variables fromLandsat
ARDat 30m× 30mspatial resolution and referenceCHdata fromairborne
laser scanning. These CH estimates served as input to microclimate mod-
eling (see next section). The ARD were provided by the Global Land
Analysis and Discovery (GLAD) team (GLAD ARD), which provides
spatially and temporally consistent normalized Landsat surface reflectance
data for change detection27. This stepwasnecessary because no availableCH
products were available covering the study areas for the target years (2003
and 2022). Initially, a total of 21 GLAD ARD predictors including median
composite of surface reflectance in the visible,near-infrared, and shortwave-
infrared spectrum, vegetation indices, and phenology metrics were used as
predictor variables (Supplementary Table 3). The 2022 CH model derived
from airborne laser scanning26 over the Taita Hills (Kenya) was used as
reference data. The reference CH model was binned at 5m intervals (i.e.,
0–5m, 5–10m, …, 40–45m, and 45–50m) to generate a total of
8997 stratified random samples (i.e., 1000 random samples from each bin
except the last two bins, which have a lower number of samples). Variable
selection was done based on the predictive performance of variables at new
spatial locations using spatial forward feature selection and spatial cross-
validation50 (Supplementary Table 3). To do this, “CreateSpacetimeFolds”
and “ffs” functions and random forest (RF) model were used from the
“CAST” (the ‘caret’ Applications for Spatial-Temporal Models) R package.
The spatial cross-validation (CV), unlike random k-fold CV, considers the
location of and distance between the training and validation data points. In
the validation process, it avoids using subsets of data point locations already
used for model training. This is done by training the model repeatedly
through leaving the data from one spatial fold (i.e., a group of data points
located close to each) or location out and utilizing the held back data for
model validation, thereby reducing model over-fitting issues arising from
spatial-autocorrelation. Furthermore, the spatial forward feature selection
process identifies and removes predictors that cause over-fitting based on
their spatial CV performance50. We used 70% of the reference sample data
for model training and internal cross-validation and the remaining 30% for
external validation. The RF regression was performed using 500 decision
trees and five samples per nodes. A summary of the model performance is
provided in Supplementary Table 4.

To evaluate the spatio-temporal transferability of the model (i.e., if the
model can be used reliably in another location and time period), indepen-
dent validation of theCHpredictionwas testedusing the 2014 referenceCH
model from airborne laser scanning over Mount Kilimanjaro in Tanzania
(Supplementary Fig. 5a) and the 2022 CH model from Mbololo (inde-
pendent of the training areas) in the Taita Hills, Kenya (Supplementary

Fig. 5b). Furthermore, the accuracy of the CH model was compared with
global CH products, which showed better performance (R2 improved by
6–22%), using reference CH from airborne laser scanning (Supplementary
Fig. 6a–c). A similar machine learning approach was used to model canopy
cover using several predictors (e.g., surface reflectance and vegetation
indices) from Landsat ARD. The selected predictors and model perfor-
mance are presented in Supplementary Tables 5 and 6.

Microclimate air temperature modeling and validation
Tmicro modeling at 30m spatial resolution was done by applying environ-
mental variables and a generalized additive mixture (GAM) model (Eq. 1)
using the “gamm” function from the “mgcv” R package. In situ Tmicro data
measured at 15 cm above the ground fromTMS4 loggers in the TaitaHills51

were used as a response variable to build the model (see Supplementary
Fig. 7 for the distribution of the sensors). To avoid over heating by the sun,
the TMS4 loggers were shielded with a white plastic reflector. A total of
148 monthly average maximum Tmicro measurements (from 37 TMS4
loggers) between April 2021 andMarch 2022 were used. Initially, candidate
environmental predictors that can strongly affectTmicrowere identified from
literature4,52 and tested in theGAMmodel,withTMS4 logger sensor IDused
as a random effect term to account for the non-independence of data from
the same site (Eq. 1). These are themonthly averagemaximumTmeso, forest
structure (canopy cover and height), and topography (elevation, slope,
aspect, and topographic position index), which were all standardized to a
common scale (i.e., 0–1). In decreasing order of influence in the model, the
best-performing model (lowest Akaike information criterion and Bayesian
information criterion) was obtained using CH, Tmeso, topographic position
index (TPI), aspect (A), and elevation (E) as linear terms (Supplementary
Table 7).

Tmicro ¼ CH þ Tmeso þ TPI þ Aþ E þ 1jSensorIDð Þ ð1Þ

The CH described in the previous section was used as the CH data
source for the GAM model. Tmeso data over montane forests in Africa at
1 km resolution, which have a good accuracy against in situ measurements
(RMSE = 0.82–0.97; R2 = 0.89–0.96), were obtained from our previous
study19. These Tmeso data were prepared using a RF ensemble learning
approach based on in situ weather stations (up to 498 stations) and pre-
dictors (land surface temperature, normalized difference vegetation index,
albedo, latitude, and longitude) from Moderate Resolution Imaging Spec-
troradiometer (MODIS) onboard Terra and Aqua satellites. The choice of
these Tmeso data over other available products (e.g., ERA5-Land with ~9 km
spatial resolution) was because of their relatively higher spatial resolution
(1 km) and better accuracy inmontane forests in Africa when tested against
in situ measurements19. The Tmeso data were resampled to 30m using
bilinear interpolation tomatch the spatial resolutionwith the other variables
(i.e., CH, topographic position index, aspect, and elevation). The remaining
variables (i.e., topographic position index, aspect, and elevation) were
extracted from the NASA Shuttle Radar Topography Mission 30m digital
elevation model53. The sensitivity of the GAM microclimate model to CH
model uncertainty was tested by running the model using CH data from
airborne laser scanning in the Taita Hills (Kenya), which showed minor
changes (i.e., R2 changed by only ~2%).

We assumed that the spatio-temporal transferability of the CHmodel,
its stronger influence on Tmicro model, and the wide canopy height ranges
(5–45m; Fig. 1), would support the extendibility of theTmicromodel derived
from the Taita Hills to other montane forests in nearby region, including
Mount Kilimanjaro and Mount Bale. To demonstrate this, the accuracy of
the GAM microclimate model was independently tested (RMSE = 1.5)
usingTmicrodata from in situ TMS4 sensors fromanother indigenous closed
canopy forest site in the Kasigau montane forest in Kenya, located 40 km
southeast of the Taita Hills (Supplementary Fig. 8).
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Estimatingmicroclimate buffering change induced by forest loss
Microclimate buffering is defined in this study as the air temperature offset
(Toffset) between Tmicro and Tmeso (Eqs. 2 and 3). The change in Toffset
(ΔToffset) (from2003 to2022) consists of a combined signal from forest cover
change (ΔToffset(fcc)) and the background climate change signal (ΔToffset(cc)).
Hence,ΔToffset(fcc)was calculated by subtracting theΔToffset(cc) from the total
ΔToffset using a similar approach as in previous studies18,19 (Eqs. 4–6). In this
approach, the ΔToffset(cc) was calculated from the ΔToffset in nearby stable
forests located within 5 km of the forest loss pixels. Only stable pixels (i.e.,
pixels with no tree loss or gain recorded from 2003 to 2022 within the
elevation range of the forest loss pixels were considered by identifying the
elevation range within the forest loss pixels and excluding the reference
stable pixels outside this range. Furthermore, an inverse distance weighting
was used tominimize the influence of the distance of the stable forest pixels
on the ΔToffset(cc) estimation18,19.

Toffsetð2003Þ ¼ ðTmicro 2003ð Þ � Tmesoð2003ÞÞ ð2Þ

Toffsetð2022Þ ¼ ðTmicro 2022ð Þ � Tmesoð2022ÞÞ ð3Þ

4Toffset ¼ Toffsetð2022Þ � Toffsetð2003Þ ð4Þ

4Toffset ¼ 4ToffsetðfccÞ þ 4ToffsetðccÞ ð5Þ

4ToffsetðfccÞ ¼ 4Toffset �4ToffsetðccÞ ð6Þ

A simplifiedflow chart that shows the overallmethodology is provided
in Supplementary Fig. 9. In this study, we used R version 4.2.2 for data
analysis and QGIS version 3.30.2 for map composition.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data used for the analysis are available online and from the authors at
the below address. Landsat Analysis Ready Data (ARD) from the Global
Land Analysis & Discovery (GLAD) laboratory in the Department of
Geographical Sciences at the University of Maryland at https://glad.umd.
edu/; Global Forest Change data from https://glad.earthengine.app/view/
global-forest-change; NASA SRTM DEM at 30m spatial resolution from
https://developers.google.com/earth-engine/datasets/catalog/NASA_
NASADEM_HGT_001; and mesoclimate air temperature data at 1 km
resolution from https://doi.org/10.5281/zenodo.1278988554. Microclimate
air temperature measurements from TMS4 loggers (eduardo.maeda@-
helsinki.fi, janne.heiskanen@helsinki.fi, petri.pellikka@helsinki.fi, and
temesgen.abera@geo.uni-marburg.de) as well as forest structure data from
airborne laser scanning in Taita Hills (janne.heiskanen@helsinki.fi) and
Kilimanjaro (woellaus@staff.uni-marburg.de) are available up on reason-
able request from the authors. The data that supports the findings of this
study are stored in an open-access repository at https://doi.org/10.5281/
zenodo.1725871755.

Code availability
All relevant R functions used in this study are referred to in the Methods
section. R codes used for data analysis are available up on request.
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