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Riskofsuccessivehot-pluvialextremeson
crop yield loss over global breadbasket
regions
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Multiple climate extremes can coincide in time or happen sequentially and become a compound
hazard. Recently, frequent occurrences of successive hot-pluvial extremes (SHPEs) have been
presented, yet the risk of SHPEs on crop yield has not been investigated. Here we reveal peril of
recurrent occurrences of SHPEs during intra-growing season and their connection with subsequent
yield loss over breadbasket regions. Our results show an increasing trend in evolution of recurrent
SHPEs during intra-growing seasons from 1979 to 2024. A significant risk of synchronized low crop
yields is found in breadbasket regions, as shown by negative yield percentage changes and linear
regression analysis. XGBoost classifier model predicts a negative likelihood of 49%, 50%, 49%, and
50% for maize, rice, soybean, and wheat yield responses to the emergence of frequent SHPE events,
respectively. Alternatively, XGBoost regression surpassesandexplains36%of yield variability caused
by recurrent occurrences of SHPEs globally for the studied crops, although it exhibits heterogeneities
across different regions. The insights provide a foundation for considering the actual risk, which
ultimately contributes to improving crop yield.

The global production of primary crops experienced an increase of 52%
between 2000 and 20201 as a result of advancements in technology and
improved agricultural practices. However, climate change poses challenges
to global food production2–5, particularly in marginalized communities6,7. It
is imperative to understand the impact of weather conditions on the yield
variations of staple cereals to adapt agricultural production to climate
change. Numerous studies have primarily focused on the impact of con-
current hot-dry events8–11 and revealed that compound extremely dry and
hot events have a greater impact on crop yields than a single extreme event.
The spatial extent of concurrent drought-heatwaves, surpassing the sum of
their individual impacts10,12, which substantially leads to crop damage.
Although to a lesser extent and with more uncertainty and inconsistency,
freezing and wet conditions have also been observed to reduce crop yields
globally13.

In addition to univariate and concurrent extreme hydrometeorological
events, a combination of sequential extreme events, such as successive hot-
pluvial hydrometeorological extremes, has started to attract scientists and
policymakers due to their devastating consequences. Nowadays, successive
hot-pluvial extremes have been reported globally13–15 and across different
regions of the world, such as growing threats across China16,17, South

America18; and US19,20. Zhang and Villarini19 showed that hot and humid
preconditioned weather can set the stage for mudslides and flooding events
in the Central United States, leading to overwhelming infrastructure. The
sequences of heatwaves and sub-daily extreme rainfall events in various
regions of Australia21, which they described as “temporally compounding
heatwave–heavy rainfall events”, noting that more frequent and more
extreme wet days immediately following a heatwave pattern have been
identified. South Korea’s hot-wet event in July 202022 and the UK thun-
derstorms andflashfloods after scorchingheatwave inAugust 2020 (https://
www.bbc.com/news/uk-53760283)were both typical cases. Theobservation
of increased flood intensity in various regions has been triggered by a pre-
ceding heatwave, for instance, in China16.

One of the sectors that has been most profoundly devastated by the
destruction of successive extreme events is agriculture. Sequential drying-
wetting extremes have been observed in diverse and occasionally contra-
dictory signaling pathways that either enhance crop phytohormonal and
nutritional responses23,24 or reduce rice yields25. According to the 2017 spe-
cial report by Food and Agriculture Organization and World Food
Program26, a severe drought situation was exacerbated by subsequent heavy
rainfalls in Sri Lanka that led to floods, landslides, and widespread crop
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failures in the country’s staple grains. As evidenced by the Langgewens
Research Farm, heat stress cuts crop production efficiency by 1.75% per hot
day, while rainfall boosts it by 1.45% per rainy day, and the combined heat
and moisture stress reduces crop productivity overall27. Between 1982 and
2016, global crop production losses due to flooding were $5.5 billion28,
which is expected to account for the exacerbation likely attributable to
preceding heatwaves.

Although studies13,15,16,21,29–31 examine the annual and extended seaso-
nal occurrences of global and country-level successive hot-pluvial extremes,
their impacts on crop yields are globally unknown. Here, we investigate the
risk of synchronized low crop yield associated with successive hot-pluvial
extremes (hereafter SHPE), aiming at quantifying the yield sensitivity to
SHPE abrupt alternation andmodeling yield responses to the emergence of
frequent SHPE signals. We hypothesize that the adverse interactions
between SHPE events and crop-physiology responses, from the sowing of
cereals to essential phenological phases in event-based agriculture, are sig-
nificant and can have a synergistic impact on staple food yield. Unlike
concurrent dry-hot extremes, the intertwined (hot to pluvial) climate
extremes (as illustrated in Supplementary Fig. 1) can have cascading effects
during critical phenological stages of cropdevelopment and at early stagesof
crop growth due to the crop’s limited capacity to recover from the intensity
of events and the intertwined impact, which might pose significant cop
physiological challenges, physical damage, and hinder the crop’s ability to
carry out photosynthesis and nutrient transportation.

Hence, this study presents crucial insights into the impacts of frequent
and intense SHPE events on the yield of the four main staple crops (maize,
rice, soybeans, and wheat). We follow crop calendars to identify hotspot
breadbasket regions that are likely to experience SHPE events, providing
information for designing more effective, tailored policies for cropland
protection to increase crop yields. When multiple extremes occur in rapid

sequence, their impacts cascade to cause disproportionate damage and slow
recovery.Therefore, a better understandingof successivehot-pluvial stresses
needs to be carefully examined to develop adaptation strategies thatmitigate
the decline in agricultural productivity due to these underrated climate
extremes. Such insights into crop yields are beneficial for future sustainable
crop production and help to monitor the progress and resilience towards
Sustainable Development Goal 2, which aims to promote sustainable food
production.

Results
Historical evolution of the SHPEs occurrence during intra-
growing seasons
We first identify the historical occurrences of SHPE events for the four
selected croplands, following their crop calendars for the historical period
(1979–2024). Our analysis quantifies the normalized SHPE occurrence
rates, duration, and intensities across each cropland, allowing for compar-
isons across locations with different growing durations and providing a
general overview of long-term variations. The frequency of SHPE occur-
rences per 100 days of crop growing season, revealing spatial pattern (Fig. 1)
across the four croplands.

The low-latitude maize lands, including those in Africa (low-maize-
yield area (Supplementary Fig. 2a)), Southeast Asia, and SouthAmerica, are
experiencing a high frequency of SHPEs (Fig. 1a), which exacerbate the
challenges in these regions. These events overwheremaize yield variabilities
are already higher (Supplementary Fig. 3a) show more prevalence occur-
rences than those in North America, Europe, and the Middle East regions
(Fig. 1a). Similar incidences at the rice fields having dominant yields
(Supplementary Fig. 2b) in SouthAsia, Central Africa andMadagascar, and
South America broadly occurred (Fig. 1b). The incidences of SHPE events
are also observed in the extensive soybean croplands in South America

Fig. 1 | The occurrence rate of SHPE events during crop-growing seasons for the
period 1979–2024.To account for varying growing seasons, we follow the combined
crop calendar over amaize, b rice, and d wheat cropland, and follow a single season

crop calendar over c soybean cropland. The occurrence rate of SHPE events is
expressed by fixed scale days of the crop calendar. Units are per 100 days.

https://doi.org/10.1038/s43247-025-02989-5 Article

Communications Earth & Environment |          (2025) 6:1040 2

www.nature.com/commsenv


(e.g., Colombia, Bolivia, and Brazil), in Asia (e.g., India, and China), and
Africa (Nigeria) during the local growing season (Supplementary Fig. 2c,
Fig. 1c). The wheat lands in eastern United States, Ethiopia, India, Myan-
mar, andNorth China (Supplementary Fig. 2d) are relatively the vulnerable
fields to these extreme events in the two growing seasons (Fig. 1d). These
events during the wheat growing season are less pronounced compared to
other crops, primarily due to the double and longer duration of wheat’s
growing season, which extended from the main rainy seasons.

To enable a deeper understanding of cumulative stress on crops, we
examine the historical duration of SHPEs that have evolved across the four
croplands during the intra-growing seasons. Figure 2, represents the nor-
malized durations of SHPE event occurrence, expressed as a percentage per
length of the crop calendar. From a global perspective, SHPE experiences
longer duration in the Southern Hemisphere than in the Northern Hemi-
sphere, with strongly regional differences displayed in the Southern
Hemisphere. For instance, maize and rice land experience spatially similar
and pronounced longer durations of SHPEs (about 0.45% and above)
(Fig. 2a, b) than soybean and wheat croplands (0.3% and above) (Fig. 2c, d)
over the Southern Hemisphere from their length of crop calendars.

Fromthehistorical trend inSHPEevents,wefindaglobal tendencyof a
notable increase, although the rates of change in distribution vary spatially
(Fig. 3). The increasing trends are significant in themaizefields ofColombia
and Venezuela in South America, Central Africa and Southeast Asia, most
of which exceed amagnitude of 0.5 events per combined calendars in a year
(Fig. 3a). Significant increasing trends are also found in rice fields across
South America, Central Africa, South Asia and Southeast Asia regions,
where exhibits a pronounced higher positive trend than in other regions
(Fig. 3b). Soybean cultivation areas (Fig. 3c) in southern Brazil, Ecuador,
India, and parts of Southwestern China, exhibit statistically significant
upward trends. The wheat fields in South America, East Africa (Ethiopia),
and Asia (South Asia and North China) also experience a significant
increasing trend (Fig. 3d).

Alongside the examination of spatial trend, we also examine the
temporal evolution of annual SHPE event reoccurrences (Supple-
mentary Fig. 4) and confirm a gradual increasing tendency in
anomaly averaged over the croplands. The applied quadratic trend
model captures gradual and potential nonlinear increasing temporal
evolution. The concave-upward curvature in the fitted quadratic
trend suggests that, not only are SHPE events becoming more fre-
quent, but the rate of increase itself is accelerating, especially in the
most recent decades. The monotonic increasing trends are statisti-
cally significant at Mann-Kendall test (p < 0.01). The goodness-of-fit
for each crop is evaluated using adjusted R-squared (R2

adj) values,
which ranged from 0.66 to 0.81, indicating that the quadratic model
explained a substantial proportion of the variability (Supplemen-
tary Fig. 4).

We apply composite analysis32 to reveal the intensity of pluvial events
with and without preceding hot events (Fig. 4). An increase in pluvial
intensity following hot events is observed, particularly in maize land across
Central and Southern Africa and western Europe (Fig. 4a), parts of South
America andCentral Africa rice land (Fig. 4b), SouthAmerica soybean land
(Fig. 4c), and European wheat land (Fig. 4d). Conversely, areas in China
exhibit a lower pluvial intensity post-hot event for wheat land (Fig. 4d).
Overall, 63, 62, 57, and 54% of maize, rice, soybean, and wheat lands are
experiencing intensified pluvials following hot events on average, respec-
tively. In the same fashion, we perform a composite analysis between the
intensity of hot events that precede pluvial and hot without subsequent
pluvial events (Supplementary Fig. 5) and find that the intensity of heat-
waves preceding pluvial events is intensified compared to heatwaves
occurring without subsequent pluvial events. This is particularly noticeable
in US maize, soybean, and wheat fields, in Central and East African maize
and rice fields, in Eastern European maize and wheat fields, in southern
China’s rice and soybean fields, and in Iranian maize, rice, and wheat fields
(Supplementary Fig. 5).

Fig. 2 | The normalized spatial distributions of durations of SHPE event during crop-growing seasons for the period 1979–2024. The crops are maize (a), rice (b),
soybean (c) and wheat (d). Units are percent per crop calendar length.
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Risk of synchronized low crop yield associated with SHPEs
Having empirically investigated a plausible recurrence, duration, and evo-
lution of SHPE events during the crop growing season, we employ a yield
percentage change and sensitivity analysis to reveal the risks they pose to
cropyield.Through the identificationof theoccurrences of SHPEevents, the
impact of SHPEs on crop yield for a given grid cell is quantified by com-
paring the crop yield under SHPE events with the yield expected from the
long-term locally weighted regression smoothing model (LOWESS) non-
linearity of the trend (5-year window) spanning the period limit to the years
1981–2016 (Data and Methods). Here, the yield percentage change reflects
the yield departure from its long-term trend and is assumed to be induced
mainly due to recurrent SHPE disruptions.

Our analysis of crop yield data shows that, while spatial patterns vary
across crops, a substantial portion of each crop’s land area experiences yield
reductions under these conditions. The event can lead to a decrease in crop
yield of up to -4% across major agricultural regions compared to the
expected yield based on long-term trends (Fig. 5). The analysis reveals
that approximately 51–63% of maize, rice, and wheat lands show a
negative yield percentage change globally (Fig. 5a, b, d), indicating that these
crops are highly vulnerable to the SHPEs. Soybeans appear slightly more
resilient, with about 48% of their land areas experiencing yield
declines (Fig. 5c).

From the sensitivity analysis, a regression coefficient quantifies the
variation in crop yield (tons per hectare) resulting from a recurrent
occurrence of SHPE events. Figure 6 shows that majority of the maize, rice,
and wheat croplands (52.7%, 62.4%, and 51.4%, respectively) and 47.4% of
soybean land reflect a negative degree of sensitivity between recurrent
occurrences of SHPE events and yields (Fig. 6a–d). Significant negative
responses to SHPEswere found across Brazil rice andCentral Africanmaize
and rice land (Fig. 6a, b), whereas in other parts, the sensitivities are sparse
(Fig. 6a, d). The higher values of slope coefficients in both negative and

positive directions indicate that signals of SHPEs are stronger (Fig. 6) than
the yield response to the pluvial event without the preceding hot event
(Supplementary Fig. 6), likely because of yield loss exacerbated by the
compound stress of extreme hot and pluvial events. The regional k-means
clustering of negative regression grid cells for each Intergovernmental Panel
on Climate Change (IPCC) region (Supplementary Fig. 7a–d) also exhibits
yield sensitivity with higher percentage of grid cells in South American rice
and wheat land, in Central African maize and rice land, in Southeast Asian
maize and rice land, in SouthAsian rice, soybean, andwheat land, indicating
widespread yield sensitivity to SHPEs in these individual climatic zones.
This widespread prevalence of negative associations across these staple crop
lands emphasizes the considerable threat posed by frequent occurrences of
SHPE in association with yield loss.

Modelingyield responses toemergenceof frequentSHPEevents
eXtreme Gradient Boosting (XGBoost) and random forest (RF) classifier
algorithms allowus toestimate the likelihoodof the coexistence of cropyield
loss and SHPE events. Thus, we assess classifier models’ competence and
robustness by conducting 10-fold stratified cross-validation and evaluating
using metrics: F1-score, precision, and recall33–35 (presented in Supple-
mentary Fig. 8a-c, Data and Methods), which examines the model perfor-
mance in revealing the likelihood of crop yield loss under recurrent SHPE
occurrences. XGBoost classifier, marginally a versatile machine-learning
method36, suggests that occurrences of SHPE events globally have a like-
lihood of 49.0% for maize, 49.8% for rice, 49.3% for soybean, and 50.1% for
wheat yield loss.Above 81.8, 80.0, 83.0, and82.7%ofmeasures ofmaize, rice,
soybean, andwheat yield loss events are predicted correctly (Supplementary
Fig. 8a) under 84.1, 85.6, 84.2, and 82.3% of a harmonic mean of precision
and recall (Supplementary Fig. 8b), respectively. Consistently, this classifier
model captures 84–88% of the four-crop actual yield loss cases and detects
correctly (Supplementary Fig. 8c). The presence of skewed outliers in the

Fig. 3 | The observed historical trend in the frequency of SHPE events.Changes in
the normalized frequency of SHPE events per year during growing seasons of maize
(a), rice (b), soybean (c), and wheat (d) for the periods 1979–2024 (events per crop

calendar). Blank land regions denote areas that did not produce the specified crops.
The significant trends at the 0.05 level are represented by black dots, estimated using
the event/crop calendar.
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model metrics indicates that the variability and potential instability in
predictions of yield loss are large.

From this robust analysis technique, we reveal that considerable
vulnerability, with notably high likelihood of maize yield loss in the
Colombia and Venezuela (South America), Bantu regions (Africa)
corn belt, in scattered eastern China and parts of Southeast Asian
regions (Fig. 7a). The impact on rice yield is also prominent in South
America, parts of Central Africa, Southeast Asia and East Asia
(Fig. 7b). Southern Brazil, India, and the middle and lower reaches of
the Yangtze River in China experience soybean yield loss compared
with other soybean regions due to SHPE events (Fig. 7c). The
widespread distribution of SHPEs in the wheat land region of the US,
South America, South and East Africa, Europe, and Northeast and
North China also results in yield losses with a chance of 60% and
exceeds (Fig. 7d). Thus, XGBoost classifier identifies key regions
where SHPE event-related yield losses are likely to be the most
prominent. For example, in South America (notably Brazil), and
across South and East Asia (Fig. 7c)—regions of global important
soybean production (Supplementary Fig. 2)— and in Bantu region of
Africa (Fig. 7a, b)—where is important maize and rice producing
region, there is a high likelihood of yield loss due to SHPE events.
However, developed countries experience less loss likelihood (Fig. 7).
For instance, the vulnerability in US and eastern European maize
lands (Fig. 7a), and in eastern US soybean land (Fig. 7c), underscores
a lesser likelihood of SHPE-related yield losses. Similarly, RF
classifier-meta estimator model demonstrates similar spatial patterns
in detecting SHPE events that will have profound impacts on yield
across different regions of croplands (Supplementary Fig. 9a–d). In
addition, it performs slightly better than XGBoost in detecting SHPE
events (Supplementary Fig. 8a–c).

Crop yield reduction explained by recurrent SHPE event
XGBoost regression is implemented here based on gradient descent
learning37 to explain the loss of cropyieldunderoccurrences of SHPEevents.
The spatial distribution of coefficient of determination values shows where
SHPEs are most predictive of yield variations (Fig. 8). This non-linear
regression model likely reflects the fact that the tolerance levels of SHPE
events for these cropsmay have lower thresholds for the successive extreme
event stress across multiple regions. Among the common evaluation
parameters used in regression, root mean square error (RMSE), R-squared
(R²), and mean absolute error (MAE) are selected as reviewed38. XGBoost
regression model coherently demonstrates a higher R² compared to RF
across all crop lands (SupplementaryFig. 8), indicating abettermodelfit and
a stronger ability to explain variation in crop yield loss based on recurrent
occurrences of SHPE features. This model explains the non-linear rela-
tionship between crop yield sensitivity and recurrence of SHPEs, accounting
for global variance of approximately 36.2% inmaize, 40.9% in rice, 42.1% in
soybean, and 37.4% inwheat yield. RMSE is 0.57 t ha-1, 0.56 t ha-1, 0.26 t ha-1,
0.57 t ha-1,and averagemagnitude of the errors betweenpredicted and actual
values is 0.43 t ha-1, 0.42 t ha-1, 0.20 t ha-1, 0.44 t ha-1 for maize, rice, soybean
and wheat, respectively (Supplementary Fig. 8d-f). Presence of the outliers
indicates that the model underperforms in the number of grid cells.

Yield loss attributed to growing season reoccurrences of SHPE event is
explained remarkably across four croplands in South America (Fig. 8a–d).
In addition, maize and rice fields in Central and Southeastern African
countries (Fig. 8a, b), rice fields in Southeast Asia (Fig. 8b), and soybean
fields in India (Fig. 8c) also exhibits a broad distribution of high yield loss.
Likewise, wheat yield variability in the eastern US, South Asia, and North
China (Fig. 8d) is also markedly influenced by SHPE events. The result in
Fig. 8d demonstrates widespread high wheat yield sensitivity to the recur-
rent SHPE events, particularly evident in South America (wheat belts of

Fig. 4 | The composite analysis of the intensity of pluvial following hot events and
the intensity of pluvial without preceding hot events.Each figure shows the change
in pluvial intensity following hot events and pluvial intensity without preceding hot
events for a specific crop: a Maize, b Rice, c Soybean, and dWheat. Pink colors
denote a negative change in pluvial intensity following a hot event minus pluvial

intensity without preceding hot events, while blue colors indicate a positive change.
Each subplot includes a pie chart showing the percentage of grid cells with positive
(blue) and negative (pink) differences in pluvial intensity. Regions marked with
yellow crosses represent the differences are statistically significant at the 0.05 level,
estimated based on 1000 bootstrap iterations.
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Argentina). Maize yield losses in the US, Europe, and northern regions of
East Asia (Fig. 8a), rice and soybean yield losses in East Asia (easternChina)
(Fig. 8b, c), andwheat yield losses in Europe andNorthAsia (particularly in
northern Central Asia and northeastern China) (Fig. 8d) are explained to a
lesser extent. This model anticipates a global average yield variance of 36.2,
40.7, 42.1, and 37.4% attributed to recurrent SHPE events, respectively
(Supplementary Fig. 8a). Meanwhile, the RF regression model result is
shown in Supplementary Fig. 10 to compare the explanatory power of yield
loss due to SHPE event. It shows a spatial consistency with the result of
XGBoost regression.

Discussion
This study reveals the impact of SHPE events on crop yield loss using
empirical and parametric to non-parametric statistical methods, following
the presentation of the historical pattern of recurrent occurrences, dura-
tions, and trend of SHPE events during the intra-crop growing seasons of
the four crops. In hotspot breadbasket regions, the notable increase in the
historical evolution of recurrent occurrences of SHPE events, along with an
increasing trend of tendency and prolonged percentage of crop calendar
under SHPE events, taken together, underscore the need for climate-smart
agricultural practices and targeted adaptation strategies to mitigate the
impact of such a sequential event in both low-yielding cropland and in
critical crop-producing regions. Regions with low-yield (Supplementary
Fig. 2), have the greatest increasing trend in SHPE events (Fig. 3) and a
prolonged percentage duration of SHPEs relative to the length of the crop
calendar (Fig. 2), particularly in SouthAmerica, the Sahel, and Southeastern
Africa, and SouthAsia. This phenomenon can pose considerable challenges
by increasing yield loss for farmers already struggling with the effects of
climate change in these regions. Again, key rice-producing regions with a
high level of internal consumption39 exhibit a pronouncedly significant
increasing SHPE trend. In general, in the living conditions of marginal
communities and non-developed countries that experience food

insecurity40, SHPE events emerge frequently (Fig. 1) and for a prolonged
duration of production periods (Fig. 2). This kind of phenomenon in
regionsof staple cropproductionheightens the risk of crop failures andyield
reductions, posing a significant threat to global food security.

Moreover, majority of breadbasket regions also receive a higher
intensity of pluvial following hot events than that of pluvial events without a
preceding hot event. This result is consistent with the findings in the case
studies in China, which presented an average of 26% of heatwaves being
succeeded by heavy rainfall16, with shorter and more intense heatwaves
being particularly prone to intensified rainfall phenomena in China41. It is
also consistent with a global study that presented an amplification of
extreme precipitation to the preceding heat-stress13. Besides the observed
trend of intense SHPE events, these events inflict significant stress on crops,
although the subsequent rainfall might initially seem beneficial for them.
This is like other univariate variables, for instance, excessive rain in US can
reduce maize yield up to -34% relative to the expected yield from the long-
term trend, comparable to up to -37% losses by extreme drought found in Li
et al.34; the French wheat yields were reduced by 30% in 2016 after the
combination of a successive late autumn heatwave and spring pluvial42.
Thus, we can understand that the effect of SHPEs’ combined factors on
crops is not always additive, but can exert both detrimental and beneficial
impacts on crop yield, and its sign varies regionally.

In our results, the yield percentage change and yield sensitivity to
events are described by linear regression. This highlights the synchronized
threat of SHPEevents to crop yield loss, indicating that yields tend todecline
when these events increase. The pluvial events alone span a negative sen-
sitivity on a broader extent of cropland, but are smaller in magnitude
compared to the sensitivity of yield to SHPEs, suggesting a broader yet less
impact from pluvial events alone. Conversely, the integration of SHPE
events versus crop yield exhibits higher values in both negative and positive
directions, demonstrating a more substantial and more variable influence
on crop yield—likely the synergistic impacts amplify yield losses beyond

Fig. 5 | The crop yield percentage changes under SHPE events. The crops are
a maize, b rice, c soybean, and d wheat. The pie charts accompanying each map
quantify the proportion of cropland experiencing positive (blue) versus negative

(pink) crop yield percentage changes during SHPE events. The numerical values
represent the yield percentage change under SHPE conditions. The yellow crosses
denote statistically significant at the 0.05 level.
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those induced by pluvial events alone. The intensification of pluvial events
triggered by hot events13,41,43 and their intertwined (hot to pluvial) extremes
transitions can reflect intertwined crop physiological responses (stomata
close-open-close), which might pose considerable challenges from crop
physiological to physical damage beyond the normal natural cycle (Sup-
plementary Fig. 1, Fig. 5, Fig. 6, Supplementary Fig. 6). Thus, the synergistic
impacts are probably due to the lower physiological tolerance to hot and
pluvial conditions intertwined in crops as well. For instance, a hot event
during the early vegetative stage, followed by excessive rainfall during the
sowing period, can dry the soil, hindering growth due to waterlogging and
nutrient leaching. And during flowering, it can also severely limit grain
filling, increase post-flowering mortalities and then impair pollination,
cause stress anddisrupt critical growth stages,whichhas thepotential to lead
to yield failures. The risks and opportunities for crop yields will largely
depend on how the crop’s physical and physiological responses adapt to
these SHPE events. Morphological and physiological susceptibility and
tolerance of maize44, rice45, and wheat46 plants may be exacerbated by these
intertwined phenomena and may go beyond the impact of separate hot or
(and) pluvial extremes, similar to the mathematical concept of “1+ 1 > 2”,
where the total impact is not just two but surpasses it. The observed patterns
emphasize the need for tailored and crop-specific adaptation strategies that
take into account SHPE events in areas where these crops are cultivated.
However, in developed countries, such as in maize lands of the US and
Eastern Europe, and in soybean land of the eastern US, they underscore a
lesser likelihood of SHPEs-related yield losses (Fig. 7, Supplementary Fig. 9,
Supplementary Fig. 10), likely due to enhanced resilience and adaptive
strategies that mitigate the impacts of such sequential extreme events.
Moreover, previous findings also reveal the expected exacerbation of future
SHPE events in different climate scenarios13–15,43 and indicate an increased
risk to crop yields.

While the underlying drivers of these intertwined extreme events
remain less understood, it is imperative to examine them. The detailed
mechanism behind the interconnection needs to be further studied, besides
the diagnosis of large-scale atmospheric conditions by Zhou et al13., parti-
cularly the role of large-scale climate phenomena, such as the El Niño-
Southern Oscillation (ENSO). According to Heino et al. (2018), two-thirds
of the global cropland areas are impacted by climate oscillations47. From
these studies, the impact of ENSO oscillation on crop productivity leads to
food insecurity in many parts of Africa, Asia, and Latin America. Syn-
chronization of different ENSO phases and SHPE events may lead to
increased yield loss across various cropland regions, warranting further
investigation to elucidate the impacts of SHPE events induced by ENSO
phases. Meanwhile, the impact of SHPE events on rainfed and irrigated
croplands may have distinctions and respond differently in each type of
cropland. For instance, Mishra et al. (2020) highlight that intensive irriga-
tion in South Asia (India, among top countries in irrigation systems,
Pakistan, and parts of Afghanistan) reduces land surface temperatures but
increases humid heat-stress, as measured by wet-bulb temperature48. This
elevated moist-heat stress can also exacerbate yield losses in irrigated
croplands by creating unfavorable conditions for crop physiology. Similarly,
Haqiqi et al. (2021) demonstrated that wet-heat extremes are more dama-
ging than dry-heat for corn crops across the US49.

The field of machine learning provides a variety of advanced statistical
models that are increasingly used for more accurate estimations of rela-
tionships between yield and climate extremes12,50,51. This study employs
XGBoost and RF regression models to reveal the power of explaining crop
yield variability due toSHPEevents;XGBoost outperforms theRF regressor.
The model indicates the region’s need crop-specific adaptation strategies to
reduce the vulnerabilities to these successive extreme conditions. It explains
that a global average of 36% recurrent occurrences of SHPE events can lead

Fig. 6 | Regression coefficient of the linear regression model using the historical
frequency of SHPE events as predictor and crop yield as predictand.The crops are
maize (a), rice (b), soybean (c), and wheat (d). The maps show spatial patterns of
yield sensitivity to SHPEs, highlighting regions where crop productivity is most

affected by these compound events. Pie charts depict the proportion of croplands
exhibiting positive (blue) and negative (pink) yield responses to each SHPE event.
Yellow crosses indicate statistically significant at the 0.05 level.
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to yield losses in four major crops, while exhibiting a wide range of het-
erogeneity and non-linear relationships across different regions. The
anticipated tolerance levels ofmajor crops are expected to be low during the
growing season in regions frequently affected by SHPE events. Specifically,

maize and rice in South America and parts of Central Africa; soybean in
South America, India, and China; and wheat in the eastern US, South
America, in scattered areas across Asia, and eastern China, are expected to
exhibit low resilience to the growing season reoccurrences of SHPE events.

Fig. 7 | Likelihood of crop yield loss under frequent occurrences of SHPE events
across global croplands. The coincidences are quantified with values representing
the maize (a), rice (b), soybean (c), and wheat (d) yield loss percentage predicted by
an XGBoost classifier (in %) for the historical data from 1981 to 2016. The rest of the

croplands (graymasks are similar to non-cropland) have insufficient data to validate
a classifier model or no significant dependency corresponding to the effects of
frequent SHPE events.

Fig. 8 | The sensitivity of crop yield loss variance to recurrence of SHPE events
explained by XGBoost regression. Croplands exhibiting statistically significant
(p < 0.05), in which XGBoost regression model explained the frequencies of SHPE
events causing maize (a), rice (b), soybean (c), and wheat (d) crop yield loss in each

grid cell are shown in colors. Non-cropland or cropland grids with insufficient
values, and grids estimated by XGBoost algorithms with no significant dependency,
correspond to the effects of frequent SHPE events (p > 0.05) for the historical period
1981 to 2016, and are presented by the gray masks.
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The explanatory power of XGBoost algorithm has previously been
employed and a more effective model on the concept of boosting has been
used to detect the spatial variation in crop yield under different climate
variables12,37,52,53. Alternatively, the RF regression has been used to obtain the
crop response to drought timescale51, in regional crop yield predictions36.
Owing to such distinctive explaining power, the XGBoost regressionmodel
underscores the considerable risk of yield variabilities for all fourmain crops
due to frequent occurrences of SHPE events.

Notwithstanding the valuable insights this study provides, it is essential
to consider the following limitations. (1) The SHPE analysis for crop-
growing seasons during the period 1979–2024 uses crop-specific calendar
dates to identify SHPEs, focusingon the 90th percentile thresholds tailored to
local climate during active agricultural periods. One drawback of this
threshold is the tendency to overestimate the occurrence of extreme events
in areaswherenodisasters occur. Secondly, in areaswheremore than10%of
disasters are recorded, only the top 10% of events are considered, while the
remaining events are underestimated. Although quantile-based thresholds
have inherent limitations in capturing heterogeneity, here we robustly
quantify extreme conditions by tailoring thresholds in evaluating relative to
the local climate of each cropland grid cell, on a given date of crop growing
day of years, which is abnormal from the climatology that the crop is
adapted to on that particular crop growing day of year. This approach
excludes non-growing seasons and colder periods, which are distinguished
from year-round conditions. It provides a more meaningful assessment of
agriculturally non-relevant extreme events relative to the local climatology
to which crops are adapted during the growing season. (2) The temporal
scope of gridded crop yield data is confined to the years 1981 to 2016, and
has no extensions after 2016. This constrained sample size may limit the
generalizability of our findings and increase the variability of model per-
formance estimates, particularly for the minority class (“yield loss”) in our
imbalanced dataset. However, within our capabilities, we address the class
imbalance issue using stratified sampling, where “no yield loss” is sig-
nificantlymore frequent than “yield loss”.We also employ bootstrapping to
increase the sample size by generating diverse combinations of the original
36 years of data points. Detailed descriptions of reducing fitting noise in the
training set and increasing ensemble diversity and enhancement of
robustness are presented in Data and Methods Section (3) Despite the
usefulness of using fixed cropland and crop calendar over the 36-year study
period in ensuring consistency in spatial and temporal analyses of capturing
long-term yield responses to SHPEs, it failed to account for the potential
shifting of planting to harvesting dates and in considering new crop-
land. The same drawbacks were also encountered in prior studies54,55.
Studies10,54,56 have used this crop-specific fractional harvested area dataset57

to analyze the impact of different climate changes on crops. Again, the crop
calendar data that we obtained from58 has been used in previous
studies10,12,54,59–61. However, we recommend future regional or country-level
studies to consider the twenty-first-century soybean land expansion across
South America62-recent expanded cropland and a flexible crop calendar
following seasonal rainfall onset around planting dates55. (4) Our study
didn’t treat rainfed and irrigated croplands separately.We acknowledge that
rainfed and irrigated croplands respond differently to climate extremes.
Unfortunately, datasets do not incorporate crop growing seasons with crop
yield data, as rainfed and irrigated croplands are consistently compared at
global scales. As a result, our study spanned two crop-growing seasons for
maize, rice, and wheat, and one season for soybeans, with the crop yields
obtained from these cultivation seasons. The findings of Mishra et al.
(2020)48 and Haqiqi et al. (2021)49 suggest that the impact of SHPE events
may differ across croplands in rainfed and irrigated systems. Based on our
findings, further research is needed to understand the details of SHPE and
crop physiology interactions, incorporating non-climatic conditions, such
as soil type and fertility, topography, climate zone, irrigation, and rainfed
agricultural practices, and crop growth stages into the model, which ulti-
mately contributes to the improvements of crop yield. Additionally, we
advise integrating diverse machine learning models into dynamic decision
support systems to enhance mechanistic crop models, thereby helping

capture more complex non-linear relationships between such kind of
sequential climate variables and crop yield loss.

Conclusion
This study reveals the risk of recurrent SHPE events, which can lead to
significant yield losses in major breadbaskets. The occurrences of SHPEs
during the intra-crop growing seasons of the four crops show heterogeneity
in their frequencies and durations, with this being more pronounced in the
global South. Our empirical results suggest that the historical hot event
favors more occurrences of intensified pluvial events in the crop growing
periods. Yields are more responsive to SHPE events in both negative and
positive directions compared to univariate pluvial events that do not have
preceding hot events.

The model indicates that hotspot regions are more prevalent in mar-
ginal communities and non-developed countries experiencing food inse-
curity, particularly in the Bantu region of Africa, South America, and South
and Southeast Asia. These areas are characterized by frequent and pro-
longed incidences of SHPE events, highlighting the need for climate-
resilient agricultural practices and tailored adaptation strategies to mitigate
the risk of synchronized low crop yields resulting from such sequential
events. Conversely, developed countries experience the loss to a lesser
extent; maybe, developed countries mitigate the impact with latest tech-
nologies and a mechanized production approach.

Data and Methods
Meteorological Data
The temperature and precipitation data are obtained from the European
Center for Medium-Range Weather Forecasts (ECMWF) fifth-generation
atmospheric reanalysis (ERA5) at a resolution of 1˚ × 1˚. The daily max-
imum temperature (Tmax) is calculated using themaximumof the 24-hour
data, and hourly precipitation data are aggregated to total precipitation at a
daily time step. We limit our analysis to post-1979 (1979–2024) with the
base period of 1981–2010 to minimize known biases in ERA5 for the pre-
satellite period in climate datasets.

Crop yield Data
The crop yield data is retrieved from Global Dataset of Historical Yield
(GDHY) aligned version v1.2+ v1.3 data from T. Iizumi63. The GDHY is a
hybrid of agricultural census statistics and satellite remote sensing crop yield
data from the United Nations FAO national statistics. It is gridded to a 0.5°
resolution for ~20,000 subnational political units over 1981–2016, and the
sparse GDHY dataset in the pre-1990s is addressed using backward linear
interpolation. Studies in thepast28,61,63–66 have beenused this data source.The
focus of this study is on the globally dominant staple crops, includingmaize,
rice, soybeans, and wheat, which yield high calories and are distributed
worldwide. The extent of maize, rice, soybean, and wheat cropland area
fraction is provided by the cropland and pasture area in the 2000 Dataset57.
These crop-specific fractional harvested area data represent the average
fractional proportion of a grid cell that is harvested in a crop during the
1997–2003 era. These data are derived by combining agricultural inventory
data and satellite-derived land cover data at a 5min resolution. This dataset
has been used in previous studies10,54,56 to analyze the impacts of different
climate change scenarios on crops. We coarsen the grid of each cropland
area into 10 resolutions to match the resolution of meteorological variables.
We obtain crop calendar data from58, which is used in previous
studies10,12,54,59–61. To represent the growing season, the SHPE climate
extremes are extracted from the average crop sowing periods through the
end of harvesting periods based on a global crop calendar.

Definitions of successive hot-pluvial extreme (SHPE) events
A heatwave event is defined as when the daily Tmax exceeds the 90th per-
centile of that day, estimated from the base period, for at least three con-
secutive days23,36. The 90th percentile will capture more events of bivariate
extremes than the 95th percentile. The threshold for Tmax is calculated for
each grid cell using a 5-day running window, based on the 90th percentile
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for each day, as recommended by the Expert Team on Climate Change
Detection and Indices67. The calculation of percentiles is done empirically
on the pooled data from the base period, covering 30 years and ±2 days,
resulting in 30 × 5 = 150 values. The 5-day surrounding running window
helps to consider only the specific days of the crop calendar rather than the
wholemonthsor the seasonalmoving average.Apluvial event is determined
when daily precipitation exceeds the 90th percentile of the daily
precipitation13,21 from Pt ≥ 1mm for one or more consecutive days of each
crop calendar, which helps to filter out persistently dry regions to focus on
agriculturally relevant wet extremes within the local crop growing period.

SHPE events refer to the phenomenon of hot events being followed by
pluvial within a seven-day temporal interval13,15,16,30. We adopt the expla-
nation of Sun et al.15 and You et al.30 regarding the selection time interval of
up to 7 days to balance the trade-off between potential impact and the
duration of hot extremes, which is longer than three consecutive days and a
daily duration of pluvial events. As the 7-day window length shrinks, it
would limit crop recovery from the preceding hot hazard, and when
selecting SHPEs that last more than the 7-day window, the crop can gain
time to recover, which results in situations similar to univariate hot or
pluvial extremes. The regimes of the SHPEs capture primarily more events
during warmer seasons. To avoid redundancy, we determine the start and
end times of eachSHPEevent from the start of hot to the endof pluvial event
in the crops calendar.

Analyzing the characteristics of SHPEs
We calculate SHPE by considering the combined (except soybean) growing
period from the beginning of sowing to the end of the harvesting period.
One SHPE event can occur during both overlapped crop seasons of a har-
vested area, but here we consider only one phase of the crop seasons. The
trend in the frequencies of SHPEevents are assessedusing Sen’s slope for the
trend and the Mann–Kendall test for the statistical significance, both of
which are calculated through an iterative method to take into account the
autocorrelation that was proposed by Zhang et al. (2000)68, modified and
refined by Wang & Swail (2001)69 and Qian et al.(2019)70. To account for
varying crop growing season durations across different regions, we nor-
malize the crop calendars to a common scale and compute them as follows,
and expressed in percentage.

SHPE durationi;j ¼
1

CCli;j

×
1

CSni;j

Xni;j

e¼1

PðeÞ
i;j � HðeÞ

i;j

� �
× 100

Where SHPEdurationi;j is the average duration of SHPE occurrences per crop
calendar.Hi;j is day of hot event onset at grid cell ði; jÞ;Pi;j is day of cessation
of pluvial event following the hot event at grid cell ði; jÞ; SHPDi;j is the
duration of SHPE events at grid cell ði; jÞ in percent;Di;j ¼ Pi;j � Hi;j is the
duration of a single SHPEevent at a grid cell i; j

� �
;CCli;j is the length of crop

calendar; CSni;j is number of crop-growing seasons for the entire 46 years;

ni;j is number of SHPE events at i; j
� �

; HðeÞ
i;j ; P

ðeÞ
i;j is start and end day of the

eth event, respectively. For instance, if a grid cell has 250 days of crop

calendar length and 36 days of them (
Pni;j

e¼1 PðeÞ
i;j � HðeÞ

i;j

� �
) are under SHPE,

then 1
46 ×

36
250 × 100% = 0.31% of the durations are under SHPE per crop

growing season. This allows comparison across locationswith different crop
durations.

Composite analysis
At broader spatial scales, composite analysis can be used to reveal the
linkage between extremes and yield impact32. We employ a composite of
a pluvial (hot) intensity to understand the detailed intensity of pluvial
(hot) events with preceding hot (following pluvial) events and pluvial
(hot) without preceding hot (following pluvial) events over the four
croplands as presented in Fig. 4, and Supplementary Fig. 5, respectively.
To estimate informative confidence intervals and test the statistical

significance non-parametrically, a 1000-iteration bootstrap efficient
approach has been used.

Crop yield percentage change (η)
To quantify the impacts of SHPE on crop yield, first, the crop yield changes
relative to a 5-year window temporal trend are removed using a LOWESS71.
The LOWESS method applied in this study can account for the possible
non-linearity of the trend spanning the period from 1981 to 2016 in the
double-filter adopted method. This approach begins with conducting the
LOWESS regression model using a 5-year (t− 2 to t+ 2) window and a
smoothing span (f) of 0.14 over 36 years and has been used before by Kim
et al. (2023)28. To test the arbitrariness of our selections, we conduct sen-
sitivity analyses using alternative 3, 4, 6, and 7-year windows, each with a
corresponding span f = 0.08, 0.11, 0.17, and 0.20 (Supplementary Fig. 11).
The results show minor differences. Thus, our choice of span and moving
average does not unduly influence the conclusions, and the identified yield
anomalies are structurally robust under reasonable detrending assumptions
(Supplementary Fig. 12). In terms of the two RMSE and Leave-One-Out
Cross-Validation (LOOCV) combined metrics, the f = 0.14% of fraction
under 5-year window parametrization has overtaken the third rank next to
f = 0.08%, 3-yearwindow, and f = 0.20%under 7-yearwindow.For instance,
the parameter set has been selected with moderate RMSE (0.55) and
LOOCV score (0.33). Supplementary Fig. 13 also confirms that the general
patterns remains stable, demonstrating that our conclusions are not overly
sensitive to these smoothing parameters. Thus, the yield in t (5-yr) window
choices allows us to exclude long-term yield trends associated with long-
term climate change, and other non-climatic factors like technological
advancement, land use and soil management changes, genetic improve-
ments, policy and economic shifts, and infrastructure development, while
retaining short-term variability (e.g., weather fluctuations). This 5-yr win-
dow is long enough to account for typical climate cycles, such as the El
Niño–Southern Oscillation phenomenon. LOWESS is recognized as a
highly effective detrending technique for analyzing crop yield data66, which
allows us to explain how crop yield losses are related to the occurrences of
SHPE events. Through the identification of the recurrent occurrences of
SHPE years, the impact of SHPE event on crop yield for a given grid cell can
be quantified by comparing the crop yield under SHPE year with the yield
expected from the long-term LOWESS trend. The calculation of yield
percentage change(η) ismodified fromGimeno&Miralles66 andbyLi et al.34

asηi;t ¼ 1
n

Pn
k¼1

Yi;t�μi;t
μi;t

� �
× 100%, whereYi;t is cropyield (t ha

−1) andμi;t is

the long-term trend obtained by 5-year moving average LOWESS (t ha−1).
This yield percentage change reflects the yield departure from its long-
term trend.

Linear regression
This regression model is prescribed based on the historical linear relation-
ship between the occurrences of SHPE events and crop yield. We estimate
the historical yield sensitivity to the events as the slope coefficient. The slope
coefficients and associated p-values for each grid cell where detrended yields
are regressed against the detrended frequencies of SHPE. To assess regional
vulnerability, we calculate the percentage of grid cells within each IPCC
region72 that exhibit negative regression slopes. We then apply k-means
clustering togroup grid cellswith similar slope characteristics for each IPCC
region. Focusing on identifying clusters with negative slopes (indicating
yield losses associatedwith SHPEs), we compute the percentage of grid cells
exhibiting negative slope coefficients for each IPCC region, relative to the
total number of cropland grid cells in that region. This indicates the asso-
ciation of increased SHPE frequency with declining crop yields in an indi-
vidual climatic zone.

eXtreme gradient boost (XGBoost) classifier
This study evaluates the efficacy of machine learning models in explaining
the fourmajor staple crops’ yield loss due to SHPEs. Statistical models often
encounter various challenges, such as overfitting, hyperparameter tuning,
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insufficient data, and data quality issues, which are commonly observed in
crop modeling. To overcome these challenges, we implement cross-
validation (CV), hyperparameter tuning, and bootstrapping approaches.
These techniques help to evaluate the performance of themodels, fine-tune
hyperparameters, and enhance model generalization. The XGBoost classi-
fier method is a new member of the ensemble learning family that exhibits
robust performance, and it is an improved version of the gradient boosting
decision tree33. This study involves a comparative analysis of the XGBoost
classifier with RF classifier methods, in order to produce more robust and
reliable results on the potential occurrence of recurrent SHPE events that
lead to crop yield reduction. The SHPE reoccurrence indices (SHPI) and
standardized crop yield indices (SCI) are labeled as SHPI > 0 and SCI < -σ,
where a crop yield reduction is defined as the case when detrended crop
yield, transformed into its standardized form, falls below -σ. Here, σ
represents one standard deviation of the detrended crop yield anomalies.

The stratified sampling model configuration accounts for class
imbalance, where “no yield loss” is significantly more frequent than “yield
loss”. Specifically, we use the ‘stratify=labels’ parameter in the train-test-split
function (with test-size = 0.2 and random-state = 42) to prevent skewed
class distributions in the training and testing subsets, thereby mitigating
potential biases in model performance. The ‘test-size = 0.2’ ensures
approximately 7 test samples and 29 training samples from our 36 annual
grid-wise data points, which is a reasonable split given the small dataset size,
with random-state = 42 ensuring reproducibility. To enhance robustness,
we implement 10-fold stratifiedCV.The ‘scale_pos_weight’ inXGBoost and
class-weight = ‘balanced’ in RF handles crop yield data imbalance (to
emphasize the minority class) during training based on the negative to
positive sample ratio. Additionally, we employ the probability calibrations
via Calibrated-Classifier-CV to improve the reliability of predicted prob-
ability estimation with Platt scaling (“method = ‘sigmoid’”). This is to align
the predicted probabilities of crop yields with observed SHPE events, which
is essential for conditional probability outputs in our yield loss prediction
task. The probability curve+ F1 max threshold tuning are used for a better
decisionboundary for rare cropyield loss classes.Weuse a 10-fold Stratified-
K-Fold CV to preserve class proportions (imbalance) across folds for a
reliable estimate of regression model performance. In the gradient boosting
ensemble, 500 bootstrap samples are utilized to reduce fitting noise during
training, increase ensemble diversity, and reduce correlation between trees.

The classifier model’s competence and robustness are evaluated using
precision, which measures the accuracy of predicted “yield loss” events;
recall, which captures the effectiveness of detecting actual “yield loss” cases;
and the F1-Score, a harmonic mean of precision and recall evaluation
indicators. Instead of a fixed 0.5 threshold, we use precision-recall curve
threshold optimization tofind the threshold thatmaximizes theF1-score for
each grid, for better detection of rare “yield loss” events. The XGBoost
classifier approach is a cornerstone tool for assessing the likelihood of
recurrent SHPE occurrences and crop yield losses due to its robustness and
versatility. Confidence intervals for predicted probabilities are calculated
using bootstrapping iterations.

We employ an RF classifiermachine learningmodel, a meta estimator
that trains multiple decision tree classifiers on various subsets of the dataset
to evaluate the likelihood of crop yield reduction in the presence of frequent
SHPE events. Within each node of the trees constructed using boot-
strapping, a specific number of randomly selected parameters—such as 500
trees, two minimum leaf sizes, and 10 folds for CV—are set with the same
labeling of SHPI and SCI, following the splitting approach of the XGBoost
classifier. Subsequently, k-fold CV is carried out for model evaluation. This
classifier is used to estimate probabilities of yield reduction on the test set
based on SHPE indicators by leveraging the trained scikit-learn ensemble
classifier algorithms73.

eXtreme gradient boost (XGBoost) regression
Weuse XGBoost- a scalablemachine learning algorithm proposed by Chen
and Guestrin74 to explain the variability of crop yield under the occurrences
of SHPE events. In earlier studies, the crop response to climate extremes has

been detected with interpretive XGBoost machine learning12,37,52,53,75,76. The
basic principle of this approach is to consider a multiple of “weak” learners
that are combined to produce a single “strong” learner more effectively on
the concept of boosting37, through the iterative expansion of individual
decision trees52,77. Owing to such distinctive advantages, XGBoost is an
advanced method of interpreting results from tree-based models. The
coefficient of determination (R²) reveals the degree of non-linear relation-
ship between the detrended occurrences of SHPE and crop yield vari-
abilities. We choose the XGBoost regression hyperparameter grid
(n_estimators=500, learning_rate=0.01, max_depth=10, subsample=0.8,
colsample_bytree=0.8, gamma=0.2) as a conservative, regularized setup to
balance learning stability and generalization, suitable for imbalanced data
with 1000 bootstrapping samples.

For tuningpurposes,we split thenumberof SHPEevents (features) and
crop yield (labels) datasets as 80%/20% for training and validation subsets,
respectively. The hyperparameters, the number of (1000) gradient boosted
treeswith amaximumdepth of ten decision trees, are trained iterativelywith
10-fold stratifiedCV. TheCV tests approachwithin each of the tenCV folds
is used to calculate the mean of the observed R2 in the occurrences of SHPE
as the feature that explains the loss in cropyield.Abootstrapping approach is
implemented to estimate the loss of R² values and to analyze the statistical
significance of the observed R² compared to what would be expected by
chance using P-value at a level of 0.05. The performance of the regression
models is assessed using adjusted R² to measure goodness-of-fit while
accounting for the number of predictors, alongside RMSE and MAE33–35.

Data availability
The crop yield data and the growing season calendar data are both publicly
available at GDHY and Center for Sustainability and the Global Environ-
ment (https://sage.nelson.wisc.edu/), respectively. Both the hourly tem-
perature and precipitation data are available at ERA-5 Land hourly datasets
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=
download.

Code availability
The codes necessary to conduct the analysis and create the figures presented
here are available from the authors upon reasonable request.
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