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Ecological levers for microbially driven
water treatment enhance pollutant
removal prediction
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Microbial communities are central to the functioning and resilience of biological water treatment
systems, yet their structural and functional determinants remain poorly understood. Here, an
interpretable machine-learned framework is developed to decode ecological drivers of treatment
performance across 648 globally distributed biofilters. Keystone taxa, such as Nitrospira,
Hyphomicrobium, Flavobacterium, are identified via deep ecological modeling. Models that include
microbial ecological indicators, particularly the presence ratios of structural and functional keystone
taxa, improvepollutant removal prediction (R²=0.742) by 36.9%comparedwithmodels basedonly on
process parameters. Generalized additive models with structured interactions further reveal volume,
temperature, media size, and hydraulic retention time as ecological levers shapingmicrobial structure
and function. Lab-scale biofilter experiments demonstrate consistent microbial shifts and improved
treatment performance aligned with model predictions. These findings enable targeted microbiome
control in biofilters and provide a foundation for adaptive operation of biological water systems under
environmental variability.

As global water systems face escalating challenges of resource scarcity, cli-
mate variability, and emerging contaminants, the demand for energy-
efficient and ecologically robust treatment technologies has intensified1,2.
Biofiltration systems, including rapid sand filters, granular activated carbon
filters, and denitrification filters, have gained prominence across drinking
water, stormwater, and wastewater treatment due to their low energy
requirements and intrinsic microbial self-regulation3. However, their per-
formance often suffers from instability, which is largely attributable to
complex and poorly understood microbially mediated processes4.

Microbial communities underpin the core functions of biologicalwater
treatment systems, especially in biological filtration processes where
microbial assemblagesmediate contaminant transformation, redox cycling,
and resilience to environmental perturbations across diverse water types5,6.
High-throughput sequencing and functional annotation pipelines, such as
16S rRNA gene inference, metagenomics, have enabled comprehensive
profiling of microbial consortia in bioreactors. However, most studies still
rely on bulk-level descriptors that lack mechanistic depth7. Therefore,
despite decades of operational optimization, the ability to harness and
control microbial community dynamics for reliable and resilient treatment
performance remains limited8. A central challenge lies in the dynamic
nature of microbial composition, the nonlinear relationships between
structure and function, and the difficulty of generalizing ecological

responses to environmental shifts across systems9. Previous microbiome
modeling efforts have sought to link community profiles with treatment
performance, but most rely on correlation analyses, co-occurrence net-
works, and black-boxmachine learning10,11. These approaches often achieve
limited transferability across operating conditions, and their opaque feature
attributions hinder practical application12. There remains a critical need for
approaches that couple predictive capacity with mechanistic transparency,
enabling ecological insights to be translated into actionable levers forprocess
stability13,14.

Recent advances in ecological theory and computational modeling
suggest that microbial ecosystems may be governed by a small set of key-
stone taxa that disproportionately influence community stability and
functionality, even when present at moderate or low abundance15. These
keystone members may serve as sentinels or even control nodes for bio-
process performance, particularly under stress or transitional regimes16.
Nevertheless, a central knowledge gap remains in translating ecological
insights into actionable engineering strategies, specifically whether and how
keystone taxa configurations can be predictably tuned through controllable
levers to ensure stable and efficient treatment outcomes17.

The rise of interpretablemachine learningoffers valuable opportunities
to resolve these ecological complexities. Unlike black-box predictors,
models such as SHapley Additive exPlanations (SHAP) enabled ensembles,
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generalized additive models with interactions (GAMI), and neural additive
models can attribute output variation to specific input features in ways that
are both statistically transparent and biologically interpretable18–20. Inte-
grating these approaches into microbial ecology could enable data-driven
frameworks that explain and control bioprocess performance across het-
erogeneous treatment environments.

In this study, we address these gaps by developing an interpretable,
machine learning-based ecological framework that systematically decodes
the relationships between microbial composition, ecological function, and
pollutant removal across a global collection of biofilters (Fig. 1). We (i)
identify structural and functional driver taxa using deep learning-based
keystone inference; (ii) establish ecological indicators that reliably predict
treatment outcomes based solely on microbial community properties; and
(iii) apply a transparent and modular machine learning architecture to
disentangle how environmental and operational parameters act as ecolo-
gical levers that shape these key microbial features. Finally, we validate
model-predicted ecological pathways with lab-scale biofilter experiments,
providing proof-of-concept that microbiome-responsive engineering can
move from abstraction to actionable control.

Results
Microbial diversity and metabolic function profiles in global
biofilters
Biofiltration host diverse and dynamic microbial communities that play
central roles in pollutant transformation, nutrient cycling, and system
resilience21. To comprehensively elucidate the global patterns of bacterial
communities in biofiltration processes, accessible and high-quality 16S
rRNA gene sequencing data were extracted from 1165 relevant research
articles published between 1988 and 2024 on the Web of Science Core
Collection database. A dataset comprising 648 biofilter samples was con-
structed, encompassing a broad range of geographical locations (across 3
continents, 10 countries, and 40 cities), water types (drinking water,
groundwater, stormwater, and wastewater), and operational conditions
(Fig. 2a and Supplementary Table 1). A comparative analysis of microbial
communities in biofilters worldwide in terms of species richness, diversity,
and evenness reveals a generallyhighdegreeof geographicheterogeneity, yet
several discernible patterns can still be identified (Supplementary Fig. 1). For
instance, microbial communities in North America typically exhibit lower
species richness and evenness compared to those in Europe and Asia, but
display higher overall diversity (Fig. 2b–d). This pattern may reflect region-
specific selective pressures. North American drinking water systems often
employ more intensive disinfection practices and exhibit lower natural
organic matter loads, which constrain species richness but allow niche
partitioning among a smaller set of functionally diverse taxa22,23. Microbial
communities in Asian biofilters show more dispersed distributions across
richness, diversity, and evenness, indicating pronounced regional varia-
bility, as exemplified by the community structures observed in cities such as
Chengdu andGuangzhou,China. It is likely driven byheterogeneous source
waters, broader climatic gradients, and varied operational strategies, which
together contribute to the observed variability in community structure5.

The wastewater biofilter and drinking water biofilter did not exhibit
significant differences in community structure (Wilcoxon test) (Fig. 2e–g).
However, the species richness (2082 ± 854) and community diversity
(6.55 ± 0.77) of the stormwater biofilter were significantly higher than those
of other filter types (Wilcoxon test, p < 0.001). These differences likely arise
from the episodic and heterogeneous characteristics of stormwater inputs,
which introduce diverse microbial communities and substrates, thereby
promoting higher community diversity24. Based on Spearman correlation
analysis, the relationship between external factors and genus-levelmicrobial
abundance indicates that, in addition to water quality factors, environ-
mental conditions (e.g. temperature) and operational parameters (filter
media, flow rate, etc.) jointly shape community composition (Supplemen-
tary Figs. 2–3). In parallel, PICRUSt2 functional gene predictions based on
16S rRNA uncovered system-specific enrichment of key metabolic path-
ways,withover 83%of themetabolic pathways present in all fourfilter types,

including ABC transporters, nitrogen metabolism, and TCA cycle (Fig. 2h
and Supplementary Table 2). Significant differences in microbial metabolic
pathways (suchas synthesis anddegradation of ketone bodies, and fatty acid
biosynthesis) were observed among drinking water, groundwater, storm-
water, and wastewater filters (Kruskal-Wallis test, p < 0.001) (Fig. 2i, Sup-
plementary Fig. 4 and SupplementaryTable 3). These differences resulted in
varying activity of microbial metabolic pathways across different water
types25,26. Notably, while community composition varied substantially
across systems, several functional modules, particularly those associated
with nitrogen and carbon metabolism, were recurrently maintained, indi-
cating a degree of functional redundancy (Supplementary Fig. 5). Such
redundancy ensures the stability of biofiltration processes against envir-
onmental perturbations and stochastic community shifts, and underpins
the robustness of pollutant removal and nutrient cycling27. Collectively,
these results present a global dataset of microbial diversity and metabolic
capacity in biofiltration ecosystems, setting the stage for mechanistic
exploration of structure and function linkages and controllable drivers.

Identifying microbial keystone taxa in biofilter by deep
learning model
To disentangle microbial determinants underlying community assembly
and ecosystem robustness in global biofilters, a deep learning approach
basedonNeuralOrdinaryDifferentialEquations, enhancedwith automated
hyperparameter tuning via Optuna and L1 regularization, was employed to
identify keystone taxa28 (Fig. 1b). Eachmicrobiome sample is encoded by a
binary genus assemblage vector z ∈ {0,1}ⁿ, indicating the presence or
absence of each genus, and an associated abundance profile p ∈ Δⁿ,
representing relative genus-level composition. The Neural Ordinary Dif-
ferential Equations model learns a continuous mapping φ: z→ p, such that
φ(z) approximates the observed abundance given the taxonomic assem-
blage, thereby enabling simulation of community responses to perturba-
tions. To evaluate the ecological importance of each genus, in silico genus
removal was performed by modifying z to z ̃= z \ i, predicting the resulting
composition φ(z)̃, and comparing it with a null composition p̄ that assumes
no ecological effect. The structural keystoneness score (Ks) of genus i was
then defined as the dissimilarity between φ(z)̃ and p̄, scaled by a biomass
adjustment factor (1−pᵢ), capturing both impact and disproportionality.
The approach was validated using synthetic data generated from a gen-
eralized Lotka–Volterra (GLV) model with 100 genera, showing strong
agreement between predicted and true Ks values (Spearman ρ = 0.98,
p < 0.001), thereby demonstrating high accuracy in capturing ecological
relevance under controlled conditions (Supplementary Fig. 6). Further-
more, by incorporating a functional gene network, the approach was
extended to compute the functional keystoneness score (Kf), which quan-
tifies the impact of genus removal on the predicted functional profile of the
community (Supplementary Fig. 7).

Ks for each genus detected in the samples was calculated, and genera
present in at least 25%of the sampleswere ranked based on theirmedianKs
values (Supplementary Fig. 8). Genera with higher median Ks, such as
Gemmobacter, exhibited greater inter-sample variability in Ks, indicating
stronger community specificity in their structural roles (Fig. 3a). In contrast,
generawith lowermedianKs, such asClostridium sensu stricto 13, displayed
lower variability, suggestingmore consistent structural contributions across
communities (Fig. 3b). Furthermore, median Ks and median absolute
deviation of Ks (MAD Ks) were highly correlated (Spearman’s ρ = 0.97,
p < 0.001), implying that genera with low median Ks are unlikely to be
structural keystone taxa in any community,whereas thosewithhighmedian
Ksmay serve as keystone taxa in some communities but not others (Fig. 3e).
Similarly, Kf showed a strong positive correlation between its median value
and MAD Kf (Spearman’s ρ = 0.97, p < 0.001) (Fig. 3f). Genera with high
median Kf, such as Nitrospira, showed substantial inter-sample variability,
indicative of stronger community specificity in their functional roles
(Fig. 3c). Conversely, genera with lowmedian Kf, such as the Burkholderia-
complex, exhibited limited variation, suggesting more consistent functional
keystoneness across communities (Fig. 3d). The relative abundance analysis
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reveals that most keystone taxa exhibit low abundance, which is consistent
with the theoretical definition of keystone taxa as rare but critical members
within microbial communities16,29 (Supplementary Fig. 9).

Among the top 20 genera ranked by Ks and Kf, several taxa were
shared, including Nitrospira, Hyphomicrobium, Flavobacterium, Bradyrhi-
zobium, and Reyranella, highlighting their dual importance in sustaining

both community architecture and ecosystem function. Nitrospira has been
widely recognized as a dominant nitrite oxidizer in diverse water treatment
systems, and its high Ks andKf values here suggest not only its essential role
in nitrification but also its network centrality5,30. Hyphomicrobium is often
reported in denitrifying biofilms and MBRs due to its ability to utilize
methanol and other C1 compounds, linking it to carbon–nitrogen

Fig. 1 | Graphical overview of the primary analyses in this study. aMicrobial and
operational data were compiled from 648 biofilters treating various influent types.
b Structural and functional keystone taxa were identified using deep learning-based
modeling approaches. cMicrobial indicators were used as inputs to train and

interpret machine learning models for predicting pollutant removal rates.
d Interpretable modeling revealed key environmental and operational levers (e.g.,
temperature, HRT, filter media) influencing keystone taxa expression, which were
further validated through lab-scale biofilter experiments.
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coupling31,32. Flavobacterium is frequently associated with organic matter
degradation and biofilm formation, thereby influencing both nutrient
turnover andmicrobial interactions33,34. The fact that these taxa exhibit high
Ks and Kf presence ratios indicates that keystone indicators capture both
ecological indispensability in community structure and functional sig-
nificance inmetabolic potential, which together underpin their reliability as

criticalmarkers of systemperformance. Interestingly, certain genera, such as
Pseudomonas and Sphingomonas ranked highly in Ks but not in Kf. This
suggests that they may play a central role in community structure, possibly
through biofilm formation or interspecies interactions, without directly
driving key biogeochemical functions35.Massilia andMycobacterium were
identified among the top Kf but not within Ks, reflecting specialized
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metabolic capacities (e.g., pollutant degradation or stress tolerance) that
enhance biofilter function without making them central to community
structure. Generally, a genus exhibits a lower Kf than Ks, likely reflecting
functional redundancy, where phylogenetically distinct genera possess
similar genes and fulfill comparable functions. This redundancy is believed
to contribute to the stability and resilience of microbial communities36.

Predicting biofilter performance frommicrobial ecological
indicators
The divergence between structural and functional keystone taxa reflects
ecological redundancy that enhances microbiome stability under dis-
turbance, while also presenting an engineering opportunity: the potential to
translate keystone-derived signals into quantitative predictors of treatment
performance. This requires a framework that integrates keystone metrics
with community-level traits to forecast pollutant removal under variable
conditions. Accordingly, machine learning was applied to integrated
microbial ecological indicators to predict biofilter performance and pin-
point the features most strongly associated with removal efficiency. Three
feature categories were considered: (A) keystone-based indicators, (B)
structural community metrics, and (C) functional gene profiles. These were
combined into four input groups (ABC,AB,AC,BC) andevaluatedusing15
machine learning algorithms, encompassing tree ensembles, kernel
regressors, linearmodels, and non-parametric or neural networkmethods37

(Supplementary Table 4). Model hyperparameters were tuned to optimize
their performance, and the corresponding ranges of hyperparameters are
summarized in Supplementary Table 5.

Tomitigate the impact ofmulticollinearity, redundant features with an
absolute Pearson correlation coefficient |r| > 0.85 were removed, ensuring
the reliability and interpretability of the model’s predictions (Supplemen-
tary Fig. 10). Among all feature combinations, the ABC feature group that
integrates keystone taxa indicators with structural and functional descrip-
tors showed generally higher predictionperformance (Fig. 4a). Inparticular,
theK-NearestNeighbor (KNN)model trainedon this complete set achieved
the highest accuracy (R2 = 0.742), along with the lowest observed errors
(MAE = 13.25, MAPE = 0.133, MSE = 415, and RMSE = 20.37), out-
performing other top-performing models including support vector regres-
sion (SVR), extra trees (ET), andCatBoost (R2 ranging from 0.625 to 0.669).
These results underscore the model’s superior ability to capture nonlinear
mappings betweenmicrobial features and process performance (Fig. 4b). In
contrast, linear models such as Lasso exhibited markedly poorer perfor-
mance,withR2 values below 0.1. Importantly, compared to themodel based
solely on process parameters, the microbiome-informed KNN model
reduced average prediction errors by over 25.0% and improvedR2 by 36.9%,
demonstrating the substantial value of incorporating microbial indicators
into predictive frameworks for biofilter system performance (Supplemen-
tary Table 6).

The internal logic of the best-performing KNN model was examined
using SHAP to identify important microbial predictors of pollutant
removal. Remarkably, the presence ratios of Ks and Kf, representing
structural and functional keystone taxa respectively, ranked as the most
influential positive predictors of pollutant removal, highlighting the critical
role these keystone taxa play in driving treatment efficacy (Supplementary
Fig. 11). The presence of keystone taxa, even at low abundance, provided

greater predictive power than traditional diversity indices or functional
genes abundances. This observation aligns with emerging ecology theory,
which emphasize the disproportionate regulatory influence of low-
abundance taxa in preserving system resilience and functional
redundancy38,39. Crucially, the model was constructed without environ-
mental or operational parameters, thereby isolating microbial indicators as
the sole input. This design minimizes potential confounding from exo-
genous drivers and reinforces the intrinsic predictive value of microbiome-
informed variables40.

Inferring tunable ecological levers of microbial structure and
function
Following the identification of Ks and Kf presence ratios as reliable
microbial indicators of pollutant removal, their responsiveness to con-
trollable operational and environmental factors was evaluated. This enables
translation of microbiome-based diagnostics into design-relevant control
strategies. An explainable neural network based on generalized additive
models with structured interactions (GAMI-Net) was trained on a global
biofilter dataset tomodel the effects of 11 tunable variables, including water
type, target pollutant, pH, temperature, hydraulic retention time (HRT),
flow rate, working volume, media type, filter media size, nutritional con-
dition, and oxygen condition. As shown in Supplementary Figs. 12a,
b and 13a, b, the GAMI-Net model undergoes three training stages: main
effect learning, pairwise interactionmodeling, and fine-tuning with sparsity
constraints. Transitions between stages are marked by shifts in training and
validation loss curves, with the incorporation of pairwise interactions
leading to notable performance gains. Supplementary Figs. 12c, d and 13c, d
illustrate how GAMI-Net adaptively selects significant main and pairwise
effects through structured pruning during training, balancing model com-
plexity and interpretability while mitigating overfitting.

The model demonstrated strong explanatory power, with R2 of 0.854
for Ks presence ratio and 0.845 for Kf presence ratio, and corresponding
MAEs of 0.083 and 0.077, respectively. The Ks presence ratio was primarily
modulated by working volume (IR = 32.8%), temperature (27.5%), filter
media size (10.5%), andHRT (6.3%) (Supplementary Fig. 14). Systemswith
reducedworking volumes and shorterHRTs exhibited elevatedKs presence
ratios, suggesting that more compact and hydraulically dynamic environ-
ments promote the dominance or resilience of structurally influential taxa
(Fig. 5). These conditions likely create steeper substrate gradients and
stronger biofilm selection pressures, favoring keystone taxa such as Pseu-
domonas, Sphingomonas, Nitrospira, and Hyphomicrobium, known for
their biofilm formation, metabolic versatility5,41,42. Filter media with particle
sizes <10mm increased surface area and enhanced microbial attachment,
fostering tighter community networks and more stable structural cores,
consistent with established knowledge of filter media performance43,44. By
contrast, larger media limit attachment density and weaken network
cohesion. Interestingly, Ks presence ratio exhibited a non-monotonic
response to temperature, with local maxima observed at 12 °C and 25 °C,
possibly reflecting context-specific microbial interactions or niche shifts
along the thermal gradient45. This behavior may result from shifts in
microbial interaction structure, with intermediate temperatures favoring
transitions from competition to facilitation that enhance metabolic or
functional diversity46. Theory also indicates that variation in the

Fig. 2 | Microbial community structure and metabolic function profiles across
global biofilters. a Geographic distribution of biofilter samples for drinking water
(green), groundwater (purple), stormwater (yellow), wastewater (pink) treatment. A
total of 648 biofilter samples were collected from 1165 published articles that
included environmental and operational parameters. Raw 16S rRNA gene sequen-
cing data were strictly screened from National Center for Biotechnology Informa-
tion. Community richness (observed species) (b), diversity (Shannon’s index) (c),
and evenness (Simpson’s index) (d) across biofilters from different continents. The
horizontal line within each box indicates the median; the box indicates the first
(lower) and third (upper) quartiles; and the whiskers indicate the minimum and

maximum values aside from potential outliers. Differences of community richness
(observed species) (e), diversity (Shannon’s index) (f), and evenness (Simpson’s
index) (g) of communities among drinking water, groundwater, stormwater, and
wastewater biofilters (determined by Wilcoxon test). *p < 0.05, **p < 0.01,
***p < 0.001. DW drinking water, GW groundwater, SW stormwater, WW was-
tewater. h Venn diagram illustrating the specific or shared metabolic functions
among the four biofilter types. i Top 10 differential microbial metabolic pathways
among the four biofilter types (determined by Kruskal–Wallis test). Bar plots show
the relative proportion of KEGG level-3 metabolic pathways.
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temperature dependence of growth rates and interaction strengths can
generate richness–temperature curves, with peaks at specific points along
the gradient47. In addition, latent functional diversity and species sorting
processes may enable communities to achieve distinct functional optima at
different temperatures48. However, these interpretations remain tentative,
and multiple mechanisms could contribute to the observed pattern. Simi-
larly, theKf presence ratiowas governed by the same environmental drivers,
with temperature (38.9%) exerting the strongest influence, followed by
working volume (29.9%), filter media size (9.4%), and HRT (5.9%) (Fig. 6
and Supplementary Fig. 15). Importantly, filter media size, expressed as

particle diameter, andfiltermedia type, definedbymaterial composition, are
complementary attributes of biofilm carriers. Size influences available sur-
face area and mass transfer, whereas type shapes physicochemical interac-
tions and microbial colonization. Among different filter media types,
carbon-based materials (CarBM) had the strongest positive impact on
microbial structure and function, followed by synthetic polymericmaterials
(SynPM), modified composite materials (ModCM), and mineral substrate
materials (MinSM), with ceramic-basedmaterials (CerBM) performing the
worst. These ecological levers regulate microbial structure and function by
shaping substrate availability, attachment niches, and interaction dynamics.

Fig. 3 | Structural and functional keystone taxa identified from global biofilter
microbiomes.Distributions of structural keystoneness scores (Ks) for the top 20 (a)
and bottom 20 (b) genera, ranked by median Ks across all samples. Only genera
present in at least 25% of the samples and ranked among the top 300 in relative
abundance are shown. Distributions of functional contribution scores (Kf) for the
top 20 (c) and bottom 20 (d) genera, ranked by median Kf across all samples.

e Spearman correlation between median Ks and median absolute deviation (MAD)
of Ks across samples for structural keystone taxa. f Spearman correlation between
median Kf and MAD Kf across samples for functional keystone taxa. Spearman
correlation coefficients (ρ) and corresponding p-values are shown. Violin plots show
the distribution of the data, with the width representing the density of observations.
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Additionally, the model revealed nonlinear threshold effects and
synergistic interactions. For instance, influent pollutant concentrations
exceeding 200mg L−1 clearly increased Ks presence ratio, but only under
anaerobic conditions. This suggests a substrate-induced activation of fer-
mentative pathways, likely triggered when carbon availability exceeds a
functional threshold under redox-constrained conditions49. In contrast, the
Kf presence ratio exhibited a more bimodal ecological response, increasing
under both substrate-limiting (<50mg L−1 or HRT< 4 h) and substrate-
excess conditions (>600mg L−1 or HRT> 8 h). Stress-resilient oligotrophs
such asHyphomicrobium dominate under substrate limitation through high-
affinity uptake and slow-growth survival strategies50,51. Under substrate-excess
conditions, copiotrophic or EPS-producing taxa like Massilia, Romboutsia,

and Flavobacterium proliferate, leveraging resource surplus and extended
retention for biofilm maturation52. Recognizing these tipping points can help
optimize biofilter operation to promote beneficial microbial configurations.

Experimental validation of model-predicted ecological
mechanisms
To verify the predictive capacity and ecological plausibility of the inter-
pretable keystone modeling framework, a controlled lab-scale validation
experiment was conducted using four parallel biofilter systems (H1–H4).
These systems were designed to emulate distinct combinations of opera-
tional levers identified as key regulators of microbial keystoneness indica-
tors, including temperature, HRT, and filter media characteristics. As

Fig. 4 | Evaluation of predictive model performance for pollutant removal.
a Comparative model performance of 15 machine learning algorithms across 4
microbial feature groups (AB, AC, BC, ABC), evaluated using mean absolute error
(MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root
mean squared error (RMSE), and R-squared (R2). Color intensity represents the
magnitude of each evaluation indicators. b Performance of machine learning
algorithms using ABC input for predicting pollutant removal rates. Blue points

represent training samples, and orange points represent test samples. RF random
forest, ET extra trees, LightGBM light gradient boosting machine, AdaBoost
adaptive boosting, XGBoost extreme gradient boosting, CatBoost categorical
boosting, GBR gradient boosting regression, SVR support vector regression, Lasso
least absolute shrinkage and selection operator, Bay bayesian ridge, ARD automatic
relevance determination, KNNK-nearest neighbor, ELM extreme learningmachine,
KAN kolmogorov-arnold network, DT decision trees.
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inferred by GAMI-Net, temperature and HRT were highly influential
variables modulating Ks and Kf presence ratios, showing nonlinear
threshold effects and ecological tipping points, while media type governed
surface microhabitat availability and shaped microbial structure and func-
tion.Therefore, these leverswere selected as representative test conditions to
validate the model’s predictions in controlled experiments.

In H1 and H2, the effect of temperature and HRT was systematically
examined by operating H1 at 25 °C and H2 at 15 °C, with both units
subjected to short (2 h) and long (8 h) HRT (Fig. 7a). Consistent with model
predictions, the Ks and Kf presence ratios were higher in the warmer (25 °C)
and shorter HRT (2 h) conditions, with corresponding increases in biofilter
performance (Fig. 7b–d). Conversely, an HRT of 8 h under low temperature
(15 °C) led to sharp reductions in both keystoneness indices and treatment
performance, empirically supporting the predicted ecological tipping points.

InH3 andH4, the impact of filtermedia typewas evaluated by packing
withCerBM(H3) or SynPM(H4) (Fig. 7e).H4demonstrated higherKs and
Kf presence ratios and superior biofilter performance, confirming that
surface microhabitat properties act as a lever for functional potential reali-
zation (Fig. 7f–h). Across all units, microbial community profiling, gene
functional inference, and pollutant removal performance confirmed that
observed shifts in keystoneness metrics were tightly coupled to changes in
environmental parameters, as anticipated by the ecological response
models.

Discussion
This study establishes a comprehensive global dataset of biofilter systems
reported since 1988 and introduces an interpretable, microbially grounded
modeling framework that integrates microbial community structure,

Fig. 5 | Tunable environmental and operational levers shaping microbial struc-
tural keystone expression. GAMI-Net model identifies the significant main effects
and pairwise interactions in predicting the Ks presence ratio. The one-dimensional
plots illustrate themarginal effects of individual features, while the two-dimensional
plots depict pairwise feature interactions. In the one-dimensional plots, the hor-
izontal axis represents the values of the feature, and the vertical axis indicates its
corresponding contribution to the prediction. In the two-dimensional plots, the

horizontal and vertical axes represent the values of the two interacting features,
respectively. Lighter colors indicate stronger interaction effects on the prediction.
Subplot titles indicate the feature names and their importance ratios (IR). Histo-
grams alongside each axis show the data distribution of the corresponding feature.
CarBM carbon-based materials, CerBM ceramic-based materials, MinSM mineral
substrate materials, ModCM modified composite materials, SynPM synthetic
polymeric materials.
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ecological function, and water treatment performance. Specifically,
sequencing and operational metadata were compiled from 1165 publica-
tions, and 648 biofilter samples were rigorously curated, covering diverse
regions, water types, and operational conditions. This broad coverage
enhances the robustness of model training and inference. By identifying
structural keystone taxa and functional contributor taxa, the framework
provides mechanistic insight into how microbial indicators reflect and
respond to environmental and operational conditions. The integration of
deep learning, ecological theory, and interpretable machine learning
approaches (e.g., GAMI-Net, SHAP) facilitates mechanistic understanding
and transparent inference across microbial, process, and system scales.

A key contribution of this study is the identification of specific
operational variables as tunable ecological levers for two keystoneness
indicators, the presence ratios of structural and functional taxa. These

variables, including temperature, working volume, HRT, and filter media,
exert distinct effects on microbial structural cohesion and metabolic capa-
city within biofilter communities. Experimental validation confirms that
adjusting these parameters can steer microbial community states toward
ecologically favorable regimes, thereby enhancing pollutant removal per-
formance. The Ks presence ratio was found to be particularly sensitive to
changes in working volume, while the Kf presence ratio showed a stronger
association with temperature. This ecological differentiation provides a
foundation for targeted control of microbial ecosystems within biofilters
and is essential for balancing community stability and functional efficiency,
which are often in trade-off in complex microbial systems.

Despite its mechanistic insights and predictive power, this study has
limitations that warrant consideration. The current analysis is based pri-
marily on cross-sectional data, which constrains the ability to capture

Fig. 6 | Tunable environmental and operational levers shaping microbial func-
tional keystone expression.GAMI-Net model identifies the significant main effects
and pairwise interactions in predicting the Kf presence ratio. The one-dimensional
plots illustrate themarginal effects of individual features, while the two-dimensional
plots depict pairwise feature interactions. In the one-dimensional plots, the hor-
izontal axis represents the values of the feature, and the vertical axis indicates its
corresponding contribution to the prediction. In the two-dimensional plots, the

horizontal and vertical axes represent the values of the two interacting features,
respectively. Lighter colors indicate stronger interaction effects on the prediction.
Subplot titles indicate the feature names and their IR.Histograms alongside each axis
show the data distribution of the corresponding feature. CarBM carbon-based
materials, CerBM ceramic-based materials, MinSM mineral substrate materials,
ModCMmodified composite materials, SynPM synthetic polymeric materials, HET
heterotrophic, AUT autotrophic, HET/AUT heterotrophic/autotrophic.

https://doi.org/10.1038/s43247-025-02996-6 Article

Communications Earth & Environment |          (2025) 6:1036 9

www.nature.com/commsenv


temporal dynamics such as resilience and succession under perturbations.
Metadata quality and reporting heterogeneity across studies introduce
uncertainty intomodel calibration. These limitations suggest that while the
framework is robust across a large study dataset, its generalizability to full-
scale, long-term operations requires further validation. In addition,
although key microbial indicators were identified, causal mechanisms at
finer taxonomic and functional resolutions remain to be elucidated, parti-
cularly under fluctuating environmental conditions. Future work may
extend this framework to full-scale, dynamic operations and continuous
monitoring, and incorporate longitudinal datasets to capture resilience
under perturbation. Coupling the framework with adaptive control strate-
gies could enable real-time regulation of microbiomes, where community
states are not only observedbut actively guided towardoptimized ecosystem
function.

Methods
Data collection of global biofilters
A comprehensive dataset of global biofilter processes has been compiled.
Biofilter-related studies were retrieved from the Web of Science Core Col-
lection database using the keywords “water”, “biofilter”, and “microbial
community”. The advanced search strategy was: TS = (water OR *water)
AND TS = (biofiltration OR biological filtration OR biofilter OR bio-filter
OR biological filter) AND TS = (microbial community) AND DT= (
Article), yielding 1165 publications from 1988 to 2024. Raw 16S rRNAgene
sequencing data for 648 biofilter samples were rigorously screened and
obtained from the National Center for Biotechnology Information. SRA
accession numbers and associated metadata for the retrieved sequencing
data are provided in Supplementary Table 1. For each sample, metadata on

geographic locations (spanning Asia, Europe, North America), water types
(e.g., drinking water, groundwater, stormwater, wastewater), water quality
(e.g., pH, targeted pollutant concentration), operational parameters (e.g.,
temperature, HRT, filter media characteristics, oxygen and nutrient con-
ditions), and contaminant removal efficiencies were extracted and cura-
ted (Fig. 1a).

16S rRNA gene sequencing data processing
Raw sequencing reads were retrieved using SRA Toolkit (v2.10.8)53. All 16S
rRNA gene sequences were processed and analyzed using USEARCH
(v10.0.240)54. Reads with low quality, PCR duplicates, and adapter con-
tamination were removed. After standardized quality control, operational
taxonomic unit (OTU) clustering was performed at a 97% sequence simi-
larity threshold55. Taxonomic classification of representative OTU
sequences was performed using the SINTAX classifier against the SILVA
database, with a confidence threshold of 0.856. Each sample was processed
and analyzed individually, and the resulting taxonomic assignments at the
genus level were then merged for statistical analysis and visualization.
Microbial community composition was determined via 16S rRNA gene
sequencing, and functional profileswere predictedbasedonKEGGpathway
inference using PICRUSt256.

Identification of structural and functional keystone taxa
Adeep learning framework for keystone taxon identificationwas developed
basedon the approachofWang, et al.28, using aNeuralOrdinaryDifferential
Equations model to learn the complex mapping φ: z→ p that captures
microbial co-occurrence patterns (Fig. 1b). It was trained on the top 300
genera across 648 biofilter samples, with 20% held out for validation, and

Fig. 7 | Experimental validation of ecological lever
effects on microbial keystone indicators and pol-
lutant removal. a Schematic diagram of experi-
mental setup for H1 andH2 reactors operated under
different temperature and HRT conditions. b Ks
presence ratio under varying temperature and HRT
in H1 (25 °C, HRT = 2 h or 8 h) and H2 (15°C,
HRT = 2 h or 8 h). c, Kf presence ratio under the
same conditions in H1 and H2. d Pollutant removal
efficiency in H1 and H2. e Schematic diagram of
experimental setup for H3 andH4 reactors operated
with different filtermedia (CerBMand SynPM). fKs
presence ratio under different filter media in H3
(ceramic-based media, CerBM) and H4 (synthetic
polymericmedia, SynPM). gKf presence ratio under
different filter media in H3 and H4. h Pollutant
removal efficiency in H3 and H4. Error bars repre-
sent standard deviation of three replicates.
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parameters from the best-performing epoch were retained. The trained
model was used to conduct in silico perturbation experiments. For each
microbiome sample s = (z, p), the removal of individual genus i was
simulated by transforming z to z \ i.

The Ks for genus i in community s was calculated as:

Ks i; sð Þ ¼ dðep; �pÞð1� piÞ ð1Þ

where d(p̃, p̄) represents the structural impact quantified by Bray-Curtis
dissimilarity, and (1 - pi) accounts for biomass component.

Similarly, the Kf was calculated as:

Kf i; sð Þ ¼ dðef ;�fÞð1� piÞ ð2Þ

where d(f,̃ f)̄ represents the functional impact based on dissimilarity in
predicted functional profiles. Functional profiles were predicted using
PICRUSt2 based on 16S rRNA gene data. The KEGG Ortholog (KO)
content of each genus was computed by averaging the KO profiles of all
OTUs assigned to that genus. The top 20 taxa ranked by Ks and Kf,
respectively, were retained as structural and functional keystone taxa.

Predictive modeling of pollutant removal efficiency
Multiple regression models were constructed to predict pollutant removal
efficiency based on microbially derived indicators (Fig. 1c). Three types of
feature sets were evaluated in various combinations:
(A) Keystone-based indicators: Ks20 median, Kf20 median, Ks weighted

sum, Kf weighted sum, Ks presence ratio, Kf presence ratio, functional
efficiency ratio (median Kf/median Ks), and keystone functionality
product (median Kf ×median Ks);

(B) Structural community metrics: Shannon’ index, Simpson’ index, and
richness;

(C) Functional gene profiles: Glycolysis/gluconeogenesis, carbon fixation
pathways in prokaryotes, TCA cycle, nitrogen metabolism, phospho-
nate and phosphinate metabolism, sulfur metabolism, oxidative
phosphorylation, two-component system, and ABC transporters.

Models were constructed using four different combinations of these
input features: ABC, AB, AC, and BC. All datasets were normalized using
Z-score standardization to reduce the influence of outliers and scale
differences. The dataset was randomly split into 90% for training and
10% for testing. A total of 15 machine learning algorithms were eval-
uated, and the description and advantages of these algorithms are
summarized in Supplementary Table 4. All models were trained using
rigorous data cleaning, feature engineering, 5-fold cross-validation, and
grid search for hyperparameter tuning57 (Supplementary Table 5). Model
performance was evaluated on the test set using five metrics: R2, MAE,
MAPE, MSE, and RMSE58. The best-performing model was interpreted
using SHAP to identify the most influential microbiome-derived
features59.

The evaluation metrics were calculated as follows:

MAE ¼ 1
n

X

n

i¼1

yi � ŷi
�

�

�

� ð3Þ

MAPE ¼ 100%
n

X

n

i¼1

yi � ŷi
yi

�

�

�

�

�

�

�

�

ð4Þ
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RMSE ¼
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1
n

Xn

i¼1
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r

ð6Þ
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Pn
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Pn

i¼1 ðyi � �yiÞ2
ð7Þ

Ecological responsiveness modeling via interpretable GAMI-
Net model
To quantify the influence of environmental and operational variables on
microbial keystone indicators (i.e., Ks presence ratio and Kf presence ratio),
an explainable neural network based on GAMI-Net was employed. This
model balances predictive accuracy with interpretability and uses major
water quality, environmental, media, nutrient, and oxygen variables as
inputs (Fig. 1d). Specifically, categorical variables (e.g., water type, filter
media, nutritional condition, oxygen condition) were label-encoded before
modeling, while all continuous variables and the target variable were nor-
malized. The dataset was randomly split into training (80%) and testing
(20%) sets, with an internal validation set (20% of the training data) auto-
matically assigned during GAMI-Net training. Early stopping was
employed to prevent overfitting.

The mathematical formulation of the model is given by:

g E Y; j;Xð Þð Þ ¼ μþ
X

i2S1
hi Xi

� �þ
X

i;jð Þ2S2
f ijðXi;XjÞ ð8Þ

where μ is the intercept, X denotes the input features, Y is the response
variable, and S₁ and S₂ represent the sets of main effects and pairwise
interactions, respectively.

The IR for each main effect was calculated as:

IR ið Þ ¼ DðhiÞ=
X

i2S1
D hi
� �þ

X

i;jð Þ2S2
D f ij

� �

0

@

1

A ð9Þ

Similarly, the IR for each pairwise interactions was calculated as:

IR ij
� � ¼ Dðf ijÞ=

X

i2S1
D hi
� �þ

X

i;jð Þ2S2
D f ij

� �

0
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Experimental validation
Four lab-scale biofilters (H1–H4) were constructed to validate model-
predicted ecological levers. All reactors were inoculated with the same
microbial community and fed with synthetic influent. Temperature (25 °C
vs 15 °C) andHRT (2 h vs 8 h) were varied inH1 andH2, while filter media
types (CerBM vs SynPM) were tested in H3 and H4. Over a 30-day period,
samples were collected for 16S rRNA gene sequencing and pollutant
removal analysis. Detailed procedures for reactor setup, sample collection,
and sequencing are provided in SupplementaryNotes 1 and2. Experimental
changes in Ks indices, Kf indices, and pollutant removal rates were com-
pared with model-predicted values.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All sample information is provided in the Supplementary Information. All
data can be accessed at https://github.com/Jinlili-jennie/Identifying_
Ecological_Levers.
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Code availability
All code used in this study is available at https://github.com/Jinlili-jennie/
Identifying_Ecological_Levers/tree/main/Code.
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