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Variations in land-atmosphere coupling
during drought-heatwave events
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Donghyuck Yoon 1 , Jan-Huey Chen2, Hsin Hsu 1,3 & Kirsten L. Findell 2

Droughts and heatwaves are linked through different land-atmosphere coupling pathways.While high
temperatures and depleted soil moisture (SM) characterize all drought-heatwave events, latent heat
flux (LHF) reveals the dominant forcingmechanismdriving these events.Our grid-based analysis of six
drought-heatwave events since 2000 shows spatially inhomogeneous land-atmosphere coupling
associated with surface flux partitioning. Atmospherically driven regimes, characterized by increased
LHF following hot temperature anomalies, accounted for the majority of the 2022 East Asia event
(64.8%). Land surface-driven regimes, exhibiting LHF deficits following dry SM anomalies, weremost
prevalent in the 2023 Central America event (45.4%). Using a medium-range forecast model, we
reproduced both events and showed that the water-limited (2023 Central America) case exhibits a
lead-time predictability improvement of about 2-3 days relative to the energy-limited (2022 East Asia)
case. These results highlight the limits of domain-averaged coupling in the model and the potential to
improve the model forecasted drought-heatwaves when incorporate regime-based characteristics.

Numerous studies have identified land–atmosphere (L–A) interactions as a
key mechanism in shaping compound drought-heatwave events1–11. These
interactions operate through two pathways: ‘upward’ coupling, character-
ized by decreased soil moisture (SM), followed by reduced evapo-
transpiration, and increased sensible heat flux (SHF) and surface air
temperature; and ‘downward’ coupling, characterized by increased surface
air temperature, driving increased evapotranspiration, leading to decreased
SM (refer to schematics in Fig. 9 of ref. 2; Fig. 6 of ref. 6; Fig. 2 of ref. 7; Fig. 2
of ref. 10). The direction of L–A coupling mechanism during compound
drought-heatwave events is mainly determined by the surface water-energy
balance2,12–14.WhenSMfalls belowa specific threshold called the critical SM,
evapotranspiration is constrained by SM availability, placing the system in a
water-limited condition. In this case, SM depletion follows the upward
coupling pathway, leading to increased surface temperature and the sub-
sequent heatwave amplification1,4,5,8,11,15,16. This process is the typical char-
acteristic of SM drought, often triggered by precipitation deficits17.
Conversely, when SM is above the critical SM, evapotranspiration is pri-
marily governed by atmospheric conditions such as downward shortwave
radiation, surface wind, vapor pressure deficit, and especially surface tem-
perature. In this energy-limited regime, rising air temperatures accelerate
SM decline, following a downward coupling pathway. Such interactions are
a key source feature of heatwaves, often linked to anticyclonic circulation7,18.
This downward coupling process has recently gained growing attention in
the hydrometeorological community under the concept of ‘flash droughts’,

which emphasize the rapid onset or intensification of drought—particularly
SM decline—over much shorter timescales compared to the conventional
‘seasonal droughts’19–25.

While it is well established that evapotranspiration determines the
dominant L–A coupling pathway in compound drought-heatwave events,
past studies relying on data averaged over larger space and timescales have
inherent limitations26. These studies primarily capture the prevailing cou-
pling behavior but often overlook spatial variations and the temporal evo-
lution of SM-evapotranspiration relationships. During a compound
drought-heatwave event, these spatial differences can result in inhomoge-
neous L–A coupling regimes. Consequently, both upward and downward
coupling can coexist within an event, influencing the event’s progression
and overall characteristics. Therefore, understanding how inhomogeneous
L–A coupling regimes shape compound drought-heatwave events is crucial
for improving predictions and developing more effective mitigation
strategies.

Here, we aim to advance the understanding of how variability in L–A
coupling regimes shapes the overall characteristics of compound drought-
heatwave events. To achieve this, we analyze six severe compound drought-
heatwave cases observed over theNorthernHemisphere after the year 2000,
using observationally-constrained data. These cases are (1) the 2003 Wes-
ternEurope case1,3,27–30, (2) the 2010EasternEurope andRussia case3,29–32, (3)
the 2012 contiguous United States case33–38, (4) the 2021 Pacific Northwest
case39–44, (5) the 2022 East Asia case23,45–47, and (6) the 2023 Central America
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Fig. 1 | Spatial distribution and temporal evolution of six compound drought-
heatwave events. a JJA mean TMAXanom (K) based on ERA5-Land. Non-hatched
areas indicate regions exceeding two standard deviations of TMAX based on the 30-
year JJA record. Black contours represent JJA mean GPHanom (gpm) based on the
ERA5 dataset, with contour values varying across panels. b JJA mean SManom

(m3 m−3; color) based on the reference data. The dotted areas represent regions
where the temporal correlation of SManom during JJA among the three different land
surface analysis datasets is statistically significant (p < 0.05) for all dataset pairs (i.e.,
GLEAMandGLDAS;GLEAMandERA5-Land; ERA5-Land andGLDAS).Overlaid

gray shading shows JJA mean PRanom (mm day−1), displaying only positive pre-
cipitation anomalies. c Lead-lag time series of TMAXanom (magenta solid line),
SManom (green solid lines), and LHFanom (cyan solid lines) within a 31-day time
window, area-averaged over the non-hatched areas shown in (a). Each variable is
standardized based on its mean and standard deviation during the 31-day time
window. The abscissa indicates the days relative to the peak day of the heatwave (day
0; marked with a gray line). Light (bold) colored lines for SManom and LHFanom
correspond to individual (reference) land surface analysis datasets.
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case48,49. These six caseswere selected for their historical significance, as they
represent someof themost impactful compounddrought-heatwave cases in
the 21st century, resulting in substantial human and economic losses.
Furthermore, we investigate how L–A regime-dependent behaviors influ-
ence the forecast skill of compound drought-heatwave events using a state-
of-the-art forecast model. Finally, we present a schematic illustration that
highlights the connections between the overall characteristics of drought-
heatwave events, L–A coupling regimes, and the underlying drivers of SM-
evapotranspiration coupling.

Spatiotemporal characteristics of compound drought-
heatwave events
Figure 1a displays the spatial distribution of June-July-August (JJA) mean
daily maximum surface air temperature (TMAX) anomalies (TMAXanom;
the subscript ‘anom’ denotes the anomaly of the variable hereafter) during
the six selected drought-heatwave cases. All anomalies are relative to the
climatology over 1991–2020 or 2000–2020 in our observationally-based
reference datasets (see “Data and methods” section). All cases were char-
acterized by extremely hot conditions, with a 3-month mean TMAXanom

sometimes exceeding 4 K across extensive regions. A large spatial extent of
the areas where the TMAXanom exceeds two standard deviations (non-
hatched areas in Fig. 1a) exists in all cases. The 2012 case had the smallest

affected area among these cases, which covered approximately 1.2 million
km2, comparable to the size of the Republic of SouthAfrica (Supplementary
Table 1). The 2010 case had the largest affected area of 3.5 million km2,
surpassing the size of the Republic of India (Supplementary Table 1).
Anomalous anticyclonic circulations indicated by positive 500-hPa geo-
potential height anomalies (GPHanom; black contours in Fig. 1a), although
varying in intensity across cases, were simultaneously observed over those
regions.

Furthermore, anomalous dry conditionswerepredominantly observed
across all cases (Fig. 1b). The spatial patterns of dry surface SManombased on
the reference data (see “Data andmethods” section) were significantly anti-
correlated with those of TMAXanom, with a correlation coefficient greater
than 0.7 for most of the cases (Supplementary Table 1). This indicates that
severe drought conditions generally coexisted with the extremely high
temperatures during the same period. Notably, negative SManom was pro-
nounced (≤0.05m3m−3) in the core regions of the heatwaves (i.e., the non-
hatched areas in Fig. 1a), implying the potential role of L–A interactions in
amplifying drought and heatwave conditions. Concurrently, these regions
generally exhibited negative precipitation anomalies (PRanom), as indicated
by the areas without overlaid gray shading in Fig. 1b.

The temporal evolution of heatwaves and droughts spanning 15 days
before and after the peak day (day 0) is presented in Fig. 1c. Consistent

Fig. 2 | Phase diagram for categorizing
land–atmosphere coupling regimes for six com-
pound drought-heatwave events. Scatter plot
illustrates the temporal correlation coefficients
between SManom and LHFanom (R(SManom,
LHFanom); abscissa) and TMAXanom and LHFanom
(R(TMAXanom, LHFanom; ordinate). Temporal cor-
relations were calculated within a 31-day time win-
dow (see lead-lag time series in Fig. 1c). Each dot
represents a single grid cell within extreme heat
regions (non-hatched areas in Fig. 1a), based on the
reference data. Only grid cells with R(SManom,
TMAXanom) <−0.5 and p < 0.05 are colored; other
grid cells are shown as x-shape markers without
shading. Dot colors indicate kernel density with a
bandwidth of 0.1 (shaded), and contour lines
represent a kernel density of 0.5 derived from
GLDAS (blue), ERA5-Land (orange), and GLEAM
(yellow). Contour lines were calculated based on the
same criteria as the colored dots. Each subplot is
divided into seven coupling regimes (Regime
I–RegimeVII) based on the two values of correlation
coefficients, indicated as boxes. Percentage values at
the bottom of each box region represent the pro-
portion of grid cells within that regime relative to the
total number of grid cells. The proportions of grid
cells not included in the coupling regimes are
represented as black labels in the bottom left. Gray
labels indicate the percentage values of uncolored
markers.
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patterns of TMAX and SM behavior emerge across all cases: TMAXanom

increased from15 days prior to the peak, reaching theirmaximumonday 0,
before gradually decreasing (magenta line in Fig. 1c). Simultaneously,
SManom was negatively coupled to the heatwave’s onset and decay phases,
decreasing to their minimum around day 0 before beginning to recover
(green line in Fig. 1c). The day of SManom minimum nearly coincided with
themaximumTMAXanom day (i.e., day 0) inmost cases, althoughpeak days
were defined only based on TMAXanom (see “Data and methods” section).
On day 0, all cases experienced extremely hot and dry conditions, with
TMAXp

anom (the superscript p denotes the value of the variable at day 0
hereafter) ranging from6.7 K to 11.7 K and SMp

anom ranging from−0.074 to
−0.058m3m−3 (Supplementary Table 2). During the 31-day time window,
hot anomalies persisted from approximately 10 days before to 5 days after
thepeak for all cases, anddrySManomwere evident throughout the entire 31-
day period (raw SM anomalies, prior to standardization, are shown in
Supplementary Fig. 1). This highlights the dependence between drought
and heatwave development, emphasizing not only their spatial coupling but
also their temporal co-evolution. These findings were consistent across all
three analyzed datasets: For nearly all cases (except for GLDAS data from
+12 to+15 days in 2012 and from+13 to+14 days in 2022), standardized
SManom from each dataset were within ±1 standardized anomaly of the
reference data (see “Data and methods” section). Furthermore, statistically
significant temporal correlations among all dataset pairs for JJA SManom

were observed over >95% of the entire domains (dotted areas in Fig. 1b).
The consistency in the temporal evolution of TMAX and SM across all

the cases is not seen in latent heat flux anomaly (LHFanom; cyan lines in
Fig. 1c), with LHF in some cases closely aligned with the TMAX signal, and
other cases closely alignedwith the SMsignal. For the case in 2022, LHFanom
initially increased and peaked at 20.6Wm−2 on day 0, and the positive
anomalies remained throughout the−15 to+5-day time window (Fig. 1c;
see Supplementary Fig. 1 and Supplementary Table 2). This case shows a
dominant coupling of LHF with atmospheric demand (i.e., TMAX) rather
thanwith SM.Conversely, in the 2023 case, LHFanom consistently decreased
prior to day 0 (−24.1Wm−2 on day 0) and increased a day after the heat-
wavepeak, indicating a strong couplingwith SM(Fig. 1c; see Supplementary
Fig. 1 and Supplementary Table 2). While other cases did not exhibit as
distinct coupling behaviors of LHF as the 2022 and 2023 cases, qualitative
differences were still discernible. For instance, the temporal patterns of
LHFanom in the 2003, 2010, and 2021 cases were somewhat coupled to
TMAXanom, resembling the 2022 case. Conversely, in the 2012 case,
LHFanom had a stronger correlation with SManom than with TMAXanom, as
in the 2023 case. Although LHFanom demonstrated greater uncertainty
across the three datasets compared to SM, these uncertainties did not sig-
nificantly affect the interpretation of coupling behaviors.

Dominant land–atmosphere coupling regimes vary in an
extreme event
The results in the previous section imply that there is a “dominant” coupling
behavior for individual events. But can this dominance be quantitatively
assessed?To address this, we investigate beyond spatial averages and instead
focus on grid-by-grid analyses.

Figure 2 quantifies the grid-by-grid L–A coupling behaviors in each of
the analyzed compound drought-heatwave cases based on temporal cor-
relations (R) between SManom and LHFanom (abscissa) and between
TMAXanom and LHFanom (ordinate) during the 31-day time window. The
dots are colored when co-evolution of drought and heatwave is identified
locally (i.e., R(SManom, TMAXanom) ≤ 0.5 with p < 0.05). We find that the
dots have a string-shape distribution across this phase diagram, and such a
feature is consistent among all events analyzed. This distribution suggests a
negative correlation between R(TMAXanom, LHFanom) and R(SManom,
LHFanom) when SManom and TMAXanom are significantly anti-correlated.
We divide the phase diagram into sevendomains, based on the ranges of the
two quantified temporal correlations. Each domain represents a distinct
L–A coupling behavior, termed Regime I–Regime VII.

For example, Regime I (−1 < R(SManom, LHFanom) <−0.5 and
0.5 < R(TMAXanom, LHFanom) < 1) corresponds to areas of strong ‘down-
ward’ coupling (i.e., energy-limited conditions),where an increase inTMAX
enhances LHF,which in turn reduces SM (hereafter TMAX-LHF coupling).
In contrast, Regime VII (0.5 < R(SManom, LHFanom) < 1 and
−1 < R(TMAXanom, LHFanom) <−0.5) is the area of strong ‘upward’ cou-
pling (i.e., water-limited conditions), where a decrease in SM and LHF leads
to an increase in TMAX (hereafter SM-LHF coupling). Thus, the dominant
L–A coupling that happened in a particular drought-heatwave case can be
quantitatively indicated by its distribution of color dots in the seven regimes.
Notably, all caseshadat least somegrid cells characterizedby strongTMAX-
LHF coupling (e.g., Regime I andRegime II), strong SM-LHF coupling (e.g.,
Regime VI and Regime VII), and coupling behaviors not clearly falling into
either category (e.g., Regime III–V).

The spatially prevailing coupling regime varies across the six cases. In
the 2022 case, Regime I (Regime II) accounted for 48.48% (19.89%) of the
total grid cells, representing the dominant role of TMAX-LHF coupling in
this compounddrought-heatwave event. In contrast, the 2023 case exhibited
a dominance of SM-LHF coupling behavior, accounting for 37.81% (9.31%)
of the total grid cells in Regime VII (Regime VI). This finding supports the
area-averaging result and further represents the distinct LHF coupling
behaviors between the 2022 and 2023 cases (Fig. 1c). The 2003 case had a
similar coupling behavior to the 2022 case, with the dominance of TMAX-
LHF coupling. However, unlike 2022, the 2003 proportion of grid cells in
Regime II (21.21%) was not only higher than that in Regime I (16.74%), but
the total proportion summed over Regime III to RegimeVII was also higher
(32.23%) compared to 2022 (11.91%), indicating a less pronouncedTMAX-
LHF coupling behavior. Similarly, the 2012 case showed a weaker SM-LHF
coupling dominance (11.99% of Regime VI and 11.1% of Regime VII)
compared to the 2023 case, wheremost grid cellswere classified intoRegime
VII. The 2021 case presented unique characteristics, as grid cells categorized
into Regime II through Regime VI were more prevalent compared to those
in Regime I or Regime VII, with Regime IV being the most dominant
(14.55%). This indicates that no clearly dominant LHF coupling behavior
was observed within the 31-day time window of this compound drought-
heatwave event. Instead, the distribution suggests the possibility that a
temporal transition in coupling behavior occurred during this period. In
other words, L–A coupling behavior may have shifted from TMAX-LHF
coupling to SM-LHF coupling over time in these “intermediate” regimes
(see “Discussion” section). The 2010 case covered the largest geographic
area (Supplementary Table 1), and different sections of the vast region
seemed to display different coupling behaviors. It was characterized by both
SM-LHF and TMAX-LHF coupling regimes (24.25% of Regime I and
11.51% of Regime VII), while the proportion of grid cells classified into the
intermediate regimes (Regime III to Regime V) was relatively small, with a
total of only 8.53% of the grid cells. These spatially varying dominant
coupling regimes explain the non-monotonic temporal evolution of LHF in
several cases (Fig. 1c) results from the area-averaging of coupling behaviors
within the analyzed region. The above reference data-based interpretations
of the distinct spatial dominance of L–Acoupling behaviors across each case
were generally consistent with the results derived from GLDAS, ERA5-
Land, and GLEAM data (depicted as red, blue, and yellow contours in
Fig. 2). However, an exception was noted for the 2021 case, where GLEAM
data had a more pronounced SM-LHF coupling compared to the other
datasets.

Meanwhile, the uncoloredmarkers (R(SManom, TMAXanom) >−0.5 or
p > 0.05) tended to cluster in the top-right quadrant of the phase diagram.
This suggests that LHFanom had simultaneous positive correlations with
both SManom and TMAXanom in regions without significant coupling
between drought and heatwave (i.e., no co-evolution of drought and heat-
wave). We have found that the temporal variability of TMAXanom does not
substantially differ between the weakly and strongly coupled regions
(dashed vs. solidmagenta lines in Supplementary Fig. 2a), but the variability
of SManom is relatively lower in the weakly coupled regions compared to the
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strongly coupled regions (dashed vs. solid green lines in Supplementary
Fig. 2b). Considering that the onset and decay phases of heatwaves (i.e.,
temporal variability of TMAXanom) were clearly observed regardless of the
strength of the L–Acoupling, theweak L–Acoupling in these regions can be
attributed to the temporal variability of SManom. Therefore, the lower
TMAX-SM correlation (i.e., weak L–A coupling) in these regions primarily
reflects the reduced temporal variability in SM.

Partitioning of surface energy fluxes links to drought-heatwave
interactions
To examine how the different dominant L–A coupling regimes are asso-
ciated with the local drought-heatwave interactions, we analyzed evapora-
tive fraction (EF = LHF/(LHF+ SHF); see “Data andmethods” section) on
the heatwave peak day (EFp) across the different coupling regimes in each
extreme case. In all cases, EFp was higher in Regime I than Regime VII
(values in the upper left corner of Fig. 3). The clear decreasing trends of EFp

from Regime I to Regime VII were also observed (Supplementary Fig. 3).
Therefore, LHFpanom was lower and SHFpanom was higher in Regime VI and
Regime VII compared to Regime I and Regime II (Supplementary Table 3).
These indicate that drought-heatwave interactions transition from being
dominated by downward coupling processes (heatwave to drought) with
more energy-limited conditions towards being dominated by upward
coupling processes (drought to heatwave) with more water-limited
conditions.

In addition, Fig. 3 clearly shows that, in Regime I (upper panels), EF is
mostly independent of SM (R(SM, EF)~0), likely because SM values in this
regime exceed the critical SM threshold separatingwater-limited conditions
from energy-limited conditions. In contrast, in Regime VII, EF becomes
sensitive to changes in SM (i.e., R(SM, EF)~1), indicating SM values are
below a critical threshold (bottom panel of Fig. 3) representing a water-
limited condition. The quantitative values of R(SM, EF) for each regime, as
well as the clear increasing trend of R(SM,EF) fromRegime I toRegimeVII,
are presented in Supplementary Fig. 4. Accompanied by the simultaneous
decreases in SMandEF fromRegime I toRegimeVII, these results reveal the
full pictureof the associationbetweenL–Acoupling regimes andcritical SM:
The spatial heterogeneity of SM and critical SM played as a key factor in
determining surface energy partitioning across different regimes, eventually
influencing the dominance of upward or downward coupling during
compound drought-heatwave events.

Compound drought-heatwaves in the water-limitation condition
show higher predictability
Next, we assess the model’s ability to predict the spatial pattern of coupling
regimes using the medium-range forecasts (~+10-day) of the Geophysical
Fluid Dynamics Laboratory (GFDL) System for High-resolution prediction
on Earth-to-Local Domains (SHiELD). The forecast skill for compound
drought-heatwave events under different conditions is also evaluated (see
“Data andmethods” section).We focus on the two representative cases, the
2022EastAsia and the 2023Central America cases, which exhibiteddistinct
dominant coupling behaviors (i.e., TMAX-LHF and SM-LHF coupling,
respectively).

Overall, the 10-day SHiELD forecasts reasonably represented the dis-
tinct coupling behaviors of the 2022 and 2023 cases (Fig. 4). Similar to the
results from the observationally-constrained datasets, negative correlations
between TMAX and SM were shown in most forecast runs starting from
different lead times (Fig. 4a, b). Note that this result is based on actual values
rather than anomalies (see “Data and methods” section). Importantly, the
forecasted temporal evolutionof LHF reflected thedistinct coupling regimes
of each case; in 2022, the LHF forecasts were correlated with the forecasted
TMAX (Fig. 4a), while in 2023, they were correlated with the forecasted SM
(Fig. 4b). These characteristics were also generally consistent across all
forecast runs starting from different lead times.

We further examine the variation for the proportion of coupling
regimes derived from the reference data, +1-day, and +10-day lead times
(Fig. 4c, d). In 2022, the TMAX-LHF coupling (Regimes I and II) remained
dominant throughout the forecast lead times, accounting for 68.37% in the
reference data, 52.36% at +1-day, and 51.39% at +10-day lead times
(Fig. 4c). In contrast, in 2023, the SM-LHF coupling (Regimes VI and VII)
consistently maintained dominance, covering 47.12% in the reference data,
48.55% at+1-day, and 55.56% at+10-day lead times (Fig. 4d). The spatial
distributions of each regime were also highly consistent among the refer-
ence, +1-day, and +10-day lead times in both 2022 and 2023 cases (Sup-
plementary Fig. 5). The differences among the three columns (reference
data, +1-day forecast, and +10-day forecast) primarily occurred within
adjacent coupling regimes (e.g., transitions between Regimes I and II in
2022, or betweenRegimesVI andVII in2023).Othermajordifferenceswere
observed between coupling regimes and regions where L–A coupling was
not significantly detected (links connected to gray blocks in Fig. 4c, d,
excluding links between gray blocks).
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Fig. 3 | Regime-dependent variations in SM and EF for six compound drought-
heatwave events. Scatter plot showing SMandEFonday 0 (SMp andEFp) for Regime
I (top) andRegimeVII (bottom) based on the reference data. The dots represent SMp

and EFp of each grid point over the respective regime. Dot colors indicate kernel

density bandwidths of 0.1 (SMp) and 5.0 (EFp). Yellow diamondmarkers indicate the
mean values of SMp and EFp for each regime. The quantitative values corresponding
to these markers are displayed in the upper left corner of each subplot.
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The temporal correlation coefficients between the SHiELD forecasts
and the reference data during JJA (simply referred to as “forecast skill”
hereafter) for TMAXanom and SManom are represented in Fig. 4e, f. In the
2023 case, SM variations played a critical role in driving TMAX. Therefore,
since SM has a longer memory than atmospheric variables, its persistence
contributed to better forecast skill for both SM and TMAX within the
medium-range time scale (Fig. 4f). Conversely, in the 2022 case, TMAX
variations were not primarily controlled by SM. As a result, the model
exhibited a more rapid decline in forecast skill of TMAX and SM with
increasing lead time (Fig. 4e). Compared to 2022, the 2023 forecast skill was
superior froma+4-day lead time forTMAXanda+6-day lead time for SM,
and the advantage in forecast skill increased at longer lead times. This result
reveals the impact of long memory of land surface conditions in water-
limited conditions, evenwithin 10-day forecast lead times10,11,50,51. To further

assess the robustness of thisfinding,we extended the forecast skill analysis to
5-year (2019–2023) JJA within the fixed domains defined by the 2022 East
Asia and2023CentralAmerica cases (SupplementaryFig. 6). For eachof the
5 years, we reclassified grid cells within the fixed domain to Regimes I–VII.
By focusing on grid cells classified as Regime I (East Asia) and Regime VII
(Central America) across 2019–2023,we found that SHiELD forecast skill at
a 10-day lead timewas systematically higher inCentralAmerica than inEast
Asia for bothTMAXandSM, confirming that the enhancedpredictability in
water-limited regimes is a robust and general feature.

Discussion
The concurrent evolution of droughts and heatwaves can be characterized
by the dominance of upward or downward land–atmosphere coupling. This
hasmostlybeen studiedusingdataaveragedover larger space and timescales
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Fig. 4 | Analysis of forecast performance for the 2022 and 2023 compound
drought-heatwave events using GFDL SHiELD. a, b Lead-lag time series of TMAX
(K; left), SM (m3 m−3; middle), and LHF (Wm−2; right) within a 31-day time win-
dow, area-averaged over the non-hatched areas shown in Fig. 1a. The raw (non-
standardized) values for each variable are shown on the ordinate, and the abscissa
indicates the days relative to the peak day of the heatwave (day 0). Each solid line
represents forecast results of the lead times from +1 to +10 days, with a darker
orange color indicating longer lead times. c, d Sankey diagrams of land–atmosphere
coupling regimes. Each block represents a specific land–atmosphere coupling
regime, as the gray blocks represent areas that are not classified into Regime
I–Regime VII. Percentages within the blocks indicate the proportion of grid

numbers in each regime to the total number of grid points in the non-hatched areas
shown in Fig. 1a. The three columns from left to right represent results derived from
the reference data, +1-day forecast of SHiELD, and +10-day forecast of SHiELD.
Links between blocks visually illustrate the differences of regimes between columns,
with only changes greater than 1% displayed. e, f The forecast skill (temporal cor-
relation coefficient between SHiELD and the reference data; ordinate) during JJA for
TMAX (orange bars) and SM (green bars) at different lead times (abscissa). Error
bars denote the 25th and 75th percentiles of the forecast skills across the domain. The
left panel (a, c, e) represents the results for the 2022 case, while the right panel (b,d, f)
represents the results for the 2023 case.
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in the past. This study provides a perspective on understanding compound
drought-heatwave events by quantitatively separating upward and down-
ward coupling mechanisms across the domain affected by compound
drought-heatwave events. By examining six historically impactful events, a
quantitative analysis with phase diagrams revealed that each case, and even
each region within a single case, exhibited significantly distinct coupling
behaviors. This notable spatial variability of land–atmosphere coupling
behavior stemmed from the distinct partitioning of surface fluxes. We
further show that such regime-specific coupling can influence forecast skill,
even on medium-range timescales. Figure 5 demonstrates how these find-
ings are linked to each other:

Spatial differences in coupling regimes are closely associated with EF,
which quantifies the partitioning of surface energy fluxes between LHF and
SHF. In regions dominated by TMAX-LHF coupling, EF was significantly
higher (blue dots in Fig. 5a), reflecting downward coupling where high
temperatures led to the decline of SM by excessive evapotranspiration
(indicated as upper subset in Fig. 5b). Conversely, SM-LHF coupling
regimes were characterized by lower EF values (red dots in Fig. 5a), indi-
cative of upward coupling where dry surface conditions amplifies the
heatwave intensity by increasingSHF(indicatedasbottomsubset inFig. 5b).
In TMAX-LHF coupling dominant regimes, weak temporal correlations
between SM and EF were observed, suggesting that the critical SM was
generally below the SM variations (upper schematic x-y plot in Fig. 5b). In
contrast, in SM-LHF dominant regimes, there was a significant positive
correlation between soil moisture and EF, implying the critical SM mostly
exceeded the SM variations (bottom schematic x-y plot in Fig. 5b). GFDL
SHiELD’s medium-range forecast for compound drought-heatwave events
was closely associated through regime-specific L–A coupling, with LHF

playing a critical role in linking the land and atmosphere (upper andbottom
schematic flowcharts in Fig. 5b). Importantly, higher forecast skill was
observed in the 2023 case than the 2022 case due to the longer soil moisture
memory (bar plot in Fig. 5b).

We primarily focused on the regimes where upward or downward
couplingbehaviorswere clearly observed.However, regimeswhereLHFwas
not significantly correlated with either SM or TMAX were also observed
across all cases (gray box in Fig. 5a). Notably, these regimes (e.g., Regime
III–Regime V), which were most prominent in the 2021 case, represent an
“intermediate regime” inwhich coupling signals areweak or negligible. This
characteristic can be interpreted as evidence of a temporal transition
between coupling behaviors during the evolution of compound drought-
heatwave events. Conceptually, in the early stages of a compound drought-
heatwave, SMexceeds the critical SM, resulting inTMAX-LHF coupling.As
SMdecreases below the critical SM, the coupling behavior shifts to SM-LHF
coupling. Such transitions between regimes have been emphasized on the
climate time scale and reported to influence the fidelity of climatemodels in
projecting land surface temperature15,16,52. However, our findings highlight
that similar transitions can occur within a 31-day time scale during com-
pound drought-heatwave evolution14,25,32,46. Our additional analysis using
15-day windows, e.g., 15 days before the peak (days−15 to 0) and 15 days
after the peak (days 0 to +15), shown in Supplementary Fig. 7, further
supports this interpretation. The results in 2021 show that the proportion of
transitional regimes (Regime III–Regime V) decreases in the split-window
analysis, with more grid cells shifting into “extreme” L–A coupling regimes
(i.e., Regime I or RegimeVII), in contrast to the result using 31-daywindow
(Fig. 2). This suggests that transitions in L–A coupling behavior often occur
near the peak stage of compound drought-heatwave events, which can be
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Fig. 5 | Schematic diagram summarizing the key findings of this study. a Scatter
plot of temporal correlations between SManom-LHFanom (abscissa) and TMAXanom-
LHFanom (ordinate) for all six cases, with the analysis domain and criteria identical to
Fig. 2. Each point is colored by EFp values. The scatter plot is divided into three
regions: blue box forRegime I–Regime II, gray box for Regime III–RegimeV, and red
box for Regime VI–Regime VII. The embedded time series represents the all-case-
averaged temporal evolution of standardized TMAXanom (magenta lines), SManom

(green lines), and LHFanom (cyan lines) for Regime I–Regime II (upper right) and
Regime VI–Regime VII (bottom left). The time series were derived following the
samemethod and scale as Fig. 1c. The grid points with the highest kernel density for

each case are indicated as yellow stars. b Conceptual schematic diagrams of domi-
nant coupling regimes. The upper (bottom) panel corresponds to the TMAX-LHF
(SM-LHF) coupling dominant regime. Cyan arrows represent LHF, and orange
arrows represent SHF, with arrow length denoting relative magnitude. The adjacent
x-y plots illustrate the relationship between SMp and EFp in each regime, while the
adjacent bar plot shows the+10-day forecast skill of TMAX and SM for the 2022 and
2023 cases. CSM denotes the critical SM. Blue and red arrows indicate upward and
downward coupling, respectively.
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fully captured when using a longer temporal window. Thus, the accurate
representation of these transitions in subseasonal time scale numerical
weather prediction models is critical for improving the predictability of
heatwaves and flash droughts.

While this study emphasizes the importance of regime-dependent L–A
coupling in compound drought-heatwave events, significant challenges
remain:Adeeper understandingof thephysical anddynamicalmechanisms
governing these coupling regimes is necessary, as our classification was
based primarily on the statistical relationship between SM and LHF (or EF)
rather than on explicit process-based diagnostics53,54. The scarcity of
observational datasets limits the robustness of regime classification and
validation, as most studies—including this study— heavily rely on gridded
land model-based analysis datasets (see “Data and methods” section).
Although remote sensing and in-situ observations are increasingly being
utilized10, their coverage and consistency remain insufficient. Further
advancements in high-resolution numerical modeling are also required to
better capture the spatial heterogeneity of coupling behaviors55, including
improved representations of land surface processes such as vegetation
dynamics and stomatal feedback during the onset and decay phases of
compound events56. Upper-level circulation and precipitation also remain
crucial factors influencing the evolution of drought-heatwave interactions7,8.
Our regime-based approach is a useful flag for diagnosing and addressing
these challenges. For example, phase diagrams revealed substantial uncer-
tainties in land surface analysis datasets for the 2021 event, where ‘inter-
mediate’ regimes were dominant (red, blue, and yellow contour lines in
Fig. 2). How can we mitigate these uncertainties and integrate them to
improve numerical models?

Our additional analyses further reveal that L–A coupling regimes
exhibit systematic associations with background climatic conditions. For
each case, we calculated 20-year daily climatological means on the peak day
for grid cells defined as different L–Acoupling regimes. Specifically, regime-
dependent climatologicalmeans of TMAX, SM, potential ET (PET), andPR
demonstrate a clear trend, with water-limited regimes characterized by
higher climatological TMAX and PET and lower SM and PR (Supple-
mentary Fig. 8). In addition, although interannual variability is evident, the
dominant coupling regimes remained largely stable within the analyzed
areas over 2000–2023, particularly in regions with strong water- or energy-
limited conditions such as 2022 East Asia case and 2023 Central America
case (Supplementary Fig. 9). These findings highlight that the proposed
regimes are not only mechanistically distinct but also regionally consistent,
largely reflecting the influence of local aridity and climatic background.We
note, however, that longer-term shifts in coupling regimesmay occur under
significant climatic changes, as suggested by a recent study52.

The co-evolution of severe droughts and heatwaves has been inter-
preted as the result of L–A feedback, accompanying synergetic interaction
between downward and upward L–A coupling6. However, our findings
demonstrate that the two coupling regimes cannot spatiotemporally coexist.
The L–A feedback amplifying droughts and heatwaves requires a temporal
transition fromdownward to upward coupling regimes in a certain region32.
We found that grids exhibiting the synergetic drought-heatwave interac-
tions were spatially less dominant than grids characterized by one-way
coupling in many cases (Fig. 2). This implies that conventional approaches
relying on event domain-averaging can underestimate the role of L–A
feedback in compound drought-heatwave events. Thus, efforts leveraging
this quantitative approach will be essential in refining our understanding of
drought-heatwave interaction within diverse L–A coupling regimes and
improving forecast skill for compound drought-heatwave events52.

Data and methods
Analysis dataset: TMAX
TMAX was chosen as a key variable due to its critical role in defining
heatwaves and its strong coupling with surface hydrological processes4,5,9,10.
The TMAX data used in this study was obtained from the Copernicus
ClimateData Store (CDS) through the ERA5-Land57Daily Statistics dataset.

ERA5-Land is a reanalysis product with a horizontal resolution of
approximately 9 km, specifically developed for land applications to provide
accurate and high-resolution datasets of near-surface variables. The dataset
offers a suite of daily aggregated statistics derived from hourly reanalysis
data. For this study, TMAX was computed as the highest temperature
recordedwithin a 24-h period based on the hourly dataset, defined from 0Z
to 0 Z. We extracted TMAX values from mid-May to mid-September over
the regions of interest to account for the temporal window required for the
lead-lag analysis (see “Lead-lag time series for drought-heatwave events”
section for details). The 30-year (1991–2020) climatological baseline was
used to calculate the anomaly. The datawas interpolated to a consistent grid
to match other land surface datasets used in this study.

Analysis dataset: land surface variables
Land surface analysis datasets have the advantage of providing homo-
geneous, long-term gridded land surface characteristics. However, land
surface variables (e.g., SM, LHF, and SHF) are known to have larger
uncertainties compared to other datasets for near-surface meteorological
variables, such as TMAX58–60. Ideally, in-situ-based observations would be
used to address this issue, but their relatively limited spatiotemporal cov-
erage restricts the scope of analysis. Thus, we utilized three different land
surface analysis datasets, which are extensively used in the hydro-
meteorological community, to ensure a robust analysis of these variables.
The first dataset is GLDAS61, which provides 3-hourly data generated by the
Noah Land Surface Model (Noah-LSM) at a horizontal resolution of 0.25°.
For this study, the 3-h outputs (00, 03, 06,…, 21 UTC) were averaged to
derive daily values. The second dataset is ERA5-Land57, a reanalysis product
(c.f., same source to the TMAX). ERA5-Land offers high-resolution hourly
data (~9 km) specifically tailored for land surface applications. It is pro-
ducedby replaying the land component of the ERA5 climate reanalysis at an
enhanced resolution with advanced land-surface physics. The land model
used in ERA5-Land is the Hydrology-Tiled ECMWF Scheme for Surface
Exchanges over Land (H-TESSEL). Daily values for ERA5-Land were cal-
culated using the +24-h integration from each initialization date, repre-
senting the accumulated fluxes over a 24-h period, which were then divided
by 86,400 s. Lastly, we used the GLEAM dataset62, which provides pre-
computed daily estimates of land surface water and energy fluxes at a
resolution of 0.1°. GLEAM is a set of algorithms dedicated to estimating
terrestrial evaporation and SM contents in surface and root zone from
satellite data. It extensively relies on satellite observations to derive eva-
poration components,making it distinct frommodel-only-driven products.

Various studies have utilized indices such as root zone SM and other
drought-related metrics to represent drought conditions. However, con-
sidering the focus of this study onmedium-range forecasts, the evolution of
drought-heatwave events within a 31-day time window, and representing
L–A interactions, surface SM (0–10 cm for GLDAS and GLEAM and
0–7 cm for ERA5-Land) was chosen as the representative variable for
drought conditions, and it is simply referred to as ‘SM’ throughout this
study. Given that this study focuses more on daily variations rather than
absolute soilmoisture values, differences in soil layer depth betweendatasets
were considered negligible. We confirmed that applying a linear inter-
polation between the first (0–7 cm) and s (7–28 cm) soil layers in ERA5-
Land to estimate SM at 0–10 cmdid not result in any significant differences
in the interpretation of the results. Since both evapotranspiration and LHF
effectively represent thephysical relationship between landandatmosphere,
numerous previous studies (refer to the “Introduction” section) have pri-
marily used LHF as the key parameter for L–A interactions. This study also
adopts LHF instead of evapotranspiration as amain land surface variable to
maintain consistency with established research. For ERA5-Land, lakes were
assigned a constant value of SM= 0, while flux variables such as LHF and
SHF contained non-missing values. To address this inconsistency, a mask
file was created to identify all grid points where SM remained constant at 0
throughout the entire period. These points were then treated as missing for
all variables. In theGLEAMdataset, SM and flux variables had differing sets
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of missing points. All missing data locations identified across different
variables in the GLEAM dataset were combined and uniformly applied to
ensure consistency. In our analysis, we present both the averaging of the
three datasets, which were referred to as ‘reference data’ in this study, and
the individual results from each dataset to account for uncertainties and
provide a comprehensive assessment. Unless otherwise specified, the
quantitative values presented in the main text represent the average value
(i.e., reference data) as a representative value. When averaging GLDAS,
ERA5-Land, and GLEAM datasets, calculations were performed at grid
points where at least one dataset provided a non-missing value. This
approach ensured that even grid points with sparse data availability con-
tributed to the averaging. Given that GLDAS data are only available from
2000 onward, the climatological baseline for all datasets was set to the
2000–2020 period. To ensure consistency across datasets, all data were
interpolated to match the spatial resolution of GLDAS (i.e., 0. 25°).

In this study, the relative dominance of L–A coupling processes was
determined by the EF, defined as the ratio of LHF to the total surface energy
flux (LHF+ SHF)10. All EF calculations were based on actual values rather
than anomalies. Similarly, when examining the temporal correlation
between SM and EF, we used actual SM values instead of SManom. The EF
values were multiplied by 100 to represent the values as percentages.

Analysis dataset: atmospheric variables
In addition to the previously mentioned datasets, we incorporated atmo-
spheric variables to enhance our analysis. For GPH, we utilized the ERA5
dataset63, which offers global atmospheric data at a horizontal resolution of
approximately 31 km. Daily averages of GPHdata were computed from the
6-hourly temporal resolution to alignwith this study’s temporal framework.
The climatological baseline spans from 1991 to 2020. For PR analysis, we
employed the IntegratedMulti-satellitE Retrievals for GPM (IMERG) Final
Run dataset64. The IMERG Final Run data are available at a spatial resolu-
tion of 0.1°.We utilized the dailymean precipitation values for our analysis.
The climatological period for precipitation was set from 2000 to 2020,
consistent with the available data range. These datasets were also inter-
polated into a consistent grid to match other land surface datasets used in
this study.

Lead-lag time series for drought-heatwave events
The 31-day-time-window-based lead-lag time series for drought-heatwave
events was derived using area-averaged data that represents the temporal
evolution of key variables during the events. To derive this time series,
extremeheatwave areaswhere the JJAmeanTMAX for each event exceeded
two standard deviations of the JJA mean TMAX for the climatological
(1991–2020) period were first identified. For each grid point within these
identified areas, the date of the TMAX peak was recorded as the peak day
(day 0). SM, LHF, and other relevant variables were then aligned relative to
this peak day across all grid points. The aligned values were averaged across
the selected extreme heatwave areas to produce an area-averaged lead-lag
time series spanning 15 days before and 15 days after the peak day. This
alignment allowed for the identification of the temporal evolution of SM,
LHF, and TMAX during the onset, peak, and decay phases of the heatwave
events. Although the primary analysis period focused on JJA, TMAX, and
land surface data frommid-May tomid-Septemberwere included to ensure
that variables spanning 15 days before and after each peak day (e.g., May 17
for a June 1 peak or September 15 for an August 31 peak) were adequately
captured. All variables were temporally smoothed using a 5-day moving
average before deriving the lead-lag time series. Sensitivity tests using
alternative time windows (e.g., 21 days, covering 10 days before to 10 days
after the peak, and 41days, covering 20days before to 20days after the peak)
confirmed that the key findings remained consistent. Similarly, applying
different smoothingwindows (3-dayor 7-daymoving averages) didnot lead
to significant changes in the overall results. The standardized anomalies of
TMAX, SM, and LHF (shown in Fig. 1c)were obtained by standardizing the
raw anomalies (Supplementary Fig. 1) within a 31-day window so that each
variable has zero mean and unit standard deviation.

System for High-resolution prediction on Earth-to-Local
Domains (SHiELD)
The SHiELD, developed by theGFDL, is a state-of-the-art unifiedmodeling
system designed to forecast multi-scale weather phenomena65,66. SHiELD
leverages the nonhydrostatic Finite-Volume Cubed-Sphere (FV3) Dyna-
mical Core67–69, which enables simulations across a wide range of spatial and
temporal scales, frommesoscale events at 3 km resolution over a few hours
to global seasonal forecasts at 25 km resolution. This flexibility makes
SHiELD an essential tool for studying complex atmospheric processes. In
this study, we utilized the global 13-km resolution SHiELD configuration,
which serves as the flagship version for real-time forecasts and is actively
developed and assessed65,66,70–73. This configuration is initialized at 00 UTC
and 12 UTC using National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) analysis data and integrates over a 10-day
forecast window. Significant updates are included in the physics para-
meterizations, which were originally adapted from the GFS framework to
enhance forecast skill in SHiELD, e.g., the Noah land surface model74, the
GFDL cloud microphysics scheme version 3, which is fully integrated with
FV371,72, the scale-aware TKE-EDMF planetary boundary layer scheme75,
and the scale-aware deep and shallow convection parameterization76.
Additionally, SHiELD incorporates a mixed-layer ocean model, critically
aiding the representation of ocean-atmosphere interactions for simulating
phenomena like tropical cyclones and the Madden-Julian Oscillation65.
SHiELD currently focuses on deterministic forecasting but is being devel-
oped to include ensemble capabilities, which are expected to significantly
enhance its performance for subseasonal prediction applications.

To analyze the predictability of L–A coupling in compound drought-
heatwave events, raw output from SHiELD simulations initialized at 00
UTCwas processed into daily values. The raw data from SHiELD consisted
of 241 timesteps per initialization, starting at the initialization time (+00 h)
and forecasting hourly from+01 to+240 h. To ensure the data consistently
averaged over +00 to +23 h for each day, the final step (+240) was
excluded. The lead-lag time series for SHiELD was derived using the same
method as the analysis dataset, and the grid-by-grid TMAX peak day (i.e.,
day 0) and analysis area was defined based on the reference data. To be
consistent with the analysis dataset, valid forecast data spanning all lead
times from May 17 to September 15 were required for the lead-lag time
series analysis. Therefore, we utilized forecast outputs initialized at 00 UTC
daily from May 8 to September 15.

To derive L–A coupling regimes and forecast skills for SHiELD fore-
casts, anomaly correlations need to be calculated.However, since SHiELD is
a relatively recently developed modeling system, a climatological record
over 20 years is not available. Therefore, anomalies of forecastedTMAXand
land surface variables were calculated based on the climatology values of the
analysis datasets for the evaluation of coupling regime representation of
SHiELD. While this approach introduces a limitation by including the
model’s systematic biases, we considered this issue not to be significant, as
the main analyses in this study rely on the model forecast data itself rather
than anomalies. Additionally, although a variety of datasets were utilized to
ensure robustness against uncertainties in the land surface analysis datasets,
limitations still exist. Considering these, when evaluating the predictability
of land surface variables, we focused on temporal correlation rather than
absolute comparisons (e.g., bias, root mean square errors).

Data availability
GLDAS dataset is available at https://doi.org/10.5067/E7TYRXPJKWOQ.
ERA5-Land post-processed daily statistics dataset is available at https://doi.
org/10.24381/cds.e9c9c792. GLEAM dataset is available at https://www.
gleam.eu/. ERA5 dataset is available at https://doi.org/10.24381/cds.
adbb2d47. IMERG dataset is available at https://doi.org/10.5067/GPM/
IMERGDF/DAY/07.

Code availability
Source code for GFDL SHiELD is available at https://github.com/NOAA-
GFDL/SHiELD_build. Other custom codes are direct implementations of
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statistical methods and techniques that are described in the “Data and
methods” section.
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